@ redhat

GNUPro® Toolkit User’'s Guide
for Fujitsu” FR-V Architecture

Y

Copyright © 2003 Red Hat®, Inc. All rights reserved.

Red Hat, the Red Hat Shadow Man 1ogo®, GNUPro®, RedBoot ™, eCos™, and Insight™ are trademarks of Red Hat, Inc.
Fujitsu® isaregistered trademark of Fujitsu Limited.

Intel® and Intel® Pentium® are registered trademarks of Intel Corporation.

Linux®isa registered trademark of Linus Torvalds.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems®, Inc.

SPARC® is aregistered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.
UNIX®isa registered trademark of The Open Group.

Windows® and Windows NT® are registered trademarks of Microsoft® Corporation.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

No part of this document may be reproduced in any form or by any means without the prior express written consent of
Red Hat, Inc.

No part of this document may be changed an/or modified without the prior express written consent of Red Hat, Inc.
How to Contact Red Hat

Red Hat Corporate Headquarters
1801 Varsity Drive
Raleigh, NC 27606 USA
Telephone (toll free): +1 888 REDHAT 1
Telephone (main ling): +1 919 754 3700
Telephone (FAX ling): +1 919 754 3701
Website: ht t p: / / www. r edhat . com

ii m Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Contents

[18 0o 18 ox 4 o] o SRR 1
JLILE Lo L =SSP SSTTRS TR 5
Create SOUMCE COUE........ceiieieirieieeieeiesie ettt sttt bbbt e et st nr e 6
Compile from SOUICE COUE........cccueieeree ettt e e e snee e 6
Run the Executable on the SIMUIALOTccooi i 7
Run the Debugger through an EXecutablecceeveiecce i 7
Get RedBoOt fOr DEDUGOINGcveiveeieiicie et 8
Debug With the SIMUIALOLcccoiiiieieece e 10
Debug WIth INSIONE.....cveceei et saesreeneas 13
Get Assembler Listing from SOUrce COUE.......cvcuvvieeveenee e et e e 23
Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems........ccccveeeveereeiveene, 24
REFEIBNCE. ... et b bbb e 27
COMPIES FEBIUIES.......ccvecie ettt ettt sttt e b e e e testesneentesenreenen 28
EABI SUMMArY Of FEAIUIES.......ociiie et e e s e e e et e re e 32
BUITE-IN FUNCHIONS......ceeieeee ettt seesneeneas 39
ASSEMDIEN FEBIUINES ...ttt r et et e aesne e e eneeneesneens 45
LINKES FEAIUMES........eititiieiisiest ettt sttt sttt sttt b et nas 47
DEDUGQES FEALUIESo.veeeeeie ettt ettt tesbesreenaesaesrenneas 53
INSIGNE FEAIUIMNES......ecuee et e s e te et e e e be e sreeteentesneeetesneesnnens 53
REABOOL FEALUIES.......o.eeeeeee ettt ettt st sre e seesnenneas 54
SIMUIALOT FEAIUINESoeeeeeeeeeteete ettt st ae e e et e seesneeneeeeseeenes 55
(@Yo T gl == 0 =P 59

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture Red Hat = iii

Contents

iv m Red Hat GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Introduction

GNUPro® Toolkit from Red Hat® is a complete development system for the Fujitsu®
FR-V architecture. For installation and the most current release notes, find the READVE
at the top level directory of your files. For what's new with this release, see “What's
New for Fujitsu FR-V Architecture” on page 4.

Toolsfor this architecture have support for the operating systemsin Table 1.

Table 1: Supported host operating systems

Operating systems Central processing unit (CPU)
Microsoft Windows 2000/XP x86

Red Hat RHEL 3, AS2.1 x86

Sun Solaris® 2.6, 2.7, 2.8, 2.9 SPARCP®

Customers using older versions of RedHat Linux RHL 7.2, 7.3, 8.0 and 9 are
supported to the extent that they can use the toolchain on their operating systems.
RHEL 3 is, however, the recommened OS for rebuilding the toolchain.

This documentation describes the features of GNUPro Toolkit specific to FR-V
architecture, including information on the compiler, interactive debugger, binary
utilities, libraries, and other tools. This documentation provides an introduction to the
features of the tools, aswell asatutorial and reference for the FR-V architecture; see
htt p://wwv. redhat . conf docs/ manual s/ gnupro/ for more documentation.

There is support for the toolsin Table 2; these cross-development tools have names

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture RedHat = 1

Introduction

that reflect the target processor and the object file format that is output by the tools
(ELF). Thismakes it possible to install more than one set of tools in the same binary
directory, including both native and cross-development tools. A tool’s complete tool
name is athree-part hyphenated string, with the first part indicating the processor
family and the mode of operation (f r v), the second part indicating the object file
format output by the tool (el f), and the third part indicating the generic tool name

(gce).

Table 2: GNUPro supported tools
Tool description Tool name
GNU assembler frv-elf-as
GNU binary utilities frv-elf-ar

frv-elf-nm
frv-el f-objcopy
frv-el f-objdunp
frv-elf-ranlib
frv-elf-readelf
frv-elf-size
frv-elf-strings
frv-elf-strip

GNU compiler collection |frv-el f-gcc

GNU debugger frv-elf-gdb
GNU linker frv-elf-Id
GNU simulator frv-elf-run

IMPORTANT! Binariesfor the Windows hosted toolchain use an . exe suffix; however, the
. exe suffix does not need to be specified when running the executable.

For the tools to function properly on your hardware, you must have the following
environment variables set.

* For the Microsoft Windows operating system, use the following examples as
input for setting environment variables for the tools.

Replacei nstal | di r with your installation directory; yymmdd indicates the name
for your release (the processor hame and a date, such asf r v- 031205).

Replace H host with H-i 686- pc- cygwi n as atriplet name.

SET PROOT=C:\installdir\frv-yynmrd
SET PATH=0ROOT% H- host \ Bl N; Y%PATH%
SET | NFOPATH=%PROOT% i nf o
REM Set TMPDIR to point to a randisk if you have one
SET TMPDI R=%PRO0T%
= For the Sun Solaris and Red Hat Linux operating systems, use the following
examples asinput for setting environment variables for the tools.

Replacei nst al | di r with your installation directory; yymdd indicates the name
for your release (the processor name and a date, such asf r v- 031205).

2 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Introduction

Replace H host (where host signifies the toolchain’ s triplet name) with
H-i 686- pc- | i nux-gnul i bc2. 2 for Red Hat Linux 7.x, RHEL2.1 and
H- spar c-sun-sol ari s2. 6 for Sun Solaris 2.6 host systems.

