I nt ernet Engi neering Task Force (I ETF) T. Haynes, Ed.

Request for Comments: 7530 Primary Data
bsol etes: 3530 D. Noveck, Ed.
Cat egory: Standards Track Del |
| SSN: 2070-1721 March 2015

Network File System (NFS) Version 4 Protoco
Abstr act

The Network File System (NFS) version 4 protocol is a distributed
file systemprotocol that builds on the heritage of NFS protoco
version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier
versions, the NFS version 4 protocol supports traditional file access
while integrating support for file |Iocking and the MOUNT protocol

In addition, support for strong security (and its negotiation),
COMPOUND operations, client caching, and internationalization has
been added. O course, attention has been applied to nmaki ng NFS
version 4 operate well in an Internet environnent.

This docunent, together with the conpani on External Data
Representation (XDR) description docunent, RFC 7531, obsol etes RFC
3530 as the definition of the NFS version 4 protocol

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc7530

Haynes & Noveck St andards Track [Page 1]

RFC 7530 NFSv4 March 2015

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introducti ON ... 8
1.1. Requirenents Languagettt 8
1.2. NFS Version 4 Goal s e e 8
1.3. Definitions in the Conpani on Docunent RFC 7531 Are

Authoritative 9
1.4. Overview of NFSv4 Features 9
1.4.1. RPC and SeCUrity i 9
1.4.2. Procedure and Qperation Structure 10
1.4.3. File System Mdel i 10
1.4.4. OPEN and CLOSEttt e 12
1.4.5. File Locking e 12
1.4.6. dient Caching and Delegation 13
1.5. General Definitions 14
1.6. Changes since RFC 3530 i, 16
1.7. Changes between RFC 3010 and RFC 3530 16

2. Protocol Data TYyPeS ...ttt 18
2.1, BasiC Data TypPesS ... 18
2.2. Structured Data Typest 21

Haynes & Noveck St andards Track [Page 2]

RFC 7530 NFSv4 March 2015
3. RPC and Security Flavor i 25
3.1. Ports and Transport s 25
3.1.1. dient Retransmission Behavior 26
3.2, Security Flavors 27
3.2.1. Security Mechanisms for NFSv4 27
3.3. Security Negotiation 28
3.3. 1. SECINFO .. 29
3.3.2. SecUrity Error 29
3.3.3. Callback RPC Authentication 29
4. Filehandl s 30
4.1. Cbtaining the First Filehandle 30
4.1.1. Root Filehandle 31
4.1.2. Public Filehandle 31
4.2. Filehandl e Types 31
4.2.1. General Properties of a Filehandle 32
4.2.2. Persistent Filehandle 32
4.2.3. Volatile Filehandle 33
4.2.4. One Method of Constructing a Volatile Filehandle ...34
4.3. dient Recovery fromFilehandle Expiration 35
B ALt bULt eSS . 35
5.1. REQURED Attributes i 37
5.2. RECOWENDED Attributes, 37
5.3. Named Attributes 37
5.4, Cassification of Attributes 39
5.5. Set-Only and Get-Only Attributes 40
5.6. REQU RED Attributes - List and Definition References 40
5.7. RECOMMENDED Attributes - List and Definition References ...41
5.8. Attribute Definitions 42
5.8.1. Definitions of REQU RED Attributes 42

5.8.2. Definitions of Uncategorized RECOMMENDED
Attributes 45
5.9. Interpreting owner and OWner_groupouvuuunnenn. 51
5.10. Character Case Attributes 53
6. Access Control Attributes 54
6. 1. Goal s ... 54
6.2. File Attributes Discussion 55
6.2.1. Attribute 12: acl 55
6.2.2. Attribute 33: node 70
6.3. Common Methods 71
6.3.1. Interpreting an ACL i 71
6.3.2. Conputing a node Attribute froman ACL 72
6.4, ReqUIremBNt S e e 73
6.4.1. Setting the node and/or ACL Attributes 74
6.4.2. Retrieving the node and/or ACL Attributes 75
6.4.3. Creating New Qbjects 75

Haynes & Noveck St andards Track [Page 3]

RFC 7530

CDCDOOE\I\I\I\I\I\I\I\IZ

@

Lovooo
oukwN

©©
© N

S
1
2
3
4,
5.
6
7
8
It
1
2
3

No

o ®

NFSv4 March 2015

Server NamBSPaACEttt e 77
Server EXPOrt S ... 77
Browsi Ng EXPOrtsS 77
Server Pseudo-File System 78
Miltiple ROOLS ... e 79
Filehandle Volatility 79
Exported ROOt e 79
Mount Point CroSSIiNgt 79
Security Policy and Nanespace Presentation 80
i -Server NamMBSPACEottt e e e 81
Location Attributes 81
File System Presence or AbSEnceouiinunnan. 81
CGetting Attributes for an Absent File System.............. 83
8.3.1. GETATTR within an Absent File System............... 83
8.3.2. READDIR and Absent File Systems 84
Uses of Location Information 84
8.4.1. File SystemReplication 85
8.4.2. File SystemMgration 86
8.4.3. Referrals 86
Location Entries and Server ldentity 87
Additional Cient-Side Considerations 88
Effecting File SystemReferrals 89
8.7.1. Referral Exanple (LOOKUP) 89
8.7.2. Referral Exanple (READDIR) 93
The Attribute fs locations 96
Locking and Share Reservations 98
Opens and Byte-Range LoOCKS i 99
9.1.1. Aient ID 99
9.1.2. Server Release of Client ID....................... 102
9.1.3. Use of Seqidso i, 103
9.1.4. Stateid Definition 104
9. 1. 5. Lock-Omer e 110
9.1.6. Use of the Stateid and Locking 110
9.1.7. Sequencing of Lock Requests 113
9.1.8. Recovery from Repl ayed Requests 114
9.1.9. Interactions of Miltiple Sequence Values 114
9.1.10. Releasing State-Ower State 115
9.1.11. Use of Open Confirmation 116
LOCK RaANgEeS 117
Upgradi ng and Downgrading Locks 117
Bl ocki Ng LOCKS 118
Lease Renewal 119
Crash ReCOVEIY i e e e e e 120
9.6.1. Cient Failure and Recovery 120
9.6.2. Server Failure and Recovery 120
9.6.3. Network Partitions and Recovery 122
Recovery from a Lock Request Tineout or Abort 130
Server Revocation of Locks 130

Haynes & Noveck St andards Track [Page 4]

RFC 7530 NFSv4 March 2015
9.9. Share Reservations 132
9.10. OPEN CLOSE Operati ONSt e 132

9.10.1. Cose and Retention of State Information 133
9.11. Open Upgrade and Downgrade, 134
9.12. Short and Long Leases, 135
9.13. docks, Propagation Delay, and Cal cul ati ng Lease

EXpirati ONn ... e 135
9.14. Mgration, Replication, and State 136

9.14.1. Mgration and State, 136

9.14.2. Replication and State 137

9.14.3. Notification of Mgrated Lease 137

9.14.4. Mgration and the lease tine Attribute 138

10. dient-Side Caching e 139
10.1. Performance Challenges for Cient-Side Caching 139
10. 2. Delegation and Callbacks 140

10.2.1. Delegation ReCOVErY iy 142
10.3. Data Caching 147

10.3.1. Data Caching and OPENs, 147

10.3.2. Data Caching and File Locking 148

10. 3.3. Data Caching and Mandatory File Locking 150

10.3.4. Data Caching and File Identity 150
10.4. Qpen Delegation 151

10.4.1. Open Del egation and Data Caching 154

10.4.2. Qpen Delegation and File Locks 155

10.4.3. Handling of CB_CGETATTR i 155

10.4.4. Recall of Open Delegation 158

10.4.5. OPEN Del egation Race with CB_ RECALL 160

10.4.6. Cients That Fail to Honor Del egation Recalls161

10.4.7. Delegation Revocation 162
10.5. Data Caching and Revocation 162

10.5. 1. Revocation Recovery for Wite Open Delegation163
10.6. Attribute Caching i 164
10. 7. Data and Metadata Caching and Menory-Mapped Files 166
10.8. Name Caching 168
10.9. Direct ory Caching 169

11, MNnor VersSioni NGt e e e e e 170
12. Internationalization 170
12,1, IntroducCti on e 170
12.2. Linmtations on Internationalization-Related
Processing in the NFSv4 Context 172
12.3. Summary of Server Behavior Types 173
12.4. String Encodi Ng e 173
12.5. Normalization 174
12. 6. Types with Processing Defined by Gther Internet Areas ...175
12.7. Errors Related to UTF-8 i 177
12.8. Servers That Accept File Conponent Nanes That
Are Not Valid UTF-8 Strings 177

Haynes & Noveck St andards Track [Page 5]

RFC 7530 NFSv4 March 2015

13.

14.

15.

16.

Error Values 178
13.1. Error Definitions e 179
13.1.1. General Errors 180
13.1.2. Filehandle Errors i 181
13.1.3. Conpound Structure Errors 183
13.1.4. File SystemErrors iy 184
13.1.5. State Managenment Errors 186
13.1.6. Security Errors ... 187
13.1.7. Name Errors 187
13.1.8. Locking Errors 188
13.1.9. ReclaimErrors e 190
13.1.10. dient Management Errorscouuuiuun.n 191
13.1.11. Attribute Handling Errors 191
13.1.12. Mscellaneous Errors 191
13.2. Qperations and Their Valid Errors 192
13.3. Call back Operations and Their Valid Errors 200
13.4. Errors and the Qperations That Use Them................. 201
NESV4 ReqUEST S ..o e 206
14.1. COVPOUND Proceduret 207
14.2. Evaluation of a COWOUND Request 207
14. 3. Synchronous Mdifying Operations 208
14. 4. Qperation Values 208
NFSVA Procedur @S e 209
15.1. Procedure 0: NULL - No Qperation 209
15. 2. Procedure 1: COVPOUND - COVPOUND Operations 210
NFSV4A Operati ONSo e 214
16.1. Operation 3: ACCESS - Check Access Rights 214
16.2. Qperation 4: CLOSE - Cose File 217
16.3. Operation 5: COMT - Commit Cached Data 218
16. 4. Qperation 6: CREATE - Create a Non-regular File Object ..221
16.5. Qperation 7: DELEGPURCE - Purge Del egati ons
Anai ting Recovery 224
16.6. Operation 8: DELEGRETURN - Return Delegation 226
16.7. Qperation 9: CGETATTR - Get Attributes 227
16.8. Operation 10: GETFH - Get Current Filehandle 229
16.9. Qperation 11: LINK - Create Link to a File 230
16.10. Operation 12: LOCK - Create Lock 232
16.11. Operation 13: LOCKT - Test for Lock 236
16.12. Operation 14: LOCKU - Unlock File 238
16.13. Operation 15: LOOKUP - Look Up Filenane 240
16.14. Operation 16: LOOKUPP - Look Up Parent Directory 242
16.15. Operation 17: NVERIFY - Verify Difference in
Attributes ... 243
16.16. Operation 18: OPEN - Open a Regular File 245

Haynes & Noveck St andards Track [Page 6]

RFC 7530 NFSv4 March 2015

16.17. Operation 19: OPENATTR - Open Naned Attribute

DireCt O Y o 256
16.18. Operation 20: OPEN_CONFIRM - ConfirmOpen 257
16.19. Operation 21: OPEN DOANGRADE - Reduce Open File
ACCBSS L 260
16. 20. Operation 22: PUTFH - Set Current Filehandle 262
16.21. Operation 23: PUTPUBFH - Set Public Filehandle 263
16.22. Operation 24: PUTROOTFH - Set Root Filehandle 265
16.23. Operation 25: READ - Read fromFile 266
16.24. Operation 26: READDIR - Read Directory 269
16. 25. QOperation 27: READLINK - Read Synbolic Link 273
16. 26. Operation 28: REMOVE - Renove File System Gbject 274
16.27. Operation 29: RENAME - Renane Directory Entry 276
16.28. Operation 30: RENEW- Renew a Lease 278
16.29. Operation 31: RESTOREFH - Restore Saved Filehandle 280
16.30. Operation 32: SAVEFH - Save Current Filehandle 281
16.31. Operation 33: SECINFO - Obtain Avail able Security 282
16.32. QOperation 34: SETATTR - Set Attributes 286
16.33. Operation 35: SETCLIENTID - Negotiate Cient ID........ 289
16.34. Operation 36: SETCLIENTID CONFIRM - Confirmddient ID..293
16.35. Qperation 37: VERIFY - Verify Sane Attributes 297
16.36. Operation 38: WRITE - Wite to File 299
16.37. Operation 39: RELEASE LOCKOMNNER - Rel ease
Lock-0Omer State 304
16.38. Operation 10044: |LLEGAL - Illegal OQperation 305
17. NFSv4 Callback Procedures, 306
17.1. Procedure 0: CB_NULL - No Operation 306
17.2. Procedure 1: CB _COVPOUND - COVPOUND QOperations 307
18. NFSv4 Callback Operations 309
18.1. Qperation 3: CB CGETATTR - Get Attributes 309
18.2. Qperation 4: CB RECALL - Recall an Open Delegation 310
18.3. Operation 10044: CB_ILLEGAL - Illegal Callback
Operati ON ... 311
19. Security Considerations 312
20. TANA Considerati ONS e 314
20.1. Nanmed Attribute Definitions 314
20.1.1. Initial Registry i, 315
20.1.2. Updating Registrations 315
20.2. Updates to Existing | ANA Registries 315
21, References 316
21.1. Normative References i, 316
21.2. Informative References i 318
ACKNOW EAgIMENt S e 322
AUt hor s’ Addr €SS ES ... i 323

Haynes & Noveck St andards Track [Page 7]

RFC 7530 NFSv4 March 2015

1. Introduction
1.1. Requirements Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119],
except where "REQUI RED' and "RECOVMENDED' are used as qualifiers to
di stinguish classes of attributes as described in Sections 1.4.3.2
and 5 of this docunent.

1.2. NFS Version 4 CGoal s

The Network File Systemversion 4 (NFSv4) protocol is a further

revi sion of the NFS protocol defined already by versions 2 [RFC1094]

and 3 [RFC1813]. It retains the essential characteristics of

previ ous versions: design for easy recovery; independent of transport
protocol s, operating systens, and file systens; sinplicity; and good
performance. The NFSv4 revision has the followi ng goals:

o |Inproved access and good performance on the |nternet.

The protocol is designed to transit firewalls easily, performwell
where latency is high and bandwidth is |low, and scale to very
| arge nunbers of clients per server

0 Strong security with negotiation built into the protocol

The protocol builds on the work of the Open Network Computing
(ONC) Renpte Procedure Call (RPC) working group in supporting the
RPCSEC GSS protocol (see both [RFC2203] and [RFC5403]).
Additionally, the NFSv4 protocol provides a mechanismto all ow
clients and servers the ability to negotiate security and require
clients and servers to support a mininmal set of security schenes

0 Good cross-platforminteroperability.
The protocol features a file system nodel that provides a useful
conmon set of features that does not unduly favor one file system
or operating system over anot her.

o0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conprom se backward conpatibility.

Haynes & Noveck St andards Track [Page 8]

RFC 7530 NFSv4 March 2015

This docunent, together with the conpani on External Data
Representati on (XDR) description docunent [RFC7531], obsol etes

[RFC3530] as the authoritative docunent describing NFSv4. 1t does
not introduce any over-the-wire protocol changes, in the sense that
previously valid requests remain valid.

1.3. Definitions in the Conpani on Docunent RFC 7531 Are Authoritative

The "Network File System (NFS) Version 4 External Data Representation
Standard (XDR) Description" [RFC7531] contains the definitions in XDR
description | anguage of the constructs used by the protocol. Inside
this docunent, several of the constructs are reproduced for purposes
of explanation. The reader is warned of the possibility of errors in
the reproduced constructs outside of [RFC7531]. For any part of the
docunent that is inconsistent with [RFC7531], [RFC7531] is to be

consi dered authoritative.

