Internet Engineering Task Force (IETF) R. Fielding, Ed.

Request for Comments: 7231 Adobe
Obsoletes: 2616 J. Reschke, Ed.
Updates: 2817 greenbytes
Category: Standards Track June 2014

ISSN: 2070-1721

Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information
systems. This document defines the semantics of HTTP/1.1 messages,
as expressed by request methods, request header fields, response
status codes, and response header fields, along with the payload of
messages (metadata and body content) and mechanisms for content
negotiation.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7231.

Fielding & Reschke Standards Track [Page 1]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Fielding & Reschke Standards Track [Page 2]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Table of Contents

1. INtroduction ... 6
1.1. Conformance and Error Handlingcccccuvvveeeeee. 6
1.2. Syntax NOtationccoovviiiiiiiiiieiieeeeeeins 6
2. RESOUICESovvviiiiieiiiiiiiiiieeeee e 7
3. Representationsccoccvvvvieeereeee e 7
3.1. Representation Metadataccccvvvvvevennnnnnn. 8
3.1.1. Processing Representation Data 8
3.1.2. Encoding for Compression or Integrity 11
3.1.3. Audience Languageccccoeveeunrrineeenenn. 13
3.1.4. Identificationccoevvvveiniirennnen, 14
3.2. Representation Dataccccceoevvecvvvivieennnennnn. 17
3.3. Payload Semanticscccccevviiieeeeiniiieee e 17
3.4. Content Negotiationccccvvvveeeeiiiiieee e 18
3.4.1. Proactive Negotiationcccccccceeriiunnne 19
3.4.2. Reactive Negotiationccccceeeeririnnnnns 20
4. Request Methodscooovviiiiiiieeieeee e, 21
4.1. OVEIVIEW ..ot 21
4.2. Common Method Propertiescccceevviivieeennenn 22
4.2.1. Safe Methodscooooviiiiiiiiiiiiieeee, 22
4.2.2. Idempotent Methodscccccceiiiiiiiinnnn. 23
4.2.3. Cacheable Methodscccccovvvivreennnnen. 24
4.3. Method Definitionscccccveeeerieeeniieennnnen, 24
4.3.1. GET oo 24
4.32.HEAD ..cooiiiiiiiiiei, 25
4.3.3. POST it 25
4.3.4. PUT i 26
4.35. DELETE ..ottt 29
4.3.6. CONNECTooviiiiiiiieiiieeeee e 30
4.3.7. OPTIONS ..ot 31
4.3.8. TRACEooeiiieee e 32
5. Request Header Fieldsccccocvviviiiiiiieiciniiieee, 33
5.1. CoNtrolsccooiiiiiiiiiiieiiieeeee e 33
5.1.1. EXPECL vt 34
5.1.2. Max-Forwardsccccouvvennveeinnennninn, 36
5.2. Conditionalscccooveviiiniiinee e 36
5.3. Content Negotiationccceevveeeeiiiiieeeennn 37
5.3.1. Quality Valuesccocvivieiiiiineenn 37
5.3.2. ACCEPL vt 38
5.3.3. Accept-Charsetccccceeeeeiiniiiiiiiiineen. 40
5.3.4. Accept-Encodingcccceeveieeiiiiiiiiiin, 41
5.3.5. Accept-Languagecccceeeeeveeiiiiiinieeenns 42
5.4. Authentication Credentialsccccccceveeeviiicnnnnns 44
5.5. Request Contextcccceveeereeeiniiiniiinreeeen, 44
5.5. 1. FrOM e 44
5.5.2. Referer ...cccoccvviiiiiee e 45
5.5.3. User-Agentccoooovveviiiinnieieiiiiineeeeeeinn 46

Fielding & Reschke Standards Track [Page 3]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

6. Response Status Codesccccvveevvviviiciiviineeeeeeeeennn, 47
6.1. Overview of Status Codesccccceeevvviiivrrrnnnnnn. 48
6.2. Informational 1XXcccceeeviviiiiiiiiiinneeeeeenn. 50

