Network Working Group M. Duerst
Request for Comments: 3987 w3C
Category: Standards Track M. Suignard
Microsoft Corporation

January 2005

Internationalized Resource ldentifiers (IRIS)
Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract

This document defines a new protocol element, the Internationalized
Resource ldentifier (IRI), as a complement to the Uniform Resource
Identifier (URI). An IRl is a sequence of characters from the
Universal Character Set (Unicode/ISO 10646). A mapping from IRIs to
URIs is defined, which means that IRIs can be used instead of URIs,
where appropriate, to identify resources.

The approach of defining a new protocol element was chosen instead of
extending or changing the definition of URIs. This was done in order
to allow a clear distinction and to avoid incompatibilities with
existing software. Guidelines are provided for the use and
deployment of IRIs in various protocols, formats, and software
components that currently deal with URIs.

Table of Contents

1. Introduction . e e e e
1.1. Overview and Motivation

.2. Applicability

.3. Definitions

.4. Notation

RI Syntax

1. Summary of IRI Syntax

2. ABNF for IRI References and IRIs .

NoOoouh~hWWW

1
1
1
1
2
2

Duerst & Suignard Standards Track [Page 1]

RFC 3987 Internationalized Resource ldentifiers January 2005

Relationship between IRIs and URIs .
3.1. Mapping of IRIs to URIs
3.2. Converting URIs to IRIs

3.2.1. Examples .

Bidirectional IRIs for nght to Left Languages
4.1. Logical Storage and Visual Presentation
4_2_. Bidi IRl Structure .
4.3. Input of Bidi IRIs .
4_4_. Examples . .
Normalization and Comparlson .
5.1. Equivalence .
5.2. Preparation for Comparlson .
5.3. Comparison Ladder - .
5.3.1. Simple String Comparlson .
5.3.2. Syntax-Based Normalization .
5.3.3. Scheme-Based Normalization .
5.3.4. Protocol-Based Normalization .
Use of IRIs - .-
6.1. Limitations on UCS Characters AIIowed in IRIs
6.2. Software Interfaces and Protocols . .
6.3. Format of URIs and IRIs in Documents and Protocols .
6.4. Use of UTF-8 for Encoding Original Characters ..
6.5. Relative IRl References . . - - -
URI/ZIRI Processing Guidelines (|nformat|ve)
7.1. URI/IRI Software Interfaces
7.2. URI/IRI Entry . .
7.3. URI/IRI Transfer between Appllcatlons
7.4. URI/IRI Generation . . e e e e
7.5. URI/IRI Selection . .
7.6. Display of URIs/IRIs .
7.7. Interpretation of URIs and IRIs
7.8. Upgrading Strategy . .
Security Considerations
Acknowledgements .
. References .

10.1. Normative References -

10.2. Informative References .

Design Alternatives

A.1. New Scheme(s) . .

A_.2_. Character Encodlngs Other Than UTF 8 .

A_3. New Encoding Convention . .

A.4. Indicating Character Encodlngs |n the URI/IRI

Authors” Addresses . .
Full Copyright Statement .

Duerst & Suignard Standards Track

. 10
. 10
. 14
. 15
. 16
. 17
. 18
- 19
. 19
.21
. 22
. 22
. 23
. 23
. 24
. 27
. 28
- 29
- 29
- 29
. 30
. 30
. 32
. 32
. 32
. 33
. 33
. 34
. 34
. 35
. 36
. 36
. 37
. 39
. 40
. 40
. 41
. 44
. 44
. 44
. 44
. 45
. 45
. 46

[Page 2]

RFC 3987 Internationalized Resource ldentifiers January 2005

1. Introduction
1.1. Overview and Motivation

A Uniform Resource ldentifier (URI) is defined in [RFC3986] as a
sequence of characters chosen from a limited subset of the repertoire
of US-ASCII1 [ASCII] characters.

The characters in URIs are frequently used for representing words of
natural languages. This usage has many advantages: Such URIs are
easier to memorize, easier to interpret, easier to transcribe, easier
to create, and easier to guess. For most languages other than
English, however, the natural script uses characters other than A -
Z. For many people, handling Latin characters is as difficult as
handling the characters of other scripts is for those who use only
the Latin alphabet. Many languages with non-Latin scripts are
transcribed with Latin letters. These transcriptions are now often
used in URIs, but they introduce additional ambiguities.

The infrastructure for the appropriate handling of characters from
local scripts is now widely deployed in local versions of operating
system and application software. Software that can handle a wide
variety of scripts and languages at the same time is increasingly
common. Also, increasing numbers of protocols and formats can carry
a wide range of characters.

This document defines a new protocol element called Internationalized
Resource ldentifier (IR1) by extending the syntax of URIs to a much
wider repertoire of characters. It also defines "internationalized”
versions corresponding to other constructs from [RFC3986], such as
URI references. The syntax of IRIs is defined in section 2, and the
relationship between IRIs and URIs in section 3.

Using characters outside of A - Z in IRIs brings some difficulties.
Section 4 discusses the special case of bidirectional IRIs, section 5
various forms of equivalence between IRIs, and section 6 the use of
IRIs in different situations. Section 7 gives additional informative
guidelines, and section 8 security considerations.