1.4. Overview of NFSv4 Features

To provide a reasonable context for the reader, the major features of
the NFSv4 protocol will be reviewed in brief. This is done to
provi de an appropriate context for both the reader who is fanili ar
with the previous versions of the NFS protocol and the reader who is
new to the NFS protocols. For the reader new to the NFS protocols,
sonme fundamental know edge is still expected. The reader should be
famliar with the XDR and RPC protocols as described in [RFC4506] and
[RFC5531]. A basic know edge of file systens and distributed file
systens is expected as well

1.4.1. RPC and Security

As with previous versions of NFS, the XDR and RPC nechani sms used for
the NFSv4 protocol are those defined in [RFC4506] and [RFC5531]. To
nmeet end-to-end security requirenments, the RPCSEC GSS franework (both
version 1 in [RFC2203] and version 2 in [RFC5403]) will be used to
extend the basic RPC security. Wth the use of RPCSEC GSS, various
mechani snms can be provided to offer authentication, integrity, and
privacy to the NFSv4 protocol. Kerberos V5 will be used as described
in [RFC4121] to provide one security framework. Wth the use of
RPCSEC GSS, other nechani sns nmay al so be specified and used for NFSv4
security.

To enabl e in-band security negotiation, the NFSv4 protocol has added
a new operation that provides the client with a method of querying
the server about its policies regarding which security nmechanisns
must be used for access to the server's file systemresources. Wth
this, the client can securely match the security mechani smthat neets
the policies specified at both the client and server

Haynes & Noveck St andards Track [Page 9]

RFC 7530 NFSv4 March 2015

1.4.2. Procedure and Operation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COWOUND procedure. For the
NFSv4 protocol, there are two RPC procedures: NULL and COMPOUND. The
COVMPOUND procedure is defined in terns of operations, and these
operations correspond nore closely to the traditional NFS procedures.

Wth the use of the COVWPOUND procedure, the client is able to build
sinmpl e or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical file system
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVPOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COWOUND is very sinple. There is no logical OR
or ANDi ng of operations. The operations conbined within a COVMPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFSv4 protocol continues to have the client refer to a file or
directory at the server by a "filehandle". The COVWOUND procedure
has a nethod of passing a filehandle fromone operation to another

wi thin the sequence of operations. There is a concept of a current
filehandl e and a saved fil ehandle. Most operations use the current
filehandle as the file systemobject to operate upon. The saved
filehandl e is used as tenporary filehandle storage within a COVOUND
procedure as well as an additional operand for certain operations.

1.4.3. File System Mdel

The general file system nodel used for the NFSv4 protocol is the same
as previous versions. The server file systemis hierarchical, with
the regular files contained within being treated as opaque byte
streams. In a slight departure, file and directory nanes are encoded
with UTF-8 to deal with the basics of internationalization

The NFSv4 protocol does not require a separate protocol to provide
for the initial mappi ng between pathnane and fil ehandle. |nstead of
usi ng the ol der MOUNT protocol for this mapping, the server provides
a root filehandl e that represents the logical root or top of the file
systemtree provided by the server. The server provides nmultiple
file systenms by gluing themtogether with pseudo-file systems. These
pseudo-file systems provide for potential gaps in the pathnanes
between real file systens.

Haynes & Noveck St andards Track [Page 10]

RFC 7530 NFSv4 March 2015

1.4.3.1. Filehandle Types

In previous versions of the NFS protocol, the fil ehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine
of the file systemobject to which it referred. For sonme server

i npl enentations, this persistence requirenent has been difficult to
meet. For the NFSv4 protocol, this requirenent has been rel axed by
i ntroduci ng another type of filehandle -- volatile. Wth persistent
and volatile filehandl e types, the server inplenentation can match
the abilities of the file systemat the server along with the
operating environnent. The client will have know edge of the type of
filehandl e bei ng provided by the server and can be prepared to dea
with the semantics of each.

1.4.3.2. Attribute Types

The NFSv4 protocol has a rich and extensible file object attribute
structure, which is divided i nto REQU RED, RECOMVENDED, and naned
attributes (see Section 5).

Several (but not all) of the REQU RED attributes are derived fromthe
attributes of NFSv3 (see the definition of the fattr3 data type in

[RFC1813]). An exanple of a REQU RED attribute is the file object’s
type (Section 5.8.1.2) so that regular files can be distinguished
fromdirectories (also known as folders in sone operating

envi ronnents) and ot her types of objects. REQU RED attributes are

di scussed in Section 5. 1.

An exanpl e of the RECOVMENDED attributes is an acl (Section 6.2.1).
This attribute defines an Access Control List (ACL) on a file object.
An ACL provides file access control beyond the nodel used in NFSv3.
The ACL definition allows for specification of specific sets of

perm ssions for individual users and groups. |In addition, ACL

i nheritance all ows propagation of access pernissions and restriction
down a directory tree as file system objects are created.
RECOMVENDED attri butes are discussed in Section 5. 2.

A named attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associate
application-specific data with a regular file or directory. NFSv4. 1
nodi fies naned attributes relative to NFSv4.0 by tightening the

al | owed operations in order to prevent the devel opnent of
non-interoperabl e inplenentati ons. Naned attributes are discussed in
Section 5. 3.

Haynes & Noveck St andards Track [Page 11]

RFC 7530 NFSv4 March 2015

1.4.3.3. Milti-Server Nanespace

A singl e-server nanespace is the file system hierarchy that the
server presents for renote access. It is a proper subset of all the
file systens avail able locally. NFSv4 contains a nunber of features
to allow inplenentati on of nanespaces that cross server boundaries
and that allow and facilitate a non-disruptive transfer of support
for individual file systens between servers. They are all based upon
attributes that allow one file systemto specify alternative or new
|l ocations for that file system That is, just as a client mght
traverse across local file systens on a single server, it can now
traverse to a renote file systemon a different server

These attributes may be used together with the concept of absent file
systens, which provide specifications for additional |ocations but no
actual file systemcontent. This allows a nunber of inportant
facilities:

0 Location attributes may be used with absent file systens to
i mpl enent referrals whereby one server may direct the client to a
file system provi ded by another server. This allows extensive
mul ti-server nanespaces to be constructed.

0 Location attributes may be provided for present file systens to
provide the locations of alternative file systeminstances or
replicas to be used in the event that the current file system
i nstance becones unavail abl e.

0 Location attributes may be provided when a previously present file
system becones absent. This allows non-disruptive nigration of
file systens to alternative servers

1.4.4. OPEN and CLOSE

The NFSv4 protocol introduces OPEN and CLOSE operations. The OPEN
operation provides a single point where file | ookup, creation, and
share semantics (see Section 9.9) can be conbined. The CLOSE
operation al so provides for the release of state accunul ated by OPEN

1.4.5. File Locking

Wth the NFSv4 protocol, the support for byte-range file locking is
part of the NFS protocol. The file locking support is structured so
that an RPC cal | back nmechanismis not required. This is a departure
fromthe previous versions of the NFS file | ocking protocol, Network
Lock Manager (NLM [RFC1813]. The state associated with file |ocks
is maintained at the server under a | ease-based nodel. The server
defines a single |ease period for all state held by an NFS client.

Haynes & Noveck St andards Track [Page 12]

RFC 7530 NFSv4 March 2015

If the client does not renewits |lease within the defined period, al
state associated with the client’s | ease may be rel eased by the
server. The client may renew its | ease by use of the RENEW operation
or inplicitly by use of other operations (primarily READ).

1.4.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFSv4 protocol is
simlar to previous versions. Attributes and directory information
are cached for a duration determned by the client. At the end of a
predefined timeout, the client will query the server to see if the
related file system object has been updat ed.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to deternmine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should be kept or released. Al so, when
the file is closed, any nodified data is witten to the server

If an application wants to serialize access to file data, file
I ocking of the file data ranges in question should be used.

The major addition to NFSv4 in the area of caching is the ability of
the server to delegate certain responsibilities to the client. Wen
the server grants a delegation for a file to a client, the client is
guaranteed certain semantics with respect to the sharing of that file
with other clients. At OPEN, the server may provide the client
either a read (OPEN_DELEGATE READ) or a wite (OPEN _DELEGATE WRI TE)
del egation for the file (see Section 10.4). |If the client is granted
an OPEN DELEGATE READ del egation, it is assured that no other client
has the ability to wite to the file for the duration of the

del egation. |If the client is granted an OPEN _DELEGATE_WRI TE

del egation, the client is assured that no other client has read or
wite access to the file.

Del egations can be recalled by the server. |[|f another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egati ons cannot be granted. The essence of a

del egation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, or WRITE without inmediate
interaction with the server

Haynes & Noveck St andards Track [Page 13]

RFC 7530 NFSv4 March 2015

1.5. Ceneral Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader.

Absent File System A file systemis "absent" when a nanespace
conponent does not have a backing file system

Anonyrmous Stateid: The Anonynous Stateid is a special |ocking object
and is defined in Section 9.1.4.3.

Byte: In this docunment, a byte is an octet, i.e., a datumexactly
8 bits in |l ength.

Cient: The client is the entity that accesses the NFS server’s
resources. The client may be an application that contains the
logic to access the NFS server directly. The client nmay al so be
the traditional operating systemclient that provides renote file
system services for a set of applications.

Wth reference to byte-range |locking, the client is also the
entity that maintains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or failure
recovery for those |locks it nanages.

Note that nultiple clients may share the sane transport and
connection, and multiple clients may exi st on the sanme network

node.

Cient ID The client IDis a 64-bit quantity used as a unique,
shorthand reference to a client-supplied verifier and ID. The
server is responsible for supplying the client ID

File System The file systemis the collection of objects on a

server that share the sanme fsid attribute (see Section 5.8.1.9).

Lease: A lease is an interval of tine defined by the server for
which the client is irrevocably granted a lock. At the end of a
| ease period the lock may be revoked if the | ease has not been
extended. The I ock nust be revoked if a conflicting |ock has been
granted after the |ease interval

Al'l | eases granted by a server have the sane fixed duration. Note
that the fixed interval duration was chosen to alleviate the
expense a server would have in maintaining state about variabl e-

I ength | eases across server failures.

Haynes & Noveck St andards Track [Page 14]

RFC 7530 NFSv4 March 2015

Lock: The term"lock" is used to refer to record (byte-range) | ocks
as well as share reservations unless specifically stated
ot herw se.

Lock-Omer: Each byte-range lock is associated with a specific
| ock-owner and an open-owner. The | ock-owner consists of a
client 1D and an opaque owner string. The client presents this to
the server to establish the ownership of the byte-range | ock as
needed.

Open-Owner: Each open file is associated with a specific open-owner
which consists of a client 1D and an opaque owner string. The
client presents this to the server to establish the ownership of
t he open as needed.

READ Bypass Stateid: The READ Bypass Stateid is a special |ocking
object and is defined in Section 9.1.4.3.

Server: The "server" is the entity responsible for coordinating
client access to a set of file systens.

Stable Storage: NFSv4 servers mnmust be able to recover w thout data
loss fromnultiple power failures (including cascadi ng power
failures, that is, several power failures in quick succession),
operating systemfailures, and hardware failure of conponents
other than the storage nmediumitself (for exanple, disk
non-vol atil e RAM.

Some exanpl es of stable storage that are allowable for an NFS
server include:

(1) Media commit of data. That is, the nodified data has been
successfully witten to the disk media -- for exanple, the
di sk platter.

(2) An imediate reply disk drive with battery-backed on-drive
i nternmedi ate storage or uninterruptible power system (UPS)

(3) Server commit of data with battery-backed internediate
storage and recovery software.

(4) Cache commit with UPS and recovery software.

Haynes & Noveck St andards Track [Page 15]

RFC 7530 NFSv4 March 2015

1

1

6.

7.

Stateid: A stateid is a 128-bit quantity returned by a server that
uni quely identifies the open and | ocking states provided by the
server for a specific open-owner or |ock-owner/open-owner pair for
a specific file and type of I ock.

Verifier: A wverifier is a 64-bit quantity generated by the client
that the server can use to deternmine if the client has restarted
and lost all previous |ock state.

Changes since RFC 3530

The mai n changes from RFC 3530 [RFC3530] are:

0 The XDR definition has been noved to a conpani on docunent
[RFC7531] .

o The IETF intellectual property statenments were updated to the
| at est version.

0 There is a restructured and nore conpl ete explanation of mnulti-
server nanespace features

o The handling of domain names was updated to reflect
Internationalized Domain Nanes in Applications (IDNA) [RFC5891].

0 The previously required LI PKEY and SPKM 3 security mechani snms have
been renoved.

o Some clarification was provided regarding a client re-establishing
cal | back information to the new server if state has been m grated

0o Athird edge case was added for courtesy |ocks and network
partitions.

o The definition of stateid was strengthened.
Changes between RFC 3010 and RFC 3530

The definition of the NFSv4 protocol in [RFC3530] replaced and

obsol eted the definition present in [RFC3010]. While portions of the
two docunents renmai ned the sane, there were substantive changes in
others. The changes nade between [RFC3010] and [RFC3530] reflect

i mpl enent ati on experience and further review of the protocol

Haynes & Noveck St andards Track [Page 16]

RFC 7530 NFSv4 March 2015

The following list is not inclusive of all changes but presents sone
of the nobst notabl e changes or additions nade:

0 The state nodel has added an open_owner4 identifier. This was
done to acconmodat e PCSI X-based clients and the nodel they use for
file locking. For PCSIX clients, an open_owner4 woul d correspond
to a file descriptor potentially shared anongst a set of processes
and the |l ock _owner4 identifier would correspond to a process that
is locking a file.

0 Added clarifications and error conditions for the handling of the
owner and group attributes. Since these attributes are string
based (as opposed to the nuneric uid/gid of previous versions of
NFS), translations may not be avail abl e and hence t he changes
made.

0o Added clarifications for the ACL and node attri butes to address
eval uation and partial support.

o For identifiers that are defined as XDR opaque, set limits on
their size.

0 Added the nmounted on fileid attribute to allow POSI X clients to
correctly construct |ocal nounts.

0 Mdified the SETCLI ENTI DY SETCLI ENTI D_CONFI RM oper ations to dea
correctly with confirmation details along with adding the ability
to specify new client callback information. Al so added
clarification of the callback information itself.

0 Added a new operati on RELEASE LOCKOMNNER to enabl e notifying the
server that a |ock_owner4 will no |onger be used by the client.

0 Added RENEW operation changes to identify the client correctly and
allow for additional error returns.

o Verified error return possibilities for all operations.
0 Renoved use of the pathnane4 data type from LOOKUP and OPEN in

favor of having the client construct a sequence of LOOKUP
operations to achieve the sane effect.

Haynes & Noveck St andards Track [Page 17]

RFC 7530 NFSv4 March 2015

2.

2.

1

Prot ocol Data Types

The syntax and semantics to describe the data types of the NFSv4
protocol are defined in the XDR [RFC4506] and RPC [RFC5531]

docunents. The next sections build upon the XDR data types to define
types and structures specific to this protocol. As a reninder, the
size constants and authoritative definitions can be found in

[RFC7531] .

Basi ¢ Data Types

Table 1 lists the base NFSv4 data types.

Descri bes LOCK | engt hs.

e o e e e e e e e meeeaaaan +
| Data Type | Definition

o e e e e e o g +
| int32_t | typedef int int32_t; |
I uint32_t I typedef unsigned int uint32_t; I
I int64_t I typedef hyper int64_t; I
I ui nt 64_t I typedef unsi gned hyper uint64_t; I
I attrlist4 I typedef opaque attrli st4<>; I
I I Used for file/directory attributes. I
I bi t map4 I typedef uint32_t bitmapd<>; I
I I Used in attribute array encodi ng. I
I changei d4 I typedef uint64_t changei d4;

I I Used in the definition of change_info4. I
I clientid4 I typedef uint64_t clientid4; I
I I Shorthand reference to client identification.

I count 4 I typedef uint32_t count4; I
I I Various count paraneters (READ, WRITE, COWM T).