6.2.1. 100 CONLINUEoevvreieeiiaaaaaeiiiiiiiieeeee 50
6.2.2. 101 Switching Protocolsccccceeereeenn. 50
6.3. SUCCESSTUI 2XX .vvvvviiiiiiiiie i 51
6.3.1. 200 OK ...ovviiiieiiiiiiee et 51
6.3.2. 201 Createdccccvvvvveieereeee e 52
6.3.3. 202 Acceptedcceeeeeiiiiiiiiee e 52
6.3.4. 203 Non-Authoritative Information 52
6.3.5. 204 NO COoNtenteeeeeeeeniiiiiinineeeeeenn. 53
6.3.6. 205 Reset Contentcocovvvvevevernnnnnns 53
6.4. RedireCtion 3XXcccevriieereniiiieeeeeiniiieeeennans 54
6.4.1. 300 Multiple Choicesccccevviiieeernnnnnn 55
6.4.2. 301 Moved Permanentlyccccceevviinieeennne 56
6.4.3. 302 FOUNd ...ocooviiiieeeiiiiee e 56
6.4.4. 303 See Otherccceeiiiiiiiiiiiiiieeeeee, 57
6.4.5. 305 USE ProXy ...ccvvvviiiiiiiiiiineeeeeiiiinenn, 58
6.4.6. 306 (Unused)ccccvvveeeereeeeeniieinnieen 58
6.4.7. 307 Temporary Redirectc.ccoccvvvveennnnn 58
6.5. Client Error 4XXcocccuveeeeeeieeeeee e 58
6.5.1. 400 Bad ReqUESLcceeeeeeeiiniiiiiiiiieeen, 58
6.5.2. 402 Payment Requiredccccvvveeeeeennnn. 59
6.5.3. 403 Forbiddenccccecieeiiiiiiieee, 59
6.5.4. 404 Not Foundccccceveviiviieieiniineen, 59
6.5.5. 405 Method Not Allowedcoccvvvvenneen. 59
6.5.6. 406 Not Acceptableccccovviieeinnn 60
6.5.7. 408 Request TIMEOULcoccvvviviieeeraeennn. 60
6.5.8. 409 Conflictcoeevviieiieiiiiiiiee i, 60
6.5.9. 410 GONE ..oovvviiiiiiie et 60
6.5.10. 411 Length Requiredccccceeveevviiiinnnns 61
6.5.11. 413 Payload Too Largeccccccuvveeevnunnenn. 61
6.5.12. 414 URI TOO LONG ..eoveevviiiieeeeciiiee e, 61
6.5.13. 415 Unsupported Media Typecccccceeerrrnnnee 62
6.5.14. 417 Expectation Failedceeueeeee 62
6.5.15. 426 Upgrade Requiredccccccvveveeernnnnns 62
6.6. Server Error 5XXoccccvveeeeeeiieeees e 62
6.6.1. 500 Internal Server Errorccccceeeveveennns 63
6.6.2. 501 Not Implementedcccoecvvereennnn 63
6.6.3. 502 Bad Gatewaycccccueeeeeereeeeeeninnnne 63
6.6.4. 503 Service Unavailablecccceeeee. 63
6.6.5. 504 Gateway Timeoutcccceeeevvveeunvrnnen, 63
6.6.6. 505 HTTP Version Not Supported 64
7. Response Header Fieldsccccovvviieiiniiieienniineen. 64
7.1. Control Datacoooeieiiiiiiiiieeee e 64
ed 7.1.1. Origination Dateccoooiivviiieeenennn. 65
7.1.2. LOCALION ...ovvvieiiiaieeiiiiiiiiieieeeee e 68
7.1.3. Retry-After ..o 69

Fielding & Reschke Standards Track [Page 4]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