* For Bourne-compatible shells (/ bi n/ sh, bash, or Korn shell), use the
following example' s input:
PROOT=i nstal | dir/frv-yynmdd
PATH=$PRQOOT/ H- host / bi n: $PATH
I NFOPATH=$PROOT/ i nf 0
export PATH S| D_EXEC PREFI X | NFOPATH

* For C shélls, use the following example' s input:

set PROOT=installdir/frv-yymdd
set pat h=($PROOT/ H host / bi n $pat h)
set env | NFOPATH $PROOT/ i nf o

Case sensitivity for Windows is dependent on system configuration. By default, file
names under Windows are not case sensitive. File names are case sensitive under
UNIX. File names are case sensitive when passed to the GNU C compiler (GCC),
regardless of the operating system. The following strings are case sensitive:

= command line options
assembler labels
linker script commands
* section names
file names within makefiles
The following strings are not case sensitive:
* debugger commands
= assembler instructions and register names
This documentation uses some general conventions (see Table 3):
Table 3: Documentation conventions

Documentation usage Significance

Bold Font Represents menus, window names, and tool buttons.
Bold Italic Font Denotes book titles, both hardcopy and electronic.
Plain Typewiter Font Denotes code fragments, command lines, file

contents, and command names; also indicates
directory, file, and project names where they appear

in text.

Italic Typewiter Font Represents a variable to substitute.

Bold Typewriter Font Indicates command lines, options, and text output
generated by the program.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 3

Introduction

What's New for Fujitsu FR-V Architecture

GNUPro Toolkit has the following improvements for the FR-V architecture.
For working with the compiler tools:
Added support for new FR405 and FR450 builtin functions.
* Added options to select FR405, FR450 and FR550 code generation
(- mcpu=fr405, -nmcpu=fr450 and - ncpu=fr 550 respectively).
* Added support for scheduling and packing FR450 and FR550 code.
For working with the debugger:
Implemented debugging for remote targets with RedBoot for FR451 board.
= For working with the simulator:
Supporting the new instructions
Implemented new cache size defaults for the FR450 and FR550 architectures
» Changed the FR400 cache size defaults to match the FR405.
Implemented new machine models for the FR450 and FR550 architectures.
Provided resource constraints
* Implemented packing restrictions
Implemented memory map functionality
Implemented exception model functionality
= Implemented profiling model functionality (cycle counting)
For the ABI and other general enhancements:
Improved ABI conformance
= Improved error checking for builtin-in media functions

4 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Tutorial

The following documentation provides tutorials for using the tools.
* “Create Source Code” on page 6
“Compile from Source Code” on page 6
* “Run the Executable on the Simulator” on page 7
“Run the Debugger through an Executable” on page 7
 “Get RedBoot for Debugging” on page 8
“Debug with the Simulator” on page 10
* “Debug with Insight” on page 13
“Get Assembler Listing from Source Code” on page 23
To get other more general information not specific to the Fujitsu architectures, see

http://ww. redhat . com docs/ nanual s/ gnupr o/ for more GNUPro Toolkit
documentation.

To rebuild the tools with Microsoft Windows NT systems, see “Rebuild GNUPro for

Cygwin/ Windows NT/2000/X P Systems” on page 24, and to get more information on
Cygwin, seeht t p: / / ww. r edhat . conf docs/ manual s/ gnupr o/ .

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture Red Hat = 5

Tutorial

Create Source Code

Using atext editor, create the sample source code in Example 1; saveit ashel | o. c.
Use this program to verify correct installation.

Example 1: hel | 0. ¢ sample source code
#i ncl ude <stdio. h>

int a, c;

voi d foo(int b)
{

c =a + b;
printf("%l + %d = %@\n", a, b, c);
}

int main()

{
int b;

a = 3;

b = 4;

printf("Hello, worldl\n");
foo(b);

return O;

}

Compile from Source Code

Using a bash shell, compile the example code to run on the simulator.

On Windows, type:

frv-elf-gcc -g hello.c -0 hello.exe

On Linux and Solaris, type:

frv-elf-gcc -g hello.c -0 hello.x

The - g option generates debugging information and the - o option specifies the name
of the executable to be produced. Other useful optionsinclude - ofor standard
optimization, and - &2 for extensive optimization. When no optimization option is
specified, GCC will not optimize. See “GNU CC Command Options” in Using GCC
in GNUPro Compiler Tools for a complete list of available options.

See “ Compiler Features’ on page 28 and “ Assembler Features’ on page 45 for special
functionality when developing with the Fujitsu FR-V target.

6 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Run the Executable on the Simulator

Run the Executable on the Simulator

Using a bash shell, run your executable on the stand-alone simulator.

On Windows, type:
frv-elf-run hello. exe
On Linux and Solaris, type:
frv-elf-run hello.x
The program returns.
Hel l o world
3+4=7
The simulator executes the program and returns when the program exits. See

“Simulator Features’ on page 55 for specia functionality for working with the
simulator.

Run the Debugger through an Executable

GDB can be used to debug executables using the GNUPro simulator; for information
on using RedBoot when debugging atarget, see “ Get RedBoot for Debugging” on
page 8, “RedBoot Features’ on page 54, and see also

http://sources. redhat.com redboot/

Using a bash shell, from the ~/ bi n directory, start GDB; on Windows, type:

frv-elf-gdb hello. exe

Using a bash shell, from the ~/ bi n directory, start GDB; on Linux and Solaris, type:
frv-elf-gdb hello

IMPORTANT! The frv-elf-gdb command invokes the command line version of GDB. A
graphical interface to GDB, called Insight, is also provided. It isinvoked via

the frv-elf-insight command. For more information on the debugger’s
graphical user interface, see “Debug with Insight” on page 13.

After theinitial copyright and configuration information, GDB returnsits own
prompt, (gdb).

For details on the debugging process, see “Debug with the Simulator” on page 10 and
begin at Step 3.

To stop debugging with the command line approach, type qui t at the (gdb) prompt.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 7

Tutorial

Get RedBoot for Debugging

To use RedBoot for targets, set up the the Fujitsu FR-V board as described in VDK
Setting Guide available from Fujitsu.

Refer to the appropriate section for your board:
= Section 1. MB93401A CPU board and Main board
= Section 2. MB93403 CPU board and Main board

= Section 3. MB93403 CPU board, Main board and MB93493 Digital AV
board

Section 4. MB93555 CPU board and Main board

Section 5. MB93555 CPU board, Main board and MB93493 Digital AV
board

* Section 6. MB93405 CPU board (Stand alone mode)

* Section 7. MB93405 CPU board and MB93493 Digital AV board (Stand
aone mode)
Section 8. MB93405 CPU board and Main board

Section 9. MB93405 CPU board, Main board and MB93493 Digital AV
board

Seehttp://sources. redhat.coni redboot/ for downloading RedBoot; see
Example 2 for a sample bash shell session of downloading the RedBoot image into
flash for the FR-V target board (with the f r v. ROMimage).

Note: thefollowing are provided as examples only, the actual sessionswill vary alittle
for each supported hardware platform.

