I nt ernet Engi neering Task Force (I ETF) D. Hardt, Ed.

Request for Comments: 6749 M crosoft

osol etes: 5849 Cct ober 2012
Cat egory: Standards Track

| SSN: 2070-1721

The QAuth 2.0 Authorization Franmework
Abst r act

The QAuth 2.0 authorization framework enables a third-party
application to obtain limted access to an HITP service, either on
behal f of a resource owner by orchestrating an approval interaction
bet ween the resource owner and the HTTP service, or by allow ng the
third-party application to obtain access on its own behalf. This
specification replaces and obsol etes the QAuth 1.0 protocol described
in RFC 5849.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6749

Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Har dt St andards Track [Page 1]

RFC 6749

QAuth 2.0 Cct ober 2012

Tabl e of Contents

1

Har dt

Introducti On 4
1.1, ROl ES o 6
1.2. Protocol Flow 7
1.3. Authorization Gant i 8
1.3.1. Authorization Code 8
1.3.2. Inplicit oo 8
1. 3. 3. Resource Omner Password Credentials 9
1.3.4. dient Credentials 9
1.4, Access TOoKEeN 10
1.5. Refresh Token 10
1.6. TLS VerSi ON ..o 12
1.7. HTITP Redirecti Ons i e e e e 12
1.8. Interoperabi lity 12
1.9. Notational Conventions 13
Cient Registrati on e 13
2.1, Qient TYPES ittt e 14
2.2, dient ldentifier e 15
2.3. dient Authentication 16
2.3.1. dient Password 16
2.3.2. Oher Authentication Methods 17
2.4. Unregistered Cients i 17
Protocol Endpoi Nt s e 18
3.1. Authorization Endpoint 18
3. 1. 1. RespoNnse TYPe ..t 19
3.1.2. Redirection Endpoint 19
3.2. Token ENdpoi nt 21
3.2.1. Cient Authentication, 22
3.3. Access TOKEN SCOPE ...ttt 23
Qobtaining Authorization e 23
4.1. Authorization Code Grantty 24
4.1.1. Authorization Request 25
4.1.2. Authorization Response 26
4.1.3. Access Token Request 29
4.1.4. Access Token ReSpONSeiiiiininnanan 30
4.2, Inplicit Gant e 31
4.2.1. Authorization Request 33
4.2.2. Access Token ReSpONSe i, 35
4.3. Resource Omer Password Credentials Grant 37
4.3.1. Authorization Request and Response 39
4.3.2. Access Token Requestc. iy 39
4.3.3. Access Token ReSpONsSeciiiiinninnennns 40
4.4, dient Credentials Gant 40
4.4.1. Authorization Request and Response 41
4.4.2. Access Token Request 41
4.4.3. Access Token Response 42
4.5, EXtension Grants i 42

St andards Track [Page 2]

RFC 6749 QAuth 2.0 COct ober 2012

5.

6.
7.

11.

12.

Har dt

Issuing an Access TOKEN e 43
5.1. Successful ResSponNse 43
5.2, Error ReSPONSE e 45
Refreshing an Access Token i, 47
Accessing Protected RESOUIrCeSt 48
7.1. Access Token TYPeS ...t e e e 49
7.2, Error RESPONSEttt e e e 49
Extensi bi lity ... 50
8.1. Defining Access Token Types 50
8.2. Defining New Endpoint Parameters 50
8.3. Defining New Aut horization Grant Types 51
8. 4. Defining New Authorization Endpoi nt Response Types 51
8.5. Defining Additional Error Codes 51
Native ApplicatiOns e 52
Security Considerati Ons 53
10.1. dient Authentication 53
10. 2. dient Inpersonation 54
10.3. Access TOKENS i 55
10.4. Refresh Tokens 55
10.5. Authorization Codes, 56
10. 6. Authorization Code Redirection URI Manipulation 56
10. 7. Resource Omer Password Credentials 57
10.8. Request Confidentiality 58
10.9. Ensuring Endpoint Authenticity 58
10.10. Credentials-Quessing Attacks 58
10.11. Phishing Attacks 58
10.12. Cross-Site Request FOrgery i 59
10.13. dickjacking 60
10.14. Code Injection and Input Validation 60
10.15. Open RedireCctorst e e 60
10.16. M suse of Access Token to | npersonate Resource
Omer in Inplicit Flow 61
IANA Considerati ONS 62
11.1. QAuth Access Token Types Registry 62
11.1.1. Registration Tenplate 62
11.2. QAuth Parameters Registry 63
11.2.1. Registration Tenplate 63
11.2.2. Initial Registry Contents 64
11.3. QAuth Authorization Endpoint Response Types Registry 66
11.3.1. Registration Tenplate 66
11.3.2. Initial Registry Contents 67
11. 4. QAuth Extensions Error Registry 67
11.4.1. Registration Tenplate 68
Ref er encCes ... 68
12.1. Normative References 68
12.2. Informative References i, 70

St andards Track [Page 3]

RFC 6749 QAuth 2.0 COct ober 2012

Appendi x A Augnent ed Backus-Naur Form (ABNF) Syntax 71
Al "client_id" Syntax i 71
A 2. "client_secret” Syntax 71
A 3. "response_type" Syntax 71
A 4. "SCOope" SYyNtax ... 72
A 5. rstate” SyNtaX ... 72
A 6. "redirect _uri" Syntax e 72
A 7. Terror” SYNtaX 72
A 8. Merror_description" Syntax 72
A9, Terror_urit SYyNtax ... 72
A 10. "grant_type" SyntaxX 73
A 11, "code" SyNtaXx ... e 73
A . 12. "access_token" Syntax e 73
A 13, "token_type" Syntax ... 73
A 14, "expires_in" Syntax 73
A 15, "username" SYNtaX 73
A 16, "password” SYNtaxX ... 73
A 17. "refresh_token" Syntax i, 74
A.18. Endpoint Paraneter Syntaxccuuiiiiiuniinna. 74

Appendi x B. Use of application/x-ww-formurlencoded Media Type ...74

Appendi x C. Acknow edgements 75

1. Introduction

In the traditional client-server authentication nodel, the client
requests an access-restricted resource (protected resource) on the
server by authenticating with the server using the resource owner’s
credentials. In order to provide third-party applications access to
restricted resources, the resource owner shares its credentials with
the third party. This creates several problens and linitations:

0o Third-party applications are required to store the resource
owner’s credentials for future use, typically a password in
cl ear-text.

0 Servers are required to support password authentication, despite
the security weaknesses inherent in passwords.

o Third-party applications gain overly broad access to the resource
owner’s protected resources, |eaving resource owners w thout any
ability to restrict duration or access to a limted subset of
resour ces

0 Resource owners cannot revoke access to an individual third party

wi t hout revoking access to all third parties, and nust do so by
changing the third party’ s password.

