

WANPIPE

Working with WANPIPE in Linux®

CONFIGURATION M A N U A L

Author: Nenad Corbic

Copyright (c) 1995-2000 Sangoma Technologies Inc.

Introduction

WANPIPE from Sangoma Technologies Inc. (http://www.sangoma.com) is a
family of intelligent multi-protocol WAN adapters with data transfer rates up to
4Mbps. They are also known as Synchronous Data Link Adapters (SDLA) and
are designated as S514-PCI or S508-ISA. These cards support

- X.25, Frame Relay, PPP, Cisco HDLC protocols.

- API support for protocols like HDLC (LAPB),
 HDLC Streaming, X25, Frame Relay and BiSync.

 - X25 PAD Support.

- Ethernet Bridging over Frame Relay protocol.

- MULITLINK PPP, used for bundling multiple T1/56K dialup
 lines into to a single logical link.

- Async TTY serial port on S514-PCI/S508-ISE Secondary Port.

 The async port can replace a standard UART serial port, and interface to
 a modem to support a backup dial up connection.

Sangoma S514 PCI and S508 ISA are intelligent adaptors that support most
WAN protocols in firmware. The fact that protocols are supported in firmware
makes device driver design much simpler.

Driver’s major responsibility is to pass data between the adaptor and Linux
operating system. Furthermore, by using the intelligent adapters, system CPU
load is kept at the minimum, an important factor in Server-Router performance
and stability: a relatively slow machine, like a 486, can be used with the
Sangoma adapter and Linux OS to create a powerful T1 router/firewall.

Another benefit of isolating protocols, on the board, is the possibility to test and
certify protocol implementations on one operating system and be sure that they
will work identically on any other operating system. If necessary, a protocol
update can be installed on the fly, without recompiling the driver or the kernel.

Sangoma Adapters can have two different physical interfaces, T1 (CSU/DSU on
board) or serial V.35/X.21/EIA530/RS232. The card with the T1 interface allows
the server to connect directly to the T1 line without an external CSU/DSU.

http://www.sangoma.com/

WANPIPE Configuration

The WANPIPE configuration process starts with creating a detailed configuration
file that outlines the hardware, protocol and IP options as well as location of the
adapter firmware. It is created for each WANPIPE device.

A WANPIPE device does not describe a physical card, but a logical implementation of a
physical card. For example, a S5141 card contains a single CPU with two physical ports:
a High-Speed (up to 4Mbps) port and a Low-Speed (up to 512Kbps) port. Furthermore,
each port can support an independent physical connection. Therefore, to reiterate,
number of Wanpipe devices refers to the number of physical lines connected to a
Sangoma adapter.

To simplify the WANPIPE configuration process, a GUI configuration utility called
wancfg was developed. It is located in /usr/local/wanrouter directory.

Ex: cd /usr/local/wanrouter
 ./wancfg

NOTE: wancfg has extensive help files for each WANPIPE option.

If wancfg cannot be used due to lack of bash2 support, please use the
sample Wanpipe configuration files to aid you in configuring WANPIPE.
The sample configuration files are located in
/usr/local/wanrouter/samples directory.

Frame Relay

Frame Relay is a simplified form of Packet Switching similar in principle to X.25
in which synchronous frames of data are routed to different destinations
depending on header information.

The biggest difference between Frame Relay and X.25 is that X.25 guarantees
data integrity and network managed flow control at the cost of some network
delays. Frame Relay switches packets end to end much faster, but there is no
guarantee of data integrity at all.

Frame Relay is cost effective, partly due to the fact that the network buffering
requirements are carefully optimized. Compared to X.25, with its store and
forward mechanism and full error correction, network buffering is minimal.
Frame Relay is also much faster than X.25: the frames are switched to their
destination with only a few byte times delay, as opposed to several hundred
milliseconds delay on X.25.

Wanpipe Frame Relay Options

Wanpipe Frame Relay has the following modes of operations: WANPIPE, API
and BRIDGING.

WANPIPE MODE: The Linux Kernel uses Frame Relay logical channels to

route packets to remote networks, using the TCP/IP
protocol.

Each logical channel is represented by a network interface,
where each interface contains unique IP information. Kernel
uses the IP information to route incoming packets to remote
networks.

API MODE: Frame Relay API mode is used to send non-IP traffic over a

frame relay link. The API interface allows the user to build a
custom application on top of the frame relay link in order to
transmit custom data packets (i.e Non IP). An example of a
custom application would be Voice-over IP, Data capture
and packet analysis.