1.2. Applicability

IRIs are designed to be compatible with recommendations for new URI
schemes [RFC2718]. The compatibility is provided by specifying a
well-defined and deterministic mapping from the IRl character
sequence to the functionally equivalent URI character sequence.
Practical use of IRIs (or IRl references) in place of URIs (or URI
references) depends on the following conditions being met:

Duerst & Suignard Standards Track [Page 3]

RFC 3987 Internationalized Resource ldentifiers January 2005

a. A protocol or format element should be explicitly designated to
be able to carry IRIs. The intent is not to introduce IRIs into
contexts that are not defined to accept them. For example, XML
schema [XMLSchema] has an explicit type "anyURI"™ that includes
IRIs and IRl references. Therefore, IRIs and IRl references can
be in attributes and elements of type "anyURI". On the other
hand, in the HTTP protocol [RFC2616], the Request URI is defined
as a URI, which means that direct use of IRIs is not allowed in
HTTP requests.

b. The protocol or format carrying the IRIs should have a mechanism
to represent the wide range of characters used in IRIls, either
natively or by some protocol- or format-specific escaping
mechanism (for example, numeric character references in [XML1]).

c. The URI corresponding to the IRl iIn question has to encode
original characters into octets using UTF-8. For new URI
schemes, this is recommended in [RFC2718]. It can apply to a
whole scheme (e.g., IMAP URLs [RFC2192] and POP URLs [RFC2384],
or the URN syntax [RFC2141]). 1t can apply to a specific part of
a URI, such as the fragment identifier (e.g., [XPointer]). It
can apply to a specific URI or part(s) thereof. For details,
please see section 6.4.

1.3. Definitions

The following definitions are used in this document; they follow the
terms in [RFC2130], [RFC2277], and [1S010646].

character: A member of a set of elements used for the organization,
control, or representation of data. For example, "LATIN CAPITAL
LETTER A™ names a character.

octet: An ordered sequence of eight bits considered as a unit.

character repertoire: A set of characters (in the mathematical
sense).

sequence of characters: A sequence of characters (one after another).

sequence of octets: A sequence of octets (one after another).

character encoding: A method of representing a sequence of characters
as a sequence of octets (maybe with variants). Also, a method of

(unambiguously) converting a sequence of octets into a sequence of
characters.

Duerst & Suignard Standards Track [Page 4]

RFC 3987 Internationalized Resource ldentifiers January 2005

charset: The name of a parameter or attribute used to identify a
character encoding.

UCS: Universal Character Set. The coded character set defined by
ISO/1EC 10646 [1S010646] and the Unicode Standard [UNIV4].

IRl reference: Denotes the common usage of an Internationalized
Resource ldentifier. An IRl reference may be absolute or
relative. However, the "IRI" that results from such a reference
only includes absolute IRIs; any relative IRl references are
resolved to their absolute form. Note that in [RFC2396] URIs did
not include fragment identifiers, but in [RFC3986] fragment
identifiers are part of URIs.

running text: Human text (paragraphs, sentences, phrases) with syntax
according to orthographic conventions of a natural language, as
opposed to syntax defined for ease of processing by machines
(e.g., markup, programming languages).

protocol element: Any portion of a message that affects processing of
that message by the protocol in question.

presentation element: A presentation form corresponding to a protocol
element; for example, using a wider range of characters.

create (a URI or IRI): With respect to URIs and IRIs, the term is
used for the initial creation. This may be the initial creation
of a resource with a certain identifier, or the initial exposition
of a resource under a particular identifier.

generate (a URI or IRI): With respect to URIs and IRIs, the term is
used when the IRl is generated by derivation from other
information.
1.4. Notation
RFCs and Internet Drafts currently do not allow any characters
outside the US-ASCII repertoire. Therefore, this document uses
various special notations to denote such characters in examples.

In text, characters outside US-ASCI1 are sometimes referenced by
using a prefix of “U+”, followed by four to six hexadecimal digits.

To represent characters outside US-ASCII in examples, this document
uses two notations: XML Notation” and ’Bidi Notation”.

Duerst & Suignard Standards Track [Page 5]

RFC 3987 Internationalized Resource ldentifiers January 2005

XML Notation uses a leading ’&#x’, a trailing ”;”, and the
hexadecimal number of the character in the UCS in between. For
example, я stands for CYRILLIC CAPITAL LETTER YA. In this
notation, an actual ’&” is denoted by *&”.

Bidi Notation is used for bidirectional examples: Lowercase letters
stand for Latin letters or other letters that are written left to
right, whereas uppercase letters represent Arabic or Hebrew letters
that are written right to left.

To denote actual octets in examples (as opposed to percent-encoded
octets), the two hex digits denoting the octet are enclosed in "<"
and ">"_. For example, the octet often denoted as 0xc9 is denoted
here as <c9>.

In this document, the key words "MUST"™, "MUST NOT", "REQUIRED",
"SHALL"™, "SHALL NOT"™, ''SHOULD', '"SHOULD NOT", ""RECOMMENDED", '"MAY",
and "OPTIONAL"™ are to be interpreted as described in [RFC2119].

2. IRl Syntax

This section defines the syntax of Internationalized Resource
Identifiers (IRISs).

As with URIs, an IRl is defined as a sequence of characters, not as a
sequence of octets. This definition accommodates the fact that IRIs
may be written on paper or read over the radio as well as stored or
transmitted digitally. The same IRl may be represented as different
sequences of octets in different protocols or documents if these
protocols or documents use different character encodings (and/or
transfer encodings). Using the same character encoding as the
containing protocol or document ensures that the characters in the
IRI can be handled (e.g., searched, converted, displayed) in the same
way as the rest of the protocol or document.

2.1. Summary of IRI Syntax

IRIs are defined similarly to URIs in [RFC3986], but the class of
unreserved characters is extended by adding the characters of the UCS
(Universal Character Set, [15010646]) beyond U+007F, subject to the
limitations given in the syntax rules below and in section 6.1.

Otherwise, the syntax and use of components and reserved characters
is the same as that in [RFC3986]. All the operations defined in
[RFC3986], such as the resolution of relative references, can be
applied to IRIs by IRI-processing software in exactly the same way as
they are for URIs by URI-processing software.

