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ABSTRACT
Today’s Web remains too expensive for many Internet users, espe-
cially in developing regions. Unfortunately, the rising complexity of
the Web makes affordability an even bigger concern as it stands to
limit users’ access to Internet services. We propose a novel frame-
work and a fairness metric for rethinking Web architecture for af-
fordability and inclusion. Our proposed framework systematically
adapts Web complexity based on geographic variations in mobile
broadband prices and income levels. We conduct a cross-country
analysis of 99 countries, showing that our framework can better bal-
ance affordability and webpage quality while preserving user privacy.
To adapt Web complexity, our framework solves an optimization
problem to produce webpages that maximize page quality while
reducing the webpage to a given target size.
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1 INTRODUCTION
In 1991, Tim Berners-Lee published the first ever website and it
is estimated that by November 2022, there were nearly 2 billion
websites on the Internet [47]. Behind the success of the World Wide
Web (WWW) lay a powerful idea: a way for people to find and share
information freely across the connected humanity. Indeed, a large
body of evidence shows that the Web has played an essential role
in the development of economies and the socioeconomic mobility
of citizens by providing access to information about markets, jobs,
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Figure 1: Evolution of landing pages of mobile and desktop versions of websites
on the Internet. The figure shows the median pages along with the 25th and 75th
percentile page sizes (shown by the upper and lower grey lines). Data from the
HTTP Archive [5].

health, educational and financial services as well as by generating
economic opportunities [26, 31, 53]. Yet, despite WWW’s egalitarian
roots, it remains too expensive for many Internet users, especially in
developing regions.

A key reason is that access to the Internet in many developing
countries is predominantly through mobile phones where the cost of
mobile broadband relative to income levels is high [48]. As a result,
many citizens face difficulty paying for their mobile data usage and
often restrict their data usage, which in turn limits their ability to
access the Internet. A World Bank survey carried out in 11 emerging
countries found that a median of 48% of respondents had difficulty
paying for their mobile data usage, and 42% restrict the amount of
data they use [55].

In 2018, the UN Broadband Commission for Sustainable Develop-
ment set the target for affordable broadband services to be less than
2% of the monthly Gross National Income (GNI) per capita. Accord-
ing to the International Telecommunication Union, 94 developing
countries do not meet this target for a 2 GB data-only mobile broad-
band plan.1 While the average price in 51 countries is between 2–5%
of GNI per capita,2 in 20 developing countries the price exceeds
10% of GNI [30].

Concurrently, we are observing a steady increase in Web com-
plexity as shown in Fig. 1. For example, the median mobile webpage
size has increased from 145 KB to 2007 KB in nearly a decade; a
13.8× increase [27]. Partly, this growing complexity stems from the
fact that the Web’s design does not take into account affordability
as a design consideration. Thus, such a trend can reduce users’ Web
accesses and make Internet services less affordable, especially for

1Countries are benchmarked according to the price of the cheapest data-only mobile
broadband plan available domestically, with a minimum of 2 GB monthly data allowance
and a technology of 3G or above. Mobile plans involving voice and data (at least 500 MB)
were more expensive [29, 30]
2We use GNI to refer to GNI per capita throughout the paper.
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Services Example Data-Saving Mechanisms
Free Basics [4, 45] Webpages cannot have JavaScript, large images, iframes, videos, Flash, and Java applets
Web Light [9, 49] Removes all JS (except with scripts within an iframe for ads), resizes large images, and converts external CSS into inline CSS, replaces video

with an image
Facebook Discover [42] Limits responses to 1 MB, removes images or reduces resolution, and removes video, audio, and other rich content
FlyWheel [12] Compresses images (works only for HTTP traffic)
Lite-Web [16] Removes or blocks JavaScript that is unused or non-critical for interactive functionality.

Table 1: Some example services being used in developing countries for reducing data charges. They target an extreme design point for affordability at the cost of substantial
reduction in QoE and use proxy-based solutions that have led to privacy and net-neutrality concerns.

users in developing regions. While broadband prices have reduced in
the last few years, the decrease has been slow. For instance, between
2020 and 2021, the median price for mobile broadband services was
reduced by only 0.02 percentage points [30]. This calls for designing
solutions that can make the Web affordable by taming the complexity
of the Web experienced by users from regions with high broadband
prices relative to income levels.

Recent initiatives for reducing Web complexity in developing
countries (e.g., Free Basics [4, 45], Google Web Light [9], Discover
[42]) face two key challenges (see Table 1): (i) they target an extreme
design point for affordability, which comes at a cost of substantial
reduction in webpage quality. For example, Web Light reduces the
median webpage size by 12× but can break the functionality of
pages, rendering them unusable [49]. Similar to Web Light, Free
Basics removes JavaScript (JS), iframes, large images, and other rich
content and (ii) they rely on proxy-based solutions that break the end-
to-end principles of TLS [16, 42, 45, 49].3 This has raised significant
data privacy and network neutrality concerns, even leading to the
banning of services in some countries [34, 50].

In this work, we make a case for rethinking Web design around af-
fordability and inclusion. To this end, we present, AW4A (Affordable
Web For All) that addresses the above challenges and achieves a
better balance between affordability and webpage quality by relying
on two key principles: (i) Web frameworks should explicitly account
for affordability constraints in their design and (ii) website operators
should determine Web content adaptations to preserve user privacy
and meet their business needs.
AW4A provides a systematic way for incorporating affordability

constraints in Web design by relying on a new fairness metric, PAW
(Price Adjusted Web access), which captures how equitable and
affordable Web accesses are across regions with different mobile
broadband prices and income levels. PAW can be used by website
operators to come up with different target webpage sizes, which
AW4A uses to generate multiple versions of a website with different
complexities.

Given a target page size, AW4A aims to maximize webpage quality
while ensuring the resulting page is no larger than the target size.
This requires solving an optimization problem that involves selecting
a set of resource optimizations for different Web objects (e.g., image,
JS) that will yield the maximum quality webpage within the target
size. This optimization problem is practically inefficient to solve
for large webpages (§6). We design approximation algorithms for
solving the optimization problem: a brute force algorithm over the
discretized space of the problem and an algorithm that uses a greedy

3Some proxy-based approaches, such as FlyWheel [12], FlexiWeb [46], Traffic Guard
[36], and Lite-Web [16] do not work with HTTPS, which limits their use given the near-
ubiquitous adoption of end-to-end encryption [20] whereas other approaches (e.g., Web
Light) leverage URL redirection to transcode content without taking website operators’
consent and can expose private or personalized Web contents to third parties [34, 49].

approach and can quickly scale to large webpages (§7). Our evalu-
ation shows that our algorithms can transcode webpages such that
there is minimal impact on page quality while significantly reducing
page sizes (§8).

While AW4A can adapt the webpage to meet the affordability
target in a region, it also offers a choice to users to view a higher
quality webpage if they wish to do so. AW4A also exposes APIs to
the website operators for deciding which low-complexity versions
to generate and what weights to assign to different Web objects and
resource optimizations.

By offering more equitable Web accesses through a differentiated
service offering, AW4A can bring more users online and increase
access for constrained users, which in turn can lead to increased
revenues for website operators. For example, our analysis shows
that reducing the average webpage size by 1.5× can allow 12.1%–
14.1% of the countries to meet the affordability target for Web
accesses, which is achievable without significantly reducing page
quality. Moreover, reducing complexity can make it viable for mobile
service providers to offer smaller data plans, as users can derive more
value from the same data budget.

Finally, AW4A has synergies with the increasing trend of Lite apps
(e.g., Facebook Lite, Skype Lite), which are being designed for entry-
level smartphones that are prevalent in developing countries [2, 39].
These apps are designed by the content providers themselves, have
smaller sizes, and reduced functionality that meets the goals of the
service providers. Altogether, we make the following contributions:
• We collect and analyze the landing pages of Alexa top websites

accessed from 99 countries resulting in a dataset of 72,069 pages
after data cleaning. Using this data, we make a case for adapting
Web complexity based on geographical variations in broadband
prices and average income levels across regions.

• We propose a fairness metric, PAW, which captures how equitable
average webpage accesses are across countries.

• Using a simple economic model, we highlight the quality-access
trade-off and show via a user study with 100 participants that users
can observe significant utility gain by trading off webpage quality
for increased Web accesses.

• We present AW4A; a framework that uses PAW and solves an
optimization problem to generate low complexity versions of
webpages with high quality.

• We carry out a cross-country analysis of 99 countries.4 We show
that different Web complexities can be achieved and highlight the
trade-offs they present.