BRIDGING MODE: The ‘kernel bridge’ is used to bridge multiple frame relay

logical channels together into a single LAN. This option is
desirable if IP addresses are scarce, or in building a single
LAN architecture. Thus, multiple remote LAN’s can be

bridged together into a single LAN using the frame relay
(WAN) links.

Please refer to WanpipeEthernetBridge.(pdf/txt) for further
information.

Information needed from your ISP

• List of DLCI (channels) used:

 DLCI is a logical Frame Relay link/channel (16 – 4096).

• IP address for each DLCI channel (WANPIPE MODE)
Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• Frame Relay Signalling:

Frame relay has number of singalling options:
 LMI, ANSI, Q933

• Frame Relay Station:
Frame relay has two modes of operation:
 CPE or NODE.

- CPE: customer premises equipment. As an end user, a Frame
 Relay connection should always be set to this mode.

- NODE: switch emulation:

 This option should only be used in back-to-back test
 situation, with two sangoma card. Sangoma can act as
 a switch, however, in most cases that is an ISP’s job.

• CSU/DSU Configuration:
Sangoma S514/S508FT1 cards are supplied with an onboard
CSU/DSU that needs to be configured, based on the type line it’s
being connected to.

Cisco HDLC

Cisco HDLC is a point-to-point protocol implemented on top of HDLC layer 2. As
the name implies CHDLC is a protocol mostly used to connect to the Ciscotm
external routers.

Wanpipe CHDLC Options

Wanpipe CHDLC has the following modes of operations: WANPIPE and API.

WANPIPE MODE: The Linux Kernel uses the CHDLC point-to-point link to route

packets to a remote network, using the TCP/IP protocol.

A CHDLC point-to-point connection is represented by a
single network interface that contains IP information
obtained from the ISP. The Kernel uses the IP information
to route incoming packets to remote a network.

API MODE: CHDLC mode used to send non-IP traffic over a CHDLC

point-to-point link. The API interface allows the user to build
a custom application on top of the CHDLC link in order to
transmit custom data packets (i.e Non IP). An example of a
custom application would be a Satellite Receive Only data
collector or Data capture and packet analysis tool.

Information needed from your ISP

• IP address for the CHDLC point-to-point connection
 (WANPIPE MODE)

Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• CSU/DSU Configuration:
Sangoma S514/S508FT1 cards are supplied with an onboard
CSU/DSU that needs to be configured, based on the type line it’s
being connected to.

X25

X.25 Packet Switched networks allow remote devices to communicate with
each other across high-speed digital links without the expense of individual
leased lines. Packet Switching is a technique whereby the network routes
individual packets of HDLC data between different destinations based on
addressing within each packet

The protocol known as X.25 encompasses the first three layers of the OSI 7-
layered architecture as defined by the International Organization for
Standardization (ISO) as follows:

• Layer 1: The Physical Layer is concerned with electrical or signaling. It
includes several standards such as V.35, RS232 and X.21.

• Layer 2: The Data Link Layer, which is an implementation of the ISO
HDLC standard called Link Access Procedure Balanced (LAPB) and
provides an error free link between two connected devices.

• Layer 3: The Network Layer, which provides communications between
devices connected to a common network. In the case of X.25, this layer is
referred to as the X.25 Packet Layer Protocol (PLP) and is primarily
concerned with network routing functions and the multiplexing of
simultaneous logical connections over a single physical connection.

Wanpipe X25 Options

Wanpipe X25 has the following modes of operations: WANPIPE, API.

WANPIPE MODE: The Linux Kernel uses X.25 logical channels to route

packets to remote networks, using the TCP/IP protocol.

Each logical channel is represented by a network interface,
where each interface contains unique IP information. Kernel
uses the IP information to route incoming packets to remote
networks.

API MODE: X.25 API mode is used to send non-IP traffic over an X.25

link. The API interface allows the user to build a custom
application on top of the X.25 link in order to transmit custom
data packets (i.e Non IP). An example of a custom
application would be Credit Card verification, Data capture
and packet analysis.

X25 PAD: X25 PAD

http://192.168.1.1/hdlc.htm
http://192.168.1.1/signal.htm
http://192.168.1.1/signal.htm
http://192.168.1.1/signal.htm
http://192.168.1.1/hdlc.htm

Information needed from your ISP

• List of LCN (logical channel number) used:

X25 LCN’s can be configured as:

- Switched Virtual Circuits (SVC)
SVC is analogous to a telephone line. A call must be
established before communication takes place.