Har dt St andards Track [Page 4]

RFC 6749 QAuth 2.0 COct ober 2012

0 Conprom se of any third-party application results in conprom se of
the end-user’s password and all of the data protected by that
password

QAut h addresses these issues by introducing an authorization | ayer
and separating the role of the client fromthat of the resource
owner. |In QAuth, the client requests access to resources controlled
by the resource owner and hosted by the resource server, and is
issued a different set of credentials than those of the resource
owner .

I nstead of using the resource owner’'s credentials to access protected
resources, the client obtains an access token -- a string denoting a
specific scope, lifetine, and other access attributes. Access tokens
are issued to third-party clients by an authorization server with the
approval of the resource owner. The client uses the access token to
access the protected resources hosted by the resource server.

For exanpl e, an end-user (resource owner) can grant a printing
service (client) access to her protected photos stored at a photo-
sharing service (resource server), w thout sharing her usernanme and
password with the printing service. Instead, she authenticates
directly with a server trusted by the photo-sharing service

(aut horization server), which issues the printing service del egation-
specific credentials (access token).

This specification is designed for use with HTTP ([RFC2616]). The
use of QAuth over any protocol other than HTTP is out of scope.

The QAuth 1.0 protocol ([RFC5849]), published as an infornationa
docunent, was the result of a snmall ad hoc community effort. This

St andards Track specification builds on the QAuth 1.0 depl oynent
experience, as well as additional use cases and extensibility

requi renents gathered fromthe wi der | ETF community. The QAuth 2.0
protocol is not backward conpatible with QAuth 1.0. The two versions
may co-exi st on the network, and inplenentations nay choose to
support both. However, it is the intention of this specification
that new i npl enent ati ons support QAuth 2.0 as specified in this
docunment and that QAuth 1.0 is used only to support existing

depl oynents. The QAuth 2.0 protocol shares very few inplenentation
details with the QAuth 1.0 protocol. Inplenenters famliar with
QAuth 1.0 shoul d approach this docunent wi thout any assunptions as to
its structure and details.

Har dt St andards Track [Page 5]

RFC 6749 QAuth 2.0 COct ober 2012

1.1. Roles
QAut h defines four roles:

resource owner
An entity capable of granting access to a protected resource.
When the resource owner is a person, it is referred to as an
end- user.

resource server
The server hosting the protected resources, capable of accepting
and responding to protected resource requests using access tokens.

client
An application making protected resource requests on behal f of the
resource owner and with its authorization. The term"client" does
not inply any particular inplenmentation characteristics (e.qg.
whet her the application executes on a server, a desktop, or other
devi ces).

aut hori zati on server
The server issuing access tokens to the client after successfully
aut henticating the resource owner and obtaining authorization.

The interaction between the authorization server and resource server
i s beyond the scope of this specification. The authorization server
may be the same server as the resource server or a separate entity.
A single authorization server may issue access tokens accepted by
mul ti ple resource servers

Har dt St andards Track [Page 6]

RFC 6749 QAduth 2.0 Cct ober 2012
1.2. Protocol Flow
oo + I +
| | --(A)- Authorization Request ->| Resour ce
| | _ _ | Onner |
| | <-(B)-- Authorization Grant ---| |
| | S +
| |
| | - +
| |--(C)-- Authorization Gant -->| Authorization
| dient | | Server |
| | <-(D)----- Access Token ------- | |
| | S +
| |
| | - +
| |--(E)----- Access Token ------ >| Resour ce
| | | Server |
| | <-(F)--- Protected Resource ---| |
. + . +

Figure 1: Abstract Protocol Fl ow

The abstract QAuth 2.0 flow illustrated in Figure 1 describes the

i nter

(A

(B)

(O

(D

Har dt

action between the four roles and includes the follow ng steps:

The client requests authorization fromthe resource owner. The
aut hori zati on request can be made directly to the resource owner
(as shown), or preferably indirectly via the authorization
server as an intermediary.

The client receives an authorization grant, which is a
credential representing the resource owner’s authorization
expressed using one of four grant types defined in this
specification or using an extension grant type. The

aut hori zation grant type depends on the nethod used by the
client to request authorization and the types supported by the
aut hori zation server.

The client requests an access token by authenticating with the
aut hori zati on server and presenting the authorization grant.

The aut horization server authenticates the client and validates
the authorization grant, and if valid, issues an access token

St andards Track [Page 7]

RFC 6749 QAuth 2.0 COct ober 2012

(E) The client requests the protected resource fromthe resource
server and authenticates by presenting the access token

(F) The resource server validates the access token, and if valid,
serves the request.

The preferred nethod for the client to obtain an authorization grant
fromthe resource owner (depicted in steps (A) and (B)) is to use the
aut hori zation server as an internediary, which is illustrated in
Figure 3 in Section 4.1.

1.3. Authorization G ant

An aut hori zation grant is a credential representing the resource
owner’'s authorization (to access its protected resources) used by the
client to obtain an access token. This specification defines four
grant types -- authorization code, inmplicit, resource owner password
credentials, and client credentials -- as well as an extensibility
mechani sm for defining additional types

1.3.1. Authorizati on Code

The aut horization code is obtained by using an authorization server
as an internediary between the client and resource owner. Instead of
requesting authorization directly fromthe resource ower, the client
directs the resource owner to an authorization server (viaits
user-agent as defined in [RFC2616]), which in turn directs the
resource owner back to the client with the authorization code.

Before directing the resource owner back to the client with the

aut hori zati on code, the authorization server authenticates the
resource owner and obtains authorization. Because the resource owner
only authenticates with the authorization server, the resource
owner’s credentials are never shared with the client.

The aut horization code provides a few inportant security benefits,
such as the ability to authenticate the client, as well as the
transm ssion of the access token directly to the client wthout
passing it through the resource owner’'s user-agent and potentially
exposing it to others, including the resource owner.

1.3.2. Inplicit

The inplicit grant is a sinplified authorization code flow optim zed
for clients inplenmented in a browser using a scripting | anguage such
as JavaScript. In the inplicit flow, instead of issuing the client

an aut horization code, the client is issued an access token directly

Har dt St andards Track [Page 8]

RFC 6749 QAuth 2.0 COct ober 2012

(as the result of the resource owner authorization). The grant type
is inplicit, as no internedi ate credentials (such as an authorization
code) are issued (and | ater used to obtain an access token).