A R TV £ oY RSN 70
7.2. Validator Header Fieldsccccccceeeeiiiiiininnnen, 71
7.3. Authentication Challengesccccoccuveeeeininnnnen. 72
7.4. Response CoNtextcccoevveieeeieieiiiiiiiiieeeeeeeees 72
742, AlIOW oo 72
742, SEIVEN oo 73
8. IANA Considerationsccccocveeeeeiiiieee e 73
8.1. Method RegiStryccoevviiiiiiiiiiiiieeiiiiieeeee 73
8.1.1. Procedurecoeeeeeeiiiiiiiiiiiiiiie, 74
8.1.2. Considerations for New Methods 74
8.1.3. Registrationsccccccveeeeneiiiiiiiiinen 75
8.2. Status Code RegiStrycocccvvvvieeeieeeeeeeieins 75
8.2.1. ProCcedureccccevvvieeieiiiieee e 75
8.2.2. Considerations for New Status Codes 76
8.2.3. Registrationsccceeveerivieeee e, 76
8.3. Header Field RegiStrycccccooviiiiiiiiiieennannnnn, 77
8.3.1. Considerations for New Header Fields 78
8.3.2. Registrationsccccceeeveeeeeeiiiiiiinnne, 80
8.4. Content Coding RegiStryccccceeeevivvicvinvnnnnnnn. 81
8.4.1. Procedureccccoeeeveiiiieiiiiiiiiiieee, 81
8.4.2. Registrationsccccveveerivvieeenniinnnn. 81
9. Security Considerationsccccuvieeeieeieeeeeninnne 81
9.1. Attacks Based on File and Path Namescc........ 82
9.2. Attacks Based on Command, Code, or Query Injection 82
9.3. Disclosure of Personal Information 83
9.4. Disclosure of Sensitive Information in URIs 83
9.5. Disclosure of Fragment after Redirects 84
9.6. Disclosure of Product Information 84
9.7. Browser Fingerprintingcccccccevvvvivvnieeenenn. 84
10. Acknowledgmentscccccevveeeeeeiiiiciiiiieee e 85
11. Referencesoccceevveiiiiiiie e 85
11.1. Normative Referencesccccccvvvvevvvvvvvrnvnnnnnnn. 85
11.2. Informative Referencesccoceeeeeeiieeiiinnnnnn. 86
Appendix A. Differences between HTTP and MIME 89
AL MIME-VEISIONuuviiiiiiiiiiiiiiiiiiiieeee e 89
A.2. Conversion to Canonical Formcccccoccveeennnee. 89
A.3. Conversion of Date Formatscccccceeeeeiinnnenen. 90
A.4. Conversion of Content-Encodingccccoccvveeeennns 90
A.5. Conversion of Content-Transfer-Encoding 90
A.6. MHTML and Line Length Limitationsc...c... 20
Appendix B. Changes from RFC 2616cccccccceeveeeninnns 91
Appendix C. Imported ABNFooooiiiiiiiiieeee e, 93
Appendix D. Collected ABNFcccovvvvveeeeiiiiiiieeee, 94
INAEX e 97

Fielding & Reschke Standards Track [Page 5]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

1. Introduction

Each Hypertext Transfer Protocol (HTTP) message is either a request
or aresponse. A server listens on a connection for a request,

parses each message received, interprets the message semantics in
relation to the identified request target, and responds to that

request with one or more response messages. A client constructs
request messages to communicate specific intentions, examines
received responses to see if the intentions were carried out, and
determines how to interpret the results. This document defines
HTTP/1.1 request and response semantics in terms of the architecture
defined in [RFC7230].

HTTP provides a uniform interface for interacting with a resource
(Section 2), regardless of its type, nature, or implementation, via
the manipulation and transfer of representations (Section 3).

HTTP semantics include the intentions defined by each request method
(Section 4), extensions to those semantics that might be described in
request header fields (Section 5), the meaning of status codes to
indicate a machine-readable response (Section 6), and the meaning of
other control data and resource metadata that might be given in
response header fields (Section 7).

This document also defines representation metadata that describe how
a payload is intended to be interpreted by a recipient, the request
header fields that might influence content selection, and the various
selection algorithms that are collectively referred to as "content
negotiation" (Section 3.4).

1.1. Conformance and Error Handling

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Conformance criteria and considerations regarding error handling are
defined in Section 2.5 of [RFC7230].