Duerst & Suignard Standards Track [Page 6]

RFC 3987 Internationalized Resource ldentifiers January 2005

Characters outside the US-ASCII repertoire are not reserved and
therefore MUST NOT be used for syntactical purposes, such as to
delimit components in newly defined schemes. For example, U+00A2,
CENT SIGN, is not allowed as a delimiter in IRIs, because it is in
the “iunreserved” category. This is similar to the fact that it is
not possible to use - as a delimiter in URIs, because it is in the
unreserved’ category.

2.2. ABNF for IRl References and IRIs

Although it might be possible to define IRl references and IRIs
merely by their transformation to URI references and URIs, they can
also be accepted and processed directly. Therefore, an ABNF
definition for IRl references (which are the most general concept and
the start of the grammar) and IRIs is given here. The syntax of this
ABNF 1s described in [RFC2234]. Character numbers are taken from the
UCS, without implying any actual binary encoding. Terminals in the
ABNF are characters, not bytes.

The following grammar closely follows the URI grammar in [RFC3986],
except that the range of unreserved characters is expanded to include
UCS characters, with the restriction that private UCS characters can
occur only In query parts. The grammar is split into two parts:
Rules that differ from [RFC3986] because of the above-mentioned
expansion, and rules that are the same as those in [RFC3986]. For
rules that are different than those in [RFC3986], the names of the
non-terminals have been changed as follows. If the non-terminal
contains “URI”, this has been changed to ”IR1”. Otherwise, an “i”’
has been prefixed.

The following rules are different from those in [RFC3986]:

IRI

scheme ihier-part ["?" iquery]
["#" ifragment]

ihier-part "//" iauthority ipath-abempty

ipath-absolute

ipath-rootless

ipath-empty

NN\

IRl /7 irelative-ref

IRI-reference

absolute-IRI scheme

ihier-part ["?" iquery]

irelative-ref irelative-part ["?" iquery] ["#" ifragment]

irelative-part = "//" iauthority ipath-abempty

/ ipath-absolute

Duerst & Suignard Standards Track [Page 7]

RFC 3987

iauthority
iuserinfo
ihost
ireg-name

ipath

ipath-abempty
ipath-absolute
ipath-noscheme
ipath-rootless
ipath-empty
isegment
isegment-nz
isegment-nz-nc

ipchar

iquery
ifragment
iunreserved

ucschar

iprivate

Internationalized Resource ldentifiers

I NN

I n NNNNI I

NNNNNI

Some productions

"greedy’) algorithm applies.

Duerst & Suignard

ipath-noscheme
ipath-empty

[fuserinfo "@"] ihost [":" port]
*(tunreserved / pct-encoded / sub-delims / ":"
IP-literal / IPv4address / ireg-name

)

*(1unreserved / pct-encoded / sub-delims)

ipath-abempty ; begins with /" or is empty
ipath-absolute ; begins with /" but not “//"
ipath-noscheme ; begins with a non-colon segment
ipath-rootless ; begins with a segment
ipath-empty ; zero characters

*(/" isegment)

“/" [isegment-nz *(/' isegment)]
isegment-nz-nc *(/" isegment)
isegment-nz *("'/" isegment)
O<ipchar>

*ipchar

1*ipchar

1*(itunreserved / pct-encoded / sub-delims
/0")

non-zero-length segment without any colon

iunreserved / pct-encoded / sub-delims / ':
ll@ll

*(ipchar / iprivate /7 /" / "?")

*(C ipchar 7 /" /7 "?")

ALPHA / DIGIT / - / ™. / »_"™ / "™ [/ ucschar
%xXA0-D7FF / %xF900-FDCF / %xFDFO-FFEF
%x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD
%x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD
%x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD
%xA0000-AFFFD / %xBO0O00-BFFFD / %xCO000-CFFFD
%xD0O000-DFFFD / %xXE1000-EFFFD

%XEOO0-F8FF / %xFOO0O-FFFFD / %x100000-10FFFD

are ambiguous. The "first-match-wins"” (a.k.a.
For details, see [RFC3986].

Standards Track

January 2005

[Page 8]

RFC 3987 Internationalized Resource ldentifiers January 2005

The following rules are the same as those in [RFC3986]:

scheme = ALPHA *(ALPHA / DIGIT /7 "+ / ="/ ".")
port = *DICGIT
IP-literal = "[" (IPv6address / IPvFuture) "]"
IPvFuture = "v" 1*HEXDIG "." 1*(unreserved / sub-delims /7 ":")
IPv6address = 6(C hlie ":") Is32
/ "::"™ 5C hie ":") 1s32
/[hie] "::" 4C hle ":") 1s32
/ [*1(h16 "z) hi6] "::" 3(hle ":") 1s32
/ [*2C h16 """) hi6] "::" 2(hl6 ":") 1s32
/ [*3C h1l6e ":") hi6] "::" hie ":" 1s32
/ [*4C h16 ":") hie] "::" 1s32
/ [*5C h16 ":") hie] "::" h16
/ [*6C h16 "=) hie] "::"
h16 = 1*4HEXDIG
1s32 = (hie ":" hi16) / IPv4address
IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
dec-octet = DIGIT ; 0-9
/ %x31-39 DIGIT ; 10-99
/ 1" 2DIGIT ; 100-199
/ 2" %x30-34 DIGIT ; 200-249
/ 25" %x30-35 ; 250-255

pct-encoded "%" HEXDIG HEXDIG

unreserved = ALPHA /7 DIGIT /7 -/ ™./ " "/ "7
reserved = gen-delims / sub-delims
gen-delims S AV AN ATIRVEY LIV AL KRR
sub-delims = RN AP N AN AN GIAD &

/ o =

1/
el A N AR AR A

This syntax does not support IPv6 scoped addressing zone identifiers.

Duerst & Suignard Standards Track [Page 9]

RFC 3987 Internationalized Resource ldentifiers January 2005

3.

3.