When issuing an access token during the inplicit grant flow, the

aut hori zation server does not authenticate the client. |n sone
cases, the client identity can be verified via the redirection UR
used to deliver the access token to the client. The access token nay
be exposed to the resource owner or other applications with access to
the resource owner’s user-agent.

Inmplicit grants inprove the responsiveness and efficiency of sone
clients (such as a client inplenented as an i n-browser application),
since it reduces the nunmber of round trips required to obtain an
access token. However, this conveni ence should be wei ghed agai nst
the security inplications of using inplicit grants, such as those
described in Sections 10.3 and 10.16, especially when the

aut hori zation code grant type is avail abl e.

1.3.3. Resource Omer Password Credentials

The resource owner password credentials (i.e., usernane and password)
can be used directly as an authorization grant to obtain an access
token. The credentials should only be used when there is a high
degree of trust between the resource owner and the client (e.g., the
client is part of the device operating systemor a highly privileged
application), and when other authorization grant types are not
avai l abl e (such as an authori zation code).

Even though this grant type requires direct client access to the
resource owner credentials, the resource owner credentials are used
for a single request and are exchanged for an access token. This
grant type can elinmnate the need for the client to store the
resource owner credentials for future use, by exchangi ng the
credentials with a long-lived access token or refresh token

1.3.4. dient Credentials

The client credentials (or other fornms of client authentication) can
be used as an authorization grant when the authorization scope is
limted to the protected resources under the control of the client,
or to protected resources previously arranged with the authorization
server. Cient credentials are used as an authorization grant
typically when the client is acting on its own behalf (the client is
al so the resource owner) or is requesting access to protected
resources based on an authorization previously arranged with the

aut hori zati on server.

Har dt St andards Track [Page 9]

RFC 6749 QAuth 2.0 COct ober 2012

1. 4.

1

5.

Access Token

Access tokens are credentials used to access protected resources. An
access token is a string representing an authorization issued to the
client. The string is usually opaque to the client. Tokens
represent specific scopes and durations of access, granted by the
resource owner, and enforced by the resource server and authorization
server.

The token may denote an identifier used to retrieve the authorization
informati on or may self-contain the authorization information in a
verifiable manner (i.e., a token string consisting of sone data and a
signature). Additional authentication credentials, which are beyond
the scope of this specification, may be required in order for the
client to use a token

The access token provides an abstraction |ayer, replacing different
aut hori zation constructs (e.g., usernane and password) with a single
t oken understood by the resource server. This abstraction enables

i ssui ng access tokens nore restrictive than the authorization grant
used to obtain them as well as rempving the resource server’s need
to understand a wi de range of authentication nethods.

Access tokens can have different formats, structures, and methods of
utilization (e.g., cryptographic properties) based on the resource
server security requirenments. Access token attributes and the

nmet hods used to access protected resources are beyond the scope of
this specification and are defined by conpani on specifications such
as [RFC6750] .

Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh
tokens are issued to the client by the authorization server and are
used to obtain a new access token when the current access token
becones invalid or expires, or to obtain additional access tokens
with identical or narrower scope (access tokens nmay have a shorter
lifetime and fewer perm ssions than authorized by the resource
owner). |Issuing a refresh token is optional at the discretion of the
aut hori zation server. |f the authorization server issues a refresh
token, it is included when issuing an access token (i.e., step (D) in
Figure 1).

A refresh token is a string representing the authorization granted to
the client by the resource owner. The string is usually opaque to
the client. The token denotes an identifier used to retrieve the

Har dt St andards Track [Page 10]

RFC 6749 QAuth 2.0 COct ober 2012

aut hori zation information. Unlike access tokens, refresh tokens are
intended for use only with authorization servers and are never sent
to resource servers.

- (A)------- Aut hori zation Gant --------- >|

<-(B)----------- Access Token ------------- |
& Refresh Token

	to--o---o-- +			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
ddient		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	AR +			
[--(@----------- Refresh Token ----------- >				
[<-(H)----------- Access Token -------------				
e + & Optional Refresh Token R +
Figure 2: Refreshing an Expired Access Token
The flowillustrated in Figure 2 includes the follow ng steps:

(A) The client requests an access token by authenticating with the
aut hori zati on server and presenting an authorization grant.

(B) The authorization server authenticates the client and validates
the authorization grant, and if valid, issues an access token
and a refresh token.

(C© The client nmakes a protected resource request to the resource
server by presenting the access token.

(D) The resource server validates the access token, and if valid,
serves the request.

(E) Steps (C) and (D) repeat until the access token expires. |f the
client knows the access token expired, it skips to step (Q;
otherwi se, it nakes another protected resource request.

(F) Since the access token is invalid, the resource server returns
an invalid token error.

Har dt St andards Track [Page 11]

RFC 6749 QAuth 2.0 COct ober 2012

(G The client requests a new access token by authenticating wth
t he aut hori zation server and presenting the refresh token. The
client authentication requirements are based on the client type
and on the authorization server policies.

(H) The authorization server authenticates the client and validates
the refresh token, and if valid, issues a new access token (and,
optionally, a new refresh token).

Steps (O, (D), (BE), and (F) are outside the scope of this
specification, as described in Section 7.

1.6. TLS Version

Whenever Transport Layer Security (TLS) is used by this
specification, the appropriate version (or versions) of TLS will vary
over time, based on the wi despread depl oynent and known security
vulnerabilities. At the tinme of this witing, TLS version 1.2

[RFC5246] is the nost recent version, but has a very linited

depl oynent base and ni ght not be readily available for

i npl enentation. TLS version 1.0 [RFC2246] is the nost wi dely

depl oyed version and will provide the broadest interoperability.

| mpl enent ati ons MAY al so support additional transport-layer security
mechani snms that neet their security requirenents.

1.7. HITP Redirections

Thi s specification nakes extensive use of HITP redirections, in which
the client or the authorization server directs the resource owner’s
user-agent to another destination. Wile the exanples in this
specification show the use of the HTTP 302 status code, any other

nmet hod avail able via the user-agent to acconplish this redirection is
all owed and is considered to be an inplenentation detail

1.8. Interoperability

QAuth 2.0 provides a rich authorization franework with well-defined
security properties. However, as a rich and highly extensible
framework with many optional conponents, on its own, this
specification is likely to produce a wi de range of non-interoperable
i mpl enent ati ons.

In addition, this specification | eaves a few required conponents

partially or fully undefined (e.g., client registration
aut hori zati on server capabilities, endpoint discovery). Wthout

Har dt St andards Track [Page 12]

RFC 6749 QAuth 2.0 COct ober 2012

t hese conponents, clients nust be manually and specifically
configured against a specific authorization server and resource
server in order to interoperate.

This framework was designed with the cl ear expectation that future
work will define prescriptive profiles and extensions necessary to
achieve full web-scale interoperability.