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7 of
[RFC7230], that allows for compact definition of comma-separated
lists using a '# operator (similar to how the " operator indicates
repetition). Appendix C describes rules imported from other
documents. Appendix D shows the collected grammar with all list
operators expanded to standard ABNF notation.

Fielding & Reschke Standards Track [Page 6]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

This specification uses the terms "character", "character encoding

scheme"”, "charset", and "protocol element" as they are defined in
[RFC6365].

2. Resources

The target of an HTTP request is called a "resource". HTTP does not
limit the nature of a resource; it merely defines an interface that
might be used to interact with resources. Each resource is

identified by a Uniform Resource Identifier (URI), as described in
Section 2.7 of [RFC7230].

When a client constructs an HTTP/1.1 request message, it sends the
target URI in one of various forms, as defined in (Section 5.3 of
[RFC7230]). When a request is received, the server reconstructs an
effective request URI for the target resource (Section 5.5 of
[RFC7230]).

One design goal of HTTP is to separate resource identification from
request semantics, which is made possible by vesting the request
semantics in the request method (Section 4) and a few
request-modifying header fields (Section 5). If there is a conflict
between the method semantics and any semantic implied by the URI
itself, as described in Section 4.2.1, the method semantics take
precedence.

3. Representations

Considering that a resource could be anything, and that the uniform
interface provided by HTTP is similar to a window through which one
can observe and act upon such a thing only through the communication
of messages to some independent actor on the other side, an
abstraction is needed to represent ("take the place of") the current

or desired state of that thing in our communications. That

abstraction is called a representation [REST].

For the purposes of HTTP, a "representation” is information that is
intended to reflect a past, current, or desired state of a given
resource, in a format that can be readily communicated via the
protocol, and that consists of a set of representation metadata and a
potentially unbounded stream of representation data.

An origin server might be provided with, or be capable of generating,
multiple representations that are each intended to reflect the

current state of a target resource. In such cases, some algorithm is
used by the origin server to select one of those representations as
most applicable to a given request, usually based on content
negotiation. This "selected representation” is used to provide the

Fielding & Reschke Standards Track [Page 7]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

data and metadata for evaluating conditional requests [RFC7232] and
constructing the payload for 200 (OK) and 304 (Not Modified)
responses to GET (Section 4.3.1).

3.1. Representation Metadata

Representation header fields provide metadata about the
representation. When a message includes a payload body, the
representation header fields describe how to interpret the
representation data enclosed in the payload body. In a response to a
HEAD request, the representation header fields describe the
representation data that would have been enclosed in the payload body
if the same request had been a GET.

The following header fields convey representation metadata:

+ + +

| Header Field Name | Defined in... |
+ + +

| Content-Type | Section 3.1.1.5 |

| Content-Encoding | Section 3.1.2.2 |
| Content-Language | Section 3.1.3.2 |

| Content-Location | Section 3.1.4.2 |
+ + +

3.1.1. Processing Representation Data
3.1.1.1. Media Type

HTTP uses Internet media types [RFC2046] in the Content-Type
(Section 3.1.1.5) and Accept (Section 5.3.2) header fields in order

to provide open and extensible data typing and type negotiation.
Media types define both a data format and various processing models:
how to process that data in accordance with each context in which it
is received.

media-type = type "/" subtype *(OWS ";" OWS parameter)
type = token
subtype =token

The type/subtype MAY be followed by parameters in the form of
name=value pairs.

parameter = token "=" (token / quoted-string)

Fielding & Reschke Standards Track [Page 8]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

The type, subtype, and parameter name tokens are case-insensitive.
Parameter values might or might not be case-sensitive, depending on
the semantics of the parameter name. The presence or absence of a
parameter might be significant to the processing of a media-type,
depending on its definition within the media type registry.

A parameter value that matches the token production can be
transmitted either as a token or within a quoted-string. The quoted
and unquoted values are equivalent. For example, the following
examples are all equivalent, but the first is preferred for
consistency:

text/html;charset=utf-8
text/html;charset=UTF-8
Text/HTML;Charset="utf-8"
text/html; charset="utf-8"

Internet media types ought to be registered with IANA according to
the procedures defined in [BCP13].