Relationship between IRIs and URIs

IRIs are meant to replace URIs in identifying resources for
protocols, formats, and software components that use a UCS-based
character repertoire. These protocols and components may never need
to use URIs directly, especially when the resource identifier is used
simply for identification purposes. However, when the resource
identifier is used for resource retrieval, it is In many cases
necessary to determine the associated URI, because currently most
retrieval mechanisms are only defined for URIs. In this case, IRIs
can serve as presentation elements for URI protocol elements. An
example would be an address bar in a Web user agent. (Additional
rationale is given in section 3.1.)

1. Mapping of IRIs to URIs

This section defines how to map an IRl to a URI. Everything in this
section also applies to IRI references and URI references, as well as
to components thereof (for example, fragment identifiers).

This mapping has two purposes:

Syntaxical. Many URI schemes and components define additional
syntactical restrictions not captured in section 2.2.
Scheme-specific restrictions are applied to IRIs by converting
IRIs to URIs and checking the URIs against the scheme-specific
restrictions.

Interpretational. URIs identify resources in various ways. IRIs also
identify resources. When the IRl is used solely for
identification purposes, It is not necessary to map the IRl to a
URI (see section 5). However, when an IRl is used for resource
retrieval, the resource that the IRl locates is the same as the
one located by the URI obtained after converting the IRl according
to the procedure defined here. This means that there is no need
to define resolution separately on the IRl level.

Applications MUST map IRIs to URIs by using the following two steps.

Step 1. Generate a UCS character sequence from the original IRI
format. This step has the following three variants,
depending on the form of the input:

a. If the IRl is written on paper, read aloud, or otherwise
represented as a sequence of characters independent of
any character encoding, represent the IRl as a sequence
of characters from the UCS normalized according to
Normalization Form C (NFC, [UTR15]).

Duerst & Suignard Standards Track [Page 10]

RFC 3987 Internationalized Resource ldentifiers January 2005

b. If the IRI is in some digital representation (e.g., an
octet stream) in some known non-Unicode character
encoding, convert the IRl to a sequence of characters
from the UCS normalized according to NFC.

c. ITf the IRl is in a Unicode-based character encoding (for
example, UTF-8 or UTF-16), do not normalize (see section
5.3.2.2 for details). Apply step 2 directly to the
encoded Unicode character sequence.

Step 2. For each character in “ucschar” or ’iprivate’, apply steps
2.1 through 2.3 below.

2.1. Convert the character to a sequence of one or more octets
using UTF-8 [RFC3629].

2.2. Convert each octet to %HH, where HH is the hexadecimal
notation of the octet value. Note that this is identical
to the percent-encoding mechanism in section 2.1 of
[RFC3986]. To reduce variability, the hexadecimal notation
SHOULD use uppercase letters.

2.3. Replace the original character with the resulting character
sequence (i.e., a sequence of %HH triplets).

The above mapping from IRIs to URIs produces URIs fully conforming to
[RFC3986]. The mapping is also an identity transformation for URIs
and is idempotent; applying the mapping a second time will not
change anything. Every URI is by definition an IRI.

Systems accepting IRIs MAY convert the ireg-name component of an IRI
as follows (before step 2 above) for schemes known to use domain
names in ireg-name, if the scheme definition does not allow
percent-encoding for ireg-name:

Replace the ireg-name part of the IRl by the part converted using the
ToASCI1 operation specified in section 4.1 of [RFC3490] on each
dot-separated label, and by using U+002E (FULL STOP) as a label
separator, with the flag UseSTD3ASCIIRules set to TRUE, and with the
flag AllowUnassigned set to FALSE for creating IRIs and set to TRUE
otherwise.

Duerst & Suignard Standards Track [Page 11]

RFC 3987 Internationalized Resource ldentifiers January 2005

The ToASCII operation may fail, but this would mean that the IRI
cannot be resolved. This conversion SHOULD be used when the goal is
to maximize interoperability with legacy URI resolvers. For example,
the IRI

"http://ré SUMEHXEY; .example.org"
may be converted to
"http://xn--rsum-bpad.example.org"
instead of
"http://r%C3%A9sumhC3%A9 . example.org™.

An IRl with a scheme that is known to use domain names In ireg-name,
but where the scheme definition does not allow percent-encoding for
ireg-name, meets scheme-specific restrictions if either the
straightforward conversion or the conversion using the ToASCII
operation on ireg-name result in an URI that meets the scheme-
specific restrictions.

Such an IRl resolves to the URI obtained after converting the IRl and
uses the ToASCIl operation on ireg-name. Implementations do not have
to do this conversion as long as they produce the same result.

Note: The difference between variants b and c in step 1 (using
normalization with NFC, versus not using any normalization)
accounts for the fact that in many non-Unicode character
encodings, some text cannot be represented directly. For example,
the word "Vietnam"™ is natively written "Việt Nam"
(containing a LATIN SMALL LETTER E WITH CIRCUMFLEX AND DOT BELOW)
in NFC, but a direct transcoding from the windows-1258 character
encoding leads to "Việt Nam" (containing a LATIN SMALL
LETTER E WITH CIRCUMFLEX followed by a COMBINING DOT BELOW).
Direct transcoding of other 8-bit encodings of Vietnamese may lead
to other representations.

Note: The uniform treatment of the whole IRl in step 2 is important
to make processing independent of URI scheme. See [Gettys] for an
in-depth discussion.

Note: In practice, whether the general mapping (steps 1 and 2) or the
ToASCI1 operation of [RFC3490] is used for ireg-name will not be
noticed if mapping from IRl to URI and resolution is tightly
integrated (e.g., carried out in the same user agent). But

Duerst & Suignard Standards Track [Page 12]

RFC 3987 Internationalized Resource ldentifiers January 2005

conversion using [RFC3490] may be able to better deal with
backwards compatibility issues in case mapping and resolution are
separated, as in the case of using an HTTP proxy.