1.9. Notational Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
specification are to be interpreted as described in [RFC2119].

This specification uses the Augnented Backus- Naur Form (ABNF)
notation of [RFC5234]. Additionally, the rule URI-reference is

i ncluded from"Uni form Resource ldentifier (URI): Generic Syntax"
[RFC3986] .

Certain security-related terns are to be understood in the sense
defined in [RFC4949]. These termnms include, but are not linited to,

"attack", "authentication", "authorization", "certificate"
"confidentiality", "credential”, "encryption", "identity", "sign",
"signature", "trust", "validate", and "verify"

Unl ess ot herwi se noted, all the protocol paraneter nanmes and val ues
are case sensitive

2. Cdient Registration

Before initiating the protocol, the client registers with the

aut hori zation server. The neans through which the client registers
with the authorization server are beyond the scope of this
specification but typically involve end-user interaction with an HTM.
registration form

Cient registration does not require a direct interaction between the
client and the authorization server. Wen supported by the

aut hori zation server, registration can rely on other neans for
establishing trust and obtaining the required client properties
(e.g., redirection URI, client type). For exanple, registration can
be acconplished using a self-issued or third-party-issued assertion
or by the authorization server performng client discovery using a
trusted channel

Har dt St andards Track [Page 13]

RFC 6749 QAuth 2.0 COct ober 2012

When registering a client, the client devel oper SHALL:
o specify the client type as described in Section 2.1,

0 provide its client redirection URIs as described in Section 3.1.2,
and

o include any other information required by the authorization server
(e.g., application name, website, description, |ogo image, the
acceptance of |egal ternmns).

2.1. dient Types

QAuth defines two client types, based on their ability to
aut henticate securely with the authorization server (i.e., ability to
mai ntain the confidentiality of their client credentials):

confidential
Cients capable of maintaining the confidentiality of their
credentials (e.g., client inplemented on a secure server with
restricted access to the client credentials), or capable of secure
client authentication using other means.

public
Cients incapable of nmaintaining the confidentiality of their
credentials (e.g., clients executing on the device used by the
resource owner, such as an installed native application or a web
browser - based application), and incapable of secure client
aut hentication via any ot her neans.

The client type designation is based on the authorization server’s
definition of secure authentication and its acceptable exposure

I evel s of client credentials. The authorization server SHOULD NOT
make assunptions about the client type.

A client may be inplenented as a distributed set of conponents, each
with a different client type and security context (e.g., a
distributed client with both a confidential server-based conponent
and a public browser-based conponent). If the authorization server
does not provide support for such clients or does not provide

gui dance with regard to their registration, the client SHOULD

regi ster each conponent as a separate client.

Har dt St andards Track [Page 14]

RFC 6749 QAuth 2.0 COct ober 2012

This specification has been designed around the follow ng client
profiles:

web application
A web application is a confidential client running on a web
server. Resource owners access the client via an HTM. user
interface rendered in a user-agent on the device used by the
resource owner. The client credentials as well as any access
token issued to the client are stored on the web server and are
not exposed to or accessible by the resource owner.

user - agent - based application
A user-agent-based application is a public client in which the
client code is downl oaded froma web server and executes within a
user-agent (e.g., web browser) on the device used by the resource
owner. Protocol data and credentials are easily accessible (and
often visible) to the resource owner. Since such applications
reside within the user-agent, they can nake seanl ess use of the
user-agent capabilities when requesting authorization

nati ve application
A native application is a public client installed and executed on
the device used by the resource owner. Protocol data and
credentials are accessible to the resource owner. It is assuned
that any client authentication credentials included in the
application can be extracted. On the other hand, dynanically
i ssued credentials such as access tokens or refresh tokens can
recei ve an acceptable level of protection. At a mninmm these
credentials are protected fromhostile servers with which the
application nmay interact. On sone platforns, these credentials
m ght be protected fromother applications residing on the sane
devi ce.

2.2. dient ldentifier

The aut horization server issues the registered client a client
identifier -- a unique string representing the registration
information provided by the client. The client identifier is not a
secret; it is exposed to the resource owner and MJUST NOT be used

al one for client authentication. The client identifier is unique to
the aut horization server

The client identifier string size is left undefined by this
specification. The client should avoid making assunptions about the
identifier size. The authorization server SHOULD docunent the size
of any identifier it issues.

Har dt St andards Track [Page 15]

RFC 6749 QAuth 2.0 COct ober 2012

2.3. dient Authentication

If the client type is confidential, the client and authorization
server establish a client authentication nmethod suitable for the
security requirenments of the authorization server. The authorization
server MAY accept any formof client authentication neeting its
security requirenments.

Confidential clients are typically issued (or establish) a set of
client credentials used for authenticating with the authorization
server (e.g., password, public/private key pair).

The aut hori zation server MAY establish a client authentication nethod
with public clients. However, the authorization server MUST NOT rely
on public client authentication for the purpose of identifying the
client.

The client MJUST NOT use nore than one authentication nethod i n each
request.

2.3.1. dient Password

Cients in possession of a client password MAY use the HTTP Basic

aut hentication schene as defined in [RFC2617] to authenticate with
the aut horization server. The client identifier is encoded using the
"application/ x-wwformurl encoded" encodi ng al gorithm per

Appendi x B, and the encoded value is used as the usernane; the client
password is encoded using the same al gorithm and used as the
password. The authorization server MJST support the HTTP Basic

aut hentication schene for authenticating clients that were issued a
client password.

For exanple (with extra line breaks for display purposes only):

Aut hori zation: Basic czZCaGRSa3FOMzo3RmpntDBanl xS3REUMIuZl ZkbU 3
Al ternatively, the authorization server MAY support including the
client credentials in the request-body using the follow ng
par ameters
client_id

REQUI RED. The client identifier issued to the client during
the registration process described by Section 2. 2.
client_secret

REQUI RED. The client secret. The client MAY omit the
paraneter if the client secret is an enpty string.

Har dt St andards Track [Page 16]

RFC 6749 QAuth 2.0 COct ober 2012

Including the client credentials in the request-body using the two
paraneters is NOT RECOMMENDED and SHOULD be limted to clients unable
to directly utilize the HTTP Basic authentication scheme (or other
passwor d- based HTTP aut hentication schenes). The paraneters can only
be transmtted in the request-body and MJUST NOT be included in the
request URI.