- Permanent Virtual Circuits (PVC)
PVC line is always connected, thus not calls setup is
required.

The ISP must provide LOWEST (SVC/PVC) and HIGHEST (SVC/PVC)
numbers.

• IP address for each LCN channel (WANPIPE MODE only)

Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• X25 Station:

X25 has two modes of operation:
 DCE or DTE.

PPP

Point-To-Point Protocol (PPP) is a protocol implemented on top of HDLC layer
2.PPP is a standard protocol used when connecting over a point-to-point link.

Wanpipe PPP Options

Wanpipe PPP has the following modes of operations: WANPIPE.

WANPIPE MODE: The Linux Kernel uses the PPP point-to-point link to route

packets to a remote network, using the TCP/IP protocol.

A PPP point-to-point connection is represented by a single
network interface that contains IP information obtained from
the ISP. The Kernel uses the IP information to route
incoming packets to remote a network.

API MODE: Not-Supported.

Information needed from your ISP

• IP address for the PPP point-to-point connection
 (WANPIPE MODE)

Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• CSU/DSU Configuration:

Sangoma S514/S508FT1 cards are supplied with an onboard
CSU/DSU that needs to be configured, based on the type line it’s
being connected to.

Important

This version of PPP protocol is supported by WANPIPE in firmware, as with all
other protocols. The limitation of the current WANPIPE PPP protocol is that it
cannot run on a Secondary port of the Sangoma adapter (ex. S514-1).

Multi-Port Sync PPP

The Multi-Port Sync PPP is a standard implementation of PPP protocol
implemented in the Linux Kernel, NOT in WANPIPE firmware. Using the
Sangoma adapter as a dumb card and the Linux PPP Sync Layer a standard
PPP connection can be established over a T1 Link.

The Multi-Port PPP has been developed to address the standard WANPIPE PPP
limitation. The standard WANPIPE PPP (supported in firmware) cannot run on a
Secondary port. Since the Multi-Port PPP is implemented in kernel, second port
is freed up; thus, multiple independent PPP connections can be established on
both Sangoma adapter ports simultaneously.

Wanpipe Multi-Port Sync PPP Options

Wanpipe Multi-Port PPP has the following modes of operations: WANPIPE.

WANPIPE MODE: The Linux Kernel uses the PPP point-to-point link to route

packets to a remote network, using the TCP/IP protocol.

A PPP point-to-point connection is represented by a single
network interface that contains IP information obtained from
the ISP. The Kernel uses the IP information to route
incoming packets to remote a network.

API MODE: Not-Supported.

Information needed from your ISP

• IP address for the PPP point-to-point connection
 (WANPIPE MODE)

Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• CSU/DSU Configuration:

Sangoma S514/S508FT1 cards are supplied with an onboard
CSU/DSU that needs to be configured, based on the type line it’s
being connected to.

Sync/Async/Multilink (TTY) PPP

The Sync/Async/Multilink PPP is a standard implementation of the PPP protocol
implemented in the Linux Kernel, NOT in WANPIPE firmware. Using the
Sangoma adapter as a TTY serial card and the Linux PPP Layer a standard PPP
connection can be established over a T1 Link or a Modem line.

The Sync/Async/Multilink PPP has been developed to address the standard
WANPIPE PPP limitations:

- The standard WANPIPE PPP (supported in firmware) cannot run on a
 Secondary port and
- Does not support Multilink operation.

The Sync/Async/Multilink PPP has two modes of operation:

- Sync with Multilink option.
Used to establish a PPP connection over sync T1 lines.

- Async.
Use to establish a PPP connection via MODEM over a
telephone line.

NOTE: Both modes are using for ROUTING purposes, i.e. no API support.

Furthermore, since the Sync/Async PPP is implemented in the kernel, the
second port is freed up; thus, multiple independent PPP connections can be
established on both Sangoma adapter ports simultaneously.

SYNC Mode

Using the PPPD daemon, kernel Sync-PPP layer and the Wanpipe sync TTY
driver: a PPP protocol connection can be established via Sangoma adapter, over
a T1 leased line.

The 2.4.0 kernel PPP layer supports MULTILINK protocol. It can be used to
bundle any number of Sangoma adapters (T1 lines) into one, under a single IP
address. Thus, efficiently obtaining multiple T1 throughputs.