I | engt h4 I typedef uint64_t |ength4; I
| | |
| | |

Haynes & Noveck St andards Track [Page 18]

RFC 7530 NFSv4 March 2015

node4 typedef uint32_t node4;
Mode attribute data type
nfs_cooki e4 typedef uint64_t nfs_cookie4;

Opaque cooki e val ue for READDI R

nfs_fh4 typedef opaque nfs_fh4<NFS4_FHSI ZE>
Fi | ehandl e definition

nfs ftype4d enum nfs_ftype4,;
Various defined file types.

nf sstat 4 enum nf sst at 4;

Return val ue for operations.
nfs_| ease4d typedef uint32_t nfs_| ease4;

Duration of a |ease in seconds.

of fset4 typedef uint64_t offsetd4;
Various offset designations (READ, WRI TE, LOCK
COW T) .

qop4 typedef uint32_t qop4;
Quality of protection designation in SECI NFO

sec_oi d4 t ypedef opaque sec_oi d4<>
Security Object ldentifier. The sec_oid4 data
type is not really opaque. Instead, it
contains an ASN. 1 OBJECT | DENTI FI ER as used by
GSS- APl in the mech_type argunment to
GSS Init_sec_context. See [RFC2743] for
details.

seqi d4 typedef uint32_t seqi d4;

Sequence identifier used for file |ocking.

Haynes & Noveck St andards Track [Page 19]

RFC 7530

utf8string
utf8str_cis
utf8str_cs

ut f 8str_nmi xed

conponent 4

asci i _REQUI RED4

pat hnane4

nfs | ocki d4

verifier4d

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| linktext4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Haynes & Noveck

NFSv4 Mar ch

t ypedef opaque utf8string<>;
UTF- 8 encodi ng for strings.
typedef utf8string utf8str_cis;
Case-insensitive UTF-8 string.
typedef utf8string utf8str_cs;
Case-sensitive UTF-8 string

typedef utf8string utf8str_ni xed;

UTF-8 strings with a case-sensitive prefix and

a case-insensitive suffix.

typedef utf8str_cs conponent4;

Repr esents pat hnane conponents.

typedef opaque |i nktext4<>;

Synbolic link contents ("synbolic link" is
defined in an Open G oup [openg _symnl i nk]
st andar d) .

typedef utf8string ascii_REQU RED4;

String is sent as ASCII and thus is
autonatical ly UTF-8.

typedef conponent4 pat hnanme4<>;

Represents pat hnane for fs_|locations.

typedef uint64_t nfs_| ockid4;

t ypedef opaque verifier4[NFS4_VERI Fl ER S| ZF] ;
Verifier used for various operations (COW T,

CREATE, OPEN, READDIR, WRI TE)
NFS4 VERI FI ER_SI ZE i s defined as 8.

Tabl e 1: Base NFSv4 Data Types

2015

St andards Track [Page 20]

RFC 7530 NFSv4 March 2015

2.2. Structured Data Types
2.2.1. nfstined

struct nfstinme4d {
int64_t seconds;
uint32_t nseconds;

s

The nfstinme4 structure gives the nunber of seconds and nanoseconds
since mdnight or 0 hour January 1, 1970 Coordinated Universal Tinme
(UTC). Values greater than zero for the seconds field denote dates
after the 0 hour January 1, 1970. Values less than zero for the
seconds field denote dates before the O hour January 1, 1970. In
both cases, the nseconds field is to be added to the seconds field
for the final tine representation. For exanple, if the tine to be
represented is one-half second before 0 hour January 1, 1970, the
seconds field would have a val ue of negative one (-1) and the
nseconds fields would have a val ue of one-half second (500000000).
Val ues greater than 999, 999,999 for nseconds are considered invalid.

This data type is used to pass tinme and date information. A server
converts to and fromits local representation of tine when processing
time val ues, preserving as nuch accuracy as possible. |If the
precision of tinestanps stored for a file systemobject is |ess than
defined, |loss of precision can occur. An adjunct tinme maintenance
protocol is recommended to reduce client and server tine skew

2.2.2. tinme_how
enumtime_howd {

SET_TO_SERVER TI ME4
SET_TO_CLI ENT_TI ME4

s
2.2.3. settined

union settinme4 switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4
nfsti ne4 tinme;
defaul t:
voi d;
s

The above definitions are used as the attribute definitions to set
time values. If set it is SET _TO SERVER Tl ME4, then the server uses
its local representation of tine for the tine val ue.

Haynes & Noveck St andards Track [Page 21]

RFC 7530 NFSv4 March 2015

2.2.4. specdata4d
struct specdatad {

uint32_t specdatal; /* major device nunber */
uint32_t specdata2; /* mnor device nunber */

b

This data type represents additional information for the device file
types NF4ACHR and NF4BLK

2.2.5. fsid4d

struct fsid4 {

ui nt 64 _t nmaj or ;

ui nt 64_t m nor ;
b
This type is the file systemidentifier that is used as a REQU RED
attribute.

2.2.6. fs_locationd

struct fs_locationd {
utf8str _cis server <>;
pat hnane4 r oot pat h;

i
2.2.7. fs_ locations4

struct fs_|locations4d {
pat hnane4 fs root;
fs location4d | ocati ons<>;

b

The fs_locationd4 and fs_| ocations4 data types are used for the
fs | ocations RECOMVENDED attri bute, which is used for migration and
replication support.

2.2.8. fattr4

struct fattr4 {
bi t rap4 attrmask
attrlist4 attr_vals;

s

The fattr4 structure is used to represent file and directory
attributes

Haynes & Noveck St andards Track [Page 22]

RFC 7530 NFSv4 March 2015

The bitmap is a counted array of 32-bit integers used to contain bit
val ues. The position of the integer in the array that contains bit n
can be conputed fromthe expression (n/ 32), and its bit within that
integer is (n nod 32).

2.2.9. change_info4

struct change_info4 {

bool atoni c;
changei d4 bef or e;
changei d4 after;

H

This structure is used with the CREATE, LINK, REMOVE, and RENAVE
operations to let the client know the value of the change attribute
for the directory in which the target file system object resides.

2.2.10. clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

H

The clientaddr4 structure is used as part of the SETCLIENTID
operation, either (1) to specify the address of the client that is
using a client IDor (2) as part of the callback registration. The
r_netid and r_addr fields respectively contain a network id and

uni versal address. The network id and universal address concepts,
together with formats for TCP over |1Pv4 and TCP over |Pv6, are
defined in [RFC5665], specifically Tables 2 and 3 and

Sections 5.2.3.3 and 5.2.3.4.

2.2.11. <cb client4
struct cb _client4d {

unsi gned i nt cb_program
clientaddr4 cb_l ocation

b

This structure is used by the client to informthe server of its
cal | back address; it includes the program nunber and client address.

Haynes & Noveck St andards Track [Page 23]

RFC 7530 NFSv4 March 2015

2.2.12. nfs_client_id4

struct nfs_client _id4 {
verifier4d verifier;
opaque i d<NFS4_OPAQUE LI M T>
s
This structure is part of the argunents to the SETCLI ENTI D operati on.
2.2.13. open_owner4

struct open_owner4 {

clientid4 clientid;

opaque owner <NFS4_OPAQUE LI M T>
s

This structure is used to identify the owner of open state.
2.2.14. | ock_owner4
struct | ock_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>
s
This structure is used to identify the owner of file |ocking state.

2.2.15. open_to_|l ock_owner4

struct open_to_ | ock owner4 {

seqi d4 open_seqi d;

statei d4 open_statei d;

seqi d4 | ock_seqi d;

| ock_owner 4 | ock_owner;
H
This structure is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and | ock_owner such

that the transition is made froma valid open_statei d sequence to
that of the new | ock_stateid sequence. Using this mechani sm avoids
the confirmation of the | ock _owner/lock seqid pair since it is tied
to established state in the formof the open_stateid/ open_seqid.

Haynes & Noveck St andards Track [Page 24]

RFC 7530 NFSv4 March 2015

2.2.16. stateid4

struct stateid4 {

ui nt 32_t seqi d;

opaque ot her [NFS4_OTHER_SI ZE] ;
i

This structure is used for the various state-sharing nechani sns
between the client and server. For the client, this data structure
is read-only. The server is required to increnent the seqid field
nmonot oni cally at each transition of the stateid. This is inportant
since the client will inspect the seqid in OPEN stateids to deternne
the order of OPEN processing done by the server

3. RPC and Security Flavor

The NFSv4 protocol is an RPC application that uses RPC version 2 and
the XDR as defined in [RFC5531] and [RFC4506]. The RPCSEC GSS
security flavors as defined in version 1 ([RFC2203]) and version 2
([RFC5403]) MUST be inplenmented as the nechanismto deliver stronger
security for the NFSv4 protocol. However, deploynent of RPCSEC GSS
i s optional

3.1. Ports and Transports

Historically, NFSv2 and NFSv3 servers have resided on port 2049. The
regi stered port 2049 [RFC3232] for the NFS protocol SHOULD be the
default configuration. Using the registered port for NFS services
means the NFS client will not need to use the RPC bi nding protocols
as described in [RFC1833]; this will allow NFS to transit firewalls

Where an NFSv4 inplenmentation supports operation over the | P network
protocol, the supported transport |ayer between NFS and | P MJST be an
| ETF standardi zed transport protocol that is specified to avoid

net wor k congestion; such transports include TCP and the Stream
Control Transmi ssion Protocol (SCTP). To enhance the possibilities
for interoperability, an NFSv4 inplenentati on MJST support operation
over the TCP transport protocol

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s
congestion control via short-lived connections and will inprove
performance for the Wde Area Network (WAN) environment by
elinmnating the need for SYN handshakes.

As noted in Section 19, the authentication nodel for NFSv4 has noved

from machi ne- based to principal -based. However, this nodification of
the aut hentication nodel does not inply a technical requirenent to

Haynes & Noveck St andards Track [Page 25]

RFC 7530 NFSv4 March 2015

nove the TCP connection nmanagenent nodel from whol e nmachi ne-based to
one based on a per-user nodel. |In particular, NFS over TCP client

i mpl ement ati ons have traditionally nultiplexed traffic for nultiple
users over a conmon TCP connection between an NFS client and server.
This has been true, regardl ess of whether the NFS client is using
AUTH _SYS, AUTH DH, RPCSEC GSS, or any other flavor. Simlarly, NFS
over TCP server inplenentations have assunmed such a nodel and thus
scale the inplenentati on of TCP connection management in proportion
to the nunber of expected client machines. It is intended that NFSv4
will not nodify this connection managenent nodel. NFSv4 clients that
violate this assunption can expect scaling issues on the server and
hence reduced servi ce.

3.1.1. dient Retransm ssi on Behavi or

When processing an NFSv4 request received over a reliable transport
such as TCP, the NFSv4 server MJST NOT silently drop the request,
except if the established transport connection has been broken

G ven such a contract between NFSv4 clients and servers, clients MJST
NOT retry a request unless one or both of the follow ng are true:

o The transport connection has been broken
0 The procedure being retried is the NULL procedure

Since reliable transports, such as TCP, do not always synchronously

i nform a peer when the other peer has broken the connection (for
exanpl e, when an NFS server reboots), the NFSv4 client may want to
actively "probe" the connection to see if has been broken. Use of
the NULL procedure is one reconmmended way to do so. So, when a
client experiences a renote procedure call tineout (of sone arbitrary
i mpl enent ati on-specific anount), rather than retrying the renote
procedure call, it could instead issue a NULL procedure call to the
server. |If the server has died, the transport connection break wll
eventually be indicated to the NFSv4 client. The client can then
reconnect, and then retry the original request. If the NULL
procedure call gets a response, the connection has not broken. The
client can decide to wait longer for the original request’s response,
or it can break the transport connection and reconnect before
re-sendi ng the original request.

For call backs fromthe server to the client, the sane rules apply,

but the server doing the call back becones the client, and the client
receiving the call back becones the server

Haynes & Noveck St andards Track [Page 26]

RFC 7530 NFSv4 March 2015

3.2. Security Flavors

Tradi tional RPC i npl enentations have included AUTH NONE, AUTH_SYS
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203], an
additional security flavor of RPCSEC GSS has been introduced, which
uses the functionality of GSS-API [RFC2743]. This allows for the use
of various security nmechanisns by the RPC | ayer without the

addi tional inplementation overhead of adding RPC security flavors.

For NFSv4, the RPCSEC GSS security flavor MJST be used to enable the
mandat ory-to-i npl ement security mechanism Oher flavors, such as
AUTH _NONE, AUTH SYS, and AUTH DH, NAY be inplenmented as well.

3.2.1. Security Mechanisns for NFSv4

RPCSEC GSS, via GSS-APlI, supports nultiple mechanisms that provide
security services. For interoperability, NFSv4 clients and servers
MUST support the Kerberos V5 security mechani sm

The use of RPCSEC GSS requires sel ection of nmechanism quality of
protection (QOP), and service (authentication, integrity, privacy).
For the nandated security nechani sns, NFSv4 specifies that a QOP of
zero is used, leaving it up to the nechanismor the mechanisnis
configuration to map QOP zero to an appropriate |evel of protection
Each nmandat ed nechani sm specifies a m ni nrum set of cryptographic
algorithns for inplenenting integrity and privacy. NFSv4 clients and
servers MJST be inplenented on operating environnents that conply
with the required cryptographic algorithns of each required
mechani sm

3.2.1.1. Kerberos V5 as a Security Triple
The Kerberos V5 GSS- APl nechani smas described in [RFC4121] MJIST be

i mpl enented with the RPCSEC GSS services as specified in Table 2.
Both client and server MJST support each of the pseudo-fl avors.

| 390003 | krb5 | 1.2.840.113554.1.2.2 | rpc_gss_svc_none
| 390004 | krb5i | 1.2.840.113554.1.2.2 | rpc_gss_svc_integrity
| 390005 | krb5p | 1.2.840.113554.1.2.2 | rpc_gss_svc_privacy

Tabl e 2: Mappi ng Pseudo- Fl avor to Service
Note that the pseudo-flavor is presented here as a mapping aid to the

i npl ementer. Because this NFS protocol includes a nethod to
negotiate security and it understands the GSS-API nechanism the

Haynes & Noveck St andards Track [Page 27]

RFC 7530 NFSv4 March 2015

pseudo-flavor is not needed. The pseudo-flavor is needed for NFSv3
since the security negotiation is done via the MOUNT protocol as
described in [RFC2623].

At the time this docunent was specified, the Advanced Encryption
Standard (AES) with HVAC-SHAL was a required algorithmset for
Kerberos V5. In contrast, when NFSv4.0 was first specified in

[RFC3530], weaker algorithm sets were REQU RED for Kerberos V5, and
were REQUI RED in the NFSv4.0 specification, because the Kerberos V5
specification at the time did not specify stronger algorithns. The
NFSv4 specification does not specify required algorithns for Kerberos
V5, and instead, the inplenenter is expected to track the evol ution
of the Kerberos V5 standard if and when stronger algorithns are
speci fi ed.

3.2.1.1.1. Security Considerations for Cryptographic Al gorithms in
Ker beros V5

When depl oyi ng NFSv4, the strength of the security achi eved depends
on the existing Kerberos V5 infrastructure. The algorithns of
Kerberos V5 are not directly exposed to or selectable by the client
or server, so there is sone due diligence required by the user of
NFSv4 to ensure that security is acceptable where needed. Cuidance
is provided in [RFC6649] as to why weak al gorithms shoul d be disabled
by default.

3.3. Security Negotiation

Wth the NFSv4 server potentially offering nultiple security

mechani sns, the client needs a nethod to determ ne or negotiate which
mechanismis to be used for its comunication with the server. The
NFS server can have nultiple points within its file system namespace
that are available for use by NFS clients. In turn, the NFS server
can be configured such that each of these entry points can have
different or nmultiple security mechani snms in use.

The security negotiation between client and server SHOULD be done
with a secure channel to elimnate the possibility of a third party
intercepting the negotiati on sequence and forcing the client and
server to choose a | ower level of security than required or desired
See Section 19 for further discussion

Haynes & Noveck St andards Track [Page 28]

RFC 7530 NFSv4 March 2015

3. 3.

3. 3.

1. SECINFO

The SECI NFO operation will allow the client to determine, on a
per-fil ehandl e basis, what security triple (see [RFC2743] and

Section 16.31.4) is to be used for server access. In general, the
client will not have to use the SECI NFO operation, except during
initial comunication with the server or when the client encounters a
new security policy as the client navigates the nanmespace. Either
condition will force the client to negotiate a new security triple.