8 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Get RedBoot for Debugging

Example 2: Download the f r v. RoMimage for RedBoot for the FR-V target

Rk o b S R R I R O S R R S S b S R R IR S S S O R R S T

** VDK LOADER for FR400 (BOOT ROM I C8) *x
* % * %
** Version 1.02 **

** ALL RI GHTS RESERVED, COPYRI GHT(C) FUJITSU LI M TED 2000 **

EE R I S b O O S S S O S O O

Wuld you like to check SDRAM and SRAM? (Y/N) : N

>r 3e00000

Flash ROM: I1C7. OK ? (YIN) Y
Bl ank check

Bl ank error !! Erase ? (Y/N) Y
Er ase. ..

Work nenory cl ear
Hex Data O f set Address=0x03E00000
Reci eve. . ..

1. Atthispoint, send thef rv. Rovfile using ASCII protocol. Using the dl _sl ow
script, set up Minicom like Example 3 shows.

Example 3: Minicom file protocol

XXXX XXX XXX XXX XX KX KKK XXX XX XXX XXX XX XXX XXXXXXXXX XXX XX XXX XXX XXX XXX XXX

X Nanme Program Name UD Full 10 Milti
Scr - Red.

A znodem /usr/bin/sz -vv -b

B ynodem /usr/bin/sb -vv

C Xxnmodem /usr/bin/sx -vv -k

D znodem /usr/bin/rz -vv -b -E

E ynodem /usr/bin/rb -vv

F xnmodem /usr/bin/rx -vv

G kernmit lusr/bin/kermt -i -1 % -s

kermt Jusr/bin/kermt -i -1 % -r

ascii /usr/bin/ascii-xfr -dsv

sl ow /hone/yourdir/bin/dl _slow

Z

<<Z<<ZZ<<<
ccoucoooccc
Z2Z2<<Z2Z2Z2zz2Z2=2
<<ZZ<<<<<<
Z2Z2Z2Z2Z2<<2Z2<<

nodem downl oad string activates. D
N Use filename selection window...... No
O Pronpt for download directory...... No

Change which setting? (SPACE to del ete)
XX
2. Youwill know if the file istransferring correctly by the LED indicator lights
blinking, showing the IP address being loaded. When the download completes

(using the Enter key to download), you will see output like Example 4.

Example 4: Output after downloading the f r v. ROMimage

Wite Start. ..
Wite K
Verify Start. ..
Verify K
Conpl ete !'!

XXXXXXXXXXXXXXXXXX

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

>

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 9

Tutorial

3.

4,

Change SW1-1 on the motherboard to be down (x). Press reset (the bottom blue
button on the board). See Example 5 for the output you will see when RedBoot is
active.

Example 5: Output after set up of the f r v. ROMimage with RedBoot active
RedBoot (tm) bootstrap and debug environment [ROVRAM
Version - 2001
Pl atform MB93091- CB10 eval uati on board (Fujitsu FR400)
Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0x00000000- 0x04000000, 0x00007000- 0x03f ed000 avai | abl e
FLASH. Oxff 000000 - Oxff200000, 32 bl ocks of 0x00010000 byt es.
RedBoot >

Initialize the flash.

fis init

Y ou are ready to begin debugging. See“ Debug with the Simulator” on page 10 for the
tutorial for debugging; begin at Step 3.

Debug with the Simulator

The following is a sample debugging session with GDB, using the simulator. See
“Simulator Features’ on page 55 for special functionality for working with the
simulator.

1

Using a bash shell, from where you located the binary, start the debugger.
On Windows, type:
frv-elf-gdb hello. exe
On Linux and Solaris, type:
frv-elf-gdb hello.x

2. To specify thetarget on which to debug (in this tutorial’ s case, the simulator),
type:
target sim
The program returns:
Connected to the simulator.
3. Then, to begin debugging your program (in this tutorial’s case, either hel | 0. exe
for Windows or hel | 0. x for Linux and Solaris operating systems), type:
| oad
The debugger returns:
10 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with the Simulator

Loadi ng section .text, size 0x8ccO vma 0xc8000000
Loadi ng section .rodata, size 0x218 vma 0xc8008ccO
Loadi ng section .data, size 0x768 vima 0xc8008ed8

Start address 0xc8000000
Transfer rate: 307712 bits in <1 sec.

4. To set abreakpoint, type:
break nain

The program returns:

Breakpoint 1 at 0xc8000168: file hello.c,

5. Torunthe program, type:
run

= On Windows, the program returns.
Starting program C:\hello.exe

Breakpoint 1, main () at hello.c:15

15 a = 3;

* OnLinux and Solaris, the program returns:
Starting program hello. x

Breakpoint 1, main () at hello.c:15

15 a = 3;

6. To print the value of variable, a, type:
print a
The program returns:
$1 =0
7. To execute the next command, type:
step
The program returns:
16 b = 4
8. Todisplay the value of a again, type:
print a
The program returns:
$2 =3
9. Todisplay the program being debugged, type:
l'ist
The program returns:

line 15.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Red Hat = 11

Tutorial

11 int main()

12 {

13 int b;

14

15 a = 3;

16 b = 4;

17 printf("Hello, world!\n");
18 foo(b);

19 return O;

20 }

10. Tolist a specific function code, usethel i st command with the name of the
function to be displayed. For example, type:
list foo

The program returns:

1 #i ncl ude <stdio. h>

2

3 int a, c;

4

5 void foo(int b)

6 {

7 c = a + b;

8 printf("% + %d = %\n", a, b, c);
9 }

10

11. To set abreakpoint at line seven, type:
break 7

Y ou can set abreakpoint at any line by typing br eak | i nenunber , where
I'i nenunber isthe specific linenumber to break. The program returns:

Breakpoint 2 at Oxc6: file hello.c, line 7.
12. Toresume normal execution of the program until the next breakpoint, type:
conti nue
The program returns:
Cont i nui ng.

Hel | o, worl d!
Br eakpoint 2, foo (b=4) at hello.c:7
7 c =a + b

13. To step to the next instruction and execute it, type:

step
The program returns:
8 printf("% + %d = %\n", a, b, c);

14. To print the value of variable, c, type:

12 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with Insight

print ¢
The program returns:
$3 =7
15. To see how you got to where you are, type:
backtrace
The program returns:

#0 foo (b=4) at hello.c:9
#1 0xc800018c in main () at hello.c:18

16. To exit the program and quit the debugger, type:
quit

Debug with Insight

The following documentation serves as a general reference for debugging with
GNUPro Toolkit's graphical user interface, Insight; for more information, see
Insight’sHelp menu for discussion of general functionality and use of menus, buttons
or other features; see also “Insight, GDB’s Alternative Interface” and the “ Examples
of Debugging with Insight” documentation in GNUPro Debugging Tools (see

htt p: // ww. r edhat . con? docs/ manual s/ gnupr o/).

IMPORTANT! Insight isinvoked viathe frv-elf-insight command.

1. From ashell window, enter the following input:
frv-el f-insight
Insight launches, displaying the Sour ce Window (Figure 1).