NOTE: The remote side must also implement MULTILINK PPP protocol.

ASYNC Mode

Using the PPPD daemon, kernel Async PPP layer and the WANPIPE async TTY
driver: a PPP protocol connection can be established via Sangoma adapter and
a modem, over a telephone line.

The WANPIPE Async TTY driver simulates a serial TTY driver that is normally
used to interface the MODEM to the Linux kernel.

NOTE: This option only works on a SECONDARY Port of the S514-PCI/S508-
 ISA card.

Device /dev/ttyW(0,1,2..)

To interface a PPPD daemon to the WANPIPE TTY driver a /dev/ttyWX
X={0,1,3...) device must be created.

 ex: mknod -m 666 /dev/ttyW0 c 226 0

Note: 226 is the Major Number
 0 is the Minor Number

IMPORTANT:
This option should only be used if the MULTILINK option desired, to bundle T1
connections together or to simulate a serial async device driver. Otherwise, it is
recommended that standard WANPIPE PPP is used.

Information needed from your ISP

• IP address for the PPP point-to-point connection
If STATIC IP addressing is used.

Ex: Local: 201.1.1.1
 Remote: 201.1.1.2

• Clocking Mode:

In most cases clocking will be External.
i.e. the ISP will supply the clock.

• CSU/DSU Configuration:

Sangoma S514/S508FT1 cards are supplied with an onboard
CSU/DSU that needs to be configured, based on the type line it’s
being connected to.

Sync/Async TTY PPP Configuration and Operation

1. The WANPIPE TTY driver has very few options since main configuration

options will be defined during the PPPD daemon configuration.

2. WANPIPE TTY OPTIONS:

(Use the wancfg to create the wanpipe1.conf configuration files.)

TTY_MINOR: TTY MINOR represents a TTY port.
 Options: 0,1,2,3 … Default: 0

It binds a WANPIPE device driver to the /dev/ttyWX device ,
where X=(0,1,3,..). For example MINOR number 0 binds a
Wanpipe TTY driver to /dev/ttyW0. Thus, when pppd
daemon opens the /dev/ttyW0 it will reach the device driver
whose Minor number is 0.

 Note TTY_MINOR must differ for each Wanpipe device.

 TTY_MODE: WANPIPE TTY driver operation mode
 Options: Sync or Async Default: Sync

The driver operation mode must be specified here, since
driver cannot obtain the operation mode from the pppd
configuration calls. Therefore, if the driver operation mode is
Sync than the pppd must be invoked with the sync option.

Furthermore, all subsequent drivers must be configured with the same TTY
MODE and different MINOR numbers.

3. The wancfg configurator will configure the pppd daemon according to the

TTY_MODE selected. It will also prompt the user for MULTILINK support.
Three files will be created for each Wanpipe device:

- /etc/ppp/options.ttyWX X is TTY_MINOR number.
- /etc/ppp/peers/isp_wanpipeX X is a device number (1-16)
- /dev/ttyWX X is TTY_MINOR number.

4. WANPIPE TTY drivers must be started before the pppd attempts to open a

/dev/ttyWX device.
ex: wanrouter start wanpipe1

5. Once the Wanpipe device is started, PPP connection can be established by

calling the pppd call script (created by wancfg):
ex: pppd call isp_wanpipe1

Manual PPPD Daemon Configuration

1. Depending on the TTY MODE used, the pppd configuration file must be

configured for Sync or Async operation.

The pppd daemon uses an options configuration file found in /etc/ppp
directory. An options configuration file exists for each /dev/ttyX device. For
/dev/ttyW0 device, the following options file must be created in /etc/ppp
directory:

 Async PPPD daemon configuration:

 /etc/ppp/options.ttyW0

 #Example options.ttyW0 file
 asyncmap 0
 modem #Use the modem signals

 silent #Wait until ppp request is received before
 #starting ppp protocol (optional).

 Debug #Eanble debugging
 (optional)

 Crtscts #Eanble crtscts hardware flow control

 noipdefault #Use dynamic IP addressing. Obtain IP
 #addresses from the remote side.
 #NOTE: disable this option if using STATIC IP
 addressing. (async only)

 --detach #Do not detach from the terminal window

 defaultroute #IP address of this interface should be set as
 #default in the routing table.