2. Security Error

Based on the assunption that each NFSv4 client and server MJST
support a mininumset of security (i.e., Kerberos V5 under

RPCSEC GSS), the NFS client will start its conmunication with the
server with one of the mniml security triples. During

communi cation with the server, the client can receive an NFS error of
NFSAERR WRONGSEC. This error allows the server to notify the client
that the security triple currently being used is not appropriate for
access to the server’'s file systemresources. The client is then
responsi bl e for deternining what security triples are avail able at
the server and choosing one that is appropriate for the client. See
Section 16.31 for further discussion of howthe client will respond
to the NFS4ERR WRONGSEC error and use SECI NFO

3.3.3. Callback RPC Authentication

Except as noted el sewhere in this section, the callback RPC
(described later) MJST nutually authenticate the NFS server to the
principal that acquired the client ID (al so described |ater), using
the security flavor of the original SETCLIENTID operation used.

For AUTH_NONE, there are no principals, so this is a non-issue
AUTH_SYS has no notions of nutual authentication or a server
principal, so the callback fromthe server sinply uses the AUTH SYS
credential that the user used when he set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni x. host @omai n
where host and donmin are variables corresponding to the name of the

server host and directory services domain in which it lives, such as
a Network Information System domain or a DNS domai n.

Haynes & Noveck St andards Track [Page 29]

RFC 7530 NFSv4 March 2015

Regar dl ess of what security mechani sm under RPCSEC GSS is being used,
the NFS server MJST identify itself in GSS-API via a

GSS_C NT_HOSTBASED SERVI CE nane type. GSS_C NT_HOSTBASED SERVI CE
nanmes are of the form

servi ce@ost nane
For NFS, the "service" elenment is:
nfs

| mpl enent ati ons of security nmechanisns will convert nfs@ostnane to
various different forns. For Kerberos V5, the following formis
RECOVMENDED

nf s/ host nane

For Kerberos V5, nfs/hostname would be a server principal in the
Kerberos Key Distribution Center database. This is the same
principal the client acquired a GSS-API context for when it issued
t he SETCLI ENTI D operation; therefore, the real mnane for the server
principal nust be the sanme for the callback as it was for the
SETCLI ENTI D

4. Fil ehandl es

The filehandle in the NFS protocol is a per-server unique identifier
for a file systemobject. The contents of the filehandl e are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system

obj ect.

4.1. Obtaining the First Filehandle

The operations of the NFS protocol are defined in terns of one or
nore filehandles. Therefore, the client needs a filehandle to
initiate communication with the server. Wth the NFSv2 protoco

[RFC1094] and the NFSv3 protocol [RFC1813], there exists an ancillary
protocol to obtain this first filehandle. The MOUNT protocol, RPC
program nunber 100005, provides the nechanismof translating a
string-based file system pathname to a filehandl e that can then be
used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public

filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP operation in

Haynes & Noveck St andards Track [Page 30]

RFC 7530 NFSv4 March 2015

the NFSv2 and NFSv3 protocols, it has been denobnstrated that the
MOUNT protocol is unnecessary for viable interaction between the NFS
client and server.

Therefore, the NFSv4 protocol will not use an ancillary protocol for
translation fromstring-based pathnanes to a filehandle. Two speci al
filehandles will be used as starting points for the NFS client.

4.1.1. Root Filehandle

The first of the special filehandles is the root filehandle. The
root filehandle is the "conceptual"” root of the file system nanespace
at the NFS server. The client uses or starts with the root
filehandl e by enpl oyi ng the PUTROOTFH operati on. The PUTROOTFH
operation instructs the server to set the current filehandle to the
root of the server’'s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’s file
tree with the LOOKUP operation. A conplete discussion of the server
nanespace is in Section 7.

4.1.2. Public Fil ehandl e

The second special filehandle is the public filehandle. Unlike the
root filehandle, the public filehandle nmay be bound or represent an
arbitrary file systemobject at the server. The server is
responsible for this binding. It may be that the public filehandle
and the root filehandle refer to the sane file system object.

However, it is up to the admnistrative software at the server and
the policies of the server admnistrator to define the binding of the
public filehandl e and server file systemobject. The client may not
make any assunptions about this binding. The client uses the public
filehandl e via the PUTPUBFH operati on.

4.2. Filehandl e Types

In the NFSv2 and NFSv3 protocols, there was one type of filehandle
with a single set of semantics, of which the primary one was that it
was persistent across a server reboot. As such, this type of
filehandle is terned "persistent” in NFSv4. The semantics of a
persistent filehandle remain the sane as before. A new type of
filehandl e introduced in NFSv4 is the volatile filehandl e, which
attenpts to acconmpdate certain server environnents.

The volatile filehandl e type was introduced to address server
functionality or inplementation issues that nake correct

i npl enmentation of a persistent filehandle infeasible. Sone server
environnments do not provide a file systemlevel invariant that can be
used to construct a persistent filehandle. The underlying server

Haynes & Noveck St andards Track [Page 31]

RFC 7530 NFSv4 March 2015

file systemmay not provide the invariant, or the server’'s file
system progranm ng i nterfaces nmay not provide access to the needed
invariant. Volatile filehandl es may ease the inplenmentation of
server functionality, such as hierarchical storage managenent or file
system reorgani zation or migration. However, the volatile filehandle
i ncreases the inplenentation burden for the client.

Since the client will need to handle persistent and volatile
filehandl es differently, a file attribute is defined that nay be used
by the client to determine the fil ehandl e types being returned by the
server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a |later request and
can conpare two filehandles fromthe sane server for equality by
doi ng a byte-by-byte conparison. However, the client MJST NOT
otherwi se interpret the contents of filehandles. |If two filehandles
fromthe sane server are equal, they MIST refer to the sanme file
However, it is not required that two different filehandles refer to
different file systemobjects. Servers SHOULD try to maintain a
one-t o-one correspondence between fil ehandl es and file system objects
but there nay be situations in which the napping is not one-to-one.
Cients MIJST use fil ehandl e conparisons only to inprove performance,
not for correct behavior. Al clients need to be prepared for
situations in which it cannot be determ ned whether two different
filehandl es denote the same object and in such cases need to avoid
assunming that objects denoted are different, as this m ght cause

i ncorrect behavior. Further discussion of filehandle and attribute
conparison in the context of data caching is presented in

Section 10. 3. 4.

As an exanple, in the case that two different pathnanmes when
traversed at the server terninate at the sane file system object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two filenames that refer to
the sane underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the same file, the server SHOULD
return the sanme filehandl e for both pathname traversals.

4.2.2. Persistent Filehandle
A persistent filehandle is defined as having a fixed value for the
lifetime of the file systemobject to which it refers. Once the

server creates the filehandle for a file system object, the server
MUST accept the sane filehandle for the object for the lifetine of

Haynes & Noveck St andards Track [Page 32]

RFC 7530 NFSv4 March 2015

the object. |If the server restarts or reboots, the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Sinilarly, if the file systemis mgrated, the new
NFS server nust honor the sane filehandle as the old NFS server.

The persistent filehandle will becone stale or invalid when the file
system object is renoved. Wien the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFS4AERR STALE. A filehandle may becone stal e when the
file systemcontaining the object is no |onger available. The file
system may become unavailable if it exists on renovabl e nedia and the
media is no longer available at the server, or if the file systemin
whol e has been destroyed, or if the file systemhas sinply been
removed fromthe server’s namespace (i.e., unnmounted in a UNI X

envi ronment).

4.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no longer valid at nany different
points in tine. |If the server can definitively determne that a
volatile filehandle refers to an object that has been renpved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). 1In all other cases where the server
determines that a volatile filehandl e can no | onger be used, it
shoul d return an error of NFS4ERR_FHEXPI RED

The REQUIRED attribute "fh_expire_type" is used by the client to
determ ne what type of filehandle the server is providing for a
particular file system This attribute is a bitmask with the
foll owi ng val ues:

FH4 PERSI STENT: The val ue of FH4_PERSI STENT is used to indicate a
persistent filehandle, which is valid until the object is renoved
fromthe file system The server will not return
NFSAERR FHEXPI RED for this filehandle. FH4_PERSI STENT is defined
as a value in which none of the bits specified below are set.

FHA_VOLATI LE_ANY: The filehandl e nay expire at any tinme, except as
specifically excluded (i.e., FH4A_NOEXPI RE_W TH_OPEN)

FHA NOEXPI RE WTH OPEN: May only be set when FH4 _VOLATI LE ANY is

set. If this bit is set, then the meani ng of FH4_VOLATI LE_ANY
is qualified to exclude any expiration of the filehandl e when it
i s open.

Haynes & Noveck St andards Track [Page 33]

RFC 7530 NFSv4 March 2015

FHA VOL_M GRATION: The filehandle will expire as a result of
mgration. |f FH4_VOLATILE_ANY is set, FH4A_VOL_M CGRATION i s
r edundant .

FH4A_VOL_RENAME: The filehandle will expire during renane. This
includes a renane by the requesting client or a renane by any
other client. |If FH4 VOLATILE ANY is set, FH4A_VOL_RENAME i s
redundant .

Servers that provide volatile filehandles that may expire while open
(i.e., if FHA_VOL_M GRATION or FH4_VOL_RENAME is set or if

FHA VOLATI LE _ANY is set and FH4 NCEXPI RE W TH OPEN i s not set) should
deny a RENAME or REMOVE that would affect an OPEN file of any of the
conmponents leading to the OPEN file. In addition, the server SHOULD
deny all RENAME or REMOVE requests during the grace period upon
server restart.

Note that the bits FH4_VOL_M GRATI ON and FH4_VOL_RENAME al | ow t he
client to determ ne that expiration has occurred whenever a specific
event occurs, without an explicit filehandl e expiration error from
the server. FH4_VOLATILE_ANY does not provide this form of
information. |In situations where the server will expire many, but
not all, filehandl es upon mgration (e.g., all but those that are
open), FH4 VOLATILE ANY (in this case, with FH4_ NOEXPI RE W TH_OPEN)
is a better choice since the client nay not assune that al
filehandles will expire when migration occurs, and it is likely that
additional expirations will occur (as a result of file CLOSE) that
are separated in tine fromthe migration event itself.

4.2.4. One Method of Constructing a Volatile Filehandle
A volatile filehandl e, while opaque to the client, could contain:
[volatile bit =1 | server boot tinme | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunmber is the generation nunber for the table
entry/ sl ot

When the client presents a volatile filehandl e, the server makes the
foll owi ng checks, which assune that the check for the volatile bit
has passed. |If the server boot tinme is less than the current server
boot tine, return NFS4ERR FHEXPI RED. If slot is out of range, return
NFS4ERR_BADHANDLE. |f the generation nunber does not match, return
NFS4ERR_FHEXPI RED.

When the server reboots, the table is gone (it is volatile).

Haynes & Noveck St andards Track [Page 34]

RFC 7530 NFSv4 March 2015
If the volatile bit is 0, then it is a persistent filehandle with a
different structure following it.

4.3. Cdient Recovery from Fil ehandl e Expiration
I f possible, the client should recover fromthe recei pt of an

NFSAERR FHEXPI RED error. The client nust take on additiona
responsibility so that it nmay prepare itself to recover fromthe

expiration of a volatile filehandle. |If the server returns
persistent filehandl es, the client does not need these additiona
st eps.

For volatile filehandles, nbst comonly the client will need to store
t he conponent nanes leading up to and including the file system
object in question. Wth these nanes, the client should be able to
recover by finding a filehandle in the nanespace that is stil

avail able or by starting at the root of the server’s file system
nanmespace

If the expired filehandle refers to an object that has been renoved
fromthe file system obviously the client will not be able to
recover fromthe expired fil ehandl e.

It is also possible that the expired filehandle refers to a file that
has been renanmed. |f the file was renanmed by another client, again
it is possible that the original client will not be able to recover
However, in the case that the client itself is renaming the file and
the file is open, it is possible that the client may be able to
recover. The client can determ ne the new pathnane based on the
processing of the renanme request. The client can then regenerate the
new fil ehandl e based on the new pathnane. The client could al so use
t he COVPOUND operati on mechanismto construct a set of operations
I'ike:

RENAME A B
LOOKUP B
GETFH

Not e that the COVPOUND procedure does not provide atomicity. This
exanpl e only reduces the overhead of recovering froman expired
fil ehandl e.

5. Attributes
To neet the requirenents of extensibility and increased
interoperability with non-UNI X platforns, attributes need to be

handled in a flexible manner. The NFSv3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to

Haynes & Noveck St andards Track [Page 35]

RFC 7530 NFSv4 March 2015

support or care about. The fattr3 structure cannot be extended as
new needs arise, and it provides no way to indicate non-support.

Wth the NFSv4.0 protocol, the client is able to query what
attributes the server supports and construct requests with only those
supported attributes (or a subset thereof).

To this end, attributes are divided into three groups: REQU RED,
RECOMVENDED, and named. Both REQUI RED and RECOVMENDED attributes are
supported in the NFSv4.0 protocol by a specific and well-defined
encodi ng and are identified by nunber. They are requested by setting
a bit inthe bit vector sent in the GETATTR request; the server
response includes a bit vector to list what attributes were returned
in the response. New REQUI RED or RECOMMENDED attri butes nay be added
to the NFSv4 protocol as part of a new nminor version by publishing a
Standards Track RFC that allocates a new attribute nunmber val ue and
defines the encoding for the attribute. See Section 11 for further

di scussi on.

Nanmed attri butes are accessed by the OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system obj ect. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the naned attributes is a directory object accessible by LOOKUP
or READDI R and contains files whose nanes represent the naned
attributes and whose data bytes are the value of the attribute. For

exanpl e:
S S o m e e e e e e e e e e e e e e eaao - +
| LOOKUP | "foo" | ; look up file
| GETATTR | attrbits | |
| OPENATTR | | ; access foo's nanmed attributes
| LOOKUP | "x1licon" | ; look up specific attribute
| READ | O, 4096 | ; read stream of bytes
S S o m e e e e e e e e e e e e e e eaao - +

Naned attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenenters are strongly
encouraged to define their new attri butes as RECOMMENDED attri butes

by bringing themto the | ETF Standards Track process.

The set of attributes that are classified as REQURED is deliberately
smal | since servers need to do whatever it takes to support them A
server should support as nany of the RECOMMENDED attri butes as
possi bl e; however, by their definition, the server is not required to
support all of them Attributes are deened REQU RED if the data is
bot h needed by a | arge nunber of clients and is not otherw se
reasonably conput able by the client when support is not provided on

t he server.

Haynes & Noveck St andards Track [Page 36]

RFC 7530 NFSv4 March 2015

Note that the hidden directory returned by OPENATTR i s a conveni ence
for protocol processing. The client should not nmake any assunptions
about the server’s inplenmentation of named attributes and whether or
not the underlying file systemat the server has a nanmed attribute
directory. Therefore, operations such as SETATTR and GETATTR on the
naned attribute directory are undefi ned.

5.1. REQUI RED Attributes

These attributes MJST be supported by every NFSv4.0 client and server
in order to ensure a mninmumlevel of interoperability. The server
MJUST store and return these attributes, and the client MJST be able
to function with an attribute set linted to these attributes. Wth
just the REQUI RED attributes, sone client functionality can be
impaired or limted in some ways. A client can ask for any of these
attributes to be returned by setting a bit in the GETATTR request.
For each such bit set, the server MJST return the correspondi ng

attri bute val ue.

5.2. RECOMVENDED Attri butes

These attributes are understood well enough to warrant support in the
NFSv4. 0 protocol. However, they may not be supported on all clients
and servers. A client MAY ask for any of these attributes to be
returned by setting a bit in the GETATTR request but MJST handl e the
case where the server does not return them A client MAY ask for the
set of attributes the server supports and SHOULD NOT request
attributes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes that are difficult to support in their
operating environnents. A server should provide attributes whenever
they don’t have to "tell lies" to the client. For exanple, a file
nmodi fication tine either should be an accurate tinme or should not be
supported by the server. At tinmes this will be difficult for

clients, but a client is better positioned to deci de whet her and how
to fabricate or construct an attribute or whether to do w thout the
attribute.