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 13

Tutorial

Figure 1. Source Window, the main window interface for Insight

KT =
He B s Cononl Fagln Feiweos S

& i T e &S R -t E o n =
[= "= [saunce = ———- 4

Frmament nmning Sk pn nn Ko noglan

The menu selections in the Source Window are File, Run, View, Control,
Plugin, Preferences, and Help. To work with the other windows for debugging
purposes specific to your project, use the View menu or the buttons in the toolbar.

To open a specific file as a project for debugging, select File - Open inthe
Sour ce Window. The file's contents will then pass to the GDB interpreter.

To start debugging, click the Run button (Figure 2) from the Sour ce Window.
Figure2: Run button

El

When the debugger runs, the button turns into the Stop button (Figure 3).

Figure 3. Stop button

]

The Stop button interrupts the debugging process for a project, provided that the
underlying hardware and protocols support such interruptions. Generally,
machines that are connected to boards cannot interrupt programs on those boards.

In such cases, adialog box appears as a prompt asking if you want to abandon the
session and if the debugger should detach from the target.

For an embedded project, click Run; then click the Continue button (Figure 4).

14 = Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with Insight

Figure4: Continue button
K

WARNING! When debugging atarget, do not click on the Run button during an active
debugging process, since using the Run button will effectively restart the
session with all work unrecoverable.

For more information on Insight, see its Help menu. For examples of debugging
session procedures for using Insight, see the following documentation (the content
assumes familiarity with debugging procedures).

» “Selecting and Examining a Source File’ on page 15
“Setting Breakpoints and Viewing Local Variables’ on page 18
“Setting Breakpoints on Multiple Threads’ on page 22

To specify how source code appears and to change debugging settings, from the
Prefer ences menu, select Sour ce.

IMPORTANT! When debugging remote targets with RedBoot, the processor name and
identification codes display when connecting to the target.

To obtain the same information, from the Sour ce Window, select

Plugin - target — CPU Information, information which is based on
interpretation of the processor response to the CPUID instruction (t ar get
changes for every target architecture for Insight; environment variables that
you set help Insight automatically to determine this functionality) . To add
identification codes to the debugger’ s table of Intel processors, see the GDB
I nternals documentation, distributed with the source code.

Selecting and Examining a Source File

To select asourcefile, or to specify what to display when examining a source file
when debugging, use the following processes.

1. Select asource file from the file drop-down list with the Sour ce Window
(hel l 0. c in Figure5).

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 15

Tutorial

Figure5: Source file selection

EEETITTNE—— al0l=f

Fie Eun Wes Condrd Feegn Peefwmmm ek
o U R T S e S T R R T T T o o o
|neids. g ® |maln = |tmmcr W |

-
|3

1= Jdvwe™, a, B, e}

|

17 primif{“Hello, werldive™j;
W Foeibpi

183 retern &

| Pt il tatwng: Clak o naneeon 1 ot

2. Select afunction from the function drop-down list to the right of the file
drop-down list, or typeits namein the text field above the list to locate the
function (in Figure 6, see the executable line 11, where the mai n function

displays).

16 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with Insight

Figure6: Search for functions

T =i
Be B ew Cewol Rl Bewece g

F I e &S @ -t E | meamimbd 15 a ol &
jello.c = main = [spmzE = fmain]

1 Bifglude {SUdia.h¥
imt a, w3
f

=

a

B

5 wald Feelind &)

B

T

A printFC™%d = %d = %W, &, b, ©i;
1

w

1 st [BEPECH

L LI]

i int bj;

LL]

157 @iy

1 b= &

ir .rlnlr[""n]ll. wor ldfwn™);
A8 Fonodb)z

il reiurm Bg

20)

21

(St of e kg o lne 11

3. Usethe Enter key to repeat a previous search. Use the Shift and Enter keys
simultaneously to search backwards.

4. Type @with anumber in the search text box in the top right of the Source
Window. Press Enter. Figure 7 showsajumpto line 8 inthe hel | o. ¢ sourcefile.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 17

Tutorial

Figure 7. Searching for a specific line in source code

BT =R

He R Vea Cawal Pgln Peisecss B

& 1 oW & AE S R -t | merimb 15 a ol &

fpetio.e 00 = fmaein 0 = [commE o= o
=Lk e | LL]

1 BRRcluide {olidlé-hl
E

d dmt a, ©;

L]

5 wald Feelink @)
a{

T E ™= §® I|'I
= LA |

i

11 iml malsih

]

L E] ink b

iL]

15 s

1 b= &

ir prlnrr["llll:l!-l. wor ldfwn™);
iL] Fan{hl:

il reiurm Bg

L |

21

Setting Breakpoints and Viewing Local Variables

A breakpoint can be set at any executable line in a sourcefile.

Executable lines are marked by aminus sign in the left margin of the Sour ce
Window. When the cursor is over aminus sign for an executable line, the cursor
changesto acircle. When the cursor isin this state, a breakpoint can be set. The
Breakpointswindow isfor managing the breakpoints: disabling them, enabling them,
or erasing them; an enabled breakpoint is one for which the debugging session will
stop, a disabled breakpoint is one which the debugging session ignores.

The following exercise steps you through setting four breakpointsin afunction, as
well as running the program and viewing changed values in local variables.

1. To set abreakpoint, have an active the hel | o. ¢ source file open in the Sour ce
Window, and, with the cursor over aminus sign on aline, click the left mouse
button. When you click on the minus sign, ared square appears for the line,
signifying a set breakpoint (see the highlighted line 15 in Figure 8 for a set
breakpoint).

Clicking the line again will remove the breakpoint.

18 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with Insight

Figure 8. Results of setting breakpoint for line 17

| hel Gewewiedes =TES
B R s Cawul Pgln Brebeecst Help
L T S U I T R -0 e (R T30 T 15 a ol =
jeello . = main = |zomcE = |
1 Hincluder inldie.hr
7
q imt a, ©:
[
G wadd Feeilng @)
LI |
L] T E = &= hj
o A printFC™%d = Td = %dwn™, &, b, ©h;
LR
w
11 imi malsgh
L 1)

13 int bj

B A b o= ki

aresppir] d ool =g o T Bl O

1 AT, aelnbCE el le. waridiin iz

D wekpi comizh nsds=al conp=son

2%]
a1

[et o e e T e 1y

2. Open the Breakpointswindow (Figure 9) using the Break points button from the
Sour ce Window. See aline with a check box in the window appears showing that
you set a breakpoint for a corresponding line in the Sour ce Window frame. With
the cursor over a breakpoint, a breakpoint information balloon displaysin the
Sour ce Window (theinformation detail s the breakpoint, its address, its associated
source file and line, its state, whether enabled, temporary, or erased, and the
association to all threads for which the breakpoint will cause a stop; see also
“ Setting Breakpoints on Multiple Threads’ on page 22 for details about threads).