Note: Internationalized Domain Names may be contained in parts of an
IRl other than the ireg-name part. It is the responsibility of
scheme-specific implementations (if the Internationalized Domain
Name is part of the scheme syntax) or of server-side
implementations (if the Internationalized Domain Name is part of
>iquery’) to apply the necessary conversions at the appropriate
point. Example: Trying to validate the Web page at
http://ré sSumé .example.org would lead to an IRl of
http://validator.w3.org/check?uri=http%3A%2F%2Fré ; SUM&H#XE9; .
example.org, which would convert to a URI of
http://validator._w3.org/check?uri=http%3A%2F%2Fr%C3%A9sum%C3%A9 .
example.org. The server side implementation would be responsible
for making the necessary conversions to be able to retrieve the

Web page.
Systems accepting IRIs MAY also deal with the printable characters in
US-ASCII that are not allowed in URIs, namely "<, ">" ”"”_ space,
L, U, oI, U\, ", and Mct, in step 2 above. I these

characters are found but are not converted, then the conversion
SHOULD fail. Please note that the number sign ("'#'"), the percent
sign ("%'"), and the square bracket characters ([, "]') are not part
of the above list and MUST NOT be converted. Protocols and formats
that have used earlier definitions of IRIs including these characters
MAY require percent-encoding of these characters as a preprocessing
step to extract the actual IRl from a given field. This
preprocessing MAY also be used by applications allowing the user to
enter an IRI.

Note: In this process (in step 2.3), characters allowed in URI
references and existing percent-encoded sequences are not encoded
further. (This mapping is similar to, but different from, the
encoding applied when arbitrary content is included in some part
of a URL.) For example, an IRl of
"http://www.example.org/red%09rosé#red"” (in XML notation) is
converted to
"http://www.example.org/red%09ros%C3%A9%red’, not to something
like
"http%3A%2F%2Fwww . example . org%2Fred%2509ros%C3%A9%23red"" .

Note: Some older software transcoding to UTF-8 may produce illegal
output for some input, in particular for characters outside the
BMP (Basic Multilingual Plane). As an example, for the IRl with
non-BMP characters (in XML Notation):
“http://example.com/𐌀 𐌁 ; 𐌂";

Duerst & Suignard Standards Track [Page 13]

RFC 3987 Internationalized Resource ldentifiers January 2005

3.2.

Due

which contains the first three letters of the 0ld ltalic alphabet,
the correct conversion to a URI is
"http://example.com/%F0%90%8C%80%F0%90%8C%81%F0%90%8C%82""

Converting URIs to IRIs

In some situations, converting a URI into an equivalent IRl may be
desirable. This section gives a procedure for this conversion. The
conversion described in this section will always result in an IRI
that maps back to the URI used as an input for the conversion (except
for potential case differences in percent-encoding and for potential
percent-encoded unreserved characters). However, the IRl resulting
from this conversion may not be exactly the same as the original IRI
(if there ever was one).

URI-to-IRI conversion removes percent-encodings, but not all
percent-encodings can be eliminated. There are several reasons for
this:

1. Some percent-encodings are necessary to distinguish percent-
encoded and unencoded uses of reserved characters.

2. Some percent-encodings cannot be interpreted as sequences of
UTF-8 octets.

(Note: The octet patterns of UTF-8 are highly regular.
Therefore, there is a very high probability, but no guarantee,
that percent-encodings that can be interpreted as sequences of
UTF-8 octets actually originated from UTF-8. For a detailed
discussion, see [Duerst97].)

3. The conversion may result in a character that is not appropriate
in an IRl. See sections 2.2, 4.1, and 6.1 for further details.

Conversion from a URI to an IRl is done by using the following steps
(or any other algorithm that produces the same result):

1. Represent the URI as a sequence of octets in US-ASCII.

2. Convert all percent-encodings (%" followed by two hexadecimal
digits) to the corresponding octets, except those corresponding
to "%, characters in "reserved", and characters in US-ASCIIl not
allowed in URIs.

3. Re-percent-encode any octet produced in step 2 that is not part
of a strictly legal UTF-8 octet sequence.

rst & Suignard Standards Track [Page 14]

RFC 3987 Internationalized Resource ldentifiers January 2005

4. Re-percent-encode all octets produced in step 3 that in UTF-8
represent characters that are not appropriate according to
sections 2.2, 4.1, and 6.1.

5. Interpret the resulting octet sequence as a sequence of characters
encoded in UTF-8.

This procedure will convert as many percent-encoded characters as
possible to characters in an IRl. Because there are some choices
when step 4 is applied (see section 6.1), results may vary.

Conversions from URIs to IRIs MUST NOT use any character encoding
other than UTF-8 in steps 3 and 4, even if it might be possible to
guess from the context that another character encoding than UTF-8 was
used in the URI. For example, the URI
“http://www._example.org/r%E9sum%E9 _html" might with some guessing be
interpreted to contain two e-acute characters encoded as 1s0-8859-1.
It must not be converted to an IRl containing these e-acute
characters. Otherwise, in the future the IRl will be mapped to
"http://www._example . org/r%C3%A9sumbC3%A9.html*, which is a different
URI from "http://www.example.org/r®%E9sum%E9 _html" .