Note: Unlike some similar constructs in other header fields, media
type parameters do not allow whitespace (even "bad" whitespace)
around the "=" character.

3.1.1.2. Charset

HTTP uses charset names to indicate or negotiate the character
encoding scheme of a textual representation [RFC6365]. A charset is
identified by a case-insensitive token.

charset = token

Charset names ought to be registered in the IANA "Character Sets"
registry (<http://www.iana.org/assignments/character-sets>) according
to the procedures defined in [RFC2978].

3.1.1.3. Canonicalization and Text Defaults

Internet media types are registered with a canonical form in order to

be interoperable among systems with varying native encoding formats.
Representations selected or transferred via HTTP ought to be in
canonical form, for many of the same reasons described by the
Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the
performance characteristics of email deployments (i.e., store and
forward messages to peers) are significantly different from those
common to HTTP and the Web (server-based information services).
Furthermore, MIME’s constraints for the sake of compatibility with

older mail transfer protocols do not apply to HTTP (see Appendix A).

Fielding & Reschke Standards Track [Page 9]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

MIME's canonical form requires that media subtypes of the "text" type
use CRLF as the text line break. HTTP allows the transfer of text
media with plain CR or LF alone representing a line break, when such
line breaks are consistent for an entire representation. An HTTP
sender MAY generate, and a recipient MUST be able to parse, line
breaks in text media that consist of CRLF, bare CR, or bare LF. In
addition, text media in HTTP is not limited to charsets that use

octets 13 and 10 for CR and LF, respectively. This flexibility
regarding line breaks applies only to text within a representation

that has been assigned a "text" media type; it does not apply to
"multipart” types or HTTP elements outside the payload body (e.g.,
header fields).

If a representation is encoded with a content-coding, the underlying
data ought to be in a form defined above prior to being encoded.

3.1.1.4. Multipart Types

MIME provides for a number of "multipart” types -- encapsulations of
one or more representations within a single message body. All
multipart types share a common syntax, as defined in Section 5.1.1 of
[RFC2046], and include a boundary parameter as part of the media type
value. The message body is itself a protocol element; a sender MUST
generate only CRLF to represent line breaks between body parts.

HTTP message framing does not use the multipart boundary as an
indicator of message body length, though it might be used by
implementations that generate or process the payload. For example,
the "multipart/form-data” type is often used for carrying form data

in a request, as described in [RFC2388], and the "multipart/
byteranges" type is defined by this specification for use in some 206
(Partial Content) responses [RFC7233].

3.1.1.5. Content-Type

The "Content-Type" header field indicates the media type of the
associated representation: either the representation enclosed in the
message payload or the selected representation, as determined by the
message semantics. The indicated media type defines both the data
format and how that data is intended to be processed by a recipient,
within the scope of the received message semantics, after any content
codings indicated by Content-Encoding are decoded.

Content-Type = media-type

Fielding & Reschke Standards Track [Page 10]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Media types are defined in Section 3.1.1.1. An example of the field
is

Content-Type: text/html; charset=1SO-8859-4

A sender that generates a message containing a payload body SHOULD

generate a Content-Type header field in that message unless the
intended media type of the enclosed representation is unknown to the
sender. If a Content-Type header field is not present, the recipient
MAY either assume a media type of "application/octet-stream"
([RFC2046], Section 4.5.1) or examine the data to determine its type.

In practice, resource owners do not always properly configure their
origin server to provide the correct Content-Type for a given
representation, with the result that some clients will examine a
payload’s content and override the specified type. Clients that do

so risk drawing incorrect conclusions, which might expose additional
security risks (e.g., "privilege escalation"). Furthermore, itis
impossible to determine the sender’s intent by examining the data
format: many data formats match multiple media types that differ only
in processing semantics. Implementers are encouraged to provide a
means of disabling such "content sniffing" when it is used.