5. 3. Named Attri butes

These attributes are not supported by direct encoding in the NFSv4
protocol but are accessed by string nanmes rather than nunbers and
correspond to an uninterpreted stream of bytes that are stored with
the file systemobject. The nanmespace for these attributes may be
accessed by using the OPENATTR operation. The OPENATTR operation
returns a filehandle for a virtual "naned attribute directory", and

Haynes & Noveck St andards Track [Page 37]

RFC 7530 NFSv4 March 2015

further perusal and nodification of the nanespace may be done using
operations that work on nore typical directories. 1In particular
READDI R may be used to get a list of such naned attributes, and
LOOKUP and OPEN may select a particular attribute. Creation of a new
naned attribute may be the result of an OPEN specifying file
creation.

Once an OPEN is done, naned attributes nmay be exam ned and changed by
normal READ and WRI TE operations using the filehandl es and stateids
returned by OPEN

Nanmed attributes and the named attribute directory nmay have their own
(non-naned) attributes. Each of these objects nust have all of the
REQUI RED attri butes and nay have additi onal RECOMMENDED attri butes.
However, the set of attributes for named attributes and the naned
attribute directory need not be, and typically will not be, as large
as that for other objects in that file system

Nanmed attributes might be the target of delegations. However, since
granting of delegations is at the server’s discretion, a server need
not support del egations on named attri butes.

It is RECOWENDED that servers support arbitrary named attributes

A client should not depend on the ability to store any naned
attributes in the server’s file system |If a server does support
named attributes, a client that is also able to handle them should be
able to copy a file's data and netadata with conpl ete transparency
fromone location to another; this would inply that names allowed for
regul ar directory entries are valid for named attri bute nanes

as wel .

In NFSv4.0, the structure of named attribute directories is
restricted in a nunmber of ways, in order to prevent the devel opnent
of non-interoperable inplenmentations in which sone servers support a
fully general hierarchical directory structure for named attributes
while others support a linmted but adequate structure for naned
attributes. |In such an environment, clients or applications m ght
come to depend on non-portable extensions. The restrictions are:

0 CREATE is not allowed in a naned attribute directory. Thus, such
objects as synbolic links and special files are not allowed to be
naned attributes. Further, directories nmay not be created in a
naned attribute directory, so no hierarchical structure of naned
attributes for a single object is allowed.

o |If OPENATTR is done on a naned attribute directory or on a naned
attribute, the server MJST return an error.

Haynes & Noveck St andards Track [Page 38]

RFC 7530 NFSv4 March 2015

0 Doing a RENAME of a naned attribute to a different naned attribute
directory or to an ordinary (i.e., non-naned-attribute) directory
is not allowed.

0 Creating hard |inks between naned attribute directories or between
naned attribute directories and ordinary directories is not
al | oned.

Names of attributes will not be controlled by this docunent or other
| ETF Standards Track docunents. See Section 20 for further
di scussi on.

5.4, dassification of Attributes

Each of the attributes accessed using SETATTR and GETATTR (i .e.
REQUI RED and RECOMVENDED attri butes) can be classified in one of
three categories:

1. per-server attributes for which the value of the attribute wll
be the same for all file objects that share the same server

2. per-file systemattributes for which the value of the attribute
will be the same for sone or all file objects that share the same
server and fsid attribute (Section 5.8.1.9). See bel ow for
details regardi ng when such sharing is in effect.

3. per-file system object attributes.

The handling of per-file systemattributes depends on the particul ar
attribute and the setting of the honbgeneous (Section 5.8.2.12)
attribute. The follow ng rules apply:

1. The values of the attributes supported_attrs, fsid, honogeneous,
i nk_support, and sym ink_support are always comon to all
objects within the given file system

2. For other attributes, different values may be returned for
different file systemobjects if the attribute honbgeneous is
supported within the file systemin question and has the val ue
fal se.

The classification of attributes is as follows. Note that the
attributes tinme_access_set and tine_nodify set are not listed in this
section, because they are wite-only attributes corresponding to
time_access and tinme_nodify and are used in a special instance of
SETATTR

Haynes & Noveck St andards Track [Page 39]

RFC 7530 NFSv4 March 2015

0 The per-server attribute is:
| ease_tinme
0 The per-file systemattributes are:

supported_attrs, fh_expire_type, link support, symink support,
uni que_handl es, acl support, cansettine, case_insensitive,

case_preserving, chown_restricted, files_avail, files_free,
files_total, fs_locations, honobgeneous, naxfil esize, naxnane,
maxread, maxwite, no_trunc, space_avail, space_free,

space_total, and tine_delta
o0 The per-file systemobject attributes are:

type, change, size, nanmed_attr, fsid, rdattr_error, filehandl e,
acl, archive, fileid, hidden, nmaxlink, mnetype, node

num i nks, owner, owner_group, rawdev, space_used, system
time_access, tinme_backup, tinme_create, tine_netadata,
time_nodify, and nounted_on_fileid

For quota_avail _hard, quota_avail_soft, and quota_used, see their
definitions below for the appropriate classification

5.5, Set-Only and Get-Only Attributes

Sone REQUI RED and RECOMVENDED attri butes are set-only; i.e., they can
be set via SETATTR but not retrieved via GETATTR Sinilarly, sone
REQUI RED and RECOMVENDED attributes are get-only; i.e., they can be
retrieved via CETATTR but not set via SETATTR If a client attenpts
to set a get-only attribute or get a set-only attribute, the server
MJST return NFS4ERR | NVAL

5.6. REQUIRED Attributes - List and Definition References

The list of REQU RED attributes appears in Table 3. The neani ngs of
the colums of the table are:

o Nane: The name of the attribute.

o |ID The nunber assigned to the attribute. 1In the event of
conflicts between the assigned nunber and [RFC7531], the latter is
authoritative, but in such an event, it should be resolved with
errata to this docunent and/or [RFC7531]. See [|ESG ERRATA] for
the errata process.

o Data Type: The XDR data type of the attribute.

Haynes & Noveck St andards Track [Page 40]

RFC 7530 NFSv4 March 2015

0 Acc: Access allowed to the attribute. R neans read-only (GETATTR
may retrieve, SETATTR may not set). Wneans wite-only (SETATTR
may set, GETATTR may not retrieve). R Wneans read/wite (GETATTR
may retrieve, SETATTR may set).

o Defined in: The section of this specification that describes the

attribute.

o e e oo Fom e e e e oo +-- - - - ook +
| Narne | ID| Data Type | Acc | Defined in |
S e e e a - L o e - +
| supported_attrs | O | bitnmap4 | R | Section 5.8.1.1

| type | 1 | nfs ftyped | R | Section 5.8.1.2

| fh expire type | 2 | uint32_t | R | Section 5.8.1.3

| change | 3 | changeid4 | R | Section 5.8.1.4

| size | 4 | uint64_t | RW]| Section 5.8.1.5

| l'ink_support | 5 | bool | R | Section 5.8.1.6

| symink_support | 6 | bool | R | Section 5.8.1.7

| naned_attr | 7 | bool | R | Section 5.8.1.8

| fsid | 8 | fsid4 | R | Section 5.8.1.9

| unique_handles | 9 | bool | R | Section 5.8.1.10

| lease_ tine | 10 | nfs_leased | R | Section 5.8.1.11

| rdattr_error | 11 | nfsstat4 | R | Section 5.8.1.12

| filehandle | 19 | nfs_fh4 | R | Section 5.8.1.13
oo Fom e e oo +--m - - e e e e +

Tabl e 3: REQUI RED Attri butes
5.7. RECOMMENDED Attributes - List and Definition References

The RECOMMENDED attributes are defined in Table 4. The neani ngs of
the colum headers are the sane as Table 3; see Section 5.6 for the

nmeani ngs.

o e - e e e e e - L Fom e e e e e o +
| Nane | ID| Data Type | Acc | Defined in |
e e e e o e e e a o +--m - - oo +
| acl | 12 | nfsaced<> | RW]| Section 6.2.1 |
| acl support | 13 | uint32_t | R | Section 6.2.1.2

| archive | 14 | bool | RW]| Section 5.8.2.1

| cansettine | 15 | bool | R | Section 5.8.2.2

| case_insensitive | 16 | bool | R | Section 5.8.2.3

| case_preserving | 17 | bool | R | Section 5.8.2.4

| chown restricted | 18 | bool | R | Section 5.8.2.5

| fileid | 20 | uint64_t | R | Section 5.8.2.6

| files_avail | 21 | uint64_t | R | Section 5.8.2.7

| files_free | 22 | uint64_t | R | Section 5.8.2.8

| files_total | 23 | uint64_t | R | Section 5.8.2.9

Haynes & Noveck St andards Track [Page 41]

RFC 7530 NFSv4 March 2015

| fs_locations | 24 | fs_locations4 | R | Section 5.8.2.10
| hidden | 25 | bool | RW]| Section 5.8.2.11
| honogeneous | 26 | bool | R | Section 5.8.2.12
| maxfilesize | 27 | uint64_t | R | Section 5.8.2.13
| maxlink | 28 | uint32_t | R | Section 5.8.2.14
| maxnane | 29 | uint32_t | R | Section 5.8.2.15
| maxread | 30 | uint64_t | R | Section 5.8.2.16
| maxwite | 31 | uint64_t | R | Section 5.8.2.17
| mnetype | 32 | ascii_ | RW]| Section 5.8.2.18
| | | REQUI RED4A<> | |

| node | 33 | noded | RW]| Section 6.2.2

| mounted_on_fileid | 55 | uint64_t | R | Section 5.8.2.19
| no_trunc | 34 | bool | R | Section 5.8.2.20
| numlinks | 35| uint32_t | R | Section 5.8.2.21
| owner | 36 | utf8str_mxed | RW]| Section 5.8.2.22
| owner_group | 37 | utf8str_m xed | RW]| Section 5.8.2.23
| quota_avail _hard | 38 | uint64_t | R | Section 5.8.2.24
| quota_avail _soft | 39 | uint64_t | R | Section 5.8.2.25
| quota used | 40 | uint64_t | R | Section 5.8.2.26
| rawdev | 41 | specdata4d | R | Section 5.8.2.27
| space_avail | 42 | uint64_t | R | Section 5.8.2.28
| space_free | 43 | uint64_t | R | Section 5.8.2.29
| space_total | 44 | uint64_t | R | Section 5.8.2.30
| space_used | 45 | uint64_t | R | Section 5.8.2.31
| system | 46 | bool | RW]| Section 5.8.2.32
| tinme_access | 47 | nfstinmed | R | Section 5.8.2.33
| tinme_access_set | 48 | settined | W | Section 5.8.2.34
| time_backup | 49 | nfstinmed | RW]| Section 5.8.2.35
| time_create | 50 | nfstinmed | RW]| Section 5.8.2.36
| tine_delta | 51 | nfstine4 | R | Section 5.8.2.37
| tinme_netadata | 52 | nfstined | R | Section 5.8.2.38
| tinme_nodify | 53 | nfstined | R | Section 5.8.2.39
| time_nodify_set | 54 | settined | W | Section 5.8.2.40
o m e e e e e e me o oo Fom e e e e e e e e oo - F--- - e +

Tabl e 4: RECOMMENDED Attri butes
5.8. Attribute Definitions
5.8.1. Definitions of REQUI RED Attributes
5.8.1.1. Attribute 0: supported attrs
The bit vector that would retrieve all REQU RED and RECOMVENDED

attributes that are supported for this object. The scope of this
attribute applies to all objects with a matching fsid.

Haynes & Noveck St andards Track [Page 42]

RFC 7530 NFSv4 March 2015

5.8.1.2. Attribute 1. type

Desi gnates the type of an object in terns of one of a number of
speci al constants:

0 NF4REG designates a regular file.

0 NF4DI R designates a directory.

0 NF4BLK designates a bl ock device special file.

0 NF4CHR designates a character device special file.
0 NF4LNK designates a synbolic |ink

0 NF4SOCK desi gnates a nanmed socket special file.

0 NF4FI FO designates a fifo special file.

0 NF4ATTRDI R designates a nanmed attribute directory.
0 NF4NAMEDATTR designates a named attribute

Wthin the explanatory text and operation descriptions, the follow ng
phrases will be used with the neanings given bel ow

0 The phrase "is a directory" nmeans that the object’s type attribute
is NFADI R or NF4ATTRDI R

0 The phrase "is a special file" nmeans that the object’s type
attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FI FO

o0 The phrase "is a regular file" means that the object’s type
attribute is NFAREG or NFANAMEDATTR.

0 The phrase "is a synbolic link" neans that the object’s type
attribute is NF4ALNK

5.8.1.3. Attribute 2: fh_expire_type

The server uses this to specify filehandl e expiration behavior to the
client. See Section 4 for additional description

Haynes & Noveck St andards Track [Page 43]

RFC 7530 NFSv4 March 2015

5.8.1.4. Attribute 3: change
A value created by the server that the client can use to deternine if
file data, directory contents, or attributes of the object have been
nmodi fied. The server NMAY return the object’s time_netadata attribute
for this attribute’s value but only if the file system object cannot
be updated nore frequently than the resolution of tine_netadata.
5.8.1.5. Attribute 4: size
The size of the object in bytes.
5.8.1.6. Attribute 5: link_support
TRUE, if the object’s file system supports hard |inks.
5.8.1.7. Attribute 6: symink_support
TRUE, if the object’s file system supports synbolic |inks.
5.8.1.8. Attribute 7: naned_attr

TRUE, if this object has naned attributes. |In other words, this
obj ect has a non-enpty naned attribute directory.

5.8.1.9. Attribute 8: fsid
Unique file systemidentifier for the file systemholding this
object. The fsid attribute has major and m nor conponents, each of
which are of data type uint64_t.

5.8.1.10. Attribute 9: unique_handl es

TRUE, if two distinct filehandl es are guaranteed to refer to two
different file system objects.

5.8.1.11. Attribute 10: lease_tine
Duration of the | ease at the server in seconds.
5.8.1.12. Attribute 11: rdattr_error

Error returned froman attenpt to retrieve attributes during a
READDI R operati on.

5.8.1.13. Attribute 19: filehandle

The filehandl e of this object (primarily for READDI R requests).

Haynes & Noveck St andards Track [Page 44]

RFC 7530 NFSv4 March 2015

5.8.2. Definitions of Uncategorized RECOMVENDED Attri butes
The definitions of nost of the RECOMMENDED attributes follow
Col l ections that share a comon category are defined in other
secti ons.

5.8.2.1. Attribute 14: archive

TRUE, if this file has been archived since the tine of the |ast
nmodi fication (deprecated in favor of tine_backup).

5.8.2.2. Attribute 15: cansettine

TRUE, if the server is able to change the tines for a file system
obj ect as specified in a SETATTR operation

5.8.2.3. Attribute 16: case_insensitive
TRUE, if filenane conparisons on this file systemare case
insensitive. This refers only to conparisons, and not to the case in
which filenanes are stored

5.8.2.4. Attribute 17: case_preserving
TRUE, if the filenane case on this file systemis preserved. This
refers only to how fil enanmes are stored, and not to how they are
conpared. Filenanmes stored in nixed case might be conpared using
ei ther case-insensitive or case-sensitive conparisons.

5.8.2.5. Attribute 18: chown restricted
If TRUE, the server will reject any request to change either the
owner or the group associated with a file if the caller is not a
privileged user (for exanple, "root" in UN X operating environnents
or the "Take Ownership” privilege in Wndows 2000).

5.8.2.6. Attribute 20: fileid
A nunber uniquely identifying the file within the file system

5.8.2.7. Attribute 21: files_avai

File slots available to this user on the file systemcontaining this
object -- this should be the snallest relevant linit.

Haynes & Noveck St andards Track [Page 45]

RFC 7530 NFSv4 March 2015

5.8.2.8. Attribute 22: files free

Free file slots on the file systemcontaining this object -- this
should be the smallest relevant linmt.

5.8.2.9. Attribute 23: files_total
Total file slots on the file system containing this object.
5.8.2.10. Attribute 24: fs_ |locations

Locations where this file systemmy be found. |f the server returns
NFSAERR MOVED as an error, this attribute MUST be support ed.

The server specifies the rootpath for a given server by returning a
pat h consisting of zero path conponents.

5.8.2.11. Attribute 25: hidden

TRUE, if the file is considered hidden with respect to the
W ndows API .