For exanple, a request to refresh an access token (Section 6) using
the body paraneters (with extra line breaks for display purposes

only):

POST /token HTTP/ 1.1
Host: server.exanpl e. com
Cont ent - Type: application/ x-ww-form url encoded

grant _type=refresh_t oken&refresh_t oken=t Gzv3JOKFOXGEQXX2TlI KW A
&client i d=s6BhdRkqgt 3&cl i ent _secr et =7Fj f p0ZBr 1Kt DRonf Vdm w

The aut horization server MJST require the use of TLS as described in
Section 1.6 when sending requests using password aut hentication

Since this client authentication nethod involves a password, the
aut hori zati on server MJST protect any endpoint utilizing it against
brute force attacks.

2.3.2. Oher Authentication Methods

The aut horization server MAY support any suitable HITP authentication
schene matching its security requirenments. Wen using other

aut henti cation nethods, the authorization server MIST define a
mappi ng between the client identifier (registration record) and

aut henti cati on schene.

2.4. Unregistered dients
This specification does not exclude the use of unregistered clients.
However, the use of such clients is beyond the scope of this

specification and requires additional security analysis and review of
its interoperability inpact.

Har dt St andards Track [Page 17]

RFC 6749 QAuth 2.0 COct ober 2012

3. Protocol Endpoints

The aut hori zation process utilizes two authorization server endpoints
(HTTP resources):

0 Authorization endpoint - used by the client to obtain
aut hori zation fromthe resource owner via user-agent redirection.

0 Token endpoint - used by the client to exchange an authorization
grant for an access token, typically with client authentication

As well as one client endpoint:

0 Redirection endpoint - used by the authorization server to return
responses containing authorization credentials to the client via
the resource owner user-agent.

Not every authorization grant type utilizes both endpoints.
Ext ensi on grant types MAY define additional endpoints as needed.

3.1. Authorization Endpoint

The aut horization endpoint is used to interact with the resource
owner and obtain an authorization grant. The authorization server
MUST first verify the identity of the resource owner. The way in
whi ch the authorization server authenticates the resource owner
(e.g., usernane and password | ogin, session cookies) is beyond the
scope of this specification

The nmeans through which the client obtains the location of the
aut hori zati on endpoi nt are beyond the scope of this specification,
but the location is typically provided in the service docunentation

The endpoint URI MAY include an "application/x-ww«formurl encoded”
formatted (per Appendi x B) query conponent ([RFC3986] Section 3.4),
whi ch MUST be retained when addi ng addi ti onal query paraneters. The
endpoi nt URI MJST NOT include a fragnment conponent.

Since requests to the authorization endpoint result in user

aut henti cation and the transm ssion of clear-text credentials (in the
HTTP response), the authorization server MIST require the use of TLS
as described in Section 1.6 when sending requests to the

aut hori zati on endpoint.

The aut horization server MJST support the use of the HITP " CGET"

nmet hod [RFC2616] for the authorization endpoint and MAY support the
use of the "POST" nethod as well.

Har dt St andards Track [Page 18]

RFC 6749 QAuth 2.0 COct ober 2012

Paraneters sent wi thout a value MJST be treated as if they were
omitted fromthe request. The authorization server MJST ignore
unrecogni zed request paraneters. Request and response paraneters
MUST NOT be included nore than once.

3.1.1. Response Type

The aut horization endpoint is used by the authorization code grant
type and inplicit grant type flows. The client inforns the

aut hori zati on server of the desired grant type using the foll ow ng
par anet er :

response_type
REQUI RED. The val ue MJUST be one of "code" for requesting an
aut hori zati on code as described by Section 4.1.1, "token" for
requesting an access token (inplicit grant) as described by
Section 4.2.1, or a registered extension value as described by
Section 8. 4.

Ext ensi on response types MAY contain a space-delimted (%20) list of
val ues, where the order of values does not matter (e.g., response
type "a b" is the same as "b a"). The neaning of such conposite
response types is defined by their respective specifications.

If an authorization request is missing the "response_type" paraneter,
or if the response type is not understood, the authorization server
MUST return an error response as described in Section 4.1.2.1.

3.1.2. Redirection Endpoint

After conpleting its interaction with the resource owner, the

aut hori zation server directs the resource owner’s user-agent back to
the client. The authorization server redirects the user-agent to the
client’s redirection endpoint previously established with the

aut hori zation server during the client registration process or when
maki ng the authorization request.

The redirection endpoint URI MJST be an absolute URI as defined by

[RFC3986] Section 4.3. The endpoint URI MAY include an
"application/x-ww-formurl encoded" formatted (per Appendi x B) query
component ([RFC3986] Section 3.4), which MJST be retained when addi ng
addi tional query paraneters. The endpoint URI MJST NOT include a
fragnment conponent.

Har dt St andards Track [Page 19]

RFC 6749 QAuth 2.0 COct ober 2012

3.1.2.1. Endpoint Request Confidentiality

The redirection endpoint SHOULD require the use of TLS as descri bed
in Section 1.6 when the requested response type is "code" or "token",
or when the redirection request will result in the transm ssion of
sensitive credentials over an open network. This specification does
not mandate the use of TLS because at the tine of this witing,
requiring clients to deploy TLS is a significant hurdle for many
client developers. |If TLS is not available, the authorization server
SHOULD warn the resource owner about the insecure endpoint prior to
redirection (e.g., display a nmessage during the authorization
request).

Lack of transport-layer security can have a severe inpact on the
security of the client and the protected resources it is authorized
to access. The use of transport-layer security is particularly
critical when the authorization process is used as a form of

del egat ed end-user authentication by the client (e.g., third-party
sign-in service).

3.1.2.2. Registration Requirenents

The aut horization server MJST require the following clients to
regi ster their redirection endpoint:

0o Public clients.
o0 Confidential clients utilizing the inplicit grant type.

The aut horization server SHOULD require all clients to register their
redirection endpoint prior to utilizing the authorization endpoint.

The aut horization server SHOULD require the client to provide the
complete redirection URI (the client MAY use the "state" request
paraneter to achi eve per-request custom zation). |If requiring the
registration of the conplete redirection URl is not possible, the
aut hori zati on server SHOULD require the registration of the UR
schene, authority, and path (allowing the client to dynanically vary
only the query conponent of the redirection URI when requesting

aut hori zation).

The aut horization server MAY allow the client to register nultiple
redi recti on endpoints.

Lack of a redirection URI registration requirement can enable an

attacker to use the authorization endpoint as an open redirector as
described in Section 10. 15.

Har dt St andards Track [Page 20]

RFC 6749 QAuth 2.0 COct ober 2012

3.1.2.3. Dynanmic Configuration

If nmultiple redirection URIs have been registered, if only part of
the redirection URI has been registered, or if no redirection UR has
been registered, the client MIUST include a redirection URI with the
aut hori zation request using the "redirect_uri" request paraneter.