3.1.2. Encoding for Compression or Integrity
3.1.2.1. Content Codings

Content coding values indicate an encoding transformation that has
been or can be applied to a representation. Content codings are
primarily used to allow a representation to be compressed or
otherwise usefully transformed without losing the identity of its
underlying media type and without loss of information. Frequently,
the representation is stored in coded form, transmitted directly, and
only decoded by the final recipient.

content-coding = token
All content-coding values are case-insensitive and ought to be
registered within the "HTTP Content Coding Registry", as defined in

Section 8.4. They are used in the Accept-Encoding (Section 5.3.4)
and Content-Encoding (Section 3.1.2.2) header fields.

Fielding & Reschke Standards Track [Page 11]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

The following content-coding values are defined by this
specification:

compress (and x-compress): See Section 4.2.1 of [RFC7230].
deflate: See Section 4.2.2 of [RFC7230].
gzip (and x-gzip): See Section 4.2.3 of [RFC7230].

3.1.2.2. Content-Encoding

The "Content-Encoding" header field indicates what content codings
have been applied to the representation, beyond those inherent in the
media type, and thus what decoding mechanisms have to be applied in
order to obtain data in the media type referenced by the Content-Type
header field. Content-Encoding is primarily used to allow a
representation’s data to be compressed without losing the identity of
its underlying media type.

Content-Encoding = 1#content-coding
An example of its use is
Content-Encoding: gzip

If one or more encodings have been applied to a representation, the
sender that applied the encodings MUST generate a Content-Encoding
header field that lists the content codings in the order in which

they were applied. Additional information about the encoding
parameters can be provided by other header fields not defined by this
specification.

Unlike Transfer-Encoding (Section 3.3.1 of [RFC7230]), the codings
listed in Content-Encoding are a characteristic of the
representation; the representation is defined in terms of the coded
form, and all other metadata about the representation is about the
coded form unless otherwise noted in the metadata definition.
Typically, the representation is only decoded just prior to rendering
or analogous usage.

If the media type includes an inherent encoding, such as a data
format that is always compressed, then that encoding would not be
restated in Content-Encoding even if it happens to be the same
algorithm as one of the content codings. Such a content coding would
only be listed if, for some bizarre reason, it is applied a second

time to form the representation. Likewise, an origin server might
choose to publish the same data as multiple representations that
differ only in whether the coding is defined as part of Content-Type

Fielding & Reschke Standards Track [Page 12]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

or Content-Encoding, since some user agents will behave differently
in their handling of each response (e.g., open a "Save as ..." dialog
instead of automatic decompression and rendering of content).

An origin server MAY respond with a status code of 415 (Unsupported
Media Type) if a representation in the request message has a content
coding that is not acceptable.

3.1.3. Audience Language
3.1.3.1. Language Tags

A language tag, as defined in [RFC5646], identifies a natural
language spoken, written, or otherwise conveyed by human beings for
communication of information to other human beings. Computer
languages are explicitly excluded.

HTTP uses language tags within the Accept-Language and
Content-Language header fields. Accept-Language uses the broader
language-range production defined in Section 5.3.5, whereas
Content-Language uses the language-tag production defined below.

language-tag = <Language-Tag, see [RFC5646], Section 2.1>

A language tag is a sequence of one or more case-insensitive subtags,
each separated by a hyphen character ("-", %x2D). In most cases, a
language tag consists of a primary language subtag that identifies a
broad family of related languages (e.g., "en" = English), which is
optionally followed by a series of subtags that refine or narrow that
language’s range (e.g., "en-CA" = the variety of English as
communicated in Canada). Whitespace is not allowed within a language
tag. Example tags include:

fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN
See [RFC5646] for further information.
3.1.3.2. Content-Language
The "Content-Language" header field describes the natural language(s)
of the intended audience for the representation. Note that this
might not be equivalent to all the languages used within the

representation.

Content-Language = 1#language-tag

Fielding & Reschke Standards Track [Page 13]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Language tags are defined in Section 3.1.3.1. The primary purpose of
Content-Language is to allow a user to identify and differentiate
representations according to the users’ own preferred language.
Thus, if the content is intended only for a Danish-literate audience,

the appropriate field is

Content-Language: da

If no Content-Language is specified, the default is that the content
is intended for all language audiences. This might mean that the

sender does not consider it to be specific to any natural language,
or that the sender does not know for which language it is intended.