• We carry out an evaluation of HBS (our implementation of AW4A)
in terms of time to run, percentage URLs that can meet the target
size (as determined by PAW), and resultant webpage quality. We
also compare HBS to two state-of-the-art industry solutions, Brave

4These countries represent 7.16 B people or ∼90% of the world’s population.
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Figure 2: (a) Mobile broadband prices as a percentage of GNI per capita across 206 countries for three plans. 41%–52% of the countries do not meet the affordability target
of 2% across the plans, (b) distribution of landing page sizes of Alexa top 1000 websites from each of the 99 countries for which the data was available (resulting in a total of
72,069 pages) (c) ratio of mean Web accesses across 96 countries—divided into developed and developing countries—relative to the affordability target and the mean global
page size (2.47 MB for non-cached pages and 1.02 MB for cached pages) based on Alexa top 1000 websites globally. The vertical line at 𝑥 = 1 shows the ratio at the global
benchmark level and countries exceeding 1 do not meet the target. Note that broadband price data was not available for three countries. For PAW results of all plans, see
Appendix A.3.1.

and Opera Mini. To ensure reproducibility and facilitate future
work, we have made the source code of HBS publicly available at
https://github.com/nsgLUMS/sigcomm2023-aw4a.

• We present a discussion, which suggests that using such a frame-
work can bring more users online and lead to greater advertising
revenues for website operators, which can serve as an incentive to
offer such solutions.

2 MOTIVATION
Using data from the ITU, we first analyze the variations in mobile
broadband prices across 206 countries and three broadband plans
[30]. We then analyze the Web complexity across 99 countries by
measuring the sizes of landing pages of Alexa top 1000 websites
from each of the countries for which the data was available [1].5

This resulted in a dataset of 72,069 webpages after data cleaning.6

In addition, we employ two strategies to quantify the effect of
caching on Web complexity. We use (i) Cache-Control infor-
mation to simulate the average ‘cached’ version of the webpages in
our dataset and (ii) conduct real experiments on two devices with
different RAM sizes.

2.1 Distribution of Mobile Broadband Prices
Fig. 2a shows the distribution of prices (normalized by GNI per
capita) for three mobile broadband plans across 206 countries: These
plans, defined by ITU, include: (i) a 2 GB data-only plan (DO),
(ii) a hybrid plan comprising 500 MB of data and voice low-usage
(DVLU), and a hybrid plan with 2 GB of data and voice high-usage
(DVHU).7 First, we observe that there are large variations in mobile
broadband prices across countries for all three plans ranging from
0.07%–41%, 0.13%-38.4%, and 0.13%–56.9% for the DO, DVLU,

5We use WebPageTest [11] and a popular entry-level mobile device, Nexus 5, to fetch
these pages. In our analysis, we consider the network transfer size (which comprises of
the compressed sizes of each object) as reported by WebPageTest.
6The number of URLs in our final dataset is less than 99×1000 (99,000) as some of the
websites were blocked, broken, and some countries had a limited number of URLs (less
than 1000) available on Alexa.
7DO refers to the cheapest plan in a country providing at least 2 GB of high-speed data
(≥ 256 Kbps), DVLU refers to the cheapest plan providing at least 70 mins of voice,
20 SMS, and 500 MB of high-speed data (≥ 256 Kbps), and the DVHU plan refers to
the plan providing at least 140 mins of voice, 70 SMS, and 2 GB of high-speed data (≥
256 Kbps).

and the DVHU plans, respectively. Second, 41%–52% of the coun-
tries do not meet the UN Broadband Commission’s affordable target
price of 2% when considering the three broadband plans.

This is concerning because the lack of affordability of mobile
Internet has directly translated into large usage and consumption
gaps in developing countries. For example, in South Asia alone, 64%
of the population do not use the Internet despite having at least 3G
coverage, reflecting a large usage gap. A survey carried out by the
World Bank in 11 emerging countries found that a median of 48% of
respondents had difficulty paying for their mobile data usage [55].

2.2 Webpage Complexity Across Regions
The growing complexity of the Web has led to steady increases in
webpage sizes, which in turn, has increased the cost per access to
a website. For example, in the last five years (i.e., between January
2018 and January 2023), the median mobile page size has increased
from 1569 KB to 2007 KB, an increase of 27.9% [5]. Due to the
differences in the popularity of websites across countries, we expect
the average webpage size observed by users to also differ across
countries. Thus, we collected the sizes of landing pages of Alexa top
websites accessed from 99 countries, each of which had different
average broadband prices. The mean (non-cached) page size in our
sample was 2.83 MB (𝜎 = 0.55 MB)8 with some countries having a
mean size greater than 4 MB and some less than 1.75 MB. We find
that, in general, webpages accessed from developing countries tend
to be larger in size than those accessed from developed countries, as
shown in Fig. 2b.9 In particular, the mean (non-cached) page size in
developing and developed countries was 2.87 MB (𝜎 = 0.56 MB) and
2.64 MB (𝜎 = 0.46 MB), respectively. These variations in webpage
sizes (both across countries as well as within countries) directly
impact the data usage and the number of websites a user can access
before running out of a data plan.

Caching. Browser caching is used to store frequently accessed
objects so they do not need to be retransmitted on each website
visit. Thus, the total bytes transferred to the user may not always be
equivalent to the page size on the first visit. To account for this, we

8The page size refers to the total network bytes downloaded, i.e. the compressed web
objects are taken into account for both cached and non-cached page sizes.
9Our sample comprised data of the landing page sizes of websites from 82 developing
countries (including India, Pakistan, and Ethiopia) and 17 developed countries (including
USA, Germany, and Canada).
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report the effect of caching using two methodologies with differing
assumptions.

First, we simulate a user with infinite cache storage who visits
all the webpages in our dataset once every 12 hours for 2 weeks.10

When an object becomes stale (as determined by its max-age in
the Cache-Control HTTP header), it is ‘redownloaded.’ In this
setup, we observe that caching greatly reduces the total byte cost
(Fig. 2b). Notably, the average bytes expended by a user accessing
the Alexa top 1000 global sites is 1.02 MB (a 58.7% reduction of the
average non-cached page size based on the same dataset). We use
this methodology throughout the paper when we refer to a ‘cached’
webpage.

Second, to assess the impact of other significant factors on caching
(such as browser cache limit and device memory), we randomly
selected 25 websites from the global Alexa top 1000 sites and loaded
these websites at 12-hour intervals for 2 weeks on two entry-level
smartphones. The two smartphones, Nexus 5 and the Nokia 1, have
varying RAM sizes (2 GB and 1 GB, respectively). We find that,
in this setup, caching on the Nexus 5 and Nokia 1 provides an
average page size reduction of 60.9% and 21.4%, respectively. This
difference in page size reduction is attributed to the fact that the
bytes expenditure, and hence the total number of accesses available
to a user, also depends on the device being used. Memory and space
constraints limit the possible savings through caching [44].

While these experiments provide an estimate for the impact of
caching on network bytes transferred, the impact of user browsing
habits (which may be region-specific), varying visit frequencies, and
different browser applications on caching is not taken into account.

3 FAIRNESS IN WEB ACCESSES
We now introduce a new fairness metric for affordability and analyze
the distribution of Web accesses available to users across countries.
The proposed metric provides Web complexity targets to meet the
affordability target set forth by the UN Broadband Commission for
Sustainable Development. Next, we carry out a What-If analysis to
determine the possible reduction in page sizes with different resource
optimizations.

3.1 Fairness Metric
Our analysis in the previous section showed that the average page
size can vary significantly across countries. Thus, for a fixed mobile
broadband plan (e.g., a data-only plan), users in different countries
will have different numbers of Web accesses available to them before
running out of their data plan.

To capture the differences in average page sizes, mobile broad-
band prices, and income levels across regions as well as enable
comparisons against a common benchmark, we present a new fair-
ness metric for affordability, which we call the PAW index. PAW𝑖
captures the reduction needed in the average webpage size in a re-
gion 𝑖 to achieve the affordability target for Web accesses and is
computed as follows:

PAW𝑖 =
𝑃𝑖

𝑃𝑇
×

𝑊𝑖,𝑎𝑣𝑔

𝑊𝑔𝑙𝑜𝑏𝑎𝑙

(1)

10In our dataset, we found that the median max-age, which is the maximum amount
of time a fetched asset can be reused, of a Web object was ∼2 weeks.

where 𝑃𝑇 is the average price target set by UN’s Broadband Com-
mission, which currently stands at 2%, 𝑃𝑖 is the average mobile
broadband price in region 𝑖 as a percentage of GNI,𝑊𝑖,𝑎𝑣𝑔 is the av-
erage webpage size in region 𝑖, and𝑊𝑔𝑙𝑜𝑏𝑎𝑙 is the average webpage
size globally. PAW𝑖> 1 for region 𝑖 if the number of Web accesses
does not meet the affordability target and PAW𝑖 ≤ 1 if it does. For ex-
ample, if𝑊𝑖,𝑎𝑣𝑔 = 1.5MB, 𝑃𝑖 = 5% in region 𝑖,𝑊𝑔𝑙𝑜𝑏𝑎𝑙 = 2.47MB,
and 𝑃𝑇 = 2%, then PAW𝑖 = 1.52.