When a redirection URI is included in an authorization request, the
aut hori zati on server MJST conpare and natch the val ue received

agai nst at |least one of the registered redirection URIs (or URI
conmponents) as defined in [RFC3986] Section 6, if any redirection
URIs were registered. |If the client registration included the ful
redirection URI, the authorization server MJST conpare the two URI's
using sinple string conparison as defined in [RFC3986] Section 6.2.1.

3.1.2.4. Invalid Endpoint
If an authorization request fails validation due to a m ssing,
invalid, or misnmatching redirection URI, the authorization server
SHOULD i nform the resource owner of the error and MJST NOT
automatically redirect the user-agent to the invalid redirection URI.
3.1.2.5. Endpoint Content

The redirection request to the client’s endpoint typically results in

an HTML docunent response, processed by the user-agent. |If the HTM
response is served directly as the result of the redirection request,
any script included in the HTM. docunment will execute with ful

access to the redirection URI and the credentials it contains.

The client SHOULD NOT include any third-party scripts (e.g., third-
party anal ytics, social plug-ins, ad networks) in the redirection

endpoi nt response. Instead, it SHOULD extract the credentials from
the URI and redirect the user-agent again to another endpoint w thout
exposing the credentials (in the URI or elsewhere). |If third-party

scripts are included, the client MJUST ensure that its own scripts
(used to extract and renove the credentials fromthe URI) wll
execute first.

3.2. Token Endpoi nt
The token endpoint is used by the client to obtain an access token by
presenting its authorization grant or refresh token. The token

endpoint is used with every authorization grant except for the
inplicit grant type (since an access token is issued directly).

Har dt St andards Track [Page 21]

RFC 6749 QAuth 2.0 COct ober 2012

The means through which the client obtains the location of the token
endpoi nt are beyond the scope of this specification, but the |ocation
is typically provided in the service docunentation

The endpoint URI MAY include an "application/x-ww«formurl encoded”
formatted (per Appendi x B) query conponent ([RFC3986] Section 3.4),
whi ch MUST be retai ned when addi ng addi tional query paraneters. The
endpoi nt URI MJST NOT include a fragment conponent.

Since requests to the token endpoint result in the transm ssion of
clear-text credentials (in the HITP request and response), the

aut hori zati on server MJST require the use of TLS as described in
Section 1.6 when sending requests to the token endpoint.

The client MJST use the HTTP "POST" met hod when naki ng access token
requests.

Paraneters sent wi thout a value MJST be treated as if they were
omtted fromthe request. The authorization server MJST ignore
unrecogni zed request paraneters. Request and response paraneters
MUST NOT be included nore than once.

3.2.1. dient Authentication

Confidential clients or other clients issued client credentials MJST
authenticate with the authorization server as described in

Section 2.3 when naking requests to the token endpoint. dient
authentication is used for:

o Enforcing the binding of refresh tokens and authorization codes to
the client they were issued to. Cient authentication is critica
when an authorization code is transnitted to the redirection
endpoi nt over an insecure channel or when the redirection UR has
not been registered in full

0 Recovering froma conpronmised client by disabling the client or
changing its credentials, thus preventing an attacker from abusing
stolen refresh tokens. Changing a single set of client
credentials is significantly faster than revoking an entire set of
refresh tokens.

o |Inplenenting authentication managenent best practices, which
require periodic credential rotation. Rotation of an entire set
of refresh tokens can be challenging, while rotation of a single
set of client credentials is significantly easier.

Har dt St andards Track [Page 22]

RFC 6749 QAuth 2.0 COct ober 2012

A client MAY use the "client _id" request paraneter to identify itself
when sending requests to the token endpoint. |In the

"aut hori zati on_code" "grant_type" request to the token endpoint, an
unaut henticated client MJUST send its "client_id" to prevent itself
frominadvertently accepting a code intended for a client with a
different "client_id". This protects the client fromsubstitution of
the aut hentication code. (It provides no additional security for the
protected resource.)

3.3. Access Token Scope

The aut horization and token endpoints allow the client to specify the
scope of the access request using the "scope" request paraneter. In
turn, the authorization server uses the "scope" response paraneter to
informthe client of the scope of the access token issued.

The val ue of the scope paraneter is expressed as a |list of space-
delinmted, case-sensitive strings. The strings are defined by the
aut hori zation server. |If the value contains nultiple space-delinited
strings, their order does not matter, and each string adds an
addi ti onal access range to the requested scope.

scope
scope-t oken

= scope-token *(SP scope-token)

= 1*(%21 / 9%23-5B / 95D 7E)

The aut horization server MAY fully or partially ignore the scope
requested by the client, based on the authorization server policy or
the resource owner’s instructions. |f the issued access token scope
is different fromthe one requested by the client, the authorization
server MJST include the "scope" response paraneter to informthe
client of the actual scope granted.

If the client onmits the scope paraneter when requesting

aut hori zation, the authorization server MIJST either process the
request using a pre-defined default value or fail the request
indicating an invalid scope. The authorization server SHOULD
docunent its scope requirenents and default value (if defined).

4. (Obtaining Authorization

To request an access token, the client obtains authorization fromthe
resource owner. The authorization is expressed in the formof an

aut hori zation grant, which the client uses to request the access
token. QAuth defines four grant types: authorization code, inplicit,
resource owner password credentials, and client credentials. It also
provi des an extension mechani smfor defining additional grant types.

Har dt St andards Track [Page 23]

RFC 6749 QAuth 2.0 COct ober 2012

4.1. Authorization Code G ant

The aut horization code grant type is used to obtain both access
tokens and refresh tokens and is optim zed for confidential clients.
Since this is a redirection-based flow, the client nust be capabl e of
interacting with the resource owner’s user-agent (typically a web
browser) and capabl e of receiving incom ng requests (via redirection)
fromthe authorization server.

S +
| Resource |
| Onner |
| |
[T +
N
|
(B)
R + Client ldentifier e R +
-+----(A)-- & Redirection URl ---->| |
User-		Authorization
Agent -+----(B)-- User authenticates --->	Server	
-+----(0-- Authorization Code ---<		
+l----]---+ S +		
	A v	
(A (9O		
A v		
[S — +		
	>---(D)-- Authorization Code --------- ’	
dient	& Redirection URI	
	<---(E)----- Access Token ------------------- ’	
R + (w Optional Refresh Token)

Note: The lines illustrating steps (A), (B), and (C) are broken into
two parts as they pass through the user-agent.

Fi gure 3: Authorization Code Fl ow

Har dt St andards Track [Page 24]

RFC 6749 QAuth 2.0 COct ober 2012

The flowillustrated in Figure 3 includes the follow ng steps:

(A) The client initiates the flow by directing the resource owner’s
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user - agent back once access is granted (or denied).