Multiple languages MAY be listed for content that is intended for
multiple audiences. For example, a rendition of the "Treaty of
Waitangi”, presented simultaneously in the original Maori and English
versions, would call for

Content-Language: mi, en

However, just because multiple languages are present within a
representation does not mean that it is intended for multiple
linguistic audiences. An example would be a beginner’s language
primer, such as "A First Lesson in Latin", which is clearly intended
to be used by an English-literate audience. In this case, the
Content-Language would properly only include "en".

Content-Language MAY be applied to any media type -- it is not
limited to textual documents.

3.1.4. Identification
3.1.4.1. Identifying a Representation

When a complete or partial representation is transferred in a message
payload, it is often desirable for the sender to supply, or the

recipient to determine, an identifier for a resource corresponding to
that representation.

For a request message:

o If the request has a Content-Location header field, then the
sender asserts that the payload is a representation of the
resource identified by the Content-Location field-value. However,
such an assertion cannot be trusted unless it can be verified by
other means (not defined by this specification). The information
might still be useful for revision history links.

Fielding & Reschke Standards Track [Page 14]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

o Otherwise, the payload is unidentified.

For a response message, the following rules are applied in order
until a match is found:

1. If the request method is GET or HEAD and the response status code
is 200 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not
Modified), the payload is a representation of the resource
identified by the effective request URI (Section 5.5 of
[RFC7230]).

2. If the request method is GET or HEAD and the response status code
is 203 (Non-Authoritative Information), the payload is a
potentially modified or enhanced representation of the target
resource as provided by an intermediary.

3. If the response has a Content-Location header field and its
field-value is a reference to the same URI as the effective
request URI, the payload is a representation of the resource
identified by the effective request URI.

4. If the response has a Content-Location header field and its
field-value is a reference to a URI different from the effective
request URI, then the sender asserts that the payload is a
representation of the resource identified by the Content-Location
field-value. However, such an assertion cannot be trusted unless
it can be verified by other means (not defined by this
specification).

5. Otherwise, the payload is unidentified.
3.1.4.2. Content-Location

The "Content-Location" header field references a URI that can be used
as an identifier for a specific resource corresponding to the

representation in this message’s payload. In other words, if one

were to perform a GET request on this URI at the time of this

message’s generation, then a 200 (OK) response would contain the same
representation that is enclosed as payload in this message.

Content-Location = absolute-URI / partial-URI

The Content-Location value is not a replacement for the effective
Request URI (Section 5.5 of [RFC7230]). It is representation
metadata. It has the same syntax and semantics as the header field
of the same name defined for MIME body parts in Section 4 of
[RFC2557]. However, its appearance in an HTTP message has some
special implications for HTTP recipients.

Fielding & Reschke Standards Track [Page 15]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

If Content-Location is included in a 2xx (Successful) response
message and its value refers (after conversion to absolute form) to a
URI that is the same as the effective request URI, then the recipient
MAY consider the payload to be a current representation of that
resource at the time indicated by the message origination date. For
a GET (Section 4.3.1) or HEAD (Section 4.3.2) request, this is the
same as the default semantics when no Content-Location is provided by
the server. For a state-changing request like PUT (Section 4.3.4) or
POST (Section 4.3.3), it implies that the server’s response contains
the new representation of that resource, thereby distinguishing it
from representations that might only report about the action (e.g.,

"It worked!"). This allows authoring applications to update their

local copies without the need for a subsequent GET request.

If Content-Location is included in a 2xx (Successful) response
message and its field-value refers to a URI that differs from the
effective request URI, then the origin server claims that the URI is
an identifier for a different resource corresponding to the enclosed
representation. Such a claim can only be trusted if both identifiers
share the same resource owner, which cannot be programmatically
determined via HTTP.

o For aresponse to a GET or HEAD request, this is an indication
that the effective request URI refers to a resource that is
subject to content negotiation and the Content-Location
field-value is a more specific identifier for the selected
representation.

o For a 201 (Created) response to a state-changing method, a
Content-Location field-value that is identical to the Location
field-value ind