3.2.1. Examples
This section shows various examples of converting URIs to IRIs. Each
example shows the result after each of the steps 1 through 5 is
applied. XML Notation is used for the final result. Octets are
denoted by "'<" followed by two hexadecimal digits followed by '>".
The following example contains the sequence "%C3%BC'", which is a
strictly legal UTF-8 sequence, and which is converted into the actual
character U+OOFC, LATIN SMALL LETTER U WITH DIAERESIS (also known as
u-umlaut).
1. http://www._example.org/D%C3%BCrst
2. http://www.example.org/D<c3><bc>rst
3 http://www._example.org/D<c3><bc>rst
4. http://www.example.org/D<c3><bc>rst
5. http://www.example.org/Dürst
The following example contains the sequence "%FC", which might
represent U+00FC, LATIN SMALL LETTER U WITH DIAERESIS, in the

1s0-8859-1 character encoding. (It might represent other characters
in other character encodings. For example, the octet <fc> in

Duerst & Suignard Standards Track [Page 15]

RFC 3987 Internationalized Resource ldentifiers January 2005

is0-8859-5 represents U+045C, CYRILLIC SMALL LETTER KJE.) Because
<fc> is not part of a strictly legal UTF-8 sequence, it is
re-percent-encoded in step 3.

1. http://www.example._org/D%FCrst
2. http://www.example.org/D<fc>rst
3 http://www._example.org/D%FCrst
4. http://www._example.org/D%FCrst
5. http://www.example.org/D%FCrst
The following example contains "%e2%80%ae™, which is the percent-
encoded UTF-8 character encoding of U+202E, RIGHT-TO-LEFT OVERRIDE.
Section 4.1 forbids the direct use of this character in an IRL.
Therefore, the corresponding octets are re-percent-encoded in step 4.
This example shows that the case (upper- or lowercase) of letters
used in percent-encodings may not be preserved. The example also
contains a punycode-encoded domain name label (xn--99zt52a), which is
not converted.
1. http://xn--99zt52a.example.org/%e2%80%ae
2. http://xn--99zt52a.example.org/<e2><80><ae>
3. http://xn--99zt52a.example.org/<e2><80><ae>
4. http://xn--99zt52a.example.org/%E2%80%AE
5. http://xn--99zt52a.example.org/%E2%80%AE
Implementations with scheme-specific knowledge MAY convert
punycode-encoded domain name labels to the corresponding characters
by using the ToUnicode procedure. Thus, for the example above, the
label "xn--99zt52a" may be converted to U+7DOD U+8C46 (Japanese
Natto), leading to the overall IRl of
“http://8#X7D0D ; 豆 .example.org/%E2%80%AE" .

4. Bidirectional IRIs for Right-to-Left Languages
Some UCS characters, such as those used in the Arabic and Hebrew
scripts, have an inherent right-to-left (rtl) writing direction.

IRIs containing these characters (called bidirectional IRIs or Bidi
IRIS) require additional attention because of the non-trivial

Duerst & Suignard Standards Track [Page 16]

RFC 3987 Internationalized Resource ldentifiers January 2005

relation between logical representation (used for digital
representation and for reading/spelling) and visual representation
(used for display/printing).

Because of the complex interaction between the logical
representation, the visual representation, and the syntax of a Bidi
IRI, a balance is needed between various requirements. The main
requirements are

1. user-predictable conversion between visual and logical
representation;

2. the ability to include a wide range of characters in various
parts of the IRIl; and

3. minor or no changes or restrictions for implementations.
4.1. Logical Storage and Visual Presentation

When stored or transmitted in digital representation, bidirectional
IRIs MUST be in full logical order and MUST conform to the IRl syntax
rules (which includes the rules relevant to their scheme). This
ensures that bidirectional IRIs can be processed in the same way as
other IRIs.

Bidirectional IRIs MUST be rendered by using the Unicode
Bidirectional Algorithm [UNIV4], [UNI9]. Bidirectional IRIs MUST be
rendered in the same way as they would be if they were iIn a
left-to-right embedding; 1.e., as if they were preceded by U+202A,
LEFT-TO-RIGHT EMBEDDING (LRE), and followed by U+202C, POP
DIRECTIONAL FORMATTING (PDF). Setting the embedding direction can
also be done in a higher-level protocol (e.g., the dir="1tr’
attribute in HTML).

There is no requirement to use the above embedding if the display is
still the same without the embedding. For example, a bidirectional
IRI in a text with left-to-right base directionality (such as used
for English or Cyrillic) that is preceded and followed by whitespace
and strong left-to-right characters does not need an embedding.
Also, a bidirectional relative IRl reference that only contains
strong right-to-left characters and weak characters and that starts
and ends with a strong right-to-left character and appears in a text
with right-to-left base directionality (such as used for Arabic or
Hebrew) and is preceded and followed by whitespace and strong
characters does not need an embedding.

Duerst & Suignard Standards Track [Page 17]

RFC 3987 Internationalized Resource ldentifiers January 2005

In some other cases, using U+200E, LEFT-TO-RIGHT MARK (LRM), may be
sufficient to force the correct display behavior. However, the
details of the Unicode Bidirectional algorithm are not always easy to
understand. Implementers are strongly advised to err on the side of
caution and to use embedding in all cases where they are not
completely sure that the display behavior is unaffected without the
embedding.

The Unicode Bidirectional Algorithm ([UNI9], section 4.3) permits
higher-level protocols to influence bidirectional rendering. Such
changes by higher-level protocols MUST NOT be used if they change the
rendering of IRIs.

The bidirectional formatting characters that may be used before or
after the IRl to ensure correct display are not themselves part of
the IRI. IRIs MUST NOT contain bidirectional formatting characters
(LRM, RLM, LRE, RLE, LRO, RLO, and PDF). They affect the visual
rendering of the IRl but do not appear themselves. It would
therefore not be possible to input an IRl with such characters
correctly.

4.2. Bidi IRl Structure

The Unicode Bidirectional Algorithm is designed mainly for running
text. To make sure that it does not affect the rendering of
bidirectional IRIs too much, some restrictions on bidirectional IRIs
are necessary. These restrictions are given in terms of delimiters
(structural characters, mostly punctuation such as "@", ".", ":", and
/") and components (usually consisting mostly of letters and

digits).

