
GNUPro® Toolkit User’s Guide
for Fujitsu™ FR-V Architecture

Copyright © 2003 Red Hat®, Inc. All rights reserved.

Red Hat, the Red Hat Shadow Man logo®, GNUPro®, RedBoot™, eCos™, and Insight™ are trademarks of Red Hat, Inc.

Fujitsu® is a registered trademark of Fujitsu Limited.

Intel® and Intel® Pentium® are registered trademarks of Intel Corporation.

Linux® is a registered trademark of Linus Torvalds.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems®, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.

UNIX® is a registered trademark of The Open Group.

Windows® and Windows NT® are registered trademarks of Microsoft® Corporation.
All other brand and product names, trademarks, and copyrights are the property of their respective owners.
No part of this document may be reproduced in any form or by any means without the prior express written consent of
Red Hat, Inc.
No part of this document may be changed an/or modified without the prior express written consent of Red Hat, Inc.
How to Contact Red Hat
Red Hat Corporate Headquarters

1801 Varsity Drive
Raleigh, NC 27606 USA
Telephone (toll free): +1 888 REDHAT 1
Telephone (main line): +1 919 754 3700
Telephone (FAX line): +1 919 754 3701
Website: http://www.redhat.com/
ii ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Contents

Introduction ..1
Tutorial ..5

Create Source Code...6
Compile from Source Code...6
Run the Executable on the Simulator..7
Run the Debugger through an Executable ..7
Get RedBoot for Debugging ...8
Debug with the Simulator ...10
Debug with Insight .. 13
Get Assembler Listing from Source Code .. 23
Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems 24

Reference ... 27
Compiler Features ... 28
EABI Summary of Features .. 32
Built-in Functions.. 39
Assembler Features ... 45
Linker Features.. 47
Debugger Features .. 53
Insight Features ... 53
RedBoot Features .. 54
Simulator Features .. 55
Cygwin Features.. 59
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ iii

Contents
Index .. 61
iv ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Introduction

GNUPro® Toolkit from Red Hat® is a complete development system for the Fujitsu®
FR-V architecture. For installation and the most current release notes, find the README
at the top level directory of your files. For what’s new with this release, see “What’s
New for Fujitsu FR-V Architecture” on page 4.

Tools for this architecture have support for the operating systems in Table 1.

Table 1: Supported host operating systems

Customers using older versions of RedHat Linux RHL 7.2, 7.3, 8.0 and 9 are
supported to the extent that they can use the toolchain on their operating systems.
RHEL3 is, however, the recommened OS for rebuilding the toolchain.

This documentation describes the features of GNUPro Toolkit specific to FR-V
architecture, including information on the compiler, interactive debugger, binary
utilities, libraries, and other tools. This documentation provides an introduction to the
features of the tools, as well as a tutorial and reference for the FR-V architecture; see
http://www.redhat.com/docs/manuals/gnupro/ for more documentation.

There is support for the tools in Table 2; these cross-development tools have names

Operating systems Central processing unit (CPU)
Microsoft Windows 2000/XP x86
Red Hat RHEL3, AS2.1 x86
Sun Solaris® 2.6, 2.7, 2.8, 2.9 SPARC®
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 1

Introduction
that reflect the target processor and the object file format that is output by the tools
(ELF). This makes it possible to install more than one set of tools in the same binary
directory, including both native and cross-development tools. A tool’s complete tool
name is a three-part hyphenated string, with the first part indicating the processor
family and the mode of operation (frv), the second part indicating the object file
format output by the tool (elf), and the third part indicating the generic tool name
(gcc).
Table 2: GNUPro supported tools

IMPORTANT! Binaries for the Windows hosted toolchain use an .exe suffix; however, the
.exe suffix does not need to be specified when running the executable.

For the tools to function properly on your hardware, you must have the following
environment variables set.
■ For the Microsoft Windows operating system, use the following examples as

input for setting environment variables for the tools.

Replaceinstalldir with your installation directory; yymmdd indicates the name
for your release (the processor name and a date, such as frv-031205).

Replace H-host with H-i686-pc-cygwin as a triplet name.
SET PROOT=C:\installdir\frv-yymmdd
SET PATH=%PROOT%\H-host\BIN;%PATH%
SET INFOPATH=%PROOT%\info
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=%PROOT%

■ For the Sun Solaris and Red Hat Linux operating systems, use the following
examples as input for setting environment variables for the tools.

Replace installdir with your installation directory; yymmdd indicates the name
for your release (the processor name and a date, such as frv-031205).

Tool description Tool name
GNU assembler frv-elf-as

GNU binary utilities frv-elf-ar
frv-elf-nm
frv-elf-objcopy
frv-elf-objdump
frv-elf-ranlib
frv-elf-readelf
frv-elf-size
frv-elf-strings
frv-elf-strip

GNU compiler collection frv-elf-gcc

GNU debugger frv-elf-gdb

GNU linker frv-elf-ld

GNU simulator frv-elf-run
2 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Introduction
Replace H-host (where host signifies the toolchain’s triplet name) with
H-i686-pc-linux-gnulibc2.2 for Red Hat Linux 7.x, RHEL2.1 and
H-sparc-sun-solaris2.6 for Sun Solaris 2.6 host systems.
■ For Bourne-compatible shells (/bin/sh, bash, or Korn shell), use the

following example’s input:
PROOT=installdir/frv-yymmdd
PATH=$PROOT/H-host/bin:$PATH
INFOPATH=$PROOT/info
export PATH SID_EXEC_PREFIX INFOPATH

■ For C shells, use the following example’s input:
set PROOT=installdir/frv-yymmdd
set path=($PROOT/H-host/bin $path)
setenv INFOPATH $PROOT/info

Case sensitivity for Windows is dependent on system configuration. By default, file
names under Windows are not case sensitive. File names are case sensitive under
UNIX. File names are case sensitive when passed to the GNU C compiler (GCC),
regardless of the operating system. The following strings are case sensitive:
■ command line options
■ assembler labels
■ linker script commands
■ section names
■ file names within makefiles

The following strings are not case sensitive:
■ debugger commands
■ assembler instructions and register names

This documentation uses some general conventions (see Table 3):

Table 3: Documentation conventions
Documentation usage Significance
Bold Font Represents menus, window names, and tool buttons.
Bold Italic Font Denotes book titles, both hardcopy and electronic.
Plain Typewriter Font Denotes code fragments, command lines, file

contents, and command names; also indicates
directory, file, and project names where they appear
in text.

Italic Typewriter Font Represents a variable to substitute.
Bold Typewriter Font Indicates command lines, options, and text output

generated by the program.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 3

Introduction
What’s New for Fujitsu FR-V Architecture
GNUPro Toolkit has the following improvements for the FR-V architecture.
■ For working with the compiler tools:

■ Added support for new FR405 and FR450 builtin functions.
■ Added options to select FR405, FR450 and FR550 code generation

(-mcpu=fr405, -mcpu=fr450 and -mcpu=fr550 respectively).
■ Added support for scheduling and packing FR450 and FR550 code.

■ For working with the debugger:
■ Implemented debugging for remote targets with RedBoot for FR451 board.

■ For working with the simulator:
■ Supporting the new instructions
■ Implemented new cache size defaults for the FR450 and FR550 architectures
■ Changed the FR400 cache size defaults to match the FR405.
■ Implemented new machine models for the FR450 and FR550 architectures.

■ Provided resource constraints
■ Implemented packing restrictions
■ Implemented memory map functionality
■ Implemented exception model functionality
■ Implemented profiling model functionality (cycle counting)

■ For the ABI and other general enhancements:
■ Improved ABI conformance
■ Improved error checking for builtin-in media functions
4 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Tutorial

The following documentation provides tutorials for using the tools.
■ “Create Source Code” on page 6
■ “Compile from Source Code” on page 6
■ “Run the Executable on the Simulator” on page 7
■ “Run the Debugger through an Executable” on page 7
■ “Get RedBoot for Debugging” on page 8
■ “Debug with the Simulator” on page 10
■ “Debug with Insight” on page 13
■ “Get Assembler Listing from Source Code” on page 23

To get other more general information not specific to the Fujitsu architectures, see
http://www.redhat.com/docs/manuals/gnupro/ for more GNUPro Toolkit
documentation.

To rebuild the tools with Microsoft Windows NT systems, see “Rebuild GNUPro for
Cygwin/ Windows NT/2000/XP Systems” on page 24, and to get more information on
Cygwin, see http://www.redhat.com/docs/manuals/gnupro/.

1

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 5

Tutorial
Create Source Code
Using a text editor, create the sample source code in Example 1; save it as hello.c.
Use this program to verify correct installation.

Example 1: hello.c sample source code

Compile from Source Code
Using a bash shell, compile the example code to run on the simulator.

On Windows, type:
frv-elf-gcc -g hello.c -o hello.exe

On Linux and Solaris, type:
frv-elf-gcc -g hello.c -o hello.x

The -g option generates debugging information and the -o option specifies the name
of the executable to be produced. Other useful options include -O for standard
optimization, and -O2 for extensive optimization. When no optimization option is
specified, GCC will not optimize. See “GNU CC Command Options” in Using GCC
in GNUPro Compiler Tools for a complete list of available options.

See “Compiler Features” on page 28 and “Assembler Features” on page 45 for special
functionality when developing with the Fujitsu FR-V target.

#include <stdio.h>

int a, c;

void foo(int b)
{
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
}

int main()
{
 int b;

 a = 3;
 b = 4;
 printf("Hello, world!\n");
 foo(b);
 return 0;
}

6 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Run the Executable on the Simulator
Run the Executable on the Simulator
Using a bash shell, run your executable on the stand-alone simulator.

On Windows, type:
frv-elf-run hello.exe

On Linux and Solaris, type:
frv-elf-run hello.x

The program returns:
Hello world!
3 + 4 = 7

The simulator executes the program and returns when the program exits. See
“Simulator Features” on page 55 for special functionality for working with the
simulator.

Run the Debugger through an Executable
GDB can be used to debug executables using the GNUPro simulator; for information
on using RedBoot when debugging a target, see “Get RedBoot for Debugging” on
page 8, “RedBoot Features” on page 54, and see also
http://sources.redhat.com/redboot/

Using a bash shell, from the ~/bin directory, start GDB; on Windows, type:
frv-elf-gdb hello.exe

Using a bash shell, from the ~/bin directory, start GDB; on Linux and Solaris, type:
frv-elf-gdb hello

IMPORTANT! The frv-elf-gdb command invokes the command line version of GDB. A
graphical interface to GDB, called Insight, is also provided. It is invoked via
the frv-elf-insight command. For more information on the debugger’s
graphical user interface, see “Debug with Insight” on page 13.

After the initial copyright and configuration information, GDB returns its own
prompt, (gdb).

For details on the debugging process, see “Debug with the Simulator” on page 10 and
begin at Step 3.