(B) The authorization server authenticates the resource owner (via
t he user-agent) and establishes whether the resource owner
grants or denies the client’s access request.

(O Assuming the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URl provided earlier (in the request or during
client registration). The redirection URH includes an
aut hori zati on code and any | ocal state provided by the client
earlier.

(D) The client requests an access token fromthe authorization
server’s token endpoint by including the authorization code
received in the previous step. Wen making the request, the
client authenticates with the authorization server. The client
includes the redirection URl used to obtain the authorization
code for verification.

(E) The authorization server authenticates the client, validates the
aut hori zation code, and ensures that the redirection UR
recei ved matches the URI used to redirect the client in
step (C. If valid, the authorization server responds back wth
an access token and, optionally, a refresh token

4.1.1. Authorization Request
The client constructs the request URI by adding the foll ow ng
paraneters to the query conponent of the authorization endpoint UR
using the "application/x-wwformurlencoded" fornmat, per Appendix B

response_type
REQUI RED. Val ue MUST be set to "code"

client_id
REQUI RED. The client identifier as described in Section 2.2.

redirect _uri
OPTI ONAL. As described in Section 3.1.2.

Har dt St andards Track [Page 25]

RFC 6749 QAuth 2.0 COct ober 2012

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

state
RECOMVENDED. An opaque val ue used by the client to maintain
state between the request and cal |l back. The authorization
server includes this value when redirecting the user-agent back
to the client. The paranmeter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other neans available to it via the
user - agent .

For exanple, the client directs the user-agent to nake the foll ow ng
HTTP request using TLS (with extra line breaks for display purposes
only):

CET /aut hori ze?response_t ype=code&cl i ent i d=s6BhdRkqt 3&st at e=xyz
& edirect _uri=https¥BAYRF¥2Fcl i ent %2Eexanpl e¥2Econ?@2Fcb HTTP/ 1.1
Host: server. exanpl e. com

The aut horization server validates the request to ensure that al
required paraneters are present and valid. |If the request is valid,
the aut horization server authenticates the resource owner and obtains
an aut hori zation deci sion (by asking the resource owner or by

est abl i shing approval via other neans).

Wien a decision is established, the authorization server directs the
user-agent to the provided client redirection URl using an HTTP
redirection response, or by other nmeans available to it via the
user - agent .

.1.2. Authorization Response

If the resource owner grants the access request, the authorization
server issues an authorization code and delivers it to the client by
addi ng the followi ng paraneters to the query conmponent of the
redirection URl using the "application/x-wweformurlencoded" format,
per Appendix B

code
REQUI RED. The aut hori zation code generated by the
aut hori zation server. The authorization code MJST expire
shortly after it is issued to nitigate the risk of leaks. A
maxi mum aut hori zation code lifetine of 10 mnutes is
RECOMVENDED. The client MJUST NOT use the authorization code

Har dt St andards Track [Page 26]

RFC 6749 QAuth 2.0 COct ober 2012

nore than once. |f an authorization code is used nore than
once, the authorization server MIUST deny the request and SHOULD
revoke (when possible) all tokens previously issued based on
that authorization code. The authorization code is bound to
the client identifier and redirection URl

state
REQUIRED if the "state" paranmeter was present in the client
aut hori zation request. The exact value received fromthe
client.

For exanple, the authorization server redirects the user-agent by
sending the foll owi ng HTTP response:

HTTP/ 1.1 302 Found
Location: https://client.exanple.con cb?code=Spl x| OBeZQQYbYS6WkSbl A
&st at e=xyz

The client MJST ignore unrecogni zed response paraneters. The

aut hori zation code string size is left undefined by this
specification. The client should avoid naking assunpti ons about code
val ue sizes. The authorization server SHOULD docunent the size of
any value it issues.

4.1.2.1. FError Response

If the request fails due to a nmissing, invalid, or m smatching
redirection URI, or if the client identifier is mssing or invalid,
the authorization server SHOULD i nformthe resource owner of the
error and MJUST NOT automatically redirect the user-agent to the
invalid redirection URI.

If the resource owner denies the access request or if the request
fails for reasons other than a missing or invalid redirection URI,
the authorization server infornms the client by adding the foll ow ng
paraneters to the query conponent of the redirection URl using the
"application/x-ww-formurl encoded" fornmat, per Appendix B

error
REQUI RED. A single ASCII [USASCII] error code fromthe
fol |l owi ng:

i nval i d_request
The request is missing a required paraneter, includes an
invalid paraneter value, includes a paraneter nore than
once, or is otherw se nalforned.

Har dt St andards Track [Page 27]

RFC 6749

error_

error_

Har dt

QAuth 2.0 Cct ober 2012

unaut hori zed_cl i ent
The client is not authorized to request an authorization
code using this method.

access_deni ed
The resource owner or authorization server denied the
request.

unsupported_r esponse_t ype
The aut horization server does not support obtaining an
aut hori zati on code using this nethod.

i nval i d_scope
The requested scope is invalid, unknown, or nalforned.

server_error
The aut horization server encountered an unexpected
condition that prevented it fromfulfilling the request.
(This error code is needed because a 500 Internal Server
Error HTTP status code cannot be returned to the client
via an HTTP redirect.)

tenporarily_unavail abl e
The aut horization server is currently unable to handle
the request due to a tenporary overl oadi ng or nmi ntenance
of the server. (This error code is needed because a 503
Servi ce Unavail abl e HTTP status code cannot be returned
to the client via an HTTP redirect.)

Val ues for the "error" paraneter MJST NOT include characters
outside the set %20-21 / %23-5B / %5D- 7E

description

OPTI ONAL. Hurman-readabl e ASCII [USASCI 1] text providing
additional information, used to assist the client devel oper in
under standi ng the error that occurred.

Val ues for the "error_description" parameter MJST NOT include
characters outside the set %20-21 / %23-5B / %5D 7E

uri

OPTIONAL. A URI identifying a human-readabl e web page with
i nformati on about the error, used to provide the client
devel oper with additional information about the error

Val ues for the "error_uri" parameter MJST conformto the
URI -ref erence syntax and thus MJST NOT include characters
out side the set %21 / %23-5B / %5D 7E

St andards Track [Page 28]

RFC 6749 QAuth 2.0 COct ober 2012

state
REQUIRED if a "state" paraneter was present in the client
aut hori zation request. The exact value received fromthe
client.