The following syntax rules from section 2.2 correspond to components
for the purpose of Bidi behavior: iuserinfo, ireg-name, isegment,
isegment-nz, isegment-nz-nc, ireg-name, iquery, and ifragment.

Specifications that define the syntax of any of the above components
MAY divide them further and define smaller parts to be components
according to this document. As an example, the restrictions of
[RFC3490] on bidirectional domain names correspond to treating each
label of a domain name as a component for schemes with ireg-name as a
domain name. Even where the components are not defined formally, it
may be helpful to think about some syntax in terms of components and
to apply the relevant restrictions. For example, for the usual
name/value syntax iIn query parts, it is convenient to treat each name
and each value as a component. As another example, the extensions in
a resource name can be treated as separate components.

Duerst & Suignard Standards Track [Page 18]

RFC 3987 Internationalized Resource ldentifiers January 2005

For each component, the following restrictions apply:

1. A component SHOULD NOT use both right-to-left and left-to-right
characters.

2. A component using right-to-left characters SHOULD start and end
with right-to-left characters.

The above restrictions are given as shoulds, rather than as musts.
For IRIs that are never presented visually, they are not relevant.
However, for IRIs in general, they are very important to ensure
consistent conversion between visual presentation and logical
representation, in both directions.

Note: In some components, the above restrictions may actually be
strictly enforced. For example, [RFC3490] requires that these
restrictions apply to the labels of a host name for those schemes
where ireg-name is a host name. In some other components (for
example, path components) following these restrictions may not be
too difficult. For other components, such as parts of the query
part, it may be very difficult to enforce the restrictions because
the values of query parameters may be arbitrary character
sequences.

IT the above restrictions cannot be satisfied otherwise, the affected
component can always be mapped to URI notation as described in
section 3.1. Please note that the whole component has to be mapped
(see also Example 9 below).

4.3. Input of Bidi IRIs

Bidi input methods MUST generate Bidi IRIs in logical order while
rendering them according to section 4.1. During input, rendering
SHOULD be updated after every new character is input to avoid end-
user confusion.

4.4. Examples

This section gives examples of bidirectional IRIs, in Bidi Notation.
It shows legal IRIs with the relationship between logical and visual
representation and explains how certain phenomena in this
relationship may look strange to somebody not familiar with
bidirectional behavior, but familiar to users of Arabic and Hebrew.
It also shows what happens if the restrictions given in section 4.2
are not followed. The examples below can be seen at [BidiEx], in
Arabic, Hebrew, and Bidi Notation variants.

Duerst & Suignard Standards Track [Page 19]

RFC 3987 Internationalized Resource ldentifiers January 2005

To read the bidi text in the examples, read the visual representation
from left to right until you encounter a block of rtl text. Read the
rtl block (including slashes and other special characters) from right
to left, then continue at the next unread Itr character.

Example 1: A single component with rtl characters is inverted:
Logical representation: "http://ab.CDEFGH.ij/kl/mn/op.html"

Visual representation: "http://ab_HGFEDC.ij/kl/mn/op.html"
Components can be read one by one, and each component can be read iIn
its natural direction.

Example 2: More than one consecutive component with rtl characters is
inverted as a whole:

Logical representation: "http://ab.CDE.FGH/ij/kl/mn/op.html"

Visual representation: "http://ab_HGF_EDC/ij/kl/mn/op.html"

A sequence of rtl components is read rtl, in the same way as a
sequence of rtl words is read rtl in a bidi text.

Example 3: All components of an IRl (except for the scheme) are rtl.
All rtl components are inverted overall:

Logical representation: "http://AB.CD.EF/GH/1J/KL?MN=0P ; QR=ST#UV"'
Visual representation: "http://VU#TS=RQ;PO=NM?LK/J1/HG/FE.DC.BA"
The whole IRl (except the scheme) is read rtl. Delimiters between
rtl components stay between the respective components; delimiters
between Itr and rtl components don’t move.

Example 4: Each of several sequences of rtl components is inverted on
its own:

Logical representation: “http://AB.CD.ef/gh/1J/KL_html"

Visual representation: "http://DC.BA.ef/gh/LK/JI_html"

Each sequence of rtl components is read rtl, in the same way as each
sequence of rtl words in an Itr text is read rtl.

Example 5: Example 2, applied to components of different kinds:
Logical representation: "“http://ab.cd.EF/GH/ij/kl_html™

Visual representation: "http://ab.cd.HG/FE/Zij/Kkl_html"

The inversion of the domain name label and the path component may be
unexpected, but it is consistent with other bidi behavior. For
reassurance that the domain component really is "ab.cd.EF", it may be
helpful to read aloud the visual representation following the bidi
algorithm. After "http://ab.cd.™ one reads the RTL block
"E-F-slash-G-H", which corresponds to the logical representation.

Example 6: Same as Example 5, with more rtl components:
Logical representation: "http://ab.CD.EF/GH/1J/kl _html"
Visual representation: "http://ab.J1/HG/FE_DC/KI_html"
The inversion of the domain name labels and the path components may
be easier to identify because the delimiters also move.

Duerst & Suignard Standards Track [Page 20]

RFC 3987 Internationalized Resource ldentifiers January 2005

Example 7: A single rtl component includes digits:

Logical representation: "http://ab.CDE123FGH.ij/kl/mn/op.html"

Visual representation: "http://ab_HGF123EDC.1ij/kl/mn/op._-html"
Numbers are written Itr in all cases but are treated as an additional
embedding inside a run of rtl characters. This is completely
consistent with usual bidirectional text.