To stop debugging with the command line approach, type quit at the (gdb) prompt.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 7

Tutorial
Get RedBoot for Debugging
To use RedBoot for targets, set up the the Fujitsu FR-V board as described in VDK
Setting Guide available from Fujitsu.

Refer to the appropriate section for your board:
■ Section 1. MB93401A CPU board and Main board
■ Section 2. MB93403 CPU board and Main board
■ Section 3. MB93403 CPU board, Main board and MB93493 Digital AV

board
■ Section 4. MB93555 CPU board and Main board
■ Section 5. MB93555 CPU board, Main board and MB93493 Digital AV

board
■ Section 6. MB93405 CPU board (Stand alone mode)
■ Section 7. MB93405 CPU board and MB93493 Digital AV board (Stand

alone mode)
■ Section 8. MB93405 CPU board and Main board
■ Section 9. MB93405 CPU board, Main board and MB93493 Digital AV

board

See http://sources.redhat.com/redboot/ for downloading RedBoot; see
Example 2 for a sample bash shell session of downloading the RedBoot image into
flash for the FR-V target board (with the frv.ROM image).

Note: the following are provided as examples only, the actual sessions will vary a little
for each supported hardware platform.
8 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Get RedBoot for Debugging
Example 2: Download the frv.ROM image for RedBoot for the FR-V target

** VDK LOADER for FR400 (BOOT ROM:IC8) **
** **
** Version 1.02 **
** ALL RIGHTS RESERVED, COPYRIGHT(C) FUJITSU LIMITED 2000 **

Would you like to check SDRAM and SRAM ? (Y/N) : N

>r 3e00000
Flash ROM : IC7. OK ? (Y/N) Y
Blank check
Blank error !! Erase ? (Y/N) Y
Erase...
Work memory clear
Hex Data Offset Address=0x03E00000
Recieve....

1. At this point, send the frv.ROM file using ASCII protocol. Using the dl_slow
script, set up Minicom like Example 3 shows.
Example 3: Minicom file protocol
xxx
x Name Program Name U/D Full IO Multi x
x Scr -Red. x
x A zmodem /usr/bin/sz -vv -b Y U N Y Y x
x B ymodem /usr/bin/sb -vv Y U N Y Y x
x C xmodem /usr/bin/sx -vv -k Y U N Y N x
x D zmodem /usr/bin/rz -vv -b -E N D N Y Y x
x E ymodem /usr/bin/rb -vv N D N Y Y x
x F xmodem /usr/bin/rx -vv Y D N Y N x
x G kermit /usr/bin/kermit -i -l %l -s Y U Y N N x
x H kermit /usr/bin/kermit -i -l %l -r N D Y N N x
x I ascii /usr/bin/ascii-xfr -dsv Y U N Y N x
x J slow /home/yourdir/bin/dl_slow Y U N Y N x
x K - x
x L - x
x M Zmodem download string activates... D x
x N Use filename selection window...... No x
x O Prompt for download directory...... No x
x x
x Change which setting? (SPACE to delete) x
xxx

2. You will know if the file is transferring correctly by the LED indicator lights
blinking, showing the IP address being loaded. When the download completes
(using the Enter key to download), you will see output like Example 4.

Example 4: Output after downloading the frv.ROM image
Write Start...
Write OK!
Verify Start...
Verify OK!
Complete !!

>

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 9

Tutorial
3. Change SW1-1 on the motherboard to be down (x). Press reset (the bottom blue
button on the board). See Example 5 for the output you will see when RedBoot is
active.

Example 5: Output after set up of the frv.ROM image with RedBoot active
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Version - 2001
Platform: MB93091-CB10 evaluation board (Fujitsu FR400)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x04000000, 0x00007000-0x03fed000 available
FLASH: 0xff000000 - 0xff200000, 32 blocks of 0x00010000 bytes.
RedBoot>

4. Initialize the flash.
fis init

You are ready to begin debugging. See “Debug with the Simulator” on page 10 for the
tutorial for debugging; begin at Step 3.

Debug with the Simulator
The following is a sample debugging session with GDB, using the simulator. See
“Simulator Features” on page 55 for special functionality for working with the
simulator.

1. Using a bash shell, from where you located the binary, start the debugger.
■ On Windows, type:

frv-elf-gdb hello.exe

■ On Linux and Solaris, type:
frv-elf-gdb hello.x

2. To specify the target on which to debug (in this tutorial’s case, the simulator),
type:
target sim

The program returns:
Connected to the simulator.

3. Then, to begin debugging your program (in this tutorial’s case, either hello.exe
for Windows or hello.x for Linux and Solaris operating systems), type:
load

The debugger returns:
10 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with the Simulator
Loading section .text, size 0x8cc0 vma 0xc8000000
Loading section .rodata, size 0x218 vma 0xc8008cc0
Loading section .data, size 0x768 vma 0xc8008ed8
Start address 0xc8000000
Transfer rate: 307712 bits in <1 sec.

4. To set a breakpoint, type:
break main

The program returns:
Breakpoint 1 at 0xc8000168: file hello.c, line 15.

5. To run the program, type:
run

■ On Windows, the program returns:
Starting program: C:\hello.exe
Breakpoint 1, main () at hello.c:15
15 a = 3;

■ On Linux and Solaris, the program returns:
Starting program: hello.x
Breakpoint 1, main () at hello.c:15
15 a = 3;

6. To print the value of variable, a, type:
print a

The program returns:
$1 = 0

7. To execute the next command, type:
step

The program returns:
16 b = 4;

8. To display the value of a again, type:
print a

The program returns:
$2 = 3

9. To display the program being debugged, type:
list

The program returns:
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 11

Tutorial
11 int main()
12 {
13 int b;
14
15 a = 3;
16 b = 4;
17 printf("Hello, world!\n");
18 foo(b);
19 return 0;
20 }

10. To list a specific function code, use the list command with the name of the
function to be displayed. For example, type:
list foo

The program returns:
1 #include <stdio.h>
2
3 int a, c;
4
5 void foo(int b)
6 {
7 c = a + b;
8 printf("%d + %d = %d\n", a, b, c);
9 }
10

11. To set a breakpoint at line seven, type:
break 7

You can set a breakpoint at any line by typing break linenumber, where
linenumber is the specific linenumber to break. The program returns:
Breakpoint 2 at 0xc6: file hello.c, line 7.

12. To resume normal execution of the program until the next breakpoint, type:
continue

The program returns:
Continuing.
Hello, world!
Breakpoint 2, foo (b=4) at hello.c:7
7 c = a + b;

13. To step to the next instruction and execute it, type:
step

The program returns:
8 printf("%d + %d = %d\n", a, b, c);

14. To print the value of variable, c, type:
12 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with Insight
print c

The program returns:
$3 = 7

15. To see how you got to where you are, type:
backtrace

The program returns:
#0 foo (b=4) at hello.c:9
#1 0xc800018c in main () at hello.c:18

16. To exit the program and quit the debugger, type:
quit

Debug with Insight
The following documentation serves as a general reference for debugging with
GNUPro Toolkit’s graphical user interface, Insight; for more information, see
Insight’s Help menu for discussion of general functionality and use of menus, buttons
or other features; see also “Insight, GDB’s Alternative Interface” and the “Examples
of Debugging with Insight” documentation in GNUPro Debugging Tools (see
http://www.redhat.com/docs/manuals/gnupro/).

IMPORTANT! Insight is invoked via the frv-elf-insight command.

1. From a shell window, enter the following input:
frv-elf-insight

Insight launches, displaying the Source Window (Figure 1).
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 13

Tutorial
Figure 1: Source Window, the main window interface for Insight

The menu selections in the Source Window are File, Run, View, Control,
Plugin, Preferences, and Help. To work with the other windows for debugging
purposes specific to your project, use the View menu or the buttons in the toolbar.

2. To open a specific file as a project for debugging, select File → Open in the
Source Window. The file’s contents will then pass to the GDB interpreter.

3. To start debugging, click the Run button (Figure 2) from the Source Window.

Figure 2: Run button

When the debugger runs, the button turns into the Stop button (Figure 3).

Figure 3: Stop button

The Stop button interrupts the debugging process for a project, provided that the
underlying hardware and protocols support such interruptions. Generally,
machines that are connected to boards cannot interrupt programs on those boards.
In such cases, a dialog box appears as a prompt asking if you want to abandon the
session and if the debugger should detach from the target.

For an embedded project, click Run; then click the Continue button (Figure 4).
14 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with Insight
Figure 4: Continue button

WARNING! When debugging a target, do not click on the Run button during an active
debugging process, since using the Run button will effectively restart the
session with all work unrecoverable.

For more information on Insight, see its Help menu. For examples of debugging
session procedures for using Insight, see the following documentation (the content
assumes familiarity with debugging procedures).
■ “Selecting and Examining a Source File” on page 15
■ “Setting Breakpoints and Viewing Local Variables” on page 18
■ “Setting Breakpoints on Multiple Threads” on page 22

To specify how source code appears and to change debugging settings, from the
Preferences menu, select Source.

IMPORTANT! When debugging remote targets with RedBoot, the processor name and
identification codes display when connecting to the target.

To obtain the same information, from the Source Window, select
Plugin → target → CPU Information, information which is based on
interpretation of the processor response to the CPUID instruction (target
changes for every target architecture for Insight; environment variables that
you set help Insight automatically to determine this functionality) . To add
identification codes to the debugger’s table of Intel processors, see the GDB
Internals documentation, distributed with the source code.

Selecting and Examining a Source File
To select a source file, or to specify what to display when examining a source file
when debugging, use the following processes.

1. Select a source file from the file drop-down list with the Source Window
(hello.c in Figure 5).
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 15

Tutorial
Figure 5: Source file selection

2. Select a function from the function drop-down list to the right of the file
drop-down list, or type its name in the text field above the list to locate the
function (in Figure 6, see the executable line 11, where the main function
displays).
16 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with Insight
Figure 6: Search for functions

3. Use the Enter key to repeat a previous search. Use the Shift and Enter keys
simultaneously to search backwards.

4. Type @ with a number in the search text box in the top right of the Source
Window. Press Enter. Figure 7 shows a jump to line 8 in the hello.c source file.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 17

Tutorial
Figure 7: Searching for a specific line in source code

Setting Breakpoints and Viewing Local Variables
A breakpoint can be set at any executable line in a source file.

Executable lines are marked by a minus sign in the left margin of the Source
Window. When the cursor is over a minus sign for an executable line, the cursor
changes to a circle. When the cursor is in this state, a breakpoint can be set. The
Breakpoints window is for managing the breakpoints: disabling them, enabling them,
or erasing them; an enabled breakpoint is one for which the debugging session will
stop, a disabled breakpoint is one which the debugging session ignores.

The following exercise steps you through setting four breakpoints in a function, as
well as running the program and viewing changed values in local variables.

1. To set a breakpoint, have an active the hello.c source file open in the Source
Window, and, with the cursor over a minus sign on a line, click the left mouse
button. When you click on the minus sign, a red square appears for the line,
signifying a set breakpoint (see the highlighted line 15 in Figure 8 for a set
breakpoint).