5.8.2.12. Attribute 26: honpbgeneous
TRUE, if this object’'s file systemis honbgeneous, i.e., all objects
inthe file system (all objects on the server with the sanme fsid)
have conmon values for all per-file systemattributes.
5.8.2.13. Attribute 27: maxfil esize
Maxi mum supported file size for the file systemof this object.
5.8.2.14. Attribute 28: nmaxlink
Maxi mum nunber of hard links for this object.
5.8.2.15. Attribute 29: maxnane
Maxi mum fil ename size supported for this object.

5.8.2.16. Attribute 30: maxread

Maxi mum anount of data the READ operation will return for this
obj ect.

Haynes & Noveck St andards Track [Page 46]

RFC 7530 NFSv4 March 2015

5.8.2.17. Attribute 31: maxwite

Maxi mum anount of data the WRI TE operation will accept for this
object. This attribute SHOULD be supported if the file is witable.
Lack of this attribute can lead to the client either wasting

bandwi dth or not receiving the best perfornance.

5.8.2.18. Attribute 32: ninetype
M ME nedi a type/ subtype of this object.
5.8.2.19. Attribute 55: nounted on fileid

Like fileid, but if the target filehandle is the root of a file
system this attribute represents the fileid of the underlying
directory.

UNI X- based operating environments connect a file systeminto the
nanespace by connecting (nounting) the file systemonto the existing
file object (the mount point, usually a directory) of an existing
file system \Wen the nount point’s parent directory is read via an
APl such as readdir() [readdir_api], the return results are directory
entries, each with a conmponent nane and a fileid. The fileid of the
nmount point’s directory entry will be different fromthe fileid that
the stat() [stat] systemcall returns. The stat() systemcall is
returning the fileid of the root of the nounted file system whereas
readdir() is returning the fileid that stat() would have returned
before any file systenms were nmounted on the nount point.

Unli ke NFSv3, NFSv4.0 allows a client’s LOOKUP request to cross other
file systenms. The client detects the file system crossing whenever
the filehandl e argument of LOOKUP has an fsid attribute different
fromthat of the filehandl e returned by LOOKUP. A UNI X-based client
will consider this a "mount point crossing”. UN X has a | egacy
schene for allowing a process to deternmine its current worKking
directory. This relies on readdir() of a nount point’s parent and
stat() of the nount point returning fileids as previously descri bed.
The mounted _on fileid attribute corresponds to the fileid that
readdir() would have returned, as described previously.

VWhile the NFSv4.0 client could sinply fabricate a fileid
corresponding to what nounted on fileid provides (and if the server
does not support nounted on fileid, the client has no choice), there
is arisk that the client will generate a fileid that conflicts with
one that is already assigned to another object in the file system
Instead, if the server can provide the nounted_on_fileid, the
potential for client operational problenms in this area is elimnated.

Haynes & Noveck St andards Track [Page 47]

RFC 7530 NFSv4 March 2015

If the server detects that there is nothing nounted on top of the
target file object, then the value for nounted_on_fileid that it
returns is the same as that of the fileid attribute.

The nounted on fileid attribute is RECOWENDED, so the server SHOULD
provide it if possible, and for a UN X-based server, this is
straightforward. Usually, nounted on fileid will be requested during
a READDI R operation, in which case it is trivial (at |east for

UNI X- based servers) to return nounted_on fileid since it is equal to
the fileid of a directory entry returned by readdir(). |If
mounted_on_fileid is requested in a GETATTR operation, the server
shoul d obey an invariant that has it returning a value that is equa
to the file object’s entry in the object’s parent directory, i.e.
what readdir() would have returned. Sone operating environments
allow a series of two or nore file systens to be nounted onto a
single mount point. |In this case, for the server to obey the

af orementioned invariant, it will need to find the base nount point,
and not the internediate nount points.

5.8.2.20. Attribute 34: no_trunc
If this attribute is TRUE, then if the client uses a filename |onger
than name_nmax, an error will be returned instead of the nane being
truncat ed.

5.8.2.21. Attribute 35: numinks
Number of hard links to this object.

5.8.2.22. Attribute 36: owner
The string nane of the owner of this object.

5.8.2.23. Attribute 37: owner_group
The string name of the group ownership of this object.

5.8.2.24. Attribute 38: quota_avail hard
The value in bytes that represents the anount of additional disk
space beyond the current allocation that can be allocated to this
file or directory before further allocations will be refused. It is

understood that this space nmay be consuned by allocations to other
files or directories.

Haynes & Noveck St andards Track [Page 48]

RFC 7530 NFSv4 March 2015

5.8.2.25. Attribute 39: quota_avail _soft

The value in bytes that represents the anount of additional disk
space that can be allocated to this file or directory before the user
may reasonably be warned. It is understood that this space may be
consuned by allocations to other files or directories, though there
may exi st server-side rules as to which other files or directories.

5.8.2.26. Attribute 40: quota_used

The value in bytes that represents the anobunt of di sk space used by
this file or directory and possi bly a nunber of other simlar files
or directories, where the set of "similar" nmeets at |east the
criterion that allocating space to any file or directory in the set
wi Il reduce the "quota_avail _hard" of every other file or directory
in the set.

Note that there nmay be a nunber of distinct but overl appi ng sets of
files or directories for which a quota_used val ue is naintained,
e.g., "all files with a given owner", "all files with a given group
owner", etc. The server is at liberty to choose any of those sets
when providing the content of the quota_used attribute but should do
So in a repeatable way. The rule nmay be configured per file system
or may be "choose the set with the smallest quota”

5.8.2.27. Attribute 41: rawdev
Raw devi ce nunber of file of type NF4BLK or NF4CHR. The device
nunber is split into major and mnor nunbers. If the file s type
attribute is not NF4BLK or NFACHR, this attribute SHOULD NOT be
returned, and any value returned SHOULD NOT be consi dered useful
5.8.2.28. Attribute 42: space_avai

Di sk space in bytes available to this user on the file system
containing this object -- this should be the snallest relevant linmt.

5.8.2.29. Attribute 43: space free

Free di sk space in bytes on the file systemcontaining this object --
this should be the smallest relevant limt.

5.8.2.30. Attribute 44: space_tota

Total disk space in bytes on the file systemcontaining this object.

Haynes & Noveck St andards Track [Page 49]

RFC 7530 NFSv4 March 2015

5.8.2.31. Attribute 45: space_used
Number of file systembytes allocated to this object.
5.8.2.32. Attribute 46: system

TRUE, if this file is a "systenl file with respect to the W ndows
operating environnent.

5.8.2.33. Attribute 47: tinme_access

Represents the tine of |last access to the object by a READ operation
sent to the server. The notion of what is an "access" depends on the
server’s operating environnment and/or the server’'s file system
semantics. For exanple, for servers obeying Portable Operating
System Interface (POSI X) semantics, tine_access would be updated only
by the READ and READDI R operations and not any of the operations that
nodi fy the content of the object [read_api], [readdir_api],

[wite api]. O course, setting the corresponding tinme_access_set
attribute is another way to nodify the time_access attribute.

Whenever the file object resides on a witable file system the
server should nmake its best efforts to record tinme_access into stable
storage. However, to nmitigate the performance effects of doing so,
and nost especially whenever the server is satisfying the read of the
object’s content fromits cache, the server MAY cache access tinme
updates and lazily wite themto stable storage. It is also
acceptable to give administrators of the server the option to disable
ti me_access updates.
5.8.2.34. Attribute 48: tine_access_set
Sets the tinme of last access to the object. SETATTR use only.
5.8.2.35. Attribute 49: tine_backup
The tine of |ast backup of the object.
5.8.2.36. Attribute 50: tine_create
The tine of creation of the object. This attribute does not have
any relation to the traditional UNIX file attribute "ctine"
("change tine").
5.8.2.37. Attribute 51: tine_delta

Smal | est useful server time granularity.

Haynes & Noveck St andards Track [Page 50]

RFC 7530 NFSv4 March 2015

5.8.2.38. Attribute 52: tinme_netadata
The tine of |ast netadata nodification of the object.
5.8.2.39. Attribute 53: tine_nodify
The tine of last nodification to the object.
5.8.2.40. Attribute 54: tine_nodify_set
Sets the time of last nodification to the object. SETATTR use only.
5.9. Interpreting owner and owner _group

The RECOMMENDED attributes "owner" and "owner_group" (and al so users
and groups used as values of the who field within nfsd4ace structures
used in the acl attribute) are represented in the formof UTF-8
strings. This format avoids the use of a representation that is tied
to a particular underlying inplenentation at the client or server
Note that Section 6.1 of [RFC2624] provides additional rationale. It
is expected that the client and server will have their own | oca
representati on of owners and groups that is used for |ocal storage or
presentation to the application via APIs that expect such a
representation. Therefore, the protocol requires that when these
attributes are transferred between the client and server, the |oca
representation is translated to a string of the form
"identifier@lns_domain". This allows clients and servers that do not
use the sane | ocal representation to effectively interoperate since
they both use a commobn syntax that can be interpreted by both.

Simlarly, security principals may be represented in different ways
by different security mechanisns. Servers nornally translate these
representations into a conmon format, generally that used by |oca
storage, to serve as a neans of identifying the users corresponding
to these security principals. Wen these local identifiers are
translated to the formof the owner attribute, associated with files
created by such principals, they identify, in a common format, the
users associated with each corresponding set of security principals.

The translation used to interpret owner and group strings is not
specified as part of the protocol. This allows various solutions to
be enpl oyed. For exanple, a local translation table nmay be consulted
that maps a nuneric identifier to the user@ins_donai n syntax. A name
service nmay al so be used to acconplish the translation. A server nmay
provide a nore general service, not limted by any particul ar
translation (which would only translate a limted set of possible
strings) by storing the owner and owner_group attributes in |oca
storage without any translation, or it nmay augnent a translation

Haynes & Noveck St andards Track [Page 51]

RFC 7530 NFSv4 March 2015

met hod by storing the entire string for attributes for which no
translation is available while using the local representation for
those cases in which a translation is avail able.

Servers that do not provide support for all possible values of user
and group strings SHOULD return an error (NFS4ERR BADOMNNER) when a
string is presented that has no translation, as the value to be set
for a SETATTR of the owner or owner _group attributes or as part of
the value of the acl attribute. Wen a server does accept a user or
group string as valid on a SETATTR, it is promising to return that
same string (see bel ow) when a correspondi ng GETATTR i s done, as |ong
as there has been no further change in the corresponding attribute
before the GETATTR. For sone internationalization-related exceptions
where this is not possible, see below Configuration changes

(i ncluding changes fromthe mapping of the string to the |oca
representation) and ill-constructed nane transl ations (those that
contain aliasing) may nake that prom se inpossible to honor. Servers
shoul d nake appropriate efforts to avoid a situation in which these
attributes have their val ues changed when no real change to either
ownershi p or acls has occurred

The "dns_donmai n" portion of the owner string is neant to be a DNS
domai n nane -- for exanple, "user@xanple.org". Servers should
accept as valid a set of users for at |east one domain. A server may
treat other donmains as having no valid translations. A nore genera
service is provided when a server is capable of accepting users for
mul tiple domains, or for all domains, subject to security

constraints

As an inplenentation guide, both clients and servers nmay provide a
means to configure the "dns_donmai n" portion of the owner string. For
exanpl e, the DNS domai n nane of the host running the NFS server i ght
be "l ab. exanpl e.org", but the user nanmes are defined in
"exanple.org". In the absence of such a configuration, or as a
default, the current DNS domain nane of the server should be the

val ue used for the "dns_domai n".

As mentioned above, it is desirable that a server, when accepting a
string of the form "user @onai n" or "group@onmain" in an attribute,
return this same string when that corresponding attribute is fetched.
Internationalization issues make this inpossible under certain
circunmstances, and the client needs to take note of these. See
Section 12 for a detailed discussion of these issues.

In the case where there is no translation available to the client or
server, the attribute value will be constructed without the "@.
Therefore, the absence of the "@ fromthe owner or owner_group
attribute signifies that no translation was avail able at the sender

Haynes & Noveck St andards Track [Page 52]

RFC 7530 NFSv4 March 2015

and that the receiver of the attribute should not use that string as
a basis for translation into its own internal format. Even though
the attribute value cannot be translated, it may still be useful. In
the case of a client, the attribute string may be used for |oca

di spl ay of ownership.

To provide a greater degree of conpatibility with NFSv3, which
identified users and groups by 32-bit unsigned user identifiers and
group identifiers, owner and group strings that consist of ASCII-
encoded deci mal nuneric values with no | eading zeros can be given a
special interpretation by clients and servers that choose to provide
such support. The receiver may treat such a user or group string as
representing the sane user as would be represented by an NFSv3 uid or
gid having the correspondi ng nuneric val ue.

A server SHOULD reject such a nuneric value if the security nechani sm
is using Kerberos. That is, in such a scenario, the client wll

al ready need to form "user @omai n" strings. For any other security
mechani sm the server SHOULD accept such nuneric values. As an

i mpl ement ati on note, the server could make such an acceptance be
configurable. |If the server does not support nuneric values or if it
is configured off, then it MJST return an NFS4ERR BADOMER error. |If
the security mechanismis using Kerberos and the client attenpts to
use the special form then the server SHOULD return an

NFSAERR BADOMER error when there is a valid translation for the user
or owner designated in this way. In that case, the client must use
the appropriate user @onain string and not the special formfor
compatibility.

The client MJUST al ways accept nuneric values if the security

mechani smis not RPCSEC GSS. A client can determine if a server
supports nuneric identifiers by first attenpting to provide a numeric
identifier. |If this attenpt is rejected with an NFSAERR BADONNER
error, then the client should only use nanmed identifiers of the form
"user @ns_donai n".

The owner string "nobody" may be used to designate an anonynous user
which will be associated with a file created by a security principa
that cannot be mapped t hrough normal neans to the owner attribute.

5.10. Character Case Attri butes

Wth respect to the case_insensitive and case_preserving attributes,
case-insensitive conparisons of Unicode characters SHOULD use Uni code
Default Case Folding as defined in Chapter 3 of the Unicode Standard
[UNI CODE] and MAY override that behavior for specific selected
characters with the case folding defined in the Special Casing.txt

[SPECI ALCASI NG file; see Section 3.13 of the Unicode Standard.

Haynes & Noveck St andards Track [Page 53]

RFC 7530 NFSv4 March 2015

The Special Casing.txt file replaces the Default Case Folding with

| ocal e- and cont ext - dependent case folding for specific situations.
An exanpl e of local e- and context-dependent case folding is that
LATIN CAPI TAL LETTER I ("I1", U+0049) is default case folded to LATIN
SMALL LETTER I ("i", W+0069). However, several |anguages (e.g.
Turkish) treat an "I1" character with a dot as a different letter than
an "I" character without a dot; therefore, in such | anguages, unless
an | is before a dot_above, the "I" (UW+0049) character should be case
folded to a different character, LATIN SVMALL LETTER DOTLESS

(U+0131).

The [UNI CODE] and [SPECI ALCASI NG references in this RFC are for
version 7.0.0 of the Unicode standard, as that was the |latest version
of Uni code when this RFC was published. |nplenentations SHOULD

al ways use the latest version of Unicode
(<http://ww. uni code. org/versions/|l atest/>).

6. Access Control Attributes

Access Control Lists (ACLs) are file attributes that specify fine-
grai ned access control. This section covers the "acl", "aclsupport",
and "node" file attributes, and their interactions. Note that file
attributes may apply to any file system object.

6.1. GCoals

ACLs and nodes represent two well-established nodels for specifying
perm ssions. This section specifies requirenents that attenpt to
meet the foll ow ng goals:

o |If a server supports the node attribute, it should provide
reasonabl e semantics to clients that only set and retrieve the
node attribute.

o If a server supports ACL attributes, it should provide reasonable
semantics to clients that only set and retrieve those attributes.

0 On servers that support the node attribute, if ACL attributes have
never been set on an object, via inheritance or explicitly, the
behavi or should be traditional UN X-1ike behavi or.

0 On servers that support the node attribute, if the ACL attributes
have been previously set on an object, either explicitly or via
i nheritance:

* Setting only the node attribute should effectively control the

traditional UN X-1ike perm ssions of read, wite, and execute
on owner, owner_group, and other

Haynes & Noveck St andards Track [Page 54]

RFC 7530 NFSv4 March 2015

* Setting only the node attribute should provide reasonabl e
security. For exanple, setting a node of 000 shoul d be enough
to ensure that future opens for read or wite by any principa
fail, regardl ess of a previously existing or inherited ACL.