Figure 9: Breakpointswindow

P = E

[prE——"

Pddgress | File | Lime Functian|
3 ExuBibG helln,s I Fan
o EAEIEEE Rells.e 1%
o EmeEEcE helle.s T
- dxkimdce hells.e 17

il

(L]]

-

-

3. The debugger ignores disabled breakpoints, lines indicated having a black square

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Red Hat = 19

Tutorial

7.

over them in the Sour ce Window frame (seeline 17 in Figure 8). Click on a
breakpoint to disable the breakpoint. Figure 10 shows the resultsin the
Breakpoints window of disabling a breakpoint. Re-enable a breakpoint at aline
by clicking on the check box in the Breakpoints window. Once a breakpoint is
enabled for aline, it will again have ared square in the Sour ce Window frame.

Figure 10: Results of disabling a breakpoint at line 17

g
Prasooar obod
Aidren File |Lime!Funchian =
b ExhAidt helln.c T Fan
& Exkf1Bhh Arlle.s] nakn
- EERNTBcE helle.e 1 nakn
r dxkinmdce nells.e 17 Aaln
-

Repeat the process to set breakpoints at specific lines.

Click Run in the Sour ce Window to start the executable. The debugger runs until
it finds a breakpoint. When the target stops at a breakpoint, the debugger
highlights aline (see highlighted line 17 in Figure 13, where the debugging
stopped). For more information about breakpoints, see the standard
documentation for Insight: “Insight, GDB’s Alternative Interface” and the
“Examples of Debugging with Insight” documentation in GNUPro Debugging
Tools; seeht tp: // ww. r edhat . cond docs/ manual s/ gnupr o/).

Open the L ocal Variables window by clicking its button in the tool bar for the
Sour ce Window; the L ocal Variables window displays the values of the
variables (see Figure 11 for the b variablein hel | 0. ¢).

Figure1l: Local Variableswindow

T P = E.J'
B ariahils
Hans Ualg= 1=
h 1]

T

Click the Continue button in the Sour ce Window tool bar to move to the next
breakpoint. The variables that changed value turn color in the L ocal Variables
window (see resultsin Figure 12 for the b variablein hel | o. ¢).

20 = Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debug with Insight

Figure12: Local Variableswindow after setting breakpoints

EETISTTE—— o= K1)

i

Ham Halwr =
1] M

*—I;I;

8. Click the Continue button two more times to step through the next two
breakpoints (until execution stops at line 17) and see the values of the local
variables change (compare results from hel | o. ¢ in Figure 8 and resultsin Figure
13).

Figure 13: Executable after changing local variable’'s values
=k
ey, i Pl B | v
FWMFEFET Dy SAa8s 8. E | eErike 17 of ol o
fpeiin,c = |nsin = [comze = e

Bincluide {stdia.h¥

isk a4, €3

wald Feeilng @)
f
E = &= hj

printF(™%d = %d = ZdWn", &, b, ©h;

BRI - - R
e

w
1 iwl malsi)
L 1)

11 int b;
fin

5 2
LU

48 Fao{b);
19 rFeturs B
)

F1]

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 21

Tutorial

Setting Breakpoints on Multiple Threads

Select threads and set breakpoints on one or more threads when debugging a
multi-threaded application with Insight.

WARNING! Working with multiple threads does not function similarly on all embedded
targets. When debugging C++ code, for instance, breakpoints and exceptions
may not work on multiple threads.

A process can have multiple threads running concurrently, each performing adifferent
task, such aswaiting for events or something time-consuming that a program does not
need to complete before resuming. The thread debugging facility allows you to
observe all threads while your program runs. However, whenever the debugging
processis active, one thread in particular is always the focus of debugging. This
thread is called the current thread. The precise semantics of threads and the use of
threads differs depending on operating systems. In general, the threads of asingle
program are like multiple processes, except that they share one address space (that is,
they can all examine and modify the same variables). Additionally, each thread hasits
own registers and execution stack and, perhaps, private memory.

1. Inthe Source Window, right click on an executable line without a breakpoint to
open the breakpoint pop-up menu (Figure 14).
Figure 14: Breakpoint pop-up menu in the Sour ce Window
T 2ol =)

e R s Cowa Fghh FEsscss Gl

F WM FEn e & 485 8 -t 8 | weeics 7 P
feeilo.c = fmain = [comsE = B

BEncludy <aldie.hr
imt A, ©;

vild Feellnk @)

gt Breapore
L arsarary Beshponi
Gt [gy o Thiessi(s)

m 1t a = 3

T TR T

L] & L T LY]
L] Fao{h) ;
19 returs Bp
)

Fal

Frigyam sl ppad ol irs 1T

22 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Get Assembler Listing from Source Code

2. Sdect Set Breakpoint on Thread(s) to display awindow allowing you to choose
the threads with which you set breakpoints. The Processes window (see Figure
15), available from the Source Window's View — ThreadsList menu, displays
all the available threads in the system and allows you to switch the current thread.
See Debugging with GDB in GNUPro Debugging Tools (see
http://ww. r edhat . coml docs/ manual s/ gnupr o/) for more general information
about threads.

Figure 15: Processes window with threads

=i =]
7 thresd 907, IxFec B TIRFEIY =|

in T Q)
1 threesd §32. 0=Fec sadn §) at b

_hella. o]

by

&=

Get Assembler Listing from Source Code

To produce assembler listing information, using a bash shell, type:

frv-elf-gcc -g -2 -Wa,-al -c hello.c
The - g compiler debugging option gives the assembler the necessary debugging
information. The - a2 option produces better looking code output. The - wa option tells
the compiler to pass the text immediately following the comma as a command line to
the assembler. The - al assembler option requests an assembler listing. The - ¢ option
tells GCC to compile or assemble the source files, but not to link. Example 6 shows a
partial excerpt of the output for producing an assembly listing.

Note:

Thefollowing is provided as an example only. The actual assembler listing
will be different.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 23

Tutorial

Example 6: Output for assembler listing for hel 1 0. ¢

63 . gl obl pmain

64 .type mai n, @unction
65 mai n:

66 . LFB2:

67 . LML1:

68 . LBB2:

69 . LBE2:

70 0050 82401FF0 addi sp, #- 16, sp

71 . LCFI 4:

72 0054 05481000 sti.p fp, @sp,0)

73 . LCFI 5:

74 0058 84881000 nov sp, fp

75 . LCFI 6:

76 005c 880D01C5 nmovsg |l r, grb5

77 0060 0B482008 sti.p gr5, @fp,8)
78 . LCFI 7:

79 0064 803C0000 call _ main

80 . LML2:

81 0068 08FCO003 setlos.p #3, gr4

82 . LML3:

83 006c 90F80000 set hi #hi (.LCl), gr8
84 . LmL4:

85 0070 09490000 sti.p gr4, @agri6, #gprel 12(a))
86 . LML5:

87 0074 90F40000 setlo #l o(.LCl), gr8
88 0078 803C0000 call puts

For more information on using the assembler tool for the Fujitsu Fujitsu FR-V targets,
see “Compiler Features’ on page 28 and “ Assembler Features’ on page 45.