Example 8 (not allowed): Numbers are at the start or end of an rtl
component:

Logical representation: "http://ab.cd.ef/GH1/21J/KL_html"

Visual representation: "http://ab.cd.ef/LK/JI1/2HG._html™

The sequence "1/2" is interpreted by the bidi algorithm as a
fraction, fragmenting the components and leading to confusion. There
are other characters that are interpreted in a special way close to

numbers; in particular, "+, =", UHT, VST, TR, LU, .U, and Uit

Example 9 (not allowed): The numbers in the previous example are
percent-encoded:

Logical representation: "http://ab.cd.ef/GH%31/%3213/KL.html",

Visual representation (Hebrew): "http://ab.cd.ef/%31HG/LK/J1%32_html"
Visual representation (Arabic): "http://ab.cd.ef/31%HG/%LK/II132_html"
Depending on whether the uppercase letters represent Arabic or
Hebrew, the visual representation is different.

Example 10 (allowed but not recommended):

Logical representation: "http://ab.CDEFGH.123/kl/mn/op.html"

Visual representation: "http://ab.123_HGFEDC/kl/mn/op.html"
Components consisting of only numbers are allowed (it would be rather
difficult to prohibit them), but these may interact with adjacent RTL
components iIn ways that are not easy to predict.

5. Normalization and Comparison

Note: The structure and much of the material for this section is
taken from section 6 of [RFC3986]; the differences are due to the
specifics of IRIs.

One of the most common operations on IRIs is simple comparison:
Determining whether two IRIs are equivalent without using the IRIs or
the mapped URIs to access theilr respective resource(s). A comparison
is performed whenever a response cache is accessed, a browser checks
its history to color a link, or an XML parser processes tags within a
namespace. Extensive normalization prior to comparison of IRIs may
be used by spiders and indexing engines to prune a search space or
reduce duplication of request actions and response storage.

Duerst & Suignard Standards Track [Page 21]

RFC 3987 Internationalized Resource ldentifiers January 2005

IRI comparison is performed for some particular purpose. Protocols
or implementations that compare IRIs for different purposes will
often be subject to differing design trade-offs in regards to how
much effort should be spent in reducing aliased identifiers. This
section describes various methods that may be used to compare IRIs,
the trade-offs between them, and the types of applications that might
use them.

5.1. Equivalence

Because IRIs exist to identify resources, presumably they should be
considered equivalent when they identify the same resource. However,
this definition of equivalence is not of much practical use, as there
is no way for an implementation to compare two resources unless it
has full knowledge or control of them. For this reason, determination
of equivalence or difference of IRIs is based on string comparison,
perhaps augmented by reference to additional rules provided by URI
scheme definitions. We use the terms "different" and "equivalent"” to
describe the possible outcomes of such comparisons, but there are
many application-dependent versions of equivalence.

Even though it is possible to determine that two IRIs are equivalent,
IRI comparison is not sufficient to determine whether two IRIs
identify different resources. For example, an owner of two different
domain names could decide to serve the same resource from both,
resulting in two different IRIs. Therefore, comparison methods are
designed to minimize false negatives while strictly avoiding false
positives.

In testing for equivalence, applications should not directly compare
relative references; the references should be converted to their
respective target IRIs before comparison. When IRIs are compared to
select (or avoid) a network action, such as retrieval of a
representation, fragment components (if any) should be excluded from
the comparison.

Applications using IRIs as identity tokens with no relationship to a
protocol MUST use the Simple String Comparison (see section 5.3.1).
All other applications MUST select one of the comparison practices
from the Comparison Ladder (see section 5.3 or, after IRI-to-URI
conversion, select one of the comparison practices from the URI
comparison ladder in [RFC3986], section 6.2)

5.2. Preparation for Comparison
Any kind of IRl comparison REQUIRES that all escapings or encodings

in the protocol or format that carries an IRl are resolved. This is
usually done when the protocol or format is parsed. Examples of such

Duerst & Suignard Standards Track [Page 22]

RFC 3987 Internationalized Resource ldentifiers January 2005

escapings or encodings are entities and numeric character references
in [HTML4] and [XML1]. As an example,
"http://example.org/rosé" (in HTML),
"http://example.org/rosé"; (in HTML or XML), and
“http://example.org/rosé™; (in HTML or XML) are all resolved into
what is denoted in this document (see section 1.4) as
"http://example.org/ros&#xg9"; (the "é" here standing for the
actual e-acute character, to compensate for the fact that this
document cannot contain non-ASCll characters).

Similar considerations apply to encodings such as Transfer Codings in
HTTP (see [RFC2616]) and Content Transfer Encodings in MIME
([RFC2045]), although in these cases, the encoding is based not on
characters but on octets, and additional care is required to make
sure that characters, and not just arbitrary octets, are compared
(see section 5.3.1).

5.3. Comparison Ladder

In practice, a variety of methods are used, to test IRl equivalence.
These methods fall into a range distinguished by the amount of
processing required and the degree to which the probability of false
negatives is reduced. As noted above, false negatives cannot be
eliminated. |In practice, their probability can be reduced, but this
reduction requires more processing and is not cost-effective for all
applications.

IT this range of comparison practices is considered as a ladder, the
following discussion will climb the ladder, starting with practices
that are cheap but have a relatively higher chance of producing false
negatives, and proceeding to those that have higher computational
cost and lower risk of false negatives.

5.3.1. Simple String Comparison

IT two IRIs, when considered as character strings, are identical,
then it is safe to conclude that they are equivalent. This type of
equivalence test has very low computational cost and is in wide use
in a variety of applications, particularly in the domain of parsing.
It is also used when a definitive answer to the question of IRI
equivalence is needed that is independent of the scheme used and that
can be calculated quickly and without accessing a network. An
example of such a case is XML Namespaces ([XMLNamespace]).

Testing strings for equivalence requires some basic precautions. This
procedure is often referred to as "bit-for-bit" or "byte-for-byte"
comparison, which is