Clicking the line again will remove the breakpoint.
18 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with Insight
Figure 8: Results of setting breakpoint for line 17

2. Open the Breakpoints window (Figure 9) using the Breakpoints button from the
Source Window. See a line with a check box in the window appears showing that
you set a breakpoint for a corresponding line in the Source Window frame. With
the cursor over a breakpoint, a breakpoint information balloon displays in the
Source Window (the information details the breakpoint, its address, its associated
source file and line, its state, whether enabled, temporary, or erased, and the
association to all threads for which the breakpoint will cause a stop; see also
“Setting Breakpoints on Multiple Threads” on page 22 for details about threads).

Figure 9: Breakpoints window

3. The debugger ignores disabled breakpoints, lines indicated having a black square
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 19

Tutorial
over them in the Source Window frame (see line 17 in Figure 8). Click on a
breakpoint to disable the breakpoint. Figure 10 shows the results in the
Breakpoints window of disabling a breakpoint. Re-enable a breakpoint at a line
by clicking on the check box in the Breakpoints window. Once a breakpoint is
enabled for a line, it will again have a red square in the Source Window frame.

Figure 10: Results of disabling a breakpoint at line 17

4. Repeat the process to set breakpoints at specific lines.

5. Click Run in the Source Window to start the executable. The debugger runs until
it finds a breakpoint. When the target stops at a breakpoint, the debugger
highlights a line (see highlighted line 17 in Figure 13, where the debugging
stopped). For more information about breakpoints, see the standard
documentation for Insight: “Insight, GDB’s Alternative Interface” and the
“Examples of Debugging with Insight” documentation in GNUPro Debugging
Tools; see http://www.redhat.com/docs/manuals/gnupro/).

6. Open the Local Variables window by clicking its button in the tool bar for the
Source Window; the Local Variables window displays the values of the
variables (see Figure 11 for the b variable in hello.c).

Figure 11: Local Variables window

7. Click the Continue button in the Source Window tool bar to move to the next
breakpoint. The variables that changed value turn color in the Local Variables
window (see results in Figure 12 for the b variable in hello.c).
20 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debug with Insight
Figure 12: Local Variables window after setting breakpoints

8. Click the Continue button two more times to step through the next two
breakpoints (until execution stops at line 17) and see the values of the local
variables change (compare results from hello.c in Figure 8 and results in Figure
13).

Figure 13: Executable after changing local variable’s values
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 21

Tutorial
Setting Breakpoints on Multiple Threads
Select threads and set breakpoints on one or more threads when debugging a
multi-threaded application with Insight.

WARNING! Working with multiple threads does not function similarly on all embedded
targets. When debugging C++ code, for instance, breakpoints and exceptions
may not work on multiple threads.

A process can have multiple threads running concurrently, each performing a different
task, such as waiting for events or something time-consuming that a program does not
need to complete before resuming. The thread debugging facility allows you to
observe all threads while your program runs. However, whenever the debugging
process is active, one thread in particular is always the focus of debugging. This
thread is called the current thread. The precise semantics of threads and the use of
threads differs depending on operating systems. In general, the threads of a single
program are like multiple processes, except that they share one address space (that is,
they can all examine and modify the same variables). Additionally, each thread has its
own registers and execution stack and, perhaps, private memory.

1. In the Source Window, right click on an executable line without a breakpoint to
open the breakpoint pop-up menu (Figure 14).

Figure 14: Breakpoint pop-up menu in the Source Window
22 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Get Assembler Listing from Source Code
2. Select Set Breakpoint on Thread(s) to display a window allowing you to choose
the threads with which you set breakpoints. The Processes window (see Figure
15), available from the Source Window’s View → Threads List menu, displays
all the available threads in the system and allows you to switch the current thread.
See Debugging with GDB in GNUPro Debugging Tools (see
http://www.redhat.com/docs/manuals/gnupro/) for more general information
about threads.

Figure 15: Processes window with threads

Get Assembler Listing from Source Code
To produce assembler listing information, using a bash shell, type:
frv-elf-gcc -g -O2 -Wa,-al -c hello.c

The -g compiler debugging option gives the assembler the necessary debugging
information. The -O2 option produces better looking code output. The -Wa option tells
the compiler to pass the text immediately following the comma as a command line to
the assembler. The -al assembler option requests an assembler listing. The -c option
tells GCC to compile or assemble the source files, but not to link. Example 6 shows a
partial excerpt of the output for producing an assembly listing.

Note:

The following is provided as an example only. The actual assembler listing
will be different.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 23

Tutorial
Example 6: Output for assembler listing for hello.c

For more information on using the assembler tool for the Fujitsu Fujitsu FR-V targets,
see “Compiler Features” on page 28 and “Assembler Features” on page 45.

Rebuild GNUPro for Cygwin/ Windows
NT/2000/XP Systems

The following instructions are for rebuilding GNUPro Toolkit for Windows XP
operating system in order to use the Cygwin tools, which allow you to work as if on
UNIX systems. These examples show the C: drive as default for working; substitute
the appropriate corresponding drive letter for the drive you use. Rebuilding requires at
least 1 GB free on the drive you select.

WARNING! Do not use other Cygwin installations from another release, including any
web release. Those contents may not be appropriate for configuring with your

63 .globl main
64 .type main,@function
65 main:
66 .LFB2:
67 .LM11:
68 .LBB2:
69 .LBE2:
70 0050 82401FF0 addi sp,#-16,sp
71 .LCFI4:
72 0054 05481000 sti.p fp, @(sp,0)
73 .LCFI5:
74 0058 84881000 mov sp, fp
75 .LCFI6:
76 005c 880D01C5 movsg lr, gr5
77 0060 0B482008 sti.p gr5, @(fp,8)
78 .LCFI7:
79 0064 803C0000 call __main
80 .LM12:
81 0068 08FC0003 setlos.p #3, gr4
82 .LM13:
83 006c 90F80000 sethi #hi(.LC1), gr8
84 .LM14:
85 0070 09490000 sti.p gr4, @(gr16,#gprel12(a))
86 .LM15:
87 0074 90F40000 setlo #lo(.LC1), gr8
88 0078 803C0000 call puts
24 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems
specific release.

1. Cygwin now has a graphical installer which is used to install. Make sure there is a
`Typical´ install of GNUPro 03r1 Cygwin, or, in case of a custom install, that at
least the following components are installed: `Compilers´, `Utilities for rebuilding
from source´ and `Contrib´

2. For the contents for rebuilding your releasename, see Table 4 (releasename
signifies the name given your release, which includes the tool name, frv, and a
release date, yymmdd; for example, in a previous release, you used frv-031205).

Table 4: Microsoft Windows rebuilding tools

3. Unpack your sources that you received (tools-src.zip) into the C:\cygwin
directory.
unzip tools-src.zip

Unpacking tools-src.zip creates a C:\cygwin\src directory.

4. Make build and installation directories at the same level of the directory structure
as your C:\cygwin\src directory.
mkdir builddir installdir

5. Navigate to the builddir directory.
cd builddir

6. Configure the tools using the following commands as input. This should be typed
as a single line.
‘pwd‘/../src/configure --host=i686-pc-cygwin --target=target \
--prefix=‘pwd‘/../builddir \
--exec-prefix=‘pwd‘/../builddir/H-i686-pc-cygwin \
>& ../configure.log

Using the following command in your builddir directory, watch what a
configure.log file produces.
tail -f configure.log

Start as many bash sessions as you require. At a minimum, you should have at
least two bash windows open, one in which to execute the configure, build, and
install process, and another in which to watch the progress using the tail -f
command.

7. Make the tools with the following input’s syntax.
make all >& ../build.log

8. Install the tools with the following input’s syntax.
make install >& ../install.log

File name Usage
tools-src.zip Compressed file of patch sources
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 25

Tutorial
This step allows you to save disk space by eventually deleting your build directory
without losing your logs of the build process. Do not delete your build directory
until after the build process is complete and after you are confident that the tools
work. At this point, you should have three log files in the C:\cygwin directory
(configure.log, build.log, and install.log). You can watch the build.log
or the install.log with the tail -f command as you did in Step 6 with
configure.log.

Rebuilding is now complete.

If you move binaries to another machine where Cygwin is not installed, you will need
to copy (using the cp command) the cygwin1.dll file from the installdir to the
new directory. Ask your system administrator if you need assistance with this task.
26 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Reference

The following documentation describes the Application Binary Interface (ABI) and
Fujitsu FR-V architecture specific features of the GNUPro tools.
■ “Compiler Features” on page 28
■ “EABI Summary of Features” on page 32
■ “Built-in Functions” on page 38
■ “Assembler Features” on page 45
■ “Linker Features” on page 47
■ “Debugger Features” on page 53
■ “Insight Features” on page 53
■ “RedBoot Features” on page 54
■ “Simulator Features” on page 55
■ “Cygwin Features” on page 59

To get other more general information not specific to the Fujitsu architectures, see
http://www.redhat.com/docs/manuals/gnupro/ for more GNUPro Toolkit
documentation.

2

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 27

Reference
Compiler Features
The following documentation describes FR-V specific features of the GNUPro
Compiler Collection (GCC). For generic compiler options, see “GNU CC Command
Options” in Using GCC in GNUPro Compiler Tools.
-mcpu=CPU

Generates code for CPU. This option selects the hardware features normally
associated with CPU such as the number of registers and the availability of
floating-point and media instructions. It also controls the scheduling and packing
of instructions (when enabled). -mcpu=fr500 serves as the default if no -mcpu=
option is given. Supported values for CPU are:
■ -mcpu=fr550

Compile for the FR550. This option implies -mgpr-64, -mfpr-64, -macc-8,
-mhard-float, -mmedia, -mdword, -mno-double, and -mno-muladd.

■ -mcpu=fr500

Compile for the FR500. This option implies -mgpr-64, -mfpr-64, -macc-8,
-mhard-float, -mmedia, -mdword, -mno-double, and -mno-muladd.

■ -mcpu=fr450

Compile for the FR450. This option implies -mgpr-32, -mfpr-32,
-macc-8, -msoft-float, -mmedia, -mdword, -mno-double, and
-mno-muladd.

■ -mcpu=fr405

Compile for the FR405. The only difference between this option and
-mcpu=fr400 is that -mcpu=fr405 allows the use of FR405-specific built-in
functions. See page 38 for more information about built-in functions.

■ -mcpu=fr400

Compile for the FR400. This option implies -mgpr-32, -mfpr-32, -macc-4,
-msoft-float, -mmedia, -mdword, -mno-double, and -mno-muladd.

-mno-pack

Disable VLIW packing. This option also implies -msoft-float and -mno-media.
-mlibrary-pic

Enable the generation of position-independent code EABI code. See page 38 for
details.