For exanple, the authorization server redirects the user-agent by
sending the foll owing HTTP response:

HTTP/ 1.1 302 Found
Location: https://client.exanple.con cb?error=access_deni ed&st at e=xyz

4.1.3. Access Token Request

The client makes a request to the token endpoint by sending the
followi ng paraneters using the "application/x-wwformurl encoded”
format per Appendix B with a character encoding of UTF-8 in the HITP
request entity-body:

grant _type
REQUI RED. Val ue MUST be set to "authorization_code"

code
REQUI RED. The aut hori zation code received fromthe
aut hori zati on server.

redirect _uri
REQUIRED, if the "redirect_uri" paraneter was included in the
aut hori zati on request as described in Section 4.1.1, and their
val ues MJST be identi cal

client_id
REQUIRED, if the client is not authenticating with the
aut hori zation server as described in Section 3.2.1.

If the client type is confidential or the client was issued client
credentials (or assigned other authentication requirenents), the
client MUST authenticate with the authorization server as described
in Section 3.2.1.

Har dt St andards Track [Page 29]

RFC 6749 QAuth 2.0 COct ober 2012

For exanple, the client nakes the foll owing HTTP request using TLS
(with extra line breaks for display purposes only):

POST /token HTTP/ 1.1

Host: server. exanpl e. com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnTnFOMRIW
Cont ent - Type: application/ x-ww- fornmurl encoded

grant _type=aut hori zati on_code&code=Spl x| OBeZQQYbYS6W Sbl A
& edi rect _uri=https¥BAYRFY2Fcl i ent %2Eexanpl e¥2Econ?2Fcb

The aut hori zati on server MJST

0 require client authentication for confidential clients or for any
client that was issued client credentials (or with other
aut henti cation requirenents),

0o authenticate the client if client authentication is included,

0 ensure that the authorization code was issued to the authenticated
confidential client, or if the client is public, ensure that the
code was issued to "client_id" in the request,

o verify that the authorization code is valid, and

0 ensure that the "redirect _uri" paraneter is present if the
"redirect_uri" paranmeter was included in the initial authorization
request as described in Section 4.1.1, and if included ensure that
their values are identical

4.1.4. Access Token Response

If the access token request is valid and authorized, the

aut hori zati on server issues an access token and optional refresh
token as described in Section 5.1. |If the request client
authentication failed or is invalid, the authorization server returns
an error response as described in Section 5. 2.

Har dt St andards Track [Page 30]

RFC 6749 QAuth 2.0 COct ober 2012

An exanpl e successful response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragnma: no-cache

{
"access_t oken": " 2Yot nFZFEj r 1zCsi cMApAA",
"token_type":"exanpl e",
"expires_in":3600,
"refresh_token":"t Gzv3JOKFOXGQx2TI KW A",
"exanpl e_paraneter":"exanpl e_val ue"

}

4.2. Implicit Gant

The inplicit grant type is used to obtain access tokens (it does not
support the issuance of refresh tokens) and is optinized for public
clients known to operate a particular redirection URI. These clients
are typically inplenented in a browser using a scripting | anguage
such as JavaScri pt.

Since this is a redirection-based flow, the client nust be capabl e of
interacting with the resource owner’s user-agent (typically a web
browser) and capabl e of receiving incom ng requests (via redirection)
fromthe authorization server.

Unl i ke the authorization code grant type, in which the client makes
separate requests for authorization and for an access token, the
client receives the access token as the result of the authorization
request.

The inplicit grant type does not include client authentication, and
relies on the presence of the resource owner and the registration of
the redirection URI. Because the access token is encoded into the
redirection URI, it may be exposed to the resource owner and other
applications residing on the sanme device.

Har dt St andards Track [Page 31]

RFC 6749 QAuth 2.0 COct ober 2012

I +

| Resource |
| Owner |
| |
Fom e e - +

N

|

(B) . .
e + Cient ldentifier R LR +
-+----(A)-- & Redirection URI --->		
User-		Authorization
Agent -	----(B)-- User authenticates -->	Server
	<---(O--- Redirection URI ----<	
	with Access Token e T +	
	i n Fragnent	
	S +	
	----(D)--- Redirection URl ---->	Web- Hosted
	wi t hout Fragnent	dient
		Resour ce
(F) [<--(B)------- Script --------- <		
	T +	
Sl I +

|
(A (G Access Token
N
f S +
]
| dient |
| |
N T +
Note: The lines illustrating steps (A and (B) are broken into two

parts as they pass through the user-agent.

Figure 4: Inplicit Gant Flow

Har dt St andards Track [Page 32]

RFC 6749

QAuth 2.0 Cct ober 2012

The flowillustrated in Figure 4 includes the follow ng steps:

(A

(B)

(O

(D

(B

(F)

(9

The client initiates the flow by directing the resource owner’s
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user - agent back once access is granted (or denied).

The aut hori zation server authenticates the resource owner (via
t he user-agent) and establishes whether the resource owner
grants or denies the client’s access request.

Assum ng the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URl provided earlier. The redirection URN includes
the access token in the URI fragnent.

The user-agent follows the redirection instructions by nmaking a
request to the web-hosted client resource (which does not

i nclude the fragnment per [RFC2616]). The user-agent retains the
fragment information |ocally.

The web-hosted client resource returns a web page (typically an
HTML docunent with an enbedded script) capable of accessing the
full redirection URl including the fragment retained by the
user-agent, and extracting the access token (and ot her
paraneters) contained in the fragnment.

The user-agent executes the script provided by the web-hosted
client resource locally, which extracts the access token

The user-agent passes the access token to the client.

See Sections 1.3.2 and 9 for background on using the inplicit grant.
See Sections 10.3 and 10.16 for inportant security considerations
when using the inplicit grant.

4.2. 1.

Aut hori zati on Request

The client constructs the request URI by adding the foll ow ng
paraneters to the query conponent of the authorization endpoint UR
using the "application/x-wwformurlencoded" fornmat, per Appendix B

response_t ype

REQUI RED. Val ue MUST be set to "token".

client_id

Har dt

REQUI RED. The client identifier as described in Section 2.2.

St andards Track [Page 33]

RFC 6749 QAuth 2.0 COct ober 2012

redirect _uri
OPTI ONAL. As described in Section 3.1.2.

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

state
RECOMVENDED. An opaque val ue used by the client to naintain
state between the request and cal | back. The authorization
server includes this value when redirecting the user-agent back
to the client. The paraneter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URl using an
HTTP redirection response, or by other neans available to it via the
user - agent .

For exanple, the client directs the user-agent to nake the follow ng
HTTP request using TLS (with extra line breaks for display purposes

only):

CET /aut hori ze?response_t ype=t oken&cl i ent _i d=s6BhdRkqt 3&st at e=xyz
& edi rect _uri=https¥%BAYRFY2Fcl i ent %2Eex