The number of accesses, 𝐴𝑇 , available at the target affordable
price is given by 𝐷/𝑊𝑔𝑙𝑜𝑏𝑎𝑙 , where 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 is the average global
webpage size. Therefore, the maximum number of Web accesses,
𝐴𝑖 , available in region 𝑖 to meet the affordability target is (𝑃𝑇 /𝑃𝑖 ) ×
(𝐷/𝑊𝑎𝑣𝑔), where 𝐷 is the data plan limit (e.g., 2 GB). To equalize
accesses (i.e., 𝐴𝑖/𝐴𝑇 = 1), we require the average webpage size to
be set to𝑊𝑇

𝑎𝑣𝑔 = (𝑃𝑇 /𝑃𝑖 ) ×𝑊𝑔𝑙𝑜𝑏𝑎𝑙 .
We use 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 to benchmark webpage sizes according to the

prevailing global quality of webpages. Thus, if in region 𝑖 the average
page size is already lower than the average global page size, then
a smaller reduction in page quality is required to equalize access
relative to another region 𝑗 , where the page size is larger. Therefore,
despite the inherent trade-off between accesses and page quality,
with this benchmarking, we are able to minimize the differences in
quality across regions while equalizing accesses.

3.2 Web Accesses Across Regions
Based on the mobile broadband price and the average webpage size
in each of the 99 countries, we find the expected number of Web
accesses a user can afford at the target price of 2% before running
out of a monthly mobile plan. Using these we compute the PAW
index (see Fig. 2c). First, observe that 48 out of 96 countries do not
meet the target Web accesses for at least one of the mobile plans.11

The maximum PAW index for the DO plan is 4.7, whereas for DVHU,
it is 13.2. This suggests that offering lower complexity versions (e.g.,
1.5×, 2×, and 4.5×) of popular websites in these countries can bring
many users within the affordability Web access budget. Second, note
that there is a negligible change in the PAW index when the cached
versions of the webpages are considered instead of the non-cached
webpages. This is because caching reduces both the average page
sizes in the countries (the numerator,𝑊𝑖,𝑎𝑣𝑔 in Eq. 1) and the global
average page size (the denominator, 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 ). The implication is
that even though caching increases the total number of Web accesses
available in all countries, it does so (nearly) equally, and hence there
is little change in the inequality in the number of accesses available
across countries. PAW index is a comparative metric that captures this
unfairness regardless of whether caching has been enabled. Third,
within developing countries where an average user meets the target
Web accesses, differences in income levels make it challenging
for low-income users to meet this target. For example, the price of
mobile broadband for users in the bottom income quintile in Pakistan
is as much as 2.5% of the GNI compared to the average price of
0.96%. [40] Thus, a viable way of making the Web more affordable
is to offer multiple low-complexity versions of websites while still
providing users the option to view a high-quality page.

11Out of the 99 countries we considered in this analysis, the broadband price data was
not available for three countries: Syria, Taiwan, and Venezuela was not available.
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Figure 3: (a) Percentage of countries that meet the target number of Web accesses for different mobile plans as a function of the reduction in the average webpage size in a
country, (b) possible webpage size reductions with removals of one resource type from the pages, and (c) possible webpage size reductions with removals of multiple resource
types from the pages.

Web accesses across 99 countries. Fig. 3a shows the percentage
of countries meeting the Web accesses target as a function of the
reduction in mean webpage size in a country across two data plans
(for all plans, see Appendix A.3.2).

Observe that reducing the average (non-cached) page size by 1.5×
allows 12.1%–14.1% of the countries to meet the target accesses
whereas a 3× reduction will bring 27.3%–31.3% of the countries
within the target across the three mobile plans. These insights can
serve as useful guides for modulating website complexity.

3.3 What-If Complexity Analysis
Using the features of Alexa top 1000 websites accessed in each of
the 99 developing countries, we carry out a What-If analysis on the
possibilities of achieving the website complexity targets based on
the PAW index.

Individual resource types. We find that since JS and images con-
tribute the most bytes to webpages (former contributing 23%–47%
and latter 24%–58% of non-cached webpages), removing them pro-
vides a significant reduction in page size. Fig. 3b shows the reduction
in page sizes upon removing all elements of a single resource type
(images and JS). For the non-cached webpages, reductions range
from 1.1×–1.7× with JS and 1.4×–4.2× with images. For the cached
websites, removing JS and images reduces the network bytes trans-
ferred from 1.1×–1.9× and 1.3×–4.1×, respectively.

Multiple resource types. Next, we consider removals of multiple
combinations of resource types. Fig. 3c shows that, if we consider the
non-cached pages, removing all JS and images from the Alexa top
1000 pages in all countries can reduce page sizes from 3.1×–8.8×
and removing all four resource types reduces page sizes from 4.3×–
15.6×. Removing all four Web objects from the cached webpages
reduces the total bytes transferred from 3.3×–9.8×.

The above analysis provides an estimate of the possible Web
complexity reductions considering the Web objects that comprise
most of the network bytes (see Appendix A.3.3 for more scenarios).
While results show that significant reductions in complexity are
possible, these may come at the cost of a considerable decrease
in page quality. Our What-If analysis also suggests that 1.5×–1.8×
reductions in the average (non-cached) page sizes are possible across
the 99 countries by reducing the total bytes due to images and JS by
50%.

4 QUALITY–ACCESS TRADEOFF
In this section, we present a simple economic model to capture the
utility derived by users when deciding between webpage quality

and the number of Web accesses. Using a user study involving 100
participants, we show that several users experience a utility gain by
trading off webpage quality for more webpage accesses.

4.1 Modeling User Utility
We can achieve equity in accesses by trading off webpage size,
which serves as a proxy for webpage quality. We capture this tradeoff
through the Cobb-Douglas utility function [14, 54].

Let 𝑈𝑖 (𝑊,𝐴) by the utility of user 𝑖, where 𝐴 is the expected
number of website accesses available to the user and𝑊 is the average
webpage size in the region. We assume that 𝑈𝑖 is a concave function
in both 𝐴 and𝑊 . In particular,

𝑈𝑖 (𝑊,𝐴) = 𝑎 · 𝑙𝑜𝑔(𝑊 ) + 𝑏 · 𝑙𝑜𝑔(𝐴) (2)

where 𝑎 and 𝑏 are positive constants that denote the weight of each
attribute in the user’s utility. The trade-off between𝑊 and𝐴 depends
on the slope of this function, which is equivalent to the number of
units of𝑊 that the user is willing to give up to get an additional 𝐴,
while keeping utility constant. Mathematically, this is equal to the
ratio of the partial derivatives of 𝑈𝑖 with respect to 𝐴 and𝑊 , that is,
𝑎/𝑊
𝑏/𝐴 .12

We can also show that for 𝑈𝑖 to increase when 𝑊 decreases
and 𝐴 increases, the following condition must hold: 𝑏/𝐴

𝑎/𝑊 > 𝑑𝑊
𝑑𝐴

.
This condition implies that for a user to experience a utility gain, the
willingness to give up quality to get more access must be greater than
what the user would have to give up as a result of equalizing access
across regions. Furthermore, users can have differing willingness to
give up quality for access, depending on their current consumption
of𝑊 and 𝐴, which reflects variations in the price of broadband and
income levels. Thus, the utility gain (or loss) from equalizing access
will also vary based on these features.

4.2 User Study
To quantify the quality-access trade-off, we conducted a user study
with 100 participants for which an Institutional Review Board (IRB)
approval was obtained. Users were recruited from a university cam-
pus via email and included students, staff, and faculty. A survey
typically lasted between 10-15 minutes. The median age in our sam-
ple was 24 years and the median income was between USD 94 and
187 per month. To put this in perspective, the minimum monthly

12The slope of the utility function can be determined by taking the total derivative of𝑈
and setting 𝑑𝑈 = 0, as we are changing 𝐴 and𝑊 such that the utility remains constant.
This implies 𝑑𝑈 = 𝜕𝑈

𝜕𝐴
𝑑𝐴 + 𝜕𝑈

𝜕𝑊
𝑑𝑊 = 0. Re-arranging gives 𝑑𝑊

𝑑𝐴
= −( 𝜕𝑈

𝜕𝐴
/ 𝜕𝑈
𝜕𝑊

) .
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(a) Optimizations-Reduction (b) User Ratings (c) Quality-Access Trade-off

Figure 4: (a) The heatmap shows the optimizations needed to achieve different page size reductions in terms of their impact on webpage quality on a scale of 0–5. 0 refers
to optimizations that cause little or no change in quality (e.g., transcoding images into WebP format), 1 refers to reducing image quality or removing some external JS,
2 corresponds to removing all images, 3 to removing all images, some external JS, and the page usable, 4 to removing all images and external JS (page is usable), and 5
to removing all images and JS (page is unusable). (b) heatmap of user ratings on page look and content similarity with the original page (lighter shades reflect greater
similarity), and (c) distribution of participant choices for page size reduction and Web accesses.