0 Wien a node attribute is set on an object, the ACL attributes may
need to be nodified so as to not conflict with the new node. In
such cases, it is desirable that the ACL keep as nuch information
as possible. This includes information about inheritance, AUD T
and ALARM access control entries (ACEs), and perm ssions granted
and denied that do not conflict with the new node.

6.2. File Attributes Di scussion

Support for each of the ACL attributes is RECOMENDED and not
required, since file systens accessed using NFSv4 mi ght not
support ACLs.

6.2.1. Attribute 12: ac

The NFSv4.0 ACL attribute contains an array of ACEs that are
associated with the file systemobject. Although the client can read
and wite the acl attribute, the server is responsible for using the
ACL to performaccess control. The client can use the OPEN or ACCESS
operations to check access wi thout nodifying or reading data or

net adat a.

The NFS ACE structure is defined as foll ows:

typedef uint32_t acet ype4;

typedef uint32_t acef |l ag4;

typedef uint32_t acemask4;

struct nfsaced {
acetype4d type
acefl ag4 flag;
acemask4 access_nask
utf8str_m xed who;

H

To determine if a request succeeds, the server processes each nfsace4d
entry in order. Only ACEs that have a "who" that natches the
requester are considered. Each ACE is processed until all of the
bits of the requester’s access have been ALLONED. Once a bit (see
bel ow) has been ALLOAED by an ACCESS ALLOAED ACE, it is no |onger
considered in the processing of later ACEs. |f an ACCESS DEN ED ACE

Haynes & Noveck St andards Track [Page 55]

RFC 7530 NFSv4 March 2015

is encountered where the requester’s access still has unALLOWED bits
in conmon with the "access _mask" of the ACE, the request is denied.
Wien the ACL is fully processed, if there are bits in the requester’s
mask that have not been ALLOAED or DENI ED, access is denied

Unli ke the ALLOW and DENY ACE types, the ALARM and AUDI T ACE types do
not affect a requester’s access and instead are for triggering events
as a result of a requester’s access attenpt. Therefore, AUD T and
ALARM ACEs are processed only after processing ALLOW and DENY ACEs.

The NFSv4.0 ACL nodel is quite rich. Sonme server platfornms may
provi de access control functionality that goes beyond the UNI X-style
node attribute but that is not as rich as the NFS ACL nodel. So that
users can take advantage of this nore linmted functionality, the
server may support the acl attributes by mapping between its ACL
nmodel and the NFSv4.0 ACL nodel. Servers must ensure that the ACL
they actually store or enforce is at |east as strict as the NFSv4 ACL
that was set. It is tenpting to acconplish this by rejecting any ACL
that falls outside the snall set that can be represented accurately.
However, such an approach can render ACLs unusabl e w t hout speci al
client-side know edge of the server’s nmapping, which defeats the

pur pose of having a common NFSv4 ACL protocol. Therefore, servers
shoul d accept every ACL that they can w thout conprom sing security.
To hel p acconplish this, servers may nmake a special exception, in the
case of unsupported perm ssion bits, to the rule that bits not
ALLOWED or DEN ED by an ACL nust be denied. For exanple, a UN X-
style server nmight choose to silently allow read attribute

perm ssions even though an ACL does not explicitly allow those

perm ssions. (An ACL that explicitly denies perm ssion to read
attributes should still result in a denial.)

The situation is conplicated by the fact that a server may have

mul tiple nmodul es that enforce ACLs. For exanple, the enforcenment for
NFSv4. 0 access may be different from but not weaker than, the
enforcenent for |ocal access, and both nmay be different fromthe
enforcenent for access through other protocols such as Server Message
Block (SMB) [M5-SMB]. So it nay be useful for a server to accept an
ACL even if not all of its nodules are able to support it.

The guiding principle with regard to NFSv4 access is that the server

must not accept ACLs that give an appearance of nore restricted
access to a file than what is actually enforced.

Haynes & Noveck St andards Track [Page 56]

RFC 7530

6.2.1.1. ACE Type

NFSv4

March 2015

The constants used for the type field (acetyped4) are as foll ows:

const ACE4_ACCESS_ALLOWED ACE_TYPE
const ACE4_ACCESS_DENI ED ACE_TYPE
const ACE4_SYSTEM AUDI T_ACE_TYPE
const ACE4_SYSTEM ALARM ACE_TYPE

0x00000000;
0x00000001,;
0x00000002;
0x00000003;

Al'l four bit types are permitted in the acl attribute.

ACE4_ACCESS DENI ED_ACE_TYPE

ACE4_SYSTEM AUDI T_ACE_TYPE

ACE4_SYSTEM ALARM ACE_TYPE

ACE4_ACCESS ALLONED ACE TYPE | ALLOW

DENY

AUDI T

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
| ALARM
I
I
I
I
I
I
I
|

Explicitly grants

t he access defined
in acenmask4 to the
file or directory.

Explicitly denies

t he access defined
in acemask4 to the
file or directory.

|
|
|
|
|
|
|
|
|
|
LOG (in a system
dependent way) any
access attenpt to a
file or directory
that uses any of |
t he access net hods
specified in |
acemask4. |
|
|
|
|
|
|
|
|
|
|

Cenerate a system
ALARM (system
dependent) when any
access attenpt is
made to a file or
directory for the
access net hods
specified in
acemask4.

The "Abbreviation" colum denotes how the types will be referred to
t hroughout the rest of this section

Haynes & Noveck

St andards Track

[Page 57]

RFC 7530 NFSv4 March 2015

6.2.1.2. Attribute 13: acl support

A server need not support all of the above ACE types. This attribute
i ndi cates which ACE types are supported for the current file system

The bitmask constants used to represent the above definitions within
the acl support attribute are as foll ows:

const ACL4_SUPPORT ALLOWACL = 0x00000001;
const ACL4_SUPPORT_DENY_ ACL = 0x00000002;
const ACL4_SUPPORT AUDIT ACL = 0x00000004:
const ACL4_SUPPORT ALARM ACL = 0x00000008;

Servers that support either the ALLOW or DENY ACE type SHOULD support
both ALLOW and DENY ACE types.

Cients should not attenpt to set an ACE unl ess the server clains
support for that ACE type. |If the server receives a request to set
an ACE that it cannot store, it MJST reject the request with
NFSAERR ATTRNOTSUPP. | f the server receives a request to set an ACE
that it can store but cannot enforce, the server SHOULD reject the
request with NFS4ERR_ATTRNOTSUPP.

6.2.1.3. ACE Access Mask

The bitmask constants used for the access nask field are as foll ows:

const ACE4_READ DATA = 0x00000001;
const ACE4_LI ST_DI RECTORY = 0x00000001;
const ACE4_W\RI TE_DATA = 0x00000002;
const ACE4_ADD FI LE = 0x00000002;
const ACE4_APPEND DATA = 0x00000004;
const ACE4_ADD SUBDI RECTORY = 0x00000004;
const ACE4_READ NAMED_ATTRS = 0x00000008;
const ACE4_WRI TE_NAVED _ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE CHI LD = 0x00000040;
const ACE4_READ ATTRI BUTES = 0x00000080;
const ACE4_WRI TE_ATTRI BUTES = 0x00000100;
const ACE4_DELETE = 0x00010000;
const ACE4_READ ACL = 0x00020000;
const ACE4_WRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OANER = 0x00080000;
const ACE4_SYNCHRONI ZE = 0x00100000;

Haynes & Noveck St andards Track [Page 58]

RFC 7530 NFSv4 March 2015

Not e that sonme masks have coi ncident values -- for exanple,

ACE4 READ DATA and ACE4_LI ST DI RECTORY. The mask entries

ACE4_LI ST_DI RECTORY, ACE4_ADD FI LE, and ACE4_ADD SUBDI RECTCRY are
intended to be used with directory objects, while ACE4_READ DATA,

ACE4 VI TE_DATA, and ACE4_APPEND DATA are intended to be used with

non-di rectory obj ects.
6.2.1.3.1. Discussion of Mask Attributes
ACE4_READ DATA
Qperation(s) affected:
READ
OPEN
Di scussi on:
Permi ssion to read the data of the file.

Servers SHOULD allow a user the ability to read the data of the
file when only the ACE4 _EXECUTE access nmask bit is set.

ACE4_LI ST_DI RECTORY
Operation(s) affected:
READDI R
Di scussi on:
Permission to list the contents of a directory.
ACE4_WRI TE_DATA
Qperation(s) affected:
VWRI TE
OPEN
SETATTR of size
Di scussi on:

Perm ssion to nodify a file' s data.

Haynes & Noveck St andards Track [Page 59]

RFC 7530 NFSv4 March 2015

ACE4_ADD FI LE

Operation(s) affected:
CREATE
LI NK
OPEN
RENAVE

Di scussi on:
Permission to add a new file in a directory. The CREATE
operation is affected when nfs_ftyped is NF4ALNK, NF4BLK,
NFACHR, NF4SOCK, or NF4FIFO. (NF4DIR is not listed because it
is covered by ACE4_ADD SUBDI RECTORY.) OPEN is affected when
used to create a regular file. LINK and RENAME are al ways
af f ect ed.

ACE4_APPEND_ DATA

Operation(s) affected:
VWRI TE
OPEN
SETATTR of size

Di scussi on:
The ability to nodify a file's data, but only starting at ECF.
This allows for the notion of append-only files, by allow ng
ACE4_APPEND DATA and denyi ng ACE4_WRI TE DATA to t he sane user
or group. |If a file has an ACL such as the one described above

and a WRI TE request is nmade for sonewhere other than EOF, the
server SHOULD return NFS4ERR_ACCESS.

Haynes & Noveck St andards Track [Page 60]

RFC 7530 NFSv4 March 2015

ACE4_ADD_SUBDI RECTORY
Operation(s) affected:
CREATE
RENAME
Di scussi on
Permi ssion to create a subdirectory in a directory. The CREATE
operation is affected when nfs _ftyped4 is NFADIR The RENAME
operation is always affected.
ACE4_READ NAMED ATTRS
Operation(s) affected:
OPENATTR
Di scussi on
Permi ssion to read the nanmed attributes of a file or to | ook up
the naned attributes directory. OPENATTR is affected when it
is not used to create a naned attribute directory. This is
when 1) createdir is TRUE but a nanmed attribute directory
al ready exists or 2) createdir is FALSE
ACE4_W\RI TE_NAMED_ATTRS
Qperation(s) affected:
OPENATTR
Di scussi on
Permi ssion to wite the named attributes of a file or to create
a naned attribute directory. OPENATTR is affected when it is
used to create a naned attribute directory. This is when
createdir is TRUE and no naned attribute directory exists. The
ability to check whether or not a nanmed attribute directory
exi sts depends on the ability to look it up; therefore, users

al so need the ACE4_READ NAMED ATTRS pernission in order to
create a naned attribute directory.

Haynes & Noveck St andards Track [Page 61]

RFC 7530 NFSv4 March 2015

ACE4_EXECUTE

Operation(s) affected:
READ

Di scussi on:
Permi ssion to execute a file.
Servers SHOULD allow a user the ability to read the data of the
file when only the ACE4 EXECUTE access nmask bit is set. This
is because there is no way to execute a file w thout reading
the contents. Though a server may treat ACE4_EXECUTE and
ACE4_READ DATA bits identically when deciding to pernmit a READ
operation, it SHOULD still allowthe two bits to be set
i ndependently in ACLs and MJST di stingui sh between t hem when
replying to ACCESS operations. |n particular, servers SHOULD
NOT silently turn on one of the two bits when the other is set,
as that would nake it inpossible for the client to correctly
enforce the distinction between read and execute perni ssions.
As an exanple, follow ng a SETATTR of the follow ng ACL:
nf suser: ACE4 EXECUTE: ALLOW
A subsequent GETATTR of ACL for that file SHOULD return:
nf suser: ACE4_EXECUTE: ALLOW
Rat her t han:

nf suser: ACE4_EXECUTE/ ACE4_READ_DATA: ALLOW

Haynes & Noveck St andards Track [Page 62]

RFC 7530 NFSv4 March 2015

ACE4_EXECUTE
Operation(s) affected:
L OOKUP
OPEN
REMOVE
RENANME
LI NK
CREATE
Di scussi on:
Pernission to traverse/search a directory.
ACE4_DELETE_CHI LD
Operation(s) affected:
REMOVE
RENANE
Di scussi on:
Pernission to delete a file or directory within a directory.

See Section 6.2.1.3.2 for information on how ACE4_DELETE and
ACE4_DELETE_CHI LD interact.

Haynes & Noveck St andards Track [Page 63]

RFC 7530 NFSv4 March 2015

ACE4_READ_ATTRI BUTES
Operation(s) affected:
CETATTR of file systemobject attributes
VERI FY
NVERI FY
READDI R
Di scussi on
The ability to read basic attributes (non-ACLs) of a file.
On a UNI X system basic attributes can be thought of as the
stat-level attributes. Alowing this access mask bit would
mean the entity can execute "Is -1" and stat. |f a READDI R
operation requests attributes, this mask nust be allowed for
the READDI R to succeed.
ACE4_\\RI TE_ATTRI BUTES

Operation(s) affected:

SETATTR of tinme_access_set, tine_backup, tine _create,
time_nodi fy_set, minetype, hidden, and system

Di scussi on
Perni ssion to change the tinmes associated with a file or
directory to an arbitrary value. Al so, perm ssion to change
the m netype, hidden and system attributes. A user having
ACE4_\W\RI TE_DATA or ACE4_WRI TE_ATTRIBUTES will be allowed to set
the tines associated with a file to the current server tine.

ACE4_DELETE

Operation(s) affected:
REMOVE

Di scussi on
Pernmission to delete the file or directory. See

Section 6.2.1.3.2 for informati on on ACE4_DELETE and
ACE4 DELETE CHI LD interact.

Haynes & Noveck St andards Track [Page 64]

RFC 7530 NFSv4

ACE4_READ_ACL
Operation(s) affected:
GETATTR of acl
NVERI FY
VERI FY
Di scussi on
Permission to read the ACL.
ACE4_WRI TE_ACL
Operation(s) affected:
SETATTR of acl and node

Di scussi on

Perm ssion to wite the acl and node attri butes.

ACE4_W\RI TE_OWKER

Operation(s) affected:

SETATTR of owner and owner _group

Di scussi on

March 2015

Pernission to wite the owner and owner_group attributes. On
UNI X systens, this is the ability to execute chown() and

chgrp().

Haynes & Noveck St andards Track

[Page 65]

RFC 7530 NFSv4 March 2015

ACE4_SYNCHRONI ZE
Operation(s) affected:
NONE
Di scussi on

Permi ssion to use the file object as a synchronization
primtive for interprocess communication. This permissionis
not enforced or interpreted by the NFSv4.0 server on behal f of
the client.

Typically, the ACE4_SYNCHRON ZE permission is only meaningfu
on local file systens, i.e., file systens not accessed via
NFSv4.0. The reason that the permission bit exists is that
some operating environnents, such as Wndows, use
ACE4_SYNCHRONI ZE.

For exanple, if a client copies a file that has
ACE4_SYNCHRONI ZE set froma local file systemto an NFSv4.0
server, and then later copies the file fromthe NFSv4.0 server
to alocal file system it is likely that if ACE4_SYNCHRON ZE
was set in the original file, the client will want it set in
the second copy. The first copy will not have the perm ssion
set unless the NFSv4.0 server has the neans to set the
ACE4_SYNCHRONI ZE bit. The second copy will not have the

perm ssion set unless the NFSv4.0 server has the neans to
retrieve the ACE4_SYNCHRON ZE bit.

Server inplenentations need not provide the granularity of contro
that is inplied by this list of masks. For exanple, PGCSI X-based
systenms might not distingui sh ACE4_APPEND DATA (the ability to append
to a file) fromACE4_WRI TE DATA (the ability to nodify existing
contents); both nmasks would be tied to a single "wite" perm ssion
Wien such a server returns attributes to the client, it would show
bot h ACE4_APPEND DATA and ACE4 WRITE DATA if and only if the wite
permi ssion is enabl ed.