Rebuild GNUPro for Cygwin/ Windows
NT/2000/XP Systems

The following instructions are for rebuilding GNUPro Toolkit for Windows XP
operating system in order to use the Cygwin tools, which allow you to work asif on
UNIX systems. These examples show the C: drive as default for working; substitute
the appropriate corresponding drive letter for the drive you use. Rebuilding requires at
least 1 GB free on the drive you select.

WARNING! Do not use other Cygwin installations from another release, including any
web release. Those contents may not be appropriate for configuring with your

24 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems

specific release.

1. Cygwinnow hasagraphical installer whichisusedtoinstall. Make surethereisa

“Typica’ install of GNUPro 03r1 Cygwin, or, in case of acustom install, that at
least the following components are installed: “Compilers’, “Utilities for rebuilding
from source” and “Contrib’

For the contents for rebuilding your r el easenane, see Table 4 (r el easenane
signifies the name given your release, which includes the tool name, frv, and a
release date, yynmdd; for example, in aprevious release, you used f r v- 031205).

Table 4: Microsoft Windows rebuilding tools

File name

Usage

tool s-src.zip

Compressed file of patch sources

3. Unpack your sources that you received (t ool s-src. zi p) intothe C: \ cygwi n

directory.
unzi p tool s-src.zip
Unpacking t ool s-src. zi p createsacC: \ cygwi n\ sr ¢ directory.
Make build and installation directories at the same level of the directory structure
asyour C:\ cygwi n\ src directory.
nkdir builddir installdir

Navigate to the bui | ddi r directory.
cd builddir
Configure the tools using the following commands as input. This should be typed
asasingleline.
“pwd‘/../src/configure --host=i 686-pc-cygwin --target=target \
--prefix="pwd'/../builddir \
--exec-prefix="pwd'/../builddir/Hi686-pc-cygwin \
>& ../configure.log
Using the following command in your bui | ddi r directory, watch what a
configure. | og file produces.
tail -f configure.log
Start as many bash sessions as you require. At a minimum, you should have at
least two bash windows open, onein which to execute the conf i gur e, bui | d, and
i nstal | process, and another in which to watch the progressusing thetai | - f
command.

Make the tools with the following input’s syntax.
make all >& ../build.|og

Install the tools with the following input’s syntax.
make install >& ../install.log

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 25

Tutorial

Thisstep allows you to save disk space by eventually deleting your build directory
without losing your logs of the build process. Do not delete your build directory
until after the build processis complete and after you are confident that the tools
work. At this point, you should have threelog filesin the C: \ cygwi n directory
(configure.log,build. log,andinstall.log).Youcanwatchthebuild. | og
ortheinstall.logwiththetail -f command asyou didin Step 6 with
configure.l og.

Rebuilding is now complete.

If you move binaries to another machine where Cygwin is not installed, you will need
to copy (using the cp command) the cygwi n1. di | filefromtheinstal I dir tothe
new directory. Ask your system administrator if you need assistance with this task.

26 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Reference

The following documentation describes the Application Binary Interface (ABI) and
Fujitsu FR-V architecture specific features of the GNUPro tools.

“Compiler Features’ on page 28

“EABI Summary of Features’ on page 32
“Built-in Functions’ on page 38
“Assembler Features’ on page 45
“Linker Features’ on page 47

“Debugger Features’ on page 53

“Insight Features” on page 53

“RedBoot Features’ on page 54
“Simulator Features’ on page 55
“Cygwin Features’ on page 59

To get other more genera information not specific to the Fujitsu architectures, see
http://ww. redhat . conf docs/ manual s/ gnupr o/ for more GNUPro Toolkit
documentation.

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture Red Hat m 27

Reference

Compiler Features

The following documentation describes FR-V specific features of the GNUPro
Compiler Collection (GCC). For generic compiler options, see “GNU CC Command
Options’ in Using GCC in GNUPro Compiler Tools.
- ncpu=CPU
Generates code for cPU. This option selects the hardware features normally
associated with cPU such as the number of registers and the availability of
floating-point and media instructions. It also controls the scheduling and packing
of instructions (when enabled). - mcpu=f r 500 serves as the default if no - ncpu=
option is given. Supported values for CPU are:
- mcpu=fr 550
Compile for the FR550. This option implies - ngpr - 64, - nf pr - 64, - macc- 8,
-mhard-fl oat , - medi a, - mdwor d, - mo- doubl e, and - mo- nul add.
- mcpu=fr 500
Compile for the FR500. This option implies - ngpr - 64, - nf pr - 64, - macc- 8,
-mhard-fl oat , - medi a, - mdwor d, - mo- doubl e, and - mo- nul add.
* -ncpu=fr450
Compile for the FR450. This option implies - ngpr - 32, - nf pr- 32,
-macc-8, -msoft-float, -mmedia, -nmdword, -mmo-double, and
- mo- nul add.
* -ncpu=fr405
Compile for the FR405. The only difference between this option and
- necpu=f r 400 isthat - ncpu=f r 405 alows the use of FR405-specific built-in
functions. See page 38 for more information about built-in functions.
- mcpu=fr 400
Compile for the FR400. This option implies - ngpr - 32, - nf pr - 32, - macc- 4,
-msoft-fl oat, - medi a, - mdwor d, - mo- doubl e, and - mo- nul add.
- Mmo- pack
Disable VLIW packing. Thisoption also implies- nsoft - f | oat and - mo- nedi a.
-mibrary-pic
Enable the generation of position-independent code EABI code. See page 38 for
details.
-nfdpic
Sdlect the FDPIC (uClinux) ABI, that uses function descriptors to represent
pointersto functions. Without any PIC/PIE-related options, it implies- f Pl E. With
-fpic or-fpie,itassumes GOT entries and small data are within a 12-bit range
from the GOT base address; with - f Pl Cor - f PI E, GOT offsets are computed with
32 hits.

28 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

-mnline-plt
Enableinlining of PLT entriesin function calls to functions that are not known to
bind locally. It has no effect without - nf dpi c. It's enabled by default if optimizing
for speed and compiling for shared libraries (i.e., - f Pl C or - f pi ¢), or when an
optimization option such as - a3 or above is present in the command line.
-npgrel-ro
Enable the use of GPREL relocationsin the FDPIC ABI for datathat is known to be
in read-only sections. It's enabled by default, except for option - f pi ¢ or - f pi e,
even though it may help make the global offset table smaller, it trades 1
instruction for 4. With - f pi ¢ or - f pi e, it trades 3 instructions for 4, one of which
may be shared by multiple symbols, and it avoids the need for a GOT entry for the
referenced symbol, soitismore likely to beawin. If itisnot, - mo- gprel -ro can
be used to disableit.
-minked-fp
Follow the EABI requirement of always creating aframe pointer whenever a stack
frameisallocated. It is enabled by default, and can be disabled with
-mo- | i nked- f p.
-mong-calls
Useindirect addressing to call functions outside the current compilation unit. This
alows the functions to be placed anywhere within the 32-bit address space
-fpscr
Enable resource-constrained software pipelining.
-fpic
Compiles position independent code, using a 4096 byte global offset table.
-fPIC
Compile position independent code. Unlike - f pi ¢, there is no size limit for the
global offset table, though it takes more instructions to refer to static and global
variables.
-fpie/-fPIE
Sameas - f pi ¢/ - f Pl C, respectively, but generated position independent code can
be only linked into executables. On frv-elf, - f Pl Eisimplied by - nf dpi c.
-pie
Produce a position independent executable on targets which support it. Code must
have been compiled with the FDPIC ABI, and the executable will need a dynamic
loader to run. For frv-uclinux, or when linking with frv-elf - nf dpi ¢, the only
differences are to force the creation of a dynamic executable, and to turn any
. rof i xup entries that would have been generated in a position dependent
executable into dynamic relocations, that makes the executabl e relocatabl e by the
dynamic loader, instead of by itself.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 29