-mfdpic

Select the FDPIC (uClinux) ABI, that uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it implies -fPIE. With
-fpic or -fpie, it assumes GOT entries and small data are within a 12-bit range
from the GOT base address; with -fPIC or -fPIE, GOT offsets are computed with
32 bits.
28 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

-minline-plt

Enable inlining of PLT entries in function calls to functions that are not known to
bind locally. It has no effect without -mfdpic. It’s enabled by default if optimizing
for speed and compiling for shared libraries (i.e., -fPIC or -fpic), or when an
optimization option such as -O3 or above is present in the command line.

-mpgrel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to be
in read-only sections. It’s enabled by default, except for option -fpic or -fpie,
even though it may help make the global offset table smaller, it trades 1
instruction for 4. With -fpic or -fpie, it trades 3 instructions for 4, one of which
may be shared by multiple symbols, and it avoids the need for a GOT entry for the
referenced symbol, so it is more likely to be a win. If it is not, -mno-gprel-ro can
be used to disable it.

-mlinked-fp

Follow the EABI requirement of always creating a frame pointer whenever a stack
frame is allocated. It is enabled by default, and can be disabled with
-mno-linked-fp.

-mlong-calls

Use indirect addressing to call functions outside the current compilation unit. This
allows the functions to be placed anywhere within the 32-bit address space

-fpscr

Enable resource-constrained software pipelining.
-fpic

Compiles position independent code, using a 4096 byte global offset table.
-fPIC

Compile position independent code. Unlike -fpic, there is no size limit for the
global offset table, though it takes more instructions to refer to static and global
variables.

-fpie/-fPIE

Same as -fpic/-fPIC, respectively, but generated position independent code can
be only linked into executables. On frv-elf, -fPIE is implied by -mfdpic.

-pie

Produce a position independent executable on targets which support it. Code must
have been compiled with the FDPIC ABI, and the executable will need a dynamic
loader to run. For frv-uclinux, or when linking with frv-elf -mfdpic, the only
differences are to force the creation of a dynamic executable, and to turn any
.rofixup entries that would have been generated in a position dependent
executable into dynamic relocations, that makes the executable relocatable by the
dynamic loader, instead of by itself.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 29

Reference
-shared

Create a dynamic library. Object code must have been compiled to conform to the
FDPIC ABI, and with -fPIC or -fpic.

-static

Create a static executable. Dynamic libraries that might be used to satisfy link
dependencies will be disregarded, and static libraries will be required instead.

-Gn

Puts statics/globals less than n bytes into the small data area.

The following options are only needed if you want to override the hardware features
selected by -mcpu= compiler option.
-mgpr-64
-mgpr-32

Select the number of general-purpose registers.
-mfpr-64
-mfpr-32

Select the number of floating-point registers. These options only have an effect
when either floating-point or media instructions are enabled.

-macc-8
-macc-4

Select the number of accumulators and accumulator guards. These options only
have an effect when media instructions are enabled.

-mno-media

Disable media instructions.
-mhard-float
-msoft-float

Specify whether the compiler should generate single-precision floating-point
instructions.

-mdouble
-mno-double

-mdouble enables and -mno-double disables double-precision floating-point
instructions. These options only have an effect when single-precision instructions
are enabled.

-mdword
-mno-dword

Specify whether the target supports double-register loads and stores (ldd, stdd,
lddf, and stdf).

-mmuladd
-mno-muladd

-mmuladd enables and -mno-muladd disables the floating-point multiply-add and
multiply-subtract instructions.
30 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

-mcond-move
-mno-cond-move

-mcond-move enables and -mno-cond-move disables using conditional execution
to move alternate values to a register. -mcond-move is on by default.

-mscc
-mno-scc

-mscc enables and -mno-scc disables using conditional execution to set a register
to 0/1 based on the results of a comparison. -mscc is on by default.

-mcond-exec
-mno-cond-exec

-mcond-exec enables and -mno-cond-exec disables converting small IF-THEN
and IF-THEN-ELSE statements to use conditional execution if optimizing.
-mcond-exec is on by default.

The compiler supports the following preprocessor symbols:
__frv__

Is always defined.
__FRV_GPR__

Is the number of general purpose registers.
__FRV_FPR__

Is the number of floating-point registers. It is 0 if both floating-point and media
instructions are disabled.

__FRV_DWORD__

Is defined if the target supports double-word load and store instructions.
__FRV_ACC__

Is the number of media accumulators. It is 0 if media instructions are disabled.
__FRV_HARD_FLOAT__

Is defined if the target supports hardware floating-point instructions.
__FRV_VLIW__

Is defined if VLIW packing is enabled. When defined, it is the number of
instructions packed together; 2 for -mcpu=fr400, -mcpu=fr405 and -mcpu=450; 4
for -mcpu=fr500; and 8 for -mcpu=fr550.

__FRV_FDPIC__

Is defined when the FDPIC ABI is in effect.
__CPU_FR550__

Is defined by -mcpu=fr550.
__CPU_FR500__

Is defined by -mcpu=fr500.
___CPU_FR450__

Is defined by -mcpu=fr450.
__CPU_FR405__
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 31

Reference
Is defined by -mcpu=fr405.
__CPU_FR400__

Is defined by -mcpu=fr400

There are no FR-V architecture specific attributes; see “Declaring Attributes of
Functions” and “Specifying Attributes of Variables” in “Extensions to the C
Language Family” in Using GNU CC in GNUPro Compiler Tools for information.

EABI Summary of Features
The Fujitsu FR-V toolchain supports the Fujitsu FR-V EABI (Embedded Application
Binary Interface), which programs use as a standard for interfacing with operating
systems, including specifications such as executable format, calling conventions,
chip-specific requirements, and other prerequisites.

Table 5 shows the size and alignment for all data types.

Table 5: Data type sizes and alignments

The structure/union data size is a multiple of the maximum boundary alignment size
of the members. Boundary alignment for the area itself is accomplished by member
maximum boundary alignment.

The individual members are subject to boundary alignment in accordance with the
member type.

Table 6 shows the function calling sequence.

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte
short 2 bytes 2 bytes
int 4 bytes 4 bytes
unsigned 4 bytes 4 bytes
long 4 bytes 4 bytes
long long 8 bytes 8 bytes
float 4 bytes 4 bytes
double 8 bytes 8 bytes
long double 8 bytes 8 bytes
pointer 4 bytes 4 bytes
32 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

EABI Summary of Features
Table 6: Function calling sequence

The following documentation describes FR-V stack frame.
■ The stack grows downwards from high addresses to low addresses.
■ A leaf function is not required to allocate a stack frame if one is not needed.
■ The EABI requires a frame pointer always be allocated if any stack is allocated. In

other words, a leaf function that uses no stack does not allocate a frame pointer,
but a leaf function that uses stack or a non-leaf function requires a frame pointer.

■ If -mdword is used then the stack will be aligned to 8-byte boundaries. If
-mno-dword is used the stack will be aligned to 4-byte boundaries. The default is
-mdword.

Figure 16 shows the stack frame usage for functions that take a fixed number or
variable number of arguments.

Register type Register name Caller/Callee save
Zero register GR0 -

Stack pointer (SP) GR1 -

Frame pointer (FP) GR2 -

Hidden parameter GR3 caller

- GR4-GR7 caller

Argument register GR8-GR13 caller

- GR14-GR15 caller

- GR16-GR31 callee

- GR32-GR47 caller

- GR48-GR63 callee

- FR0-FR15 caller

- FR16-FR31 callee

- FR32-FR47 caller

- FR48-FR63 callee
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 33

Reference
Figure 16: Stack frame for functions taking a fixed or variable number of arguments

High memory

Before call: After call:

Alignment padding if
needed (1 word)

Args to the function being
called that do not fit in
registers

SP

Low memory

FP
Local variable save area

Hidden param save area

Return address (LR)

Old FP

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Args to the function
being called that do not
fit in registers

Local variable save area

Hidden param save area

Return address (LR)

Old FP

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Alignment padding if
needed (1 word)

Area to hold arguments of
functions called by this
function that fit in registers

Local variable save area

Hidden param save area

Return address (LR)

Alignment padding if
needed (1 word)

Old FP

Register save area

SP

FP
34 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

EABI Summary of Features
GR8 through GR13 registers carry arguments to functions, with lower-numbered
registers being allocated to earlier arguments. When all six registers have been filled,
any remaining arguments are placed in the stack argument area, allocating from lower
to higher addresses.

To pass and return values which are not structures or unions:
■ Each argument four bytes in size or smaller is allocated one complete register.
■ Eight-byte arguments are allocated two consecutive complete registers. The

lower-numbered register holds the most significant word, and the
higher-numbered register holds the least significant word. If registers GR8 through
GR12 have already been allocated, a subsequent eight-byte argument is split
between registers and arguments; its most significant half is passed in GR13, and
its least significant half is passed as the first word of the stack argument area.

■ Values four bytes or smaller are returned in GR8. For eight-byte values, the most
significant half is returned in GR8, and the least significant half is returned in GR9.

For structures and unions, the rules are as follows:
■ To pass a structure or union of any size by value, the caller copies the value to a

buffer in its own local variable area. The caller then passes the address of this
buffer to the callee like a normal pointer argument, either in registers or on the
stack. The size of the buffer must be a multiple of four bytes.

■ To return a structure or union of any size by value, the caller allocates a buffer of
the appropriate size in its own local variable area, and passes the address of this
buffer to the callee in GR3 (the “hidden parameter”). The size of this buffer must
also be a multiple of four bytes.

If the callee takes a variable number of arguments, it stores all its argument registers in
an argument register save area. This area is six words long, just large enough to hold
all the argument registers, and allocated just below any arguments received on the
stack. Thus, once the registers have been saved, all the function’s arguments appear in
a contiguous block of memory, starting with the argument register save area. To walk
the argument list, the callee needs only advance a pointer from lower to higher
addresses.

Table 7 shows how relocation names and numbers are used.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 35

Reference
Table 7: Relocation names and numbers

See Table 8 for the flags and values used in the e_flags field of the ELF header.

Number Name Usage
0 R_FRV_NONE None

1 R_FRV_32 32 bit relocation

2 R_FRV_LABEL16 Used with bicc instructions

3 R_FRV_LABEL24 Used with call instruction

4 R_FRV_LO16 Used with setlo, setlos

5 R_FRV_HI16 Used with sethi

6 R_FRV_GPREL12 Used with immediate instructions for global
pointer-relative references

7 R_FRV_GPRELU12 for unsigned operands, used with immediate
instructions for global pointer-relative
references

8 R_FRV_GPREL32 Not used.

9 R_FRV_GPRELHI Used with sethi for global pointer-relative
access

10 R_FRV_GPRELLO Used with setlos, setlo for global
pointer-relative access

200 R_FRV_GNU_VTINHERIT Generated for.vtinherit assembler directive

201 R_FRV_GNU_VTENTRY Generated for.vtentry assembler directive
36 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

EABI Summary of Features
Table 8: Flags and values used in the e_flags field of the ELF header

Grouping small global data items together results in more efficient code generation for
the FR-V. Consider the following code sequence.

sethi %hi(_smallvar), gr22
setlo %lo(_smallvar), gr22
ld @(gr22, gr0), gr23

Instead, the following code will generate to load a value from the small data area:

ldi @(gr16, _smallvar), gr23

To facilitate this optimization, gr16 is reserved for use as the global data pointer (gp).
By default, all global data items which are less than 8 bytes will be placed in two
special sections named .sbss and .sdata. It is possible to address up to 4K of globals
using this scheme. The -G compiler switch is provided to change the default size of
items which are placed in these sections. The “section” attribute may also be used to
control placement of globals.

Flag Value Usage
EF_FRV_GPR32 0x00000001 Compiled with -mgpr-32
EF_FRV_GPR64 0x00000002 Compiled with -mgpr-64
EF_FRV_FPR32 0x00000004 Compiled with -mfpr-32
EF_FRV_FPR64 0x00000008 Compiled with -mfpr-64
EF_FRV_FPR_NONE 0x0000000c Compiled with -msoft-float
EF_FRV_DWORD_YES 0x00000010 Compiled with -mdword
EF_FRV_DWORD_NO 0x00000020 Compiled with -mno-dword
EF_FRV_DOUBLE 0x00000040 Compiled with -mdouble
EF_FRV_MEDIA 0x00000080 Compiled with -mmedia
EF_FRV_PIC 0x00000100 Compiled with -fpic
EF_FRV_NON_PIC_RELOCS 0x00000200 Used non-pic relocs
EF_FRV_BIGPIC 0x00000800 Compiled with -fPIC
EF_FRV_LIBPIC 0x00001000 Compiled with -mlibrary-pic
EF_FRV_G0 0x00002000 All modules compiled with -G 0
EF_FRV_NOPACK 0x00004000 Compiled with -mno-pack
EF_FRV_FDPIC 0x00008000 Compiled with -mfdpic
EF_FRV_MULADD 0x00000400 Compiled with -mmuladds
EF_FRV_CPU_GENERIC 0x00000000 Generic FRV
EF_FRV_CPU_FR500 0x01000000 Compiled for the FR500
EF_FRV_CPU_FR400 0x05000000 Compiled for the FR400
EF_FRV_CPU_FR550 0x06000000 Compiled for the FR550

EF_FRV_CPU_FR405 0x07000000 Compiled for the FR405
EF_FRV_CPU_FR450 0x08000000 Compiled for the FR450
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 37

Reference
The middle address of the small data area will be defined by an entry in the linker
script. The gp register is initialized by the startup code.

The PIC register (gr17) is reserved for use with position independent code. The
compiler gathers static pointers in a special section named .rofixup. Within this
section the .picptr is used to mark those pointers which are considered to be valid
for use with position independent code. For programs compiled with -fpic, code will
be generated upon procedure entry to set up the PIC register (gr17). All addresses will
then be loaded relative to the PIC register. The code which sets up the PIC register
looks like the code in Example 7.

Example 7: Procedure prologue code which sets up the PIC register
call .LCF0

.LCF0:
movsg lr, gr17
sethi %gprelhi(.LCF0), gr5
setlo %gprello(.LCF0), gr5
sub gr17,gr5,gr17

The %gprelhi - %gprello syntax triggers a _gp relative relocation for the sethi and
setlo instructions.

To access a data item once the PIC register has been set up, the following code
sequence is then used:
ldi @(gr17,_y), gr8

FDPIC ABI Summary
FDPIC enables the creation of executables and dynamic libraries that enables a
multi-process system to share the text segments of multiple processes running the
same program or using the same dynamic library, even on a machine without a
memory management unit. This is accomplished by using gr15 as the PIC register,
that points to a global offset table (GOT). Every address computation uses the PIC
register, either by adding an offset to it when an address is part of a data segment, or
by loading an address from the GOT otherwise. Function calls sequences must set
gr15 to the same value it had at the function entry, and not expect it to remain
unchanged after the call. Calls to functions in other translation units may go through a
procedure linkage table stub. Pointers to functions do not point to the function entry
point, but rather to a function descriptor, that holds not only the address of the
function entry point, but also a pointer to the GOT address that must be in the PIC
register in order to call the function within the context of the process. Additional
details are available in a separate document, that specifies the FDPIC ABI.
38 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Built-in Functions
Built-in Functions
GCC provides many FR-V-specific built-in functions for accessing features such as
saturated arithetic, cache prefetching and media operations. The term "built-in" refers
to the fact that the functions are integrated into GCC itself; there is no need to include
a special header file.

Argument and return types
The arguments to built-in functions can be divided into three groups: register
numbers, compile-time constants and run-time values. In order to make this
classification clear at a glance, the arguments and return values are given the
following pseudo types.

Table 9: Arguments and return types.

Note that these pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.

Arguments of type uh, uw1, sw1, uw2 and sw2 are evaluated at run time. They
correspond to register operands in the underlying FR-V instruction.

const arguments represent immediate operands in the underlying FR-V instruction.
They must be compile-time constants.

acc arguments are evaluated at compile time and specify the number of an
accumulator register. For example, an acc argument of 2 will select the ACC2
register.

iacc arguments are similar to acc arguments but specify the number of an IACC
register. See the description of the IACC functions for more details.

Pseudo Type Real C type Constant Description
uh unsigned short No an unsigned halfword
uw1 unsigned int No an unsigned word
sw1 int No a signed word
uw2 long long No an unsigned doubleword
sw2 long long No a signed doubleword
const int Yes an integer constant
acc int Yes an ACC register number
iacc int Yes an IACC register number
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 39

Reference
Directly-mapped built-in functions
Most of the built-in functions are named after the FR-V instruction which implements
them. This section summarizes these functions in tabular form. Each table has three
columns:

- Instruction

The assembly-language syntax for the underlying FR-V instruction.
Operands are denoted by lower case letters (a, b, etc.).

- Function Prototype

A C-like prototype for the built-in function. See the previous section for the
meaning of argument and return types.

- Operand Mapping

An example of how the function might be used. Variables are denoted a, b, etc.,
and correspond to the operands of the same name in column 1.

Please see the FR-V instruction set manuals for a description of what each instruction
does.

Table 10: Integer Instructions
Instruction Function Prototype Operand Mapping
ADDSS a,b,c sw1 __ADDSS (sw1, sw1) c = __ADDSS (a, b)

SCAN a,b,c sw1 __SCAN (sw1, sw1) c = __SCAN (a, b)

SCUTSS a,b sw1 __SCUTSS (sw1) b = __SCUTSS (a)

SLASS a,b,c sw1 __SLASS (sw1, sw1) c = __SLASS (a, b)

SMASS a,b void __SMASS (sw1,
sw1)

__SMASS (a, b)

SMSSS a,b void __SMSSS (sw1,
sw1)

__SMSSS (a, b)

SMU a,b void __SMU (sw1, sw1) __SMU (a, b)

SMUL a,b,c sw2 __SMUL (sw1, sw1) c = __SMUL (a, b)

SUBSS a,b,c sw1 __SUBSS (sw1, sw1) c = __SUBSS (a, b)

UMUL a,b,c uw2 __UMUL (uw1, uw1) c = __UMUL (a, b)
40 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Built-in Functions
Table 11: Media Instructions
Instruction Function Prototype Operand Mapping
MABSHS a,b uw1 __MABSHS (sw1) b = __MABSHS (a)

MADDHUS a,b,c uw1 __MADDHUS (uw1, uw1) c = __MADDHUS (a, b)

MADDHSS a,b,c sw1 __MADDHSS (sw1, sw1) c = __MADDHSS (a, b)

MADDACCS a,b void __MADDACCS (acc, acc) __MADDACCS (b, a)

MAND a,b,c uw1 __MAND (uw1, uw1) c = __MAND (a, b)

MASACCS a,b void __MASACCS (acc, acc) __MASACCS (b, a)

MAVEH a,b,c uw1 __MAVEH (uw1, uw1) c = __MAVEH (a, b)

MBTOH a,b uw2 __MBTOH (uw1) b = __MBTOH (a)

MBTOHE a,b void __MBTOHE (uw1 *, uw1) __MBTOHE (&b, a)

MCLRACC a,#0 void __MCLRACC (acc) __MCLRACC (a)

MCLRACC acc0,#1 void __MCLRACCA (void) __MCLRACCA ()

Mcop1 a,b,c uw1 __Mcop1 (uw1, uw1) c = __Mcop1 (a, b)

Mcop2 a,b,c uw1 __Mcop2 (uw1, uw1) c = __Mcop2 (a, b)

MCPLHI a,#b,c uw1 __MCPLHI (uw2, const) c = __MCPLHI (a, b)

MCPLI a,#b,c uw1 __MCPLI (uw2, const) c = __MCPLI (a, b)

MCPXIS a,b,c void __MCPXIS (acc, sw1, sw1) __MCPXIS (c, a, b)

MCPXIU a,b,c void __MCPXIU (acc, uw1, uw1) __MCPXIU (c, a, b

MCPXRS a,b,c void __MCPXRS (acc, sw1, sw1) __MCPXRS (c, a, b)

MCPXRU a,b,c void __MCPXRU (acc, uw1, uw1) __MCPXRU (c, a, b)

MCUT a,b,c uw1 __MCUT (acc, uw1) c = __MCUT (a, b)

MCUTSS a,b,c uw1 __MCUTSS (acc, sw1) c = __MCUTSS (a, b)

MDADDACCS a,b void __MDADDACCS (acc, acc) __MDADDACCS (b, a)

MDASACCS a,b void __MDASACCS (acc, acc) __MDASACCS (b, a)

MDCUTSSI a,#b,c uw2 __MDCUTSSI (acc, const) c = __MDCUTSSI (a, b)

MDPACKH a,b,c uw2 __MDPACKH (uw2, uw2) c = __MDPACKH (a, b)

MDROTLI a,#b,c uw2 __MDROTLI (uw2, const) c = __MDROTLI (a, b)

MDSUBACCS a,b void __MDSUBACCS (acc, acc) __MDSUBACCS (b, a)

MDUNPACKH a,b void __MDUNPACKH (uw1 *, uw2) __MDUNPACKH (&b, a)

MEXPDHD a,#b,c uw2 __MEXPDHD (uw1, const) c = __MEXPDHD (a, b)

MEXPDHW a,#b,c uw1 __MEXPDHW (uw1, const) c = __MEXPDHW (a, b)

MHDSETH a,#b,c uw1 __MHDSETH (uw1, const) c = __MHDSETH (a, b)

MHDSETS #a,b sw1 __MHDSETS (const) b = __MHDSETS (a)

MHSETHIH #a,b uw1 __MHSETHIH (uw1, const) b = __MHSETHIH (b, a)

MHSETHIS #a,b sw1 __MHSETHIS (sw1, const) b = __MHSETHIS (b, a)

MHSETLOH #a,b uw1 __MHSETLOH (uw1, const) b = __MHSETLOH (b, a)

MHSETLOS #a,b sw1 __MHSETLOS (sw1, const) b = __MHSETLOS (b, a)
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 41

Reference
Table 11: Media Instructions (cont)
Instruction Function Prototype Operand Mapping
MHTOB a,b uw1 __MHTOB (uw2) b = __MHTOB (a)

MMACHS a,b,c void __MMACHS (acc, sw1, sw1) __MMACHS (c, a, b)

MMACHU a,b,c void __MMACHU (acc, uw1, uw1) __MMACHU (c, a, b)

MMRDHS a,b,c void __MMRDHS (acc, sw1, sw1) __MMRDHS (c, a, b)

MMRDHU a,b,c void __MMRDHU (acc, uw1, uw1) __MMRDHU (c, a, b)

MMULHS a,b,c void __MMULHS (acc, sw1, sw1) __MMULHS (c, a, b)

MMULHU a,b,c void __MMULHU (acc, uw1, uw1) __MMULHU (c, a, b)

MMULXHS a,b,c void __MMULXHS (acc, sw1,
sw1)

__MMULXHS (c, a, b)

MMULXHU a,b,c void __MMULXHU (acc, uw1,
uw1)

__MMULXHU (c, a, b)

MNOT a,b uw1 __MNOT (uw1) b = __MNOT (a)

MOR a,b,c uw1 __MOR (uw1, uw1) c = __MOR (a, b)

MPACKH a,b,c uw1 __MPACKH (uh, uh) c = __MPACKH (a, b)

MQADDHSS a,b,c sw2 __MQADDHSS (sw2, sw2) c = __MQADDHSS (a, b)

MQADDHUS a,b,c uw2 __MQADDHUS (uw2, uw2) c = __MQADDHUS (a, b)

MQCPXIS a,b,c void __MQCPXIS (acc, sw2,
sw2)

__MQCPXIS (c, a, b)

MQCPXIU a,b,c void __MQCPXIU (acc, uw2,
uw2)

__MQCPXIU (c, a, b)

MQCPXRS a,b,c void __MQCPXRS (acc, sw2,
sw2)

__MQCPXRS (c, a, b)

MQCPXRU a,b,c void __MQCPXRU (acc, uw2,
uw2)

__MQCPXRU (c, a, b)

MQLCLRHS a,b,c sw2 __MQLCLRHS (sw2, sw2) c = __MQLCLRHS (a, b)

MQLMTHS a,b,c sw2 __MQLMTHS (sw2, sw2) c = __MQLMTHS (a, b)

MQMACHS a,b,c void __MQMACHS (acc, sw2,
sw2)

__MQMACHS (c, a, b)

MQMACHU a,b,c void __MQMACHU (acc, uw2,
uw2)

__MQMACHU (c, a, b)

MQMACXHS a,b,c void __MQMACXHS (acc, sw2,
sw2)

__MQMACXHS (c, a, b)

MQMULHS a,b,c void __MQMULHS (acc, sw2,
sw2)

__MQMULHS (c, a, b)

MQMULHU a,b,c void __MQMULHU (acc, uw2,
uw2)

__MQMULHU (c, a, b)

MQMULXHS a,b,c void __MQMULXHS (acc, sw2,
sw2)

__MQMULXHS (c, a, b)

MQMULXHU a,b,c void __MQMULXHU (acc, uw2,
uw2)

__MQMULXHU (c, a, b)

MQSATHS a,b,c sw2 __MQSATHS (sw2, sw2) c = __MQSATHS (a, b)
42 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Built-in Functions
Table 11: Media Instruction (cont)

Other built-in functions
This section describes built-in functions that are not named after a specific FR-V
instruction.
sw2 __IACCreadll (iacc)

Returns the full 64-bit value of IACC0. The argument is reserved for future
expansion and must be 0.

sw1 __IACCreadl (iacc)

__IACCreadl (0) returns the value of IACC0H.

__IACCreadl (1) returns the value of IACC0L

Instruction Function Prototype Operand Mapping
MQSLLHI a,#b,c uw2 __MQSLLHI (uw2, const) c = __MQSLLHI (a, b)

MQSRAHI a,#b,c sw2 __MQSRAHI (sw2, const) c = __MQSRAHI (a, b)
MQSUBHSS a,b,c sw2 __MQSUBHSS (sw2, sw2) c = __MQSUBHSS (a, b)

MQSUBHUS a,b,c uw2 __MQSUBHUS (uw2, uw2) c = __MQSUBHUS (a, b)

MQXMACHS a,b,c void __MQXMACHS (acc, sw2,
sw2)

__MQXMACHS (c, a, b)

MQXMACXHS a,b,c void __MQXMACXHS (acc, sw2,
sw2)

__MQXMACXHS (c, a, b)

MRDACC a,b uw1 __MRDACC (acc) b = __MRDACC (a)

MRDACCG a,b uw1 __MRDACCG (acc) b = __MRDACCG (a)

MROTLI a,#b,c uw1 __MROTLI (uw1, const) c = __MROTLI (a, b)

MROTRI a,#b,c uw1 __MROTRI (uw1, const) c = __MROTRI (a, b)

MSATHS a,b,c sw1 __MSATHS (sw1, sw1) c = __MSATHS (a, b)

MSATHU a,b,c uw1 __MSATHU (uw1, uw1) c = __MSATHU (a, b)

MSLLHI a,#b,c uw1 __MSLLHI (uw1, const) c = __MSLLHI (a, b)

MSRAHI a,#b,c sw1 __MSRAHI (sw1, const) c = __MSRAHI (a, b)

MSRLHI a,#b,c uw1 __MSRLHI (uw1, const) c = __MSRLHI (a, b)

MSUBACCS a,b void __MSUBACCS (acc, acc) __MSUBACCS (b, a)

MSUBHSS a,b,c sw1 __MSUBHSS (sw1, sw1) c = __MSUBHSS (a, b)

MSUBHUS a,b,c uw1 __MSUBHUS (uw1, uw1) c = __MSUBHUS (a, b)

MTRAP void __MTRAP (void) __MTRAP ()

MUNPACKH a,b uw2 __MUNPACKH (uw1) b = __MUNPACKH (a)

MWCUT a,b,c uw1 __MWCUT (uw2, uw1) c = __MWCUT (a, b)

MWTACC a,b void __MWTACC (acc, uw1) __MWTACC (b, a)

MWTACCG a,b void __MWTACCG (acc, uw1) __MWTACCG (b, a)

MXOR a,b,c uw1 __MXOR (uw1, uw1) c = __MXOR (a, b)
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 43

Reference
void __IACCsetll (iacc, sw2)

Sets the full 64-bit value of IACC0 to the second argument. The first argument is
reserved for future expansion and must be 0.

void __IACCsetl (iacc, sw1)

__IACCsetl (0, X) sets IACC0H to X.
__IACCsetl (1, X) sets IACC0L to X.

void __data_prefetch0 (const void *)

__data_prefetch0 (X) preloads one data cache line from address X. It is
implemented as dcpl X, gr0, #0.

void __data_prefetch (const void *)

This function is like __data_prefetch0 but uses the nldub instruction. The
instruction will be issued in slot I1.

Example
Save the following code as example.c:
void f (unsigned int *z, unsigned int *x, unsigned int *y)
{

__MMULHU (2, x[0], y[0]);

__MMACHU (2, x[1], y[1]);

z[0] = __MRDACC (2);

z[1] = __MRDACC (3);

}

and compile it with:
frv-elf-gcc -O2 -mcpu=fr550 -S example.c

The implementation of f in example.s will be something like:
ldf.p @(gr10,gr0), fr1

ldf @(gr9,gr0), fr3

ldfi.p @(gr10,4), fr0

ldfi @(gr9,4), fr2

mmulhu fr3, fr1, acc2

mmachu fr2, fr0, acc2

mrdacc acc2, fr1

mrdacc acc3, fr0
44 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Assembler Features
stf.p fr1, @(gr8,gr0)

stfi.p fr0, @(gr8,4)

ret

(Note that the exact output may vary between releases.)

Assembler Features
The following documentation describes FR-V specific features of the GNUPro
assembler. For generic assembler options, see “Command Line Options” in Using as
in GNUPro Auxilairy Development Tools. For more information, see “Get Assembler
Listing from Source Code” on page 23. The instruction set is defined in the Fujitsu
manual, FRV Architecture Specification, Volume 1.
-mpic

Assembles position independent code (compiler passes -mpic to the assembler if
passed -fpic).

-mPIC

Assembles large position independent code (compiler passes -mPIC to the
assembler if passed -fPIC).

The following options are the same as the GCC equivalents, see page 28 for details
-mcpu

-mno-pack

-mlibrary-pic

-mfdpic

-G

-mgpr-64

-mgpr-32

-mfpr-64

-mfpr-32

-mno-media

-mhard-float

-msoft-float

-mdouble

-mno-double

-mdword

-mno-dword

-mmuladd

-mno-muladd
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 45

Reference
Opcodes are not case sensitive.

The assembler uses the register names in Table 12.

Table 12: Registers and naming conventions

Assembler special characters and directives

The FR-V-specific special characters are:

which starts a comment that extends to the end of the line, but only if it is the first
non-whitespace character on the line.

;

which starts a comment that extends to the end of the line. It can be used
anywhere on the line, even if non-whitespace characters have preceeded it.

!

which seperates two instructions on the same line. In effect the ! character is
treated as if it were a new-line character.

The FR-V-specific assembler directives are:
.eflags

which allows the user to set, and optionally clear, the flag bits which are stored in
the e_flags field of the ELF header. The format of the directive is:

.eflags <set_bit_mask> [, <clear_bit_mask>]

Any bits present in <set_bit_mask> will be set in the e_flags field. If the
<clear_bit_mask> is also specified then any bits in it will be removed from the
e_flags field.

.picptr

which produces the same output as .4byte, but which is considered safe for use in

Register usage Registers
General purpose registers gr0 through gr63

Floating point registers fr0 through fr63

Coprocessor registers cpr0 through cpr63

Condition code registers icc0, icc1, icc2, icc3, fcc0, fcc1, fcc2, fcc3, cc0,
cc1, cc2, cc3, cc4, cc5, cc6, and cc7

Special purpose registers There are 1024 special purpose registers.
46 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Linker Features
position-independent code. It also supports the syntax:
.picptr funcdesc(f)

which generates an R_FRV_FUNCDESC relocation against "f".

Linker Features
The following documentation describes FR-V specific features of the GNUPro linker.

There are no FR-V specific command line linker options. For generic linker options,
see “Linker Scripts” in Using ld in GNUPro Developer Tools.

The GNU linker uses a linker script to determine how to process each section in an
object file, and how to lay out the executable. The linker script is a declarative
program consisting of a number of directives. For instance, the ENTRY() directive
specifies the symbol in the executable that will be the executable’s entry point.

When building executables to run under the simulator, the GNU linker uses its built in
linker script, which is a generic ELF linker script. Using a bash shell and having
navigated to the ~/bin directory, display the script with the following command:
frv-elf-ld --verbose

See Example 8 for the linker script specific to the FR-V. The linker script in the
example cannot be used to create FDPIC binaries. GCC implicitly passes the
-melf32frvfd option to the linker when linking FDPIC binaries, that causes it to use a
different set of linker scripts by default. .
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 47

Reference
Example 8: FR-V linker script
/* Default linker script, for normal executables */
OUTPUT_FORMAT("elf32-frv", "elf32-frv","elf32-frv")
OUTPUT_ARCH(frv)
ENTRY(_start)
SEARCH_DIR("/usr/local/frv-elf/lib");
/* Do we need any of these for elf?
__DYNAMIC = 0; */SECTIONS
{/* Read-only sections, merged into text segment: */
PROVIDE (__executable_start = 0x10000); . = 0x10000;
.interp : { *(.interp) }
.hash : { *(.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rel.init : { *(.rel.init) }
.rela.init : { *(.rela.init) }
.rel.text : { *(.rel.text .rel.text.* .rel.gnu.linkonce.t.*) }
.rela.text : { *(.rela.text .rela.text.* .rela.gnu.linkonce.t.*) }
.rel.fini : { *(.rel.fini) }
.rela.fini : { *(.rela.fini) }
.rel.rodata : { *(.rel.rodata .rel.rodata.* .rel.gnu.linkonce.r.*) }
.rela.rodata : { *(.rela.rodata .rela.rodata.* .rela.gnu.linkonce.r.*)
.rel.data : { *(.rel.data .rel.data.* .rel.gnu.linkonce.d.*) }
.rela.data : { *(.rela.data .rela.data.* .rela.gnu.linkonce.d.*) }
.rel.tdata : { *(.rel.tdata .rel.tdata.* .rel.gnu.linkonce.td.*) }
.rela.tdata : { *(.rela.tdata .rela.tdata.* .rela.gnu.linkonce.td.*) }
.rel.tbss : { *(.rel.tbss .rel.tbss.* .rel.gnu.linkonce.tb.*) }
.rela.tbss : { *(.rela.tbss .rela.tbss.* .rela.gnu.linkonce.tb.*) }
.rel.ctors : { *(.rel.ctors) }
.rela.ctors : { *(.rela.ctors) }
.rel.dtors : { *(.rel.dtors) }
.rela.dtors : { *(.rela.dtors) }
.rel.got : { *(.rel.got) }
.rela.got : { *(.rela.got) }
.rel.sdata : { *(.rel.sdata .rel.sdata.* .rel.gnu.linkonce.s.*) }
.rela.sdata : { *(.rela.sdata .rela.sdata.* .rela.gnu.linkonce.s.*) }
.rel.sbss : { *(.rel.sbss .rel.sbss.* .rel.gnu.linkonce.sb.*) }
.rela.sbss : { *(.rela.sbss .rela.sbss.* .rela.gnu.linkonce.sb.*) }
.rel.sdata2 : { *(.rel.sdata2 .rel.sdata2.* .rel.gnu.linkonce.s2.*) }
.rela.sdata2 : { *(.rela.sdata2 .rela.sdata2.* rela.gnu.linkonce.s2.*)
.sdata2 : { *(.sdata2 .sdata2.* .gnu.linkonce.s2.*) }
}

48 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Linker Features
.rel.sbss2 : { *(.rel.sbss2 .rel.sbss2.* .rel.gnu.linkonce.sb2.*) }

.rela.sbss2 : { *(.rela.sbss2 .rela.sbss2.* .rela.gnu.linkonce.sb2.*)
}
.rel.bss : { *(.rel.bss .rel.bss.* .rel.gnu.linkonce.b.*) }
.rela.bss : { *(.rela.bss .rela.bss.* .rela.gnu.linkonce.b.*) }
.rel.plt : { *(.rel.plt) }
.rela.plt : { *(.rela.plt) }
.init :
{
KEEP (*(.init))
} =0x80000000
.plt : { *(.plt) }
.text :
{
(.text .stub .text. .gnu.linkonce.t.*)
/* .gnu.warning sections are handled specially by elf32.em. */
*(.gnu.warning)
} =0x80000000
.fini :
{
KEEP (*(.fini))
} =0x80000000
PROVIDE (__etext = .);
PROVIDE (_etext = .);
PROVIDE (etext = .);
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }
.rodata1 : { *(.rodata1) }
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.rofixup : { *(.rofixup) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
/* Adjust the address for the data segment. We want to adjust up to
the same address within the page on the next page up. */
. = ALIGN(256) + (. & (256 - 1));
/* Ensure the __preinit_array_start label is properly aligned. We
could instead move the label definition inside the section, but
the linker would then create the section even if it turns out to
be empty, which isn’t pretty. */
. = ALIGN(32 / 8);
PROVIDE (__preinit_array_start = .);
.preinit_array : { *(.preinit_array) }
PROVIDE (__preinit_array_end = .);
PROVIDE (__init_array_start = .);

Example 8: FR-V linker script (cont’d)
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 49

Reference
.init_array : { *(.init_array) }
PROVIDE (__init_array_end = .);
PROVIDE (__fini_array_start = .);
.fini_array : { *(.fini_array) }
PROVIDE (__fini_array_end = .);
.data :
{
__data_start = . ;
(.data .data. .gnu.linkonce.d.*)
SORT(CONSTRUCTORS)
}
.data1 : { *(.data1) }
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
.eh_frame : { KEEP (*(.eh_frame)) }
.gcc_except_table : { *(.gcc_except_table) }
.dynamic : { *(.dynamic) }
.ctors :
{
/* gcc uses crtbegin.o to find the start of the constructors, so we
make sure it is
first. Because this is a wildcard, it doesn’t matter if the user does
not actually link against crtbegin.o; the linker won’t look for a file
to match a wildcard. The wildcard also means that it doesn’t matter
which directory crtbegin.o is in. */
KEEP (*crtbegin*.o(.ctors))
/* We don’t want to include the .ctor section from
from the crtend.o file until after the sorted ctors.
The .ctor section from the crtend file contains the
end of ctors marker and it must be last */
KEEP (*(EXCLUDE_FILE (*crtend*.o *frvend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
}
.dtors :
{
KEEP (*crtbegin*.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend*.o *frvend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
}
.jcr : { KEEP (*(.jcr)) }
. = ALIGN(8); _gp = . + 2048;
PROVIDE (gp = _gp);
.got : { *(.got.plt) *(.got) }

Example 8: FR-V linker script (cont’d)
50 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Linker Features
/* We want the small data sections together, so single-instruction
offsets can access them all, and initialized data all before
uninitialized, so
we can shorten the on-disk segment size. */
.sdata :
{
(.sdata .sdata. .gnu.linkonce.s.*)
}
_edata = .;
PROVIDE (edata = .);
__bss_start = .;
.sbss :
{
PROVIDE (__sbss_start = .);
PROVIDE (___sbss_start = .);
*(.dynsbss)
(.sbss .sbss. .gnu.linkonce.sb.*)
*(.scommon)
PROVIDE (__sbss_end = .);
PROVIDE (___sbss_end = .);
}
.bss :
{
*(.dynbss)
(.bss .bss. .gnu.linkonce.b.*)
*(COMMON)
/* Align here to ensure that the .bss section occupies space up to
_end. Align after .bss to ensure correct alignment even if the
.bss section disappears because there are no input sections. */
. = ALIGN(32 / 8);
}
. = ALIGN(32 / 8);
_end = .;
__end = .;
PROVIDE (end = .);

Example 8: FR-V linker script (cont’d)
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 51

Reference
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
.stack 0x200000 :
{
_stack = .;
*(.stack)
}
/DISCARD/ : { *(.note.GNU-stack) }
}

Example 8: FR-V linker script (cont’d)
52 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Debugger Features
Debugger Features
The following documentation describes FR-V specific features of the GNUPro
debugger. For information on debugging, see “Run the Debugger through an
Executable” on page 7, “Debug with the Simulator” on page 10, and Debugging with
GDB in GNUPro Debugging Tools. Use RedBoot for remote debugging; see
“RedBoot Features” on page 54 and see the RedBoot User’s Guide
(http://sources.redhat.com/redboot/). Having connected the serial ports (host
operating system and target board), use the following GDB commands from a bash
shell:
set remotebaud 38400

target remote com1

To debug, using a bash shell, use the frv-elf-gdb myapp.exe command
(substituting your executable file’s name for myapp). Copyright text displays are
followed by the (gdb) prompt, waiting for you to enter commands like run or help.
If your program crashes and you want to determine why it crashed, type run and let
the debugging process run. After it crashes, use the where command to determine
where it crashed, or the info locals command to see the values of all the local
variables. There is also the print command that lets you examine individual
variables. If your program is doing something unexpected, use the break command to
stop the debugging process when the process gets to a specific function or line number
and use other commands to look at the state of your program at that point, to modify
variables, or to step through your program’s statements one at a time.

Insight Features
For debugging, GNUPro Toolkit also includes Insight, a graphical user interface.
Insight is invoked by frv-elf-insight command. Insight works on a range of host
systems and target microprocessors, allowing development with complete access to a
program’s state, for source and assembly level, with the ability to manage breakpoints,
variables, registers, memory, threads, and other functionality. Providing an interface
into the debugging process, Insight gives you a wide range of system information. See
Figure 17 for an example of the main windows that Insight uses for analyzing and
debugging programs.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 53

Reference
Figure 17: A composite view of working with Insight

For developing with Insight, see Insight, the GNUPro Debugger GUI Interface in
GNUPro Debugging Tools.

RedBoot Features
To debug a program running the GNU debugger, GDB, you can use remote debugging
by booting with RedBoot (see “Get RedBoot for Debugging” on page 8). RedBoot
helps with manipulating a target system’s environment, for both product development
(debug support) and for end product deployment (flash and network booting). Using
serial (terminal) or Ethernet (telnet) connectivity, RedBoot has integrated GDB stubs
(sub-routines) for connection to a host-based debugger (Ethernet connectivity is
limited to local network) with attribute configuration (for control of aspects such as
system time and date, default flash image from which to boot, a default failsafe image,
static IP address, etc.). Extensible, specifically adapted to a target’s environment with
network bootstrap support including setup and download, with capability of using
BOOTP, DHCP and TFTP (not available for all systems or targets), RedBoot can
include X/Y Modem support for image download. For more information on RedBoot,
see “Run the Debugger through an Executable” on page 7 and see
http://sources.redhat.com/redboot/

Memory window

Source Window

Registers window

Function Browser window

Processes window

Breakpoints window
54 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Simulator Features
Simulator Features
The following content discusses special simulator functionality for use with the
Fujitsu FR-V architecture. See also “Debug with the Simulator” on page 10. Use the
--help option to the simulator with the following syntax.
frv-elf-run [options] program [program args]

The simulator supports general registers, gr0 through gr63, the floating-point
registers, fr0 through fr63, the co-processor registers, cpr0 through cpr63, and any
special purpose registers. The simulator allocates a contiguous chunk of memory
starting at address zero (0). The default memory size is 8 MB.