If a server receives a SETATTR request that it cannot accurately

i npl enment, it should err in the direction of nore restricted access,
except in the previously discussed cases of execute and read. For
exanpl e, suppose a server cannot distinguish overwiting data from
appendi ng new data, as described in the previous paragraph. |If a
client submits an ALLOW ACE where ACE4_APPEND DATA is set but
ACE4_VWRI TE DATA is not (or vice versa), the server should either turn
of f ACE4_APPEND DATA or reject the request wi th NFS4ERR _ATTRNOTSUPP

Haynes & Noveck St andards Track [Page 66]

RFC 7530 NFSv4 March 2015

6.2.1.3.2. ACE4_DELETE versus ACE4_DELETE_CHI LD

Two access mask bits govern the ability to delete a directory entry:
ACE4_DELETE on the object itself (the "target") and ACE4_DELETE CHI LD
on the containing directory (the "parent").

Many systens al so take the "sticky bit" (MODE4_SVTX) on a directory
to allow unlink only to a user that owns either the target or the
parent; on sone such systens, the decision also depends on whet her
the target is witable.

Servers SHOULD allow unlink if either ACE4 DELETE is pernitted on the
target or ACE4 DELETE CHILD is permitted on the parent. (Note that
this is true even if the parent or target explicitly denies the other
of these perm ssions.)

If the ACLs in question neither explicitly ALLON nor DENY either of
the above, and if MODE4 SVTX is not set on the parent, then the
server SHOULD allow the renoval if and only if ACE4 ADD FILE is
permitted. In the case where MODE4 SVTX is set, the server may al so
require the renmover to own either the parent or the target, or may
require the target to be witable.

This allows servers to support sonething close to traditional
UNI X-1i ke semantics, with ACE4 _ADD FILE taking the place of the
wite bit.

6.2.1.4. ACE flag

The bitnmask constants used for the flag field are as foll ows:

const ACE4_FI LE_| NHERI T_ACE = 0x00000001;
const ACE4_DI RECTORY_I NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE_| NHERI T_ACE = 0x00000004;
const ACE4_| NHERI T_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FAlI LED _ACCESS_ACE_FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040;
A server need not support any of these flags. |If the server supports

flags that are simlar to, but not exactly the same as, these flags,
the inplenentati on nay define a nmappi ng between the protocol -defined
flags and the inpl enentation-defined flags.

For exanple, suppose a client tries to set an ACE with

ACE4_FI LE_I NHERI T_ACE set but not ACE4_DI RECTORY_INHERI T_ACE. |If the
server does not support any formof ACL inheritance, the server

shoul d reject the request with NFS4ERR ATTRNOTSUPP. |f the server

Haynes & Noveck St andards Track [Page 67]

RFC 7530 NFSv4 March 2015

supports a single "inherit ACE'" flag that applies to both files and
directories, the server may reject the request (i.e., requiring the
client to set both the file and directory inheritance flags). The
server may al so accept the request and silently turn on the

ACE4_Dl RECTORY_| NHERI T_ACE f | ag.

6.2.1.4.1. Discussion of Flag Bits

ACE4_FI LE_I NHERI T_ACE
Any non-directory file in any subdirectory will get this ACE
i nherited.

ACE4_Dl RECTORY_| NHERI T_ACE
Can be placed on a directory and indicates that this ACE should be
added to each new directory created.
If this flag is set in an ACEin an ACL attribute to be set on a
non-directory file systemobject, the operation attenpting to set
the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

ACE4 | NHERI T_ONLY_ACE
Can be placed on a directory but does not apply to the directory;
ALLOW and DENY ACEs with this bit set do not affect access to the
directory, and AUDIT and ALARM ACEs with this bit set do not
trigger log or alarmevents. Such ACEs only take effect once they
are applied (with this bit cleared) to newy created files and
directories as specified by the above two fl ags.
If this flag is present on an ACE, but neither
ACE4_DI RECTORY_| NHERI T_ACE nor ACE4_FI LE_ | NHERI T_ACE is present,
then an operation attenpting to set such an attribute SHOULD f ail
wi t h NFS4ERR_ATTRNOTSUPP.

ACE4_NO PROPAGATE | NHERI T_ACE
Can be placed on a directory. This flag tells the server that
i nheritance of this ACE should stop at newy created child
directories.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG

ACE4_FAl LED_ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS ACE _FLAG (SUCCESS) and
ACE4_FAl LED_ACCESS ACE _FLAG (FAILED) flag bits may be set only on
ACE4_SYSTEM AUDI T_ACE_TYPE (AUDI T) and ACE4_SYSTEM ALARM ACE_TYPE
(ALARM ACE types. |If, during the processing of the file' s ACL,
the server encounters an AUDIT or ALARM ACE that natches the
principal attenpting the OPEN, the server notes that fact and
notes the presence, if any, of the SUCCESS and FAI LED fl ags
encountered in the AUDIT or ALARM ACE. Once the server conpl etes
the ACL processing, it then notes if the operation succeeded or

Haynes & Noveck St andards Track [Page 68]

RFC 7530 NFSv4 March 2015

failed. |If the operation succeeded, and if the SUCCESS flag was
set for a matching AUDIT or ALARM ACE, then the appropriate AUDI T
or ALARM event occurs. |If the operation failed, and if the FAILED
flag was set for the matching AUDI T or ALARM ACE, then the
appropriate AUDIT or ALARM event occurs. Either or both of the
SUCCESS or FAILED can be set, but if neither is set, the AUDIT or
ALARM ACE is not useful.

The previously described processing applies to ACCESS operations
even when they return NFS4_OK. For the purposes of AUDIT and
ALARM we consider an ACCESS operation to be a "failure” if it
fails to return a bit that was requested and support ed.

ACE4_| DENTI FI ER_GROUP
I ndicates that the "who" refers to a GROUP as defined under UNI X
or a GROUP ACCOUNT as defined under Wndows. dients and servers
MUST i gnore the ACE4_| DENTI FI ER_GROUP flag on ACEs with a who
val ue equal to one of the special identifiers outlined in
Section 6.2.1.5.

6.2.1.5. ACE Wo

The who field of an ACE is an identifier that specifies the principa
or principals to whomthe ACE applies. It nay refer to a user or a
group, with the flag bit ACE4_| DENTI FI ER_GROUP speci fyi ng which

There are several special identifiers that need to be understood
universally, rather than in the context of a particular DNS donai n.
Some of these identifiers cannot be understood when an NFS client
accesses the server but have nmeani ng when a | ocal process accesses
the file. The ability to display and nodify these pernissions is
pernmitted over NFS, even if none of the access nethods on the server
understand the identifiers.

Haynes & Noveck St andards Track [Page 69]

RFC 7530 NFSv4 March 2015

6.2

6. 2.

Hay

R oo m eeea +
| Wo | Description |
S oo m e aa +

OWNER The owner of the file.

GROUP The group associated with the file.

EVERYONE The world, including the owner and owni ng group.

| NTERACTI VE Accessed froman interactive terninal.

NETWORK Accessed via the network.

DI ALUP	Accessed as a dialup user to the server.

BATCH Accessed from a batch job.
ANONYMOUS Accessed wi t hout any authentication.
AUTHENTI CATED | Any aut henticated user (opposite of ANONYMOUS).
SERVI CE Access froma system servi ce.
R oo m eaa +

Tabl e 5: Special ldentifiers

To avoid conflict, these special identifiers are distinguished by an
appended "@ and should appear in the form"xxxx@ (wth no donain
nane after the "@) -- for exanple, ANONYMOUS@

The ACE4_| DENTI FI ER_GROUP flag MJUST be ignored on entries with these
special identifiers. Wen encoding entries with these speci al
identifiers, the ACE4_| DENTI FI ER GROUP flag SHOULD be set to zero.

.1.5. 1. Di scussi on of EVERYONE@

It is inmportant to note that "EVERYONE@ is not equivalent to the
UNI X "other" entity. This is because, by definition, UN X "other"
does not include the owner or owning group of a file. "EVERYONE@
means literally everyone, including the owner or owning group.

2. Attribute 33: node

The NFSv4.0 node attribute is based on the UNl X node bits. The
following bits are defined:

0x800; /* set user id on execution */
0x400; /* set group id on execution */
0x200; /* save text even after use */
0x100; /* read perm ssion: owner */
0x080; /* wite pernission: owner */
0x040; /* execute permission: owner */
0x020; /* read perm ssion: group */
0x010; /* wite pernission: group */
0x008; /* execute perm ssion: group */

const MODE4_SUI D
const MODE4_SA D
const MODE4 SVTX
const MODE4_RUSR
const MODE4_WJUSR
const MODE4_XUSR
const MODE4_RCRP
const MODE4_WCRP
const MODE4_XCGRP

nes & Noveck St andards Track [Page 70]

RFC 7530 NFSv4 March 2015

const MODE4_ROTH
const MODE4_WOTH
const MODE4_XOTH

0x004; /* read perm ssion: other */
0x002; /* wite pernission: other */
0x001; /* execute perm ssion: other */

Bits MODE4_RUSR, MODE4_WJSR, and MODE4_XUSR apply to the principal
identified in the ower attribute. Bits MODE4 RCGRP, MODE4 WGRP, and
MODE4 _XGRP apply to principals identified in the owner_group
attribute but who are not identified in the owner attribute. Bits
MODE4_ROTH, MODE4 WOTH, and MODE4_XOTH apply to any principal that
does not match that in the owner attribute and does not have a group
mat chi ng that of the owner_group attribute.

Bits within the node other than those specified above are not defined
by this protocol. A server MJUST NOT return bits other than those
defined above in a GETATTR or READDI R operation, and it MJST return
NFSA4ERR I NVAL if bits other than those defined above are set in a
SETATTR, CREATE, OPEN, VERI FY, or NVERI FY operation.

6.3. Conmon Met hods

The requirenments in this section will be referred to in future
sections, especially Section 6.4.

6.3.1. Interpreting an ACL
6.3.1.1. Server Considerations

The server uses the algorithmdescribed in Section 6.2.1 to determ ne
whet her an ACL allows access to an object. However, the ACL may not
be the sole determ ner of access. For exanple:

0 In the case of a file systemexported as read-only, the server may
deny wite perm ssions even though an object’s ACL grants it.

o Server inplenmentations MAY grant ACE4 WRI TE_ACL and ACE4_READ ACL
permni ssions to prevent a situation fromarising in which there is
no valid way to ever nodify the ACL.

0o Al servers will allow a user the ability to read the data of the
file when only the execute permission is granted (i.e., if the ACL
deni es the user ACE4_READ DATA access and al l ows the user
ACE4 _EXECUTE, the server will allow the user to read the data of
the file).

Haynes & Noveck St andards Track [Page 71]

RFC 7530 NFSv4 March 2015

o Many servers have the notion of owner-override, in which the owner
of the object is allowed to override accesses that are denied by
the ACL. This may be helpful, for exanple, to allow users
continued access to open files on which the perm ssions have
changed.

o Many servers have the notion of a "superuser" that has privileges
beyond an ordinary user. The superuser may be able to read or
wite data or netadata in ways that would not be permtted by
the ACL.

6.3.1.2. dient Considerations

Clients SHOULD NOT do their own access checks based on their
interpretation of the ACL but rather use the OPEN and ACCESS
operations to do access checks. This allows the client to act on the
results of having the server determ ne whether or not access should
be granted based on its interpretation of the ACL.

Clients nmust be aware of situations in which an object’s ACL will
define a certain access even though the server will not have adequate
information to enforce it. For exanple, the server has no way of
determ ning whether a particular OPEN reflects a user’s open for read
access or is done as part of executing the file in question. 1In such
situations, the client needs to do its part in the enforcenent of
access as defined by the ACL. To do this, the client will send the
appropriate ACCESS operation (or use a cached previous determnination)
prior to servicing the request of the user or application in order to
det erm ne whether the user or application should be granted the
access requested. For exanples in which the ACL may define accesses
that the server does not enforce, see Section 6.3.1.1.

6.3.2. Conmputing a node Attribute froman ACL

The followi ng nethod can be used to cal culate the MODE4_R*, MODE4_ W,
and MODE4_X* bits of a node attribute, based upon an ACL.

First, for each of the special identifiers OMBNER@ GROUP@ and
EVERYONE@ evaluate the ACL in order, considering only ALLOWN and DENY
ACEs for the identifier EVERYONE@ and for the identifier under
consideration. The result of the evaluation will be an NFSv4 ACL
mask showi ng exactly which bits are pernitted to that identifier.

Haynes & Noveck St andards Track [Page 72]

RFC 7530 NFSv4 March 2015

Then translate the cal cul ated mask for OMNER@ GROUP@ and EVERYONE@
into node bits for the user, group, and other, respectively, as
fol | ows:

1. Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and
only if ACE4_READ DATA is set in the correspondi ng nask.

2. Set the wite bit (MODE4 WJSR, MODE4 WGRP, or MODE4 WOTH) if and
only if ACE4_WRI TE_DATA and ACE4_APPEND DATA are both set in the
correspondi ng mask.

3. Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if
and only if ACE4 EXECUTE is set in the correspondi ng mask.

6.3.2.1. Discussion

Some server inplenentations also add bits permtted to named users
and groups to the group bits (MODE4_RGRP, MODE4 WGRP, and
MODE4_XCRP) .

| mpl enent ati ons are discouraged fromdoing this, because it has been
found to cause confusion for users who see nenbers of a file' s group
deni ed access that the node bits appear to allow. (The presence of
DENY ACEs may al so | ead to such behavior, but DENY ACEs are expected
to be nore rarely used.)

The sane user confusion seen when fetching the node also results if
setting the node does not effectively control perm ssions for the
owner, group, and other users; this notivates sone of the
requirenents that follow

6.4. Requirenents

The server that supports both node and ACL nust take care to
synchroni ze the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with the
ACEs that have respective who fields of "OMER@, "GROUP@, and
"EVERYONE@ so that the client can see that semantically equival ent
access permi ssions exist whether the client asks for just the ACL or
any of the owner, owner_group, and node attri butes.

Many requirenents refer to Section 6.3.2, but note that the nethods
have behaviors specified with "SHOULD'. This is intentional, to
avoid invalidating existing inplenentations that conpute the node
according to the withdrawn POSI X ACL draft ([P1003.1e]), rather than
by actual pernissions on owner, group, and other.

Haynes & Noveck St andards Track [Page 73]

RFC 7530 NFSv4 March 2015

6.4.1. Setting the node and/or ACL Attributes
6.4.1.1. Setting nmode and Not ACL

When any of the nine | oworder node bits are changed because the node
attribute was set, and no ACL attribute is explicitly set, the acl
attribute nmust be nodified in accordance with the updated val ue of
those bits. This nust happen even if the value of the |oworder bits
is the same after the node is set as before.

Note that any AUDI T or ALARM ACEs are unaffected by changes to the
node.

In cases in which the permissions bits are subject to change, the acl
attribute MJST be nodified such that the node conputed via the nmethod
described in Section 6.3.2 yields the I oworder nine bits (MODE4_R*,
MODE4_W, MODE4_X*) of the node attribute as nodified by the change
attribute. The ACL attributes SHOULD al so be nodified such that:

1. |If MODE4 RCGRP is not set, entities explicitly listed in the ACL
ot her than OANER@ and EVERYONE@ SHOULD NOT be granted
ACE4_READ DATA.

2. If MODE4 WGRP is not set, entities explicitly listed in the ACL
ot her than OANWNER@ and EVERYONE@ SHOULD NOT be granted
ACE4 V\RI TE_DATA or ACE4_APPEND DATA.

3. If MODE4_XGRP is not set, entities explicitly listed in the ACL
ot her than OANER@ and EVERYONE@ SHOULD NOT be granted
ACE4_EXECUTE.

Access mask bits other than those |isted above, appearing in ALLOW
ACEs, MAY al so be disabl ed.

Note that ACEs with the flag ACE4_ I NHERI T_ONLY_ACE set do not affect

the pernissions of the ACL itself, nor do ACEs of the types AUDI T and
ALARM As such, it is desirable to | eave these ACEs unnodified when

nodi fying the ACL attri butes.

Al so note that the requirement may be nmet