wage in the country of the user study was less than USD 94. Our
sample included 31% females, 68% males, and one participant chose
the ‘other’ category. The average monthly expenditure on mobile
broadband subscription as a ratio of the monthly income in the sam-
ple was 4.1%, which is greater than the affordability target of 2% set
by the UN Broadband Commission.
Webpage complexity and optimizations. We selected 10 websites
that were common in the Alexa top 1000 websites list across 63
(out of 82) developing countries. All of the developing countries had
at least 7 of the 10 chosen websites13 in their Alexa top 1000 list.
For each website, we created four low complexity versions of the
landing pages that were 1.25×, 1.5×, 3×, and 6× smaller in size than
the original version by applying different Web optimizations. While
all webpages remained usable for up to 1.5× page size reduction,
8 remained functional with 3× reduction, and 5 pages with 6× re-
duction. Fig. 4a shows the heatmap of optimizations, with lighter
shades representing ones with little or no quality impact and darker
shades representing larger quality impact, as a function of page size
reduction. We observe that for some websites 1.25× is achievable by
just converting images into WebP format, while for other websites
1.5× reduction can be achieved by reducing image quality between
25%–75%. However, for several websites, we had to remove all
images and some/all external JS to achieve 6× page size reduction.
Visual perception of pages. We showed 5 versions of each web-
site to every participant and asked them to rate page look similarity
(scale: 0–10) and page content similarity (scale: 0–10). Fig. 4b shows
the heatmap of the average page look and content similarity ratings
(normalized to a maximum score of 5, with 5 representing maximum
dissimilarity). While almost all websites were rated to be quite simi-
lar to the original version at 1.5× reduction, some exhibited a good
degree of similarity even at 6× reduction (e.g., wikipedia.org). How-
ever, some websites (e.g., youtube.com, savefrom.net) resulted in
stark dissimilarities at large page size reductions due to the removal
of visually important resources.
Quality-Access trade-off. Fig. 4c shows the distribution of user
choices for different combinations of webpage quality (indicated by
the size reduction factor) and the number of monthly Web accesses
available to similar quality websites. For the 5 websites that remained
usable with 6× reduction, participants chose options (1.5×,125)
and (6×,600) with probabilities 0.32 and 0.31, respectively (upper

13These included {google, yahoo, microsoft, imdb, wordpress, amazon, stackoverflow,
youtube}.com, wikipedia.org, savefrom.net.

plot). This indicates that some users preferred 600 accesses de-
spite 6× lower page quality whereas others preferred higher quality
pages even if it meant fewer Web accesses. For websites that were
not usable with 6× reduction, the most popular combination was
(1.5×,150) with a significant number of users choosing combinations
with more than 2.9× quality reductions. These results suggest that
a significant fraction of users are likely to observe a utility gain by
trading off page quality for more Web accesses, as indicated in §4.1.

5 FRAMEWORK DESIGN
We now introduce the Affordable Web For All (AW4A) framework,
which provides a systematic way of transcoding webpages into low
complexity versions to meet the affordability target set forth by
the PAW index. The AW4A framework aims to maximize webpage
quality while ensuring that the resulting page is no larger than the
target size. In this section, we present AW4A’s key design goals and
principles, and provide an overview of the framework.

5.1 Design Goals
Motivated by the insights from our analysis of geographic variations
in mobile broadband prices, average income levels, variations in
webpage sizes, and the need to consider affordability, we set forth
the following design goals for AW4A:

G1 Web complexity adaptation based on affordability and page
quality. The framework should be able to adapt the complexity of
webpages based on broadband prices and income levels across geo-
graphical regions to achieve affordability targets while maximizing
page quality.

G2 User privacy and website operator consent. The framework
should preserve the end-to-end principles of TLS afforded by the
existing Web. Moreover, Web complexity reductions should occur
with website operator consent.

5.2 Design Principles
The above design goals lead to the following design principles for
AW4A.
• To meet G1, AW4A explicitly accounts for affordability constraints

in its design. It relies on PAW to provide page reduction targets
and a number of metrics for capturing webpage quality.
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Resource Example Optimizations
Image Transcoding to size efficient formats (e.g., Webp, AVIF) [25], reducing image quality, image resizing (e.g., to their CSS attributes width and height) [33], image

compression [12], image removal [49]
JS Removing unused JS [52], using lighter JS frameworks [43], removing non-critical JS [18], and compression (e.g., using gzip)
CSS Resizing images embedded by CSS [33], convert external CSS to inline CSS [49], minification, and compression [21]
WebFont Removing optional metadata (e.g., font hinting, kerning), font subsetting, font compression (e.g., EOT and TTF formats) [22]
IFrames Minification, compression [21] and removal [4]

Table 2: Some example optimizations for different Web resources.

• To meet G2, AW4A transcodes webpages at the server-end rather
than at a proxy server. This is unlike existing proxy-based ap-
proaches (e.g., Free Basics and Google Web Light) that raise
privacy concerns as they break the end-to-end principles of TLS.
Moreover, unlike Web Light, AW4A requires website operators
to create low-complexity versions of their pages to meet their
business needs while improving the affordability of access for
users.

5.3 AW4A Overview
A high-level view of AW4A’s design is shown in Fig. 5. Given a page
to optimize and a target size derived via the PAW index, AW4A aims
to maximize page quality subjective to the page size constraint. To
achieve this, AW4A applies a set of resource optimizations involving
different Web objects (e.g., images, JS) that it applies in two stages;
see Table 2.14 In stage-1, AW4A applies optimizations that reduce
the size of a page without degrading page quality (e.g., minification
of JS, removing non-essential JS elements, transcoding images into
data efficient formats). If the target size is not met, the page moves
to stage-2, where AW4A applies a set of resource optimizations that
reduce the page size but also degrade the page quality. Depending
on the desired page complexity, different trade-offs emerge between
page size and page quality in this stage. After stage-2, the optimized
page is generated to be served to the users whenever requested.

Country

Target 
Size

Original 
Webpage

Use PAW
Index Stage 1

Stage 2

Transcoded 
Page

Optimizations With 
No Impact On Quality

Select Web Objects With 
Minimal Impact On Quality

Target Page 
Size Reached

Images

Other Web Objects

JavaScript

Figure 5: A high-level view of the AW4A framework, which takes a set of inputs
and passes a webpage through two stages of resource optimizations to generate a
low-complexity version of the page.

5.4 Developer API
AW4A provides an API to web developers to adjust parameters to
suit their needs. The API’s key components are as follows.

Desired page reduction. The complexity of the served webpage
depends on the users’ country of access, which is needed for cal-
culating the PAW index. However, some users may not want page
complexity to be determined by the country of access. Thus, the
developer can input any level of desired page reduction and create
low-complexity versions or ‘tiers’ of the original page.

Weights for Web objects. The web developer can specify which
Web object types are more important for their website. For instance,
14The AW4A imposes no restrictions on the kind of Web objects it uses for page size
optimization. Thus, as new Web resource optimizations become available, they can be
incorporated into AW4A.

for some websites reducing the resolution of images may be prefer-
able over removing JS, so they may give image objects less weight.
A web developer can determine the weights of Web objects based
on domain knowledge about the website or through user studies.

Minimum image quality threshold. This parameter determines the
minimum acceptable quality for images in terms of the Structural
Similarity Index Measure (SSIM value) [51]. A lower threshold
allows for greater page size reduction albeit at the cost of lower
image quality.

5.5 User Perspective
With AW4A, a web developer can create low complexity versions of
a webpage for different countries based on the page size required
to achieve a PAW index ≤ 1. Moreover, if a user does not want
their location to impact the complexity of the served page, they can
specify the page complexity best suited for them from among the
available options. We envision this communication between the user
and web developer to occur through a browser. The user can set up
their profile on the browser with the following options:
• Country sharing: A switch that can be activated to share the

country-level location of the user with the website, which provides
the version of the webpage that is considered affordable in the
user’s country of access.

• Percentage savings: The level of savings preferred by the user
is shared with the accessed website. It serves the version of the
webpage that provides the percentage data savings closest to the
preferred level shared by the user.

The control flow for the user is shown in Fig. 6.

User Opens 
Webpage

Original 
Webpage

No

Data Saving 
Mode on

Yes Country 
Mode On

No

Transcoded Page Based 
on Browser Setting

Yes

Transcoded Page 
Based on PAW Index

Figure 6: Control flow for the user accessing a webpage in AW4A.

6 AW4A OPTIMIZATION & ALGORITHMS
6.1 Objective Function and Constraints
AW4A’s objective is to transcode a webpage such that the size of the
resulting page is below the target size while maximizing the overall
quality of the page. This can be achieved by solving the following
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optimization problem.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

∑𝑘
𝑖=1𝑤𝑖 ×𝑄𝑖∑𝑘

𝑖=1𝑤𝑖

, (3)

𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 =
𝑘∑︁
𝑖=1

𝑏𝑖 ≤ 𝑡𝑎𝑟𝑔𝑒𝑡 (4)

where 𝑘 is the total number of objects on the webpage (e.g., images,
JS, CSS), 𝑤𝑖 represents the weight (or priority) assigned to object
𝑖 by the developer, and 𝑏𝑖 is the number of bytes contributed by
object 𝑖 in the transcoded page. Thus, 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 ≥ 0 is the total
size (in bytes) of the transcoded page which is bounded by a 𝑡𝑎𝑟𝑔𝑒𝑡
value obtained from the PAW index or specified by the developer.
The optimization function also includes an object ‘quality metric’
𝑄𝑖 defined by the developer.15 The objective function is connected
to the optimization constraint by considering a relationship between
the object quality metric 𝑄𝑖 and the byte contribution 𝑏𝑖 by that
object in the transcoded page, such that 𝑄𝑖 = 𝑓𝑖 (𝑏𝑖 ). Intuitively, the
quality metric of an image should measure how visually different
it appears on the two pages: the original page and the transcoded
page. Similarly, a JavaScript quality metric would quantify how the
functionality of a page has changed due to the removal of a script
while transcoding.

Thus, the objective function (Eq. 3) is the total quality of a page
computed as the weighted average of the quality of the objects on
the transcoded page. Finding a solution to this optimization problem
requires us to answer the following questions: (i) how are the object
quality metrics defined? (for images, JS, etc.), (ii) how can we assign
priorities/weights to objects on the page? and (iii) how do we select
the combination of transformed Web objects that will maximize the
overall page quality such that the total page size is below the target
size? We address these questions by choosing quality metrics, object
weights, and the target page size.

6.2 Object Quality and Priority
While our objective function (Eq. 3) provides a flexible expression
for capturing the overall quality of a page, we consider only images
and JS objects, both of which collectively make up the bulk of the
bytes in webpages (see Fig. 7).16 We further collate all objects of
the same type (all images separately from all JS objects) and use a
single holistic quality metric for all objects of the same type; QLUE
Similarity Score (QSS) for images and the QLUE Functionality
Score (QFS) for JS objects [24], as special cases of the generic
objective function.17

Quality and priority for images. The quality metric QSS is based
on SSIM and is used to measure the visual similarity of two web-
pages on a scale of 0 to 1, where 1 indicates that the webpages are
identical to the human eye and 0 signifies maximum dissimilarity. It

15We expect the ‘quality metric’ to be the same for objects of the same type (e.g., SSIM
for images), though the framework allows these to be different.
16Even though ads may contribute a significant number of bytes to the overall page
size, we do not remove them because this may be undesirable for website owners whose
revenue may be largely dependent on ads. That said, our approach is flexible and allows
the reduction of any combination of Web objects (which could include ads if the website
owner desires).
17Both QSS and QFS have been evaluated using a user study where both metrics were
more discerning than human evaluators.

is calculated as follows: ∑𝑘
𝑖=1 𝑎𝑖 × 𝑠𝑖∑𝑘

𝑖=1 𝑎𝑖
(5)

where 𝑘 is the number of images on the page, 𝑎𝑖 is the area of image
𝑖 on the page, and 𝑠𝑖 is the SSIM (a metric used for quantifying
the structural similarity between two images on a scale from 0 to
1 [51]) of the reduced version of image 𝑖 relative to the original one.
It can readily be seen that the QSS definition maps to our generic
objective function with𝑄𝑖 = 𝑠𝑖 and𝑤𝑖 = 𝑎𝑖 when only image objects
are considered. Thus, QSS computes the weighted average of the
SSIM of images on a page, weighted by the area they occupy; this
is because changes in the quality of larger images tend to be more
noticeable to the human eye [23].
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Figure 7: Average total bytes contributed by different Web objects to the total
network bytes transferred (for both non-cached and cached page versions) in our
dataset. The y-axis shows the average total MBs of JavaScript, images, fonts, and
CSS on each webpage, considering all pages in our dataset. Error bars indicate
95% confidence intervals.

Quality and priority for JavaScript. The holistic quality metric
QFS assesses the functionality of the page by using a browser inter-
action bot, which clicks and triggers every event on a given webpage
and its reduced version, takes screenshots and compares the resul-
tant screenshots of the original and reduced pages using SSIM. A
limitation of this metric is that it only captures the functionality
which results in a visual effect.18 The QFS can also be viewed as a
special case of the generic objection function with 𝑄𝑖 representing
the average SSIM values (where each SSIM value is computed over
the entire page considering it as a single image) for all underlying
events in a JS object. The weight𝑤𝑖 in the generic objective function
(Eq. 3) is the total number of the underlying events for a given JS
object. A transcoded page that retains 100% functionality (at least
visually) will receive a QFS score of 1.

We use both QSS and QFS and leave it up to the developer to
assign weights to their weighted sum. For example, a news site
may prioritize appearance over functionality and may give a higher
weight to QSS than to QFS.

Optimization Structure. Considering QSS and QFS as the quality
metrics in our optimization framework makes the solution to the
problem practically inefficient for pages with a large number of
objects. Intuitively, the intractability is due to two reasons: (i) integer
constraints necessary to model page sizes (ii) non-convexity of the
objective function19 that involves the use of SSIM.20 See Appendix
A.2 for a more detailed discussion.

18As newer quality metrics are introduced, they can be added to the optimization
framework to better quantify the total quality of a webpage.
19Note that finding the exact global solution of a non-convex problem is known to be
NP-hard [19, 32, 38].
20SSIM is non-monotonic as a function of image size (in bytes), specifically for image
objects in JPEG format, as shown in Fig. 8.
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7 APPROXIMATION ALGORITHMS
We design two approximation algorithms for solving the optimiza-
tion problem for images and JavaScript. The first algorithm, Grid
Search, uses a brute force approach over a discretized space of the
problem. However, this approach is slow to scale for large webpages
and may not be feasible for dynamic websites (e.g., news websites).
Therefore, we devise a second heuristics-based algorithm, HBS, that
uses a set of heuristics to rank objects and then uses a greedy ap-
proach for applying optimizations in a sequential manner. Either one
of these algorithms can be used in stage-2 of the framework and is
only invoked if the target size constraint is not met in stage-1 (i.e.,
after applying optimizations with no effect on page quality).

7.1 Grid Search
Grid Search uses a brute force approach to evaluate all possible com-
binations of Web resource optimizations (e.g., images and JS) to find
the combination that maximizes the page quality while satisfying the
target page size constraint. For images, it discretizes the SSIM values
(which correspond to image resolution degradations) into uniformly
spaced intervals, whereas, for each JS object, we consider only two
states (0 refers to the removal/absence of a script and 1 refers to
its presence). For ease of exposition, we describe Grid Search with
respect to image optimizations in this section.

With Grid Search, the SSIM interval [SSIM𝑚𝑖𝑛 , 1] is discretized
into uniformly spaced values, where SSIM𝑚𝑖𝑛 is the minimum de-
sired quality of images (e.g., 0.9).21 Grid Search then creates multi-
ple versions of all images present on a website, one for each SSIM
value. These versions are realized by reducing the quality of images
and/or transcoding them into different formats (e.g., WebP) while
maintaining their original dimensions. We then compute the QSS for
each possible combination of images and sort these combinations by
QSS. Finally, we search for the combination with the highest QSS
that meets the page size constraint.
Time Complexity. The worst-case time complexity of Grid Search
(if we only consider images) is in 𝑂 (𝑣𝑛), where 𝑣 is the number of
possible versions of an image and 𝑛 is the total number of images
on a website. Consequently, Grid Search may not be a practical
approach for (i) websites with a large number of images and/or
scripts or (ii) dynamic websites, e.g., news websites, which would
have to bear the cost of applying Grid Search every time the objects
on the page change.

7.2 Heuristics-based Search
To overcome the limitations of Grid Search, we propose a heuristic-
based search algorithm (HBS) for solving the optimization problem.
HBS evaluates two optimization approaches to meet the target page
size. In the first approach, it removes unused JS using an existing
dead code elimination tool. If the target size is not achieved, HBS
then applies image optimizations using a greedy approach, which we
call Rank Based Reduce (RBR), by ranking images based on a set of
heuristics. The page quality score is calculated using QSS and QFS.
In the second approach, HBS only applies RBR to perform image
reductions and calculates the QSS of the page. The QFS of the page
will always be 1 in this case because no JS optimizations are used.

21In our evaluation, we divide the interval by 10, resulting in 11 distinct SSIM values
and thus 11 versions of each image.

The approach that meets the target is chosen. If both approaches
meet the target, then the one with the higher page quality is chosen.
JavaScript Reduction. Many websites have unused JS functions,
which, if removed, can help reduce the page size with minimal
change in page quality. To this end, we use Muzeel [35]; a dead
code elimination tool that removes JS that is not associated with
the user interactive events and all their dependent events. In par-
ticular, this involves removing: (i) JS functions that only read or
fetch information from the HTML and (ii) JS functions that dynami-
cally add/modify/remove elements to/from the DOM. Unused code
is identified by using a browser interaction bot that triggers every
event on the page and checks for visual changes. While there are
other approaches for removing non-critical JS [16, 18] which can be
incorporated in the AW4A framework, we consider Muzeel as it aims
to only remove unused code.
Image Optimization. Finding the optimal QSS given a target bytes
constraint is a difficult task for two key reasons:
• The relationship between the bytes of an image and its SSIM value

is not monotonic; see Fig. 8. This makes it difficult to solve the
optimization problem efficiently.

• The relationship between SSIM and bytes reduction varies across
images (Fig. 8). The exact functional form depends on several
factors (e.g., characteristics of the image, software/reduction algo-
rithm used).
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Figure 8: SSIM as a function of the decrease in image bytes for 100 different images
drawn randomly from the landing pages of Alexa top 100 websites. Changes in
image bytes are realized by varying the image resolution at different levels. Observe
that for a given reduction in bytes, images show different changes in SSIM and
some images show non-monotonic behavior with respect to SSIM.

To overcome these challenges, RBR uses a set of heuristics to rank
images based on their potential for bytes savings. To facilitate this,
we introduce the concept of an image’s reducibility. We consider
image A to be more ‘reducible’ than image B if it is preferable to
reduce A for (i) meeting the page size constraint and (ii) maximizing
the resultant page quality. Thus, image A will be more reducible
than image B if it gives a greater reduction in bytes for the same
change in SSIM (given that both images have the same area on the
page). After computing the reducibility of images, we apply a greedy
algorithm to optimize images in order of their reducibility
Heuristics. To estimate reducibility, we use two heuristics:
(1) Area: We measure the area covered by images on a page in
pixels. Images that cover a smaller area can withstand greater quality
reduction without these changes being perceived by the user. This
is similar to the concept of viewing distance, i.e., the further away
an image is, the fewer details are visible to the human eye, and the
user’s quality of experience is affected less by changes in image
quality [23]. Thus, images with smaller areas are ranked higher.

600



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Rumaisa Habib et al.

(2) Bytes Efficiency: We measure the Bytes Efficiency of an image
using the following formula:22

Bytes Efficiency =
®Δbytes
®ΔSSIM

(6)

This equation gives us the change in bytes per unit change in SSIM.
To compute this, we reduce the image to the minimum desired
quality threshold SSIM using resolution reduction to find the largest
possible reduction in bytes. A higher Bytes Efficiency indicates that
the image has higher reducibility.

We use linear normalization to ensure that the heuristics values
are between 0 to 1, where 1 indicates the highest reducibility. The
heuristic values are then combined to give a score using the weighted
sum approach. The greater the weighted sum score, the higher the
reducibility of the image. Images with higher reducibility are reduced
first. Algorithm 1 in Appendix A.1 shows the pseudocode of RBR.23

Image Transformations. Once the images are ranked, we use two
methods from ImageMagick [28] to optimize images:
• WebP Format: In our dataset of 72,069 webpages, the two most

popular image formats were JPEG and PNG. While JPEG is highly
size-efficient, PNG images tend to have larger sizes compared to
JPEGs at the same visual quality. We first transcode PNGs into the
WebP [25] format to reduce its size. This allows us to retain the
image transparency channels (unlike with JPEG compression) and
maintain page similarity. However, this is not a blanket approach,
so we only convert a PNG to WebP if the SSIM of the WebP
is equal to or greater than the SSIM threshold and the Bytes
Efficiency heuristic is better in the case of WebP.

• Resolution Reduction: If the target is not met after format con-
version, we start optimizing images in order of their reducibility.
We linearly reduce the resolution of the image until we reach the
SSIM threshold.

Time Complexity. The time complexity of RBR depends on two
factors: (i) 𝑛, the number of images on a webpage, and (ii) 𝑣 , the
number of possible reductions for each image. Algorithm 1 has the
worst-case time complexity of 𝑂 (𝑛𝑣).24

8 EVALUATION
In this section, we present the evaluation of AW4A. We measure (i)
the QSS and time taken by RBR and Grid Search to find transcoded
webpages, (ii) the number of URLs that meet the target size after
country-wise reduction of page sizes using RBR for 25 developing
countries, (iii) the resultant quality of webpages after reduction with
HBS, and (iv) comparison with Brave [3] and Opera Mini [6].

We outline our key insights from the evaluation as follows: (i)
RBR produces webpages with comparable QSS to Grid Search (with
an average difference of only 0.76%) despite taking a significantly
shorter time to run, (ii) a significant number of URLs can meet their
country’s PAW index target using image reductions alone, (iii) using
HBS, 50% of webpages (with varying page sizes) maintain a quality
of ≥ 0.98, and (iv) despite greater overall % reduction in page size,

22The formula only considers the points on the function relating bytes and SSIM which
are monotonic.
23The configurable parameters of RBR are presented in Appendix A.1.
24For a detailed explanation, see Appendix A.1.

HBS produces webpages of comparable quality to Brave and Opera
Mini.

8.1 RBR vs Grid Search
We find that RBR achieves QSS that is within 6.1% of the QSS
obtained via Grid Search while taking 15.9× less time to complete
for the same level of reduction. In our evaluation, the minimum
SSIM threshold (or 𝑄𝑇 ) for each image was set to 0.9 for both RBR
and Grid Search.25 For RBR, we gave the Area and Bytes Efficiency
heuristics equal weightage. We ran all tests on a server (running
Ubuntu version 20.04.5) with an Intel 2.2 GHz CPU with 40 Cores
and 502 GB of available RAM. We ran both algorithms on a set of
50 unique websites (from the Alexa top sites) with varying reduction
levels (5-60% overall page size reduction) for a total of 171 reduced
webpages that were common in both RBR and Grid Search.26 The
number of images on the webpages ranged from 1-40.
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Figure 9: Difference in (a) QSS of generated webpages and (b) time taken to
generate the webpages by RBR and Grid Search. Positive values in (a) indicate
cases in which RBR attained a larger QSS.

QSS. Fig. 9a compares the two algorithms based on the QSS of their
transcoded pages, with positive values indicating cases when RBR
outperformed Grid Search. While Grid Search achieved a larger
QSS on average than RBR, the average difference was just −0.76%,
with the largest difference being −6.1%. In 18% of the cases, RBR
outperformed Grid Search, which we attribute to the precision of the
discretized SSIM values.
Time. Fig. 9b shows the time taken by RBR and the Grid Search to
complete. We used a timeout value of 3 hours for each test. Of the
171 tests, Grid Search timed out on 40 tests. Among the tests that
did not time out, we find that the average time taken by Grid Search
and RBR was 127 (𝜎 = 929) and 8 (𝜎 = 13) seconds, respectively.
We also note that as the number of images on the webpage increases,
the time it takes to run Grid Search increases drastically (resulting
in more frequent timeouts).

8.2 Country-wise Page Reduction with RBR
For the 25 countries with a PAW index greater than 1 for a data and
voice low-usage plan, we ran RBR on their respective Alexa top 1000
webpages. These webpages were reduced in inverse proportion to
the PAW index for that country. We find that a significant percentage
of the URLs can be reduced to 1

PAW of their original size with image
optimizations alone (see Fig. 10). For instance, 91.4% of URLs in
the Lebanon dataset can be brought within the target using image

25According to the MOS scale, 0.9 represents Fair Quality [37].
26Not all webpages could be reduced to 60% due to the quality constraint. Moreover, in
some cases, images made up < 60% of the page. The reduction levels we used varied
by 5%. That is, we tried reducing each webpage by 5%, then 10%, then 15%, and so on
for a total of 12 levels.
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Figure 10: Percentage of URLs that can be reduced to 1
PAW of their original size using image reduction with RBR, given the SSIM threshold (𝑄𝑇 ) is 0.9 and 0.8. Countries are

sorted in ascending order of PAW index.

reductions alone (with 𝑄𝑇 = 0.8). These reductions are achievable
while maintaining a high level of image quality. The average QSS
scores and additional results are reported in Appendix A.3.4 and
A.3.5.

8.3 HBS Quality
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Figure 11: (a) QSS (page content similarity), (b) QFS (page functionality similarity),
and (c) overall quality (average of QSS and QFS) of the resultant webpages after
page size reduction by HBS.

We use a complete HBS implementation (including JavaScript
and image optimizations using Muzeel and RBR, respectively) to
reduce 60 unique URLs (amongst the Alexa top 1000) by 10–88%
of their original page size (the median page size reduction was
43.3%).27 The resultant webpage qualities, as captured by QSS and
QFS, are shown in Fig. 11. QSS and QFS have been shown to be
correlated with user-perceived similarity to the original webpage
[24]. Note that 25% of the webpages maintain a webpage quality of
1. Moreover, 50% of the webpages maintain a quality of ≥ 0.98. The
10 pages with the highest reduction (77%–88%) have an average
quality of 0.72. Overall, these results demonstrate the effectiveness
of HBS in reducing page sizes while maintaining high page quality.
Comparison with Brave and Opera Mini. We evaluate and com-
pare page size reductions and webpage quality of HBS with two
state-of-the-art industry solutions that are widely deployed, namely
Opera Mini [6] and Brave [3]. Opera Mini forwards users’ Web
requests to their proxy server, where the pages are first requested and
then compressed before being sent to the user. Opera Mini is esti-
mated to have about 170 million users [6]. Brave is a privacy-focused
browser that automatically blocks website trackers and online adver-
tisements by default.
• Page Size Comparison: In our evaluation, Opera Mini achieved an

average page size reduction of 30.5% (on its High Image Quality

27We set a target reduction of 30%. However, several sites could not reach this target
due to the SSIM constraint (𝑄𝑇 ) and the lack of JS optimization opportunities. Similarly,
several sites overshot the target reduction due to JS reduction with Muzeel, which is not
adjustable in its reduction. In the future, as JS reduction becomes more sophisticated,
AW4A can adopt adjustable JS reduction strategies.

setting). However, since Opera Mini allows only a subset of DOM
events, it is prone to breaking interactive sites with JS. Some ex-
cluded events are key functionalities (such as keypress and scroll)
[41]. Using the default settings (blocking ads, cookies, etc.), Brave
gives an average page size reduction of 14.6%. By activating the
‘block scripts’ feature (that removes third-party JS), an average
page size reduction of 57.3% can be achieved. The block scripts
functionality (which intends to remove third-party scripts to avoid
fingerprinting) breaks widgets that are loaded with third-party
scripts. It uses a whitelist to avoid removing these required fea-
tures. However, the scope of this approach is limited, and some
widgets are still left out. We find that 4% of the pages break com-
pletely, and many others lose critical functionalities [15] (Brave
and Opera Mini page size results are shown in Appendix A.3.6).
A benefit AW4A provides over these approaches is that it offers
more fine-grained control over the reduction of webpages. This
enables it to tailor the reduction levels to the countries of access
(which may have varying reduction requirements as determined
by the PAW index). Moreover, the approaches adopted by Brave
and Opera Mini are agnostic to the importance of each Web object
on the webpage, while AW4A explicitly accounts for the relative
significance assigned to each Web object by the Web developer.

• Quality Comparison: We conducted a user study with 35 partic-
ipants to compare the qualities of the pages produced by Opera
Mini, Brave, and HBS. Each user was asked to compare 5 Opera
Mini and 5 Brave versions of the webpages with their HBS coun-
terparts. Image quality was set to ‘Medium’ for Opera Mini and
script blocking was enabled for Brave. Ad blocking was disabled
in both browsers since HBS does not remove ads. The page sizes
of 22 unique URLs (from amongst the Alexa global top 1000
pages) were collected on both Opera Mini and Brave. In total,
there were 9 Brave and 21 Opera Mini webpages. 28 The per-
centage reductions achieved by both browsers (as compared to
the page size on Chrome) were input into HBS to create reduced
pages with similar page sizes. Due to the nature of JS reduction
through Muzeel and the dynamic updating of some websites, exact
page sizes could not be achieved. Instead, HBS pages tended to
undergo a greater reduction than their Brave and Opera Mini coun-
terparts. The average differences in percentage reduction achieved
by HBS compared to Opera Mini and Brave were 11% and 7%,
respectively. We find that, despite the greater average reduction
achieved by HBS, it produces webpages with comparable quality
to those produced by Opera Mini and Brave. In the Opera Mini

28Some Brave websites were heavily reduced (which broke the page) and HBS could
not reach that page size target given the quality constraints.
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comparison, users preferred HBS for 11 out of the 21 sites while
in the Brave comparison, they preferred HBS for 5 out of the 9
sites.

9 INCENTIVES FOR STAKEHOLDERS
We now discuss incentives for different stakeholders for using the
AW4A framework.
Website operators. AW4A gives website operators the option to offer
their services at reduced quality, thereby creating a differentiated
service offering. This new market for reduced quality services can
appeal to existing users who are data constrained and new users who
were previously unable to afford these services. The increase in the
number of Web accesses and users visiting a website will likely in-
crease advertising revenue due to higher click-through rates. Finally,
website operators have the freedom to determine the extent to which
they want to differentiate their services (by reducing quality). They
can base their decisions on profit and social motives.
Mobile network operators. Data consumption is highly sensitive
to market prices and service affordability [55]. An affordable Web
framework can make it attractive for mobile service providers to
offer smaller data plans, as users can derive more value from the
same number of MBs. This can bring more users online – specifically
those who were previously shut out from the market for these Web
services due to affordability constraints. In the medium to long term,
prices can decline if there is an increase in supply of mobile data
services by network operators, for example, due to investments in
new infrastructure to improve capacity and reach.
Users. Our framework will offer a choice to users between different
page qualities rather than exclusively offering a separate class of
Web content to users. Thus, users can have more accesses if they
are willing to trade off page quality. As we expand the affordable
consumption choice set for these users, their utility should increase.

10 RELATED WORK AND DISCUSSION
Related Work. There is a growing body of work on optimizing the
size of Web objects [7, 12, 16, 17, 35, 42, 43, 45, 49]. In this section,
we discuss the most closely related works.

Google Web Light transcodes webpages on the fly to deliver
lighter pages to users on slow mobile clients. [49]. While it reduces
the median webpage size by 12×, it frequently breaks page func-
tionality. Facebook Discover [42] is similar to Web Light and only
supports low-bandwidth features on websites (e.g., text and small
images). Web Light and Discover both attempt to transcode every
page without publishers’ consent. Free Basics requires publishers to
come up with a version of their website that complies with a set of
guidelines (e.g., a page cannot have JS or large images) before they
can be hosted on the Free Basics platform. Lite-Web [16] removes
non-essential JS elements using SlimWeb [17] and JSCleaner [18].
It then uses Muzeel [35] to optimize the remaining JS elements on
the page. However, Lite-Web only considers JS optimizations, which
limits its effectiveness in improving the affordability of pages. All
these schemes are proxy-based solutions that break the end-to-end
principles of TLS. Opera Mini [6] sends the user’s web requests
to their proxy server. This proxy server requests the webpage and
serves the end user the compressed version. This process is prone
to breaking interactive websites that rely heavily on JS. Brave [3],

on the other hand, is a privacy-focused web browser that automati-
cally blocks online advertisements and website trackers in its default
settings, reducing the data downloaded on the device.

Discussion. We now discuss some limitations of our work.
• Non-landing pages and caching. We only considered landing

pages in our work, which are more frequently requested by users,
but the complexity of inner pages will also impact data usage [13].
We did not consider (i) scenarios involving a user logging into a
website and (ii) the impact of user browsing habits, including visit
frequencies and browser application, on client-side caching, which
may impact data usage for repeated visits to a website. In future
work, we plan to incorporate these aspects in our evaluation.

• Video. While rich multimedia content, such as video, has not been
the focus of works on developing countries that target affordability,
we believe future trends in video compression (e.g., WebM [10],
VP9 [8]) and customization of video resolutions will likely make
it plausible to serve lite video content. This remains part of our
future work.

11 CONCLUDING REMARKS
Web affordability is a key barrier constraining Internet use and adop-
tion. In this work, we assembled and analyzed a dataset from 99
countries to highlight opportunities for reducing Web complexity
to meet UN Broadband Commission’s affordability target. We pro-
posed a fairness metric and a novel framework for re-thinking Web
architecture for affordability and inclusion. Our proposed framework
systematically adapts Web complexity based on geographic varia-
tions in mobile broadband prices and income levels. Our evaluation
shows that our framework can better balance affordability and web
page quality while preserving user privacy.
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A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A.1 RBR Pseudocode & Time Complexity
Algorithm A.1 describes the pseudocode of RBR.

Algorithm 1 Rank Based Reduce (RBR).
𝑆𝐶 : Current total image bytes
𝑆𝑇 : Target image bytes
𝑄𝑇 : Minimum quality threshold of SSIM for each image.
𝑃𝑄: A priority queue of images, where the priority of each image is
its weighted sum (or reducibility) score

1: if 𝑆𝐶 <= 𝑆𝑇 then
return True

2: end if
3: while 𝑃𝑄 is not empty do
4: 𝑖 = 𝑃𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
5: while SSIM(𝑖, reduce(𝑖)) ≥ 𝑄𝑇 do

𝑖 = reduce(𝑖)
6: if 𝑆𝐶 <= 𝑆𝑇 then return True
7: end if
8: end while
9: end while
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Configurable Parameters. RBR has the following configurable
parameters.
• Weights of heuristics. The weights of the two heuristics, Area and

Bytes Efficiency, can be adjusted by the web developer according
to the types and sizes of the images on a webpage. The default
setting gives them both equal weight.

• SSIM threshold. The web developer can set 𝑄𝑇 , the minimum
quality threshold for SSIM. A smaller value for 𝑄𝑇 will increase
the number of possible levels of reduction on the page. The quality
may or may not decrease as a result, depending on the type of
images. It is possible that when the 𝑄𝑇 for each image is lower,
fewer images may need to be transcoded. However, the average
quality of a transcoded image will be reduced. A larger value for
𝑄𝑇 will result in a higher QSS, but a lower reduction in bytes may
be possible given the tighter constraint on quality.

• Resolution granularity: A web developer can set the desired gran-
ularity for resolution reduction. A smaller granularity will increase
the time taken by the algorithm but will likely produce a better
QSS since the resolution reduction will be more fine-grained. A
larger granularity will decrease the time taken but may produce
a lower QSS. In some cases, it may not find an answer because
it may miss a more precise resolution which gives a better SSIM
value with a greater difference in bytes that does not invalidate the
quality threshold.

Time Complexity. The time complexity of RBR depends on two
factors: (i) 𝑛, the number of images on a webpage, and (ii) 𝑣 , the
number of possible reductions for each image. Algorithm 1 has the
worst-case time complexity of 𝑂 (𝑛𝑣).29 Algorithm 1 iterates over
each image (in order of their reducibility), so the first for loop runs
𝑛 times in the worst-case. For each image, there is a certain number
of valid versions, 𝑣 , that need to be checked iteratively until the
target image bytes are reached, or it is the last valid version of that
image. The value 𝑣 depends on the resolution granularity on which
the image versions are being considered. A version of an image
is considered valid if the conversion does not increase the size (as
compared to an old quality level),30 or gives a valid SSIM (greater
than 𝑄𝑇 ).

RBR Output. Theoretically, if an answer exists, RBR will always
return an answer if we assume a monotonic relationship between
SSIM and image bytes, and the resolution granularity is infinitely
small. This is because RBR considers the case in which the total
bytes of images are at a minimum, which occurs when every image
is reduced to the SSIM quality threshold. If the target image bytes
are less than the minimum image bytes, then the answer cannot exist.
However, as we observed in Fig. 8, the relationship between SSIM
and images bytes is not monotonic in the case of JPEGs. Thus, the
assumption that the minimum bytes are achieved when all images
are at the SSIM threshold may not be true in general. Moreover, we
cannot have an infinitely small resolution granularity so the optimal
resolution for that image can be missed by RBR.

29If we assume monotonicity between SSIM and images bytes, we can use binary search
to find the needed reduction, which will reduce the complexity to 𝑂 (𝑛𝑙𝑜𝑔 (𝑣) ) .
30This may occur in the case of JPEG images which are already compressed.

A.2 Hardness of AW4A Optimization
The general (transcoding) optimization problem stated in Equations
3 and 4 directly maps to the Knapsack problem. We demonstrate it
by separately mapping the constraint and the objective function to
the standard Knapsack cases. For simplicity, assume that the page
being transcoded only consists of image objects. First, we consider
the constraint:

For Knapsack:
𝑘∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊, 𝑥𝑖 ∈ W (7)

Transcoding:
𝑘∑︁
𝑖=1

𝑏𝑖 ≤ 𝑇 (8)

Noting that 𝑏𝑖 is the number of bytes of image 𝑖 in the transcoded
page. If 𝐵𝑖 denotes the number of bytes of the same image on the
original page, then 𝑏𝑖 ≤ 𝐵𝑖 . We now show that the constraint in
Eq. 8 maps to that in Eq. 7. Considering the byte-level granularity
of images, we have 𝑏𝑖 = 𝛼𝑖𝐵𝑖 , where 𝛼𝑖 can only take a discrete
number of values and represents the fractional reduction of image
𝑖 in the transcoded page. To proceed with the mapping, we define
𝐵 =

∏𝑘
𝑖=1 𝐵𝑖 , and then 𝑦𝑖 = 𝛼𝑖𝐵 ∈ W. Note that higher values of 𝑦𝑖

indicate less reduction of the image 𝑖 in the transcoded page. Thus,
the constraint for the page transcoding problem can be written as:

𝑘∑︁
𝑖=1

𝐵𝑖

𝐵
𝑦𝑖 ≤ 𝑇

which maps to the Knapsack constraint. Next, we consider the objec-
tive function (we only consider the numerator because the denomi-
nator does not affect the optimization):

For Knapsack: max
𝑘∑︁
𝑖=1

𝑣𝑖𝑥𝑖 , 𝑥𝑖 ∈ W (9)

Transcoding (general): max
𝑘∑︁
𝑖=1

𝑤𝑖𝑄𝑖 (10)

Transcoding (images): max
𝑘∑︁
𝑖=1

𝑎𝑖𝑠𝑖 (the QSS value)

(11)

Even a linear relationship between the SSIM value 𝑠𝑖 for image 𝑖

and 𝑦𝑖 maps the objective function of the transcoding problem (with
just images) to that of the bounded Knapsack problem (BKP). In
general, the SSIM value for an image object 𝑖 would be a non-linear
and, even worse, a non-monotonic function of 𝑦𝑖 , which will render
the transcoding optimization a non-convex Knapsack problem.

A.3 Additional Results
A.3.1 PAW index for all plans with caching disabled and en-
abled. Fig. 12 shows the ratio of mean Web accesses across 96 total
countries (divided into developed and developing countries) relative
to the affordability target and the mean global page size for all plans.

A.3.2 Affordability-size trade-off for all plans. Fig. 13 shows
the percentage of countries meeting the Web accesses target as a
function of the reduction in mean webpage size in a country across
all data plans.
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A.3.3 Possible webpage size reductions with removals of
more objects. We observe the differences in page size when remov-
ing different web objects using non-cache and cached bytes.

Individual resource types. Fig. 14a shows the reduction in page
sizes upon removing all elements of a single resource type. We
observe minimal differences between the non-cache and cached
page sizes.

Multiple resource types. Fig. 14b shows the reduction of page
size of multiple combinations of resource types on the first visit and
the cached visit.

A.3.4 QSS after country-wise reduction using RBR. Table 3
shows the average QSS value of the Alexa top 1000 webpages of
each country when reducing them to 1

PAW of their original page size.

A.3.5 Reducing all images to a quality threshold. Fig. 15
shows the percentage of URLs in 25 countries that can be reduced
to 1

PAW of the page size if all images on webpages were reduced to
0.9 SSIM threshold quality level. 50 sites were sampled from each
country’s Alexa top 1000 sites. There are 418 unique URLs in the
dataset (across all countries). The mean bytes reduction that this
blanket approach gives is 23%. The average QSS is 0.94.

A.3.6 Brave and Opera Mini. We collected the page data of
50 randomly sampled websites from amongst the Alexa top 1000
websites on three browsers: (i) Brave, (ii) Opera Mini, and (iii)
(Google) Chrome. For Brave, we collected the page data using both
the default settings and the ‘block scripts’ setting. Comparisons with
Chrome are shown in Fig. 16a and Fig. 16b.
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Figure 14: (a) The possible webpage size reductions with removals of one resource
type from the pages, and (b) possible webpage size reductions with removals of
multiple resource types from the pages.

Country 𝑄𝑇 =0.9 𝑄𝑇 =0.8
Uzbekistan 0.98 0.97
South Africa 0.97 0.94
Puerto Rico 0.97 0.93
Trinidad and Tobago 0.97 0.97
Senegal 0.96 0.95
Ecuador 0.96 0.93
Jamaica 0.96 0.94
Mongolia 0.96 0.94
Colombia 0.96 0.95
Kyrgyzstan 0.95 0.94
Kenya 0.96 0.94
Bolivia 0.96 0.93
El Salvador 0.95 0.87
Cameroon 0.96 0.93
Lebanon 0.95 0.95
Sudan 0.96 0.86
Dominican Republic 0.95 0.96
Jordan 0.96 0.94
Guatemala 0.96 0.94
Cote d’lvoire 0.94 0.93
Tanzania 0.95 0.94
Yemen 0.94 0.91
Uganda 0.95 0.93
Ethiopia 0.95 0.93
Honduras 0.94 0.92

Table 3: Average QSS of Alexa top 1000 webpages (each country) after reduction
(using RBR) to 1

PAW of the original page size. SSIM thresholds of 0.9 and 0.8 were
used.

Summary statistics for the page size reductions are given in Table
4. Most notably, for some sites, Brave Blocked reduces the page size
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Figure 15: The percentage URLs that can be reduced to meet 1
PAW of their original page size when all images are reduced to 0.9 SSIM (maintaining Fair page quality).
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Figure 16: Distribution of webpage sizes on Google Chrome, (a) Brave Browser
(with and without scripts blocked), and (b) Opera Mini. Note that the y-axis in (a)
is in the log scale.

by 100% (rendering the page completely broken). Moreover, all of
the selected transcoding browsers sometimes increase the page size
(hence the negative percentage reduction in page size).

Browser Mean St. dev Median Min Max
Opera Mini 30.5 48.9 41.9 -86.1 99.1
Brave 14.6 25.6 8.4 -91.1 80.3
Brave Blocked 57.3 34.1 61.9 -2.1 100

Table 4: Summary statistics for the percentage reduction in page sizes (as compared
with Chrome versions of the same sites) of 50 unique URLs using three transcoding
browsers.
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