Reference

-shared
Create adynamic library. Object code must have been compiled to conform to the
FDPIC ABI, and with-fPI C or -fpic.
-static
Create a static executable. Dynamic libraries that might be used to satisfy link
dependencies will be disregarded, and static libraries will be required instead.
-G
Puts statics/globals less than n bytes into the small data area.

The following options are only needed if you want to override the hardware features

selected by - ncpu= compiler option.

- ngpr - 64

- ngpr- 32
Select the number of general-purpose registers.

- nf pr-64

- nf pr-32
Select the number of floating-point registers. These options only have an effect
when either floating-point or media instructions are enabl ed.

-nmacc-8

-macc-4
Sdlect the number of accumulators and accumulator guards. These options only
have an effect when media instructions are enabled.

-mo- nedi a
Disable mediainstructions.

- mhar d-f | oat

-msoft-fl oat
Specify whether the compiler should generate single-precision floating-point
instructions.

- mdoubl e

- mo-doubl e
- ndoubl e enables and - mo- doubl e disables double-precision floating-point
instructions. These options only have an effect when single-precision instructions
are enabled.

- mdwor d

- mo- dwor d
Specify whether the target supports double-register loads and stores (I dd, st dd,
| ddf , and st df).

- mul add

- mo- nul add
- mmul add enables and - mo- nul add disables the floating-point multiply-add and
multiply-subtract instructions.

30 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

- ntond- nove
- mo- cond- nove

- ntond- move enables and - mo- cond- move disables using conditional execution
to move alternate values to a register. - ncond- nove ison by default.

-msccC

-MO-ScCC
-mscc enables and - mo- scc disables using conditional execution to set a register
to 0/1 based on the results of a comparison. - mscc is on by default.

- ncond- exec
- mo- cond- exec

- ntond- exec enables and - mo- cond- exec disables converting small IF-THEN
and IF-THEN-EL SE statements to use conditional execution if optimizing.
-ntond- exec iSon by default.
The compiler supports the following preprocessor symbols:
frv
Is always defined.
__FRV.GPR__
Is the number of general purpose registers.
__FRV_FPR__
Is the number of floating-point registers. ItisOif both floating-point and media
instructions are disabled.
__FRV_DWORD__
Is defined if the target supports double-word load and store instructions.
__FRV_ACC _
Is the number of media accumulators. It is0 if mediainstructions are disabled.
__FRV_HARD FLOAT__
Isdefined if the target supports hardware floating-point instructions.
__FRV_VLIW _
Isdefined if VLIW packing is enabled. When defined, it is the number of
instructions packed together; 2 for - mcpu=f r 400, - ncpu=f r 405 and - ncpu=450; 4
for - ncpu=f r500; and 8 for - ncpu=f r 550.
__FRV_FDPIC__
Is defined when the FDPIC ABI isin effect.
__CPU FR550__
Is defined by - ncpu=f r 550.
__CPU_FR500__
Is defined by - ncpu=f r 500.
___CPU_FR450__
Is defined by - ncpu=f r 450.
__CPU FR405__

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 31

Reference

Is defined by - ncpu=f r 405.
__CPU FR400__

Is defined by - mepu=f r 400

There are no FR-V architecture specific attributes; see “ Declaring Attributes of
Functions” and “ Specifying Attributes of Variables” in “Extensions to the C
Language Family” in Using GNU CC in GNUPro Compiler Tools for information.

EABI Summary of Features

The Fujitsu FR-V toolchain supports the Fujitsu FR-V EABI (Embedded Application
Binary Interface), which programs use as a standard for interfacing with operating
systems, including specifications such as executable format, calling conventions,
chip-specific requirements, and other prerequisites.

Table 5 shows the size and alignment for all datatypes.

Table 5: Datatype sizes and aignments

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte
short 2 bytes 2 bytes
int 4 bytes 4 bytes
unsi gned 4 bytes 4 bytes
I 'ong 4 bytes 4 bytes
l'ong I ong 8 bytes 8 bytes
float 4 bytes 4 bytes
doubl e 8 bytes 8 bytes
l'ong doubl e 8 bytes 8 bytes
pointer 4 bytes 4 bytes

The structure/union data size is amultiple of the maximum boundary alignment size
of the members. Boundary alignment for the areaitself is accomplished by member
maximum boundary alignment.

The individual members are subject to boundary alignment in accordance with the
member type.

Table 6 shows the function calling sequence.

32 = Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

EABI Summary of Features

Table 6: Function calling sequence

Register type Register name Caller/Callee save
Zero register GRO -

Stack pointer (SP) |GRL -
Frame pointer (FP) |GR2 -
Hidden parameter |GR3 cal l er
- GR4- GR7 cal l er
Argument register | GR8- GR13 cal l er
- GR14- GR15 cal l er
- GR16- GR31 call ee
- GR32- GR47 cal l er
- GR48- GR63 call ee
- FRO- FR15 cal l er
- FR16- FR31 call ee
- FR32- FR47 cal l er
- FR48- FR63 call ee

The following documentation describes FR-V stack frame.
* The stack grows downwards from high addresses to low addresses.
= A leaf function is not required to allocate a stack frame if one is not needed.

The EABI requires aframe pointer always be allocated if any stack isdlocated. In
other words, aleaf function that uses no stack does not allocate a frame pointer,
but aleaf function that uses stack or a non-leaf function requires a frame pointer.
If - mdwor d is used then the stack will be aligned to 8-byte boundaries. If

- mo- dwor d is used the stack will be aligned to 4-byte boundaries. The default is
- mdwor d.