The following options are for the simulator.
--architecture machine-type

Allows for specifying simple, fr400, fr450, fr500, fr550, frv for
machine-type. Default is fr500.

--architecture-info
--info-architecture

Lists supported architectures.
--alignment strict|nonstrict|forced

Sets memory access alignment. nonstrict is the only accepted alignment.
-D
--debug

Prints debugging messages.
--debug-insn

Prints instruction debugging messages.
-debug-file filename

Specifies the debugging output file.
--environment user|virtual|operating

Sets the running environment.
-H
--help

Displays a complete list of options recognized by the simulator.
-c[[size]]
--scache-size [[=size]]

Specifies the size of the simulator execution cache.
--data-cache[=ways[,sets[,linesize]]]
--insn-cache[=ways[,sets[,linesize]]]

--data-cache enables the data cache. --insn-cache enables the instruction
cache. Defaults differ, depending on the setting of the --architecture option.
These options enable simulations of the data cache and instruction cache
respectively. The caches are disabled by default since the HSR0.ICE and HSR0.DCE
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 55

Reference
bits are 0 initially. The program being simulated can also enable the caches by
setting these bits to 1.

ways is an integer specifying how many cache lines are associated with each SET;
the default is 4 for the FR500 and FR550 architectures and 2 for the FR400
architecture (specifying 0 results in the default).

sets is an integer specifying how many sets are in the cache; the default is 64 for
the FR500 architecture and 128 for the FR400, FR450 and FR550 architectures
(specifying 0 results in the default).

linesize is an integer specifying the size of each cache line; the default is 64
bytes for the FR500 and FR550 architectures and 32 bytes for the FR400 and
FR450 architectures (specifying 0 results in the default).

-p
--profile

These options perform profiling. -p option displays information about the
execution of the simulated program. In addition, for the FR-V architecture, the -p
option, when used with the -t option (simulation trace) will display information
about data hazards, resource hazards and instruction fetch hazards. This
information is interspersed with the instruction trace and provides information on
the number of cycles which the program must wait for resolution of these hazards.

--profile-cache[=on|off]

Profiles caches. Displays access statistics for both caches at the end of the
simulation. Also enabled by the -p flag.

--profile-scache

Performs simulator execution cache profiling.
--profile-core

Performs CORE profiling.
--profile-file filename

Specifies the profile output file.
--profile-insn

Performs instruction profiling.
--profile-memory

Performs memory profiling.
--profile-model

Performs model profiling.
--profile-parallel[=on|off]

Profiles parallelism. Displays statistics on parallel execution at the end of the
simulation. This option is also enabled by the -p flag.

--profile-range start,end

Specifies the range of addresses for instruction and model profiling.
56 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Simulator Features
--timer cycles,interrupt

Sets the Interrupt Timer.
--memory-alias address,size[,address]

Adds a memory shadow.
--memory-clear

Clears all memory regions.
--memory-delete address|all
--delete-memory address

Deletes memory at address (or with all, all addresses).
--memory-info
--info-memory

Lists configurable memory regions.
--memory-latency cycles

This option sets the latency of memory, by setting the number of cycles required
to access main memory during the simulation. The default is 24 cycles.

--memory-region address,size[,modulo]

Adds a memory region.
--memory-size size

Adds memory at address zero.
--memory-latency cycles

Sets for configuring memory latency. The default latency is assumed to be 24
cycles (read and write). Address translation is not implemented. Latency for loads
and stores use the standards in Table 13.

Table 13: Configuring latency

--model model

Specifies a model to simulate. frvbf is the only model accepted for MODEL.
--target BFDname

Specifies the object-code format for the object files. frv-unknown-elf is the only
accepted target for BFDname.

--timer cycles,interrupt

Sets the interrupt timer. The timer expires periodically after a fixed number of
execution cycles. When the timer expires an external interrupt is generated. The
arguments are used to configure the timer properties:
■ cycles specifies the number of cycles between interrupts.
■ interrupt specifies the number of the interrupt generated and must be an

integer between 1 and 15.

Usage Cache Hit Cache Miss
GR load/store 2 --memory-latency

FR load/store 3 --memory-latency + 1

Instruction fetch 2 --memory-latency
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 57

Reference
-t[=on|off]
--trace [=on|off]

Traces useful things.
--trace-insn [=on|off]

Performs instruction tracing.

--trace-extract [=on|off]

Traces instruction extraction.

--trace-linenum [=on|off]

Performs line number tracing (implies --trace-insn).

--trace-semantics [=on|off]

Performs ALU, FPU, MEMORY, and BRANCH tracing.

--trace-core [=on|off]

Traces core operations.

--trace-events [=on|off]

Traces events.
--trace-range =start,end

Specifies range of addresses for instruction tracing.

--trace-debug [=on|off]

Adds information useful for debugging the simulator to the tracing output.
--trace-file =filename

Specifies tracing output file.
-v
--verbose

Specifies verbose output.

The following interrupts are available when using the simulator.
■ RESET

A software reset may be initiated by setting RSTR.SR or RSTR.HR to 1. RSTR is
located at address 0xfeff0500. Hardware reset is currently not supported.

■ BREAK
The BREAK instruction is supported. No other BREAK interrupts are supported.

■ PROGRAM

Program interrupts work as documented in the FRV Architecture, Volume 1.
■ SOFTWARE

Software interrupts are supported.
■ EXTERNAL

External interrupts work in order to implement the timer interrupt.
58 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Cygwin Features
Cygwin Features
The Cygwin tools that GNUPro Toolkit provides allow you to work on Windows
systems as if emulating a UNIX system. For more information, see the current
http://www.redhat.com/docs/manuals/gnupro/ documentation. Cygwin, a
full-featured Win32 porting layer for UNIX programs, is compatible with Win32
hosts (currently, these are Microsoft Windows NT/2000/XP systems). With Cygwin,
you can make all directories have similar behavior, with all the UNIX default tools in
their familiar place. Scripting languages include bash, tsh, and tcsh. Tools such as
Perl, Tcl/Tk, sed, awk, vim, Emacs, xemacs, telnetd and ftpd. In order to emulate a
UNIX kernel to access all processes that can run with it, use the Cygwin DLL
(dynamically linked library). The Cygwin DLL will create shared memory areas so
that other processes using separate instances of the DLL can access the kernel.

For more details, see http://sources.redhat.com/cygwin/ for documentation.
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 59

Reference
60 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Index

A
accumulator 30
as see assembler
assembler 2, 23, 45–46

attributes 54
directive 36
opcodes 46
optimization 55
registers 46

attributes 32, 54

B
binary utilities 1, 2
BOOTP 54
Bourne-compatible shells, setting PATH 3
breakpoint 18–19
build and installation directories 25

C
C shell, setting PATH 3
cache optimization 55, 56
case sensitivity 3
compiler 1, 2, 6, 23, 28–32, 37

accumulators 30
attributes 32, 54
e_flags field 36
floating-point instructions 30
instructions 30
opcodes 46

optimization 37, 55
options

assembler 23
-fPIC 29, 30
-fpic 28, 29
-G 30
-macc-4 30
-macc-8 30
-mcond-exec 31
-mcond-move 31
-mdouble 30
-mdword 30
-mfpr-32 30
-mfpr-64 30, 45
-mgpr-32 30
-mgpr-64 30, 45
-mhard-float 30
-mlibrary-pic 28, 45
-mmedia 30
-mmuladd 30
-mno-double 30
-mno-dword 30
-mno-media 30
-mno-muladd 30
-mpack 28
-mPIC 45
-mpic 45
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 61

D - O
-mscc 31
-msoft-float 30

position independent code 38
preprocessor symbols

__frv__ 31
__FRV_ACC__ 31
__FRV_DWORD__ 31
__FRV_FPR__ 31
__FRV_GPR__ 31
__FRV_HARD_FLOAT__ 31
__FRV_VLIW__ 31, 32

registers 30, 46
relocation names and numbers 35
simulator 55–58

configuring 3, 25, 54, 57
connectivity 54
contacting Red Hat ii
CPU 1
CPUID information 15
Cygwin 24, 26, 59

D
data type sizes and alignments 32
debugger 1, 2, 7–23, 53, 54

attributes 54
breakpoints 19, 21
embedded projects, working with 14
Insight 13–23
jumps 17
local variables 18
RedBoot 54
threads 22, 23

DHCP 54
documentation 1, 3, 15
double-word load and store instructions 31

E
ELF object file format 2
embedded development, defined 14
ENTRY() 47
environment variables, setting 2, 3, 15
Ethernet (telnet) connectivity 54
executable 3, 47

F
floating-point instructions 30, 31
functions 12, 33, 35

G
GAS see assembler
GCC see compiler or see compiler options
GDB see debugger
GLD see linker
global and static variables 29
GNUPro Compiler Collection (GCC) 28

H
hardware 2, 58
hosts 1

I
Insight 13–23
installation 1, 2, 25
instruction scheduling optimizations 55
instructions 28, 30, 31, 36, 38

K
Korn shell 3

L
latency 57
LD see linker
libraries 1
linker 2, 23, 47–??
linker script 48–??
Linux 1

case sensitivity 3
environment variables, setting 3

local variables 21

M
media instructions 28, 30, 31
memory latency 57
multiple threads 23

N
naming 2

O
object file format 2, 32
opcodes 46
optimization 31, 37, 55
62 ■ Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

P - W
P
page 37 28
page 38 38
porting layer for UNIX applications 59
position independent code 38, 45
preprocessor 31
processor version 1

R
ramdisk 2
rebuilding, Windows 24–26
RedBoot 8, 15, 53, 54
registers 30, 31, 35, 46
relocation names and numbers 35

S
shell 3
simulator 6, 7, 10, 47, 55–58
single-precision instructions 30
Solaris 1, 2

case sensitivity 3
environment variables, setting 3

sources 6, 23, 25
stack 33
static and global variables 29
stubs 54

symbols 31, 47

T
TFTP 54
threads 23
toolchain 3
triplet name 3
tutorials 5–26

U
UNIX programs, porting to Windows 59

V
variables, environment, setting 2
variables, local, changing 21
version, processor 1

W
warnings 15, 22
Windows 1

binaries 2
case sensitivity 3
Cygwin 59
environment variables, setting 2
rebuilding tools 24
GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat ■ 63

	GNUPro® Toolkit User’s Guide for Fujitsu™ FR-V Architecture
	Contents
	Introduction
	Tutorial
	Create Source Code
	Compile from Source Code
	Run the Executable on the Simulator
	Run the Debugger through an Executable
	Get RedBoot for Debugging
	Debug with the Simulator
	Debug with Insight
	Get Assembler Listing from Source Code
	Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems

	Reference
	Compiler Features
	EABI Summary of Features
	FDPIC ABI Summary

	Built-in Functions
	Argument and return types
	Directly-mapped built-in functions
	Other built-in functions
	Example

	Assembler Features
	Linker Features
	Debugger Features
	Insight Features
	RedBoot Features
	Simulator Features
	Cygwin Features

	Index