 #End of options.ttyW0 file

 Sync PPPD Daemon configurtion:

 /etc/ppp/options.ttyW0

 #Example options.ttyW0 file
 asyncmap 0
 silent #Wait until ppp request is received before
 #starting ppp protocol (optional).

 Debug #Eanble debugging
 (optional)

 --detach #Do not detach from the terminal window

 defaultroute #IP address of this interface should be set as
 #default in the routing table.

 #End of options.ttyW0 file

1. Furthermore a call pppd script can also be defined to simplify the pppd
argument line. The call script must be defined in /etc/ppp/peers directory.
The example call script will be called isp_async and isp_sync:

 Async PPP call script

 /etc/ppp/peers/isp_wanpipe1:
 ttyW0 #Wanpipe TTY driver

38400 #Baud Rate
 connect ‘/etc/ppp/redialer’ #A modme dial up script

NOTE: In async mode, WANPIPE TTY drivers are always set to
internal clocking, thus the baud rate needs to be set here. The
driver obtains the baud rate through pppd configuration calls, not
wanpipe1.conf configuration file as in sync.

 Sync PPP call script

 /etc/ppp/peers/isp_wanpipe1:
 ttyW0 #Wanpipe TTY driver
 sync #Connect via sync line
 <IP local>:<IP remote> #Set to IP addresses obtained
 # from ISP.

NOTE: The baud rate is not needed since the Sync Wanpipe TTY
drivers obtain the baud rate from the Wanpipe configuration files
(ex. wanpipe1.conf).

 Starting the pppd daemon using the above script:
 Ex: pppd call isp_wanpipe1

Multilink PPPD Configuration

One of the major reasons for WANPIPE TTY driver development was
MULTILINK PPP. The 2.4.X kernels support this protocol, which can bundle
multiple WANPIPE T1 cards into a singe logical connection to achieve greater
throughput. MULTILINK PPP protocol can be used in Sync or Async mode.
The following configuration changes need to be applied to the above pppd call
scripts in order to support mulitlink.

The /etc/options.ttyWX files do not change only the call scripts do:

Async PPP call script, MULTILINK support:

 /etc/ppp/peers/isp_wanpipe1
 #Configuration for the first 56K line
 ttyW0 #First Wanpipe device

38400 #Baud Rate
multilink #Enable Multilink support

 connect ‘/etc/ppp/redialer’ #A modme dial up script

 /etc/ppp/peers/isp_wanpipe2
 #Configuration for the second 56K line
 ttyW1 #Second Wanpipe device

38400 #Baud Rate
multilink #Enable Multilink support
noip #Slaves have no IP info

 connect ‘/etc/ppp/redialer’ #A modem dial up script

Sync PPP call script, MULTILINK support:

 /etc/ppp/peers/isp_wanpipe1

 #Configuration for the first T1 line
 ttyW0 #First Wanpipe device
 sync #Connect via sync line
 multilink #Enable Multilink Protocol

 <IP local>:<IP remote> #Set to IP addresses obtained
 # from ISP.

/etc/ppp/peers/isp_wanpipe2

 #Configuration for the second T1 line
 ttyW1 #Second Wanpipe device
 sync #Connect via sync line
 multilink #Enable Multilink Protocol

 noip #Slaves have no IP info.

To start the pppd daemon and bundle the two links together do the
following:

 Ex: pppd call isp_wanpipe1

Once the first ppp connection comes up then start the second.

Ex: pppd call isp_wanpipe2

	Introduction
	WANPIPE Configuration
	Frame Relay
	Wanpipe Frame Relay Options
	Information needed from your ISP

	Cisco HDLC
	Wanpipe CHDLC Options
	Information needed from your ISP

	X25
	Wanpipe X25 Options
	Information needed from your ISP

	PPP
	Wanpipe PPP Options
	Information needed from your ISP

	Multi-Port Sync PPP
	Wanpipe Multi-Port Sync PPP Options
	Information needed from your ISP

	Sync/Async/Multilink (TTY) PPP
	SYNC Mode
	ASYNC Mode
	Device /dev/ttyW(0,1,2..)
	Information needed from your ISP
	Sync/Async TTY PPP Configuration and Operation
	Manual PPPD Daemon Configuration
	Async PPPD daemon configuration:
	Sync PPPD Daemon configurtion:
	Async PPP call script
	Sync PPP call script

	Multilink PPPD Configuration
	Async PPP call script, MULTILINK support:
	Sync PPP call script, MULTILINK support:

