Towards an Information-Centric Internet with more Things

http://www.iab.org/about/workshops/smartobjects/papers/Kutscher.pdf

Dirk Kutscher NEC Laboratories Europe Trinity College Dublin

Stephen Farrell

IoT Workshop 2011-03-25 Prague

Terminology

- Internet of Things
 - A term for a funding source not a technology

- "Things" have always been part of the Internet
 - ... And will be in the future

- The Internet is evolving all the time
 - And so are Internet protocols

Terminology

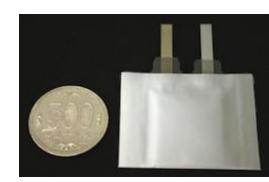
- Internet of Things
 - A term for a funding source but not a technology

- "Things" have always been part of the Internet
 - ... And will be in the future

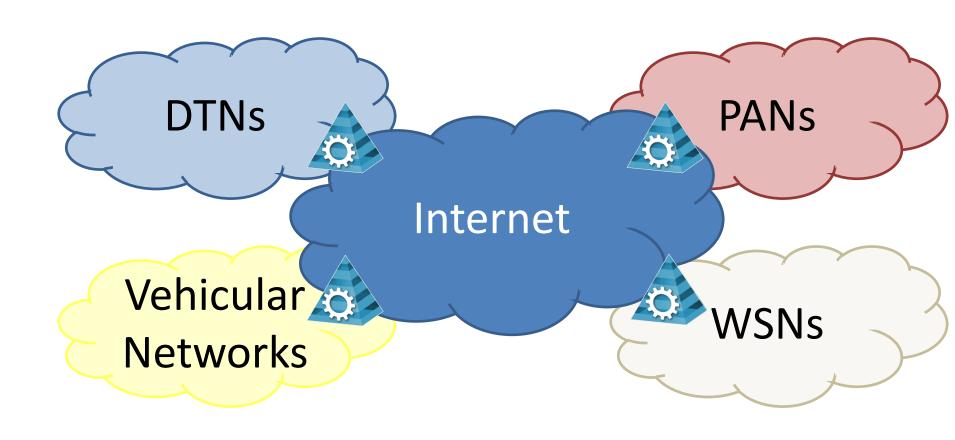
The question is: how many things and how we want to deal with them

Why People Care

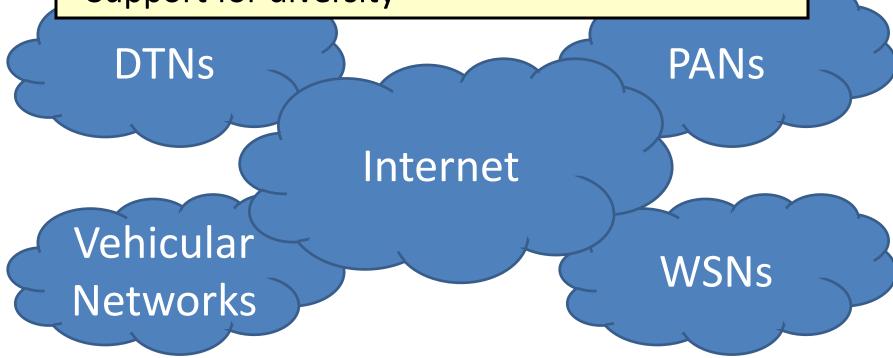
- Perceived increasing relevance
 - Smart metering, remote actuation deemed businessrelevant
 - #Nodes, constrained devices and networks: technology/standards-relevant
- IETF 6lowpan, roll, core
 - Make IPv6 work well on constrained devices
- 3GPP MTC
 - Make LTE survive expected increase of #Nodes
- ETSI M2M
 - Make devices talk to service platforms and applications


History of Things

- Even constrained devices change
- TI MSP430 ultra-low power MCU
 - 2004: http://focus.ti.com/lit/ds/symlink/msp430p112.pdf
 - 4kB ROM, 256B RAM, 200ns cycle, 300uA, 3V @ 1MHz
 - 2011: http://focus.ti.com/lit/ds/symlink/msp430f169.pdf
 - 55KB+256B Flash, 5KB RAM, 330uA, 2.2V @ 1 MHz
- Not all challenged things are tiny
 - http://down.dsg.cs.tcd.ie/s10inf/
 - Intel Atom CPU, 1GB RAM, 32GB flash,
 750mA/12V, 21AH batteries, 60W solar

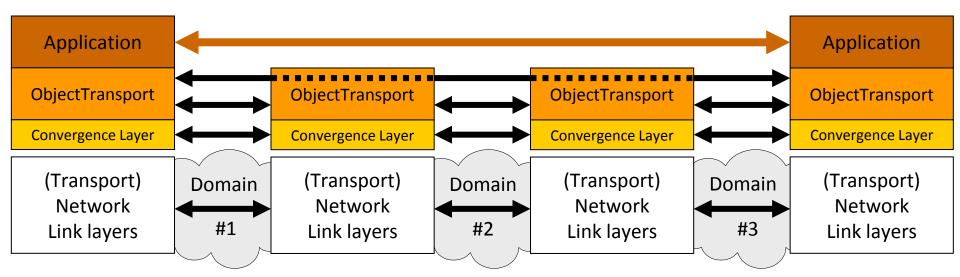

History of Things

- Battery technology evolving
 - NEC Organic Radical Battery: 1mWh/cm², 30s charging time
 - http://www.nec.co.jp/press/en/1011/0503.html


- Working assumptions
 - Enhanced storage and processing capabilities quite likely
 - Energy consumption/storage might still be crucial in the immediate future – but there is hope
 - More devices and more information to be shared in future networks

Extending the Diameter

Extending the Diameter


- One Internet
- No assumptions on where the network ends
- Support for diversity

Dealing with many Nodes in Constrained Environments...

- Identifying information by name, not by sensor node address etc.
 - Scalable
 - Secure
- Robust communication
 - With domain-specific dissemination/routing mechanisms
 - Leveraging in-network storage and processing capabilities
- Interworking with and migrating from
 - Existing Internet and applications

Approach

- Object naming as thin hour glass waist
- Message/Chunk-based transport between technological/administrative domains
- Caching, local retransmission as inherent node features
- Different transaction types
- No application layer gateways in network

Protocol Work

Naming

- Unique object identification
- Binding of names to objects and owners via hashes/signatures
- Names for request/content routing
- draft-farrell-ni-00.txt
 - (to be published next week)
- draft-farrell-dtnrg-bpq-00.txt
 - Using object names in DTN Bundle Protocol

Transport

- Evolving RFC 5050
- Supporting different interactions types and in-network-storage

APIs

Enabling applications to access named information in the network

What's the Payoff?

- Ability to mix capable and constrained nodes at the application layer without knowing which is which
 - With whatever security etc. stuff handled the same regardless
- Maybe: Real-as-possible-time video like Google Earth but with the latest video sources stitched the way Microsoft do images with Photosynth
 - Capable well-connected devices, plus battery powered sensor like things, plus passers-by video from phones
 - Why not an architecture that allows mixing whatever works best?

Conclusions

- Internet of Things → Evolution of the Internet
- Avoid developing next NGN, IMS for things
- One Internet approach
 - Common naming and transport abstractions
 - Domain-specific routing
 - Application-specific, e2e semantics