Figure 16 shows the stack frame usage for functions that take a fixed number or
variable number of arguments.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 33

Reference

Figure 16: Stack frame for functions taking afixed or variable number of arguments

High memory

FP

Before call:

After call:

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Alignment padding if
needed (1 word)

Alignment padding if
needed (1 word)

Return address (LR)

Return address (LR)

Hidden param save area

Hidden param save area

Old FP

Old FP

SP

A 4

Local variable save area

Local variable save area

Args to the function being
called that do not fit in
registers

Args to the function
being called that do not
fit in registers

Low memory

FP

SP

Register argument area
to save registers if
variable arguments
(optional, 6 words)

Alignment padding if
needed (1 word)

Return address (LR)

Hidden param save area

Old FP

Local variable save area

Register save area

Area to hold arguments of
functions called by this
function that fit in registers

34 = Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

EABI Summary of Features

GR8 through GR13 registers carry arguments to functions, with lower-numbered
registers being allocated to earlier arguments. When all six registers have been filled,
any remaining arguments are placed in the stack argument area, allocating from lower
to higher addresses.

To pass and return values which are not structures or unions:;
= Each argument four bytesin size or smaller is allocated one complete register.

Eight-byte arguments are allocated two consecutive complete registers. The
lower-numbered register holds the most significant word, and the
higher-numbered register holds the least significant word. If registers Grs through
GR12 have already been allocated, a subsequent eight-byte argument is split
between registers and arguments; its most significant half is passed in GR13, and
its least significant half is passed as the first word of the stack argument area.

= Vauesfour bytes or smaller are returned in GR8. For eight-byte values, the most
significant half is returned in GrRs, and the least significant half is returned in Gro.

For structures and unions, the rules are as follows:

To pass a structure or union of any size by value, the caller copiesthe valueto a
buffer in its own local variable area. The caller then passes the address of this
buffer to the callee like anormal pointer argument, either in registers or on the
stack. The size of the buffer must be a multiple of four bytes.

To return astructure or union of any size by value, the caller allocates a buffer of
the appropriate size in its own local variable area, and passes the address of this
buffer to the callee in GR3 (the “hidden parameter”). The size of this buffer must
aso be amultiple of four bytes.

If the callee takes avariable number of arguments, it storesall itsargument registersin
an argument register save area. This areais six words long, just large enough to hold
al the argument registers, and allocated just below any arguments received on the
stack. Thus, once the registers have been saved, all the function’s arguments appear in
a contiguous block of memory, starting with the argument register save area. To walk
the argument list, the callee needs only advance a pointer from lower to higher
addresses.

Table 7 shows how relocation names and numbers are used.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 35

Reference

Table 7: Relocation names and numbers

Number |Name Usage

0 R_FRV_NONE None

1 R _FRvV_32 32 hit relocation

2 R FRV_LABEL16 Used with bi cc instructions

3 R FRV_LABEL24 Used with call instruction

4 R _FRV_LOL16 Used with set | o, set | os

5 R FRV_HI 16 Used with set hi

6 R FRV_GPREL12 Used with immediate instructions for global
pointer-relative references

7 R_FRV_GPRELUL2 for unsigned operands, used with immediate
instructions for global pointer-relative
references

8 R FRV_GPREL32 Not used.

9 R _FRV_GPRELHI Used with set hi for global pointer-relative
access

10 R FRV_GPRELLO Used with set | os, set | o for global
pointer-relative access

200 R FRV_GNU VTI NHERI T Generated for. vt i nherit assembler directive

201 R_FRV_GNU_VTENTRY Generated for. vt ent ry assembler directive

See Table 8 for the flags and values used inthe e_f 1 ags field of the ELF header.

36 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

EABI Summary of Features

Table 8: Flags and valuesused inthee_f | ags field of the ELF header

Flag Value Usage

EF_FRV_GPR32 0x00000001 |Compiled with - ngpr - 32
EF_FRV_GPR64 0x00000002 |Compiled with - mgpr - 64
EF_FRV_FPR32 0x00000004 |Compiled with - nf pr - 32
EF_FRV_FPR64 0x00000008 |Compiled with - nf pr - 64
EF_FRV_FPR_NONE 0x0000000c |Compiled with - nsoft - f 1 oat
EF _FRV_DWORD YES 0x00000010 |Compiled with - ndwor d
EF_FRV_DWORD NO 0x00000020 |Compiled with - mo- dwor d
EF_FRV_DOUBLE 0x00000040 |Compiled with - ndoubl e

EF FRV_MEDI A 0x00000080 |Compiled with - mredi a
EF_FRV_PIC 0x00000100 |Compiled with - f pi ¢
EF_FRV_NON_PI C_ RELOCS ~ |0x00000200 |Used non-pic relocs

EF FRV _BIGPI C 0x00000800 |Compiled with-fPI C
EF_FRV_LIBPIC 0x00001000 |Compiled with-nii brary-pic
EF_FRV_Q0 0x00002000 |All modules compiled with - G 0
EF_FRV_NOPACK 0x00004000 |Compiled with - mo- pack

EF FRV_FDPI C 0x00008000 |Compiled with - nf dpi c
EF_FRV_MJLADD 0x00000400 |Compiled with - nmrul adds

EF FRV_CPU GENERI C 0x00000000 |Generic FRV

EF FRV_CPU FR500 0x01000000 |Compiled for the FR500
EF_FRV_CPU_FR400 0x05000000 |Compiled for the FR400

EF FRV_CPU FR550 0x06000000 |Compiled for the FR550
EF_FRV_CPU_FR405 0x07000000 |Compiled for the FR405
EF_FRV_CPU_FR450 0x08000000 |Compiled for the FR450

Grouping small global dataitemstogether resultsin more efficient code generation for
the FR-V. Consider the following code sequence.

sethi %i (_snmallvar),
setlo % o(_smallvar),

ld @gr22, gr0),

gr23

gr22
gr22

Instead, the following code will generate to load a value from the small data area:

Idi @agrl6, gr23

To facilitate this optimization, gr 16 is reserved for use as the global data pointer (gp).
By default, al global dataitems which are less than 8 bytes will be placed in two
special sectionsnamed . sbss and . sdat a. Itis possible to address up to 4K of globals
using this scheme. The - G compiler switch is provided to change the default size of
items which are placed in these sections. The “section” attribute may also be used to
control placement of globals.

_smal |l var),

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Red Hat = 37

Reference

The middle address of the small data area will be defined by an entry in the linker
script. The gp register isinitialized by the startup code.

The PI Cregister (gr 17) isreserved for use with position independent code. The
compiler gathers static pointersin a special section named . r of i xup. Within this
section the . pi cpt r isused to mark those pointers which are considered to be valid
for use with position independent code. For programs compiled with - f pi ¢, code will
be generated upon procedure entry to set up the Pl Cregister (gr 17). All addresses will
then be loaded relative to the PI C register. The code which sets up the PI C register
looks like the code in Example 7.

Example 7: Procedure prologue code which sets up the PI C register

call .LCFO
. LCFO:
nmovsg |r, gril7
sethi %gprel hi (.LCFO), gr5
setlo Y%gprello(.LCFO), gr5
sub gr17,gr5,gril7
Theogprel hi - %gprel | o syntax triggersa_gp relative relocation for the set hi and
set | o instructions.

To access a dataitem once the PI C register has been set up, the following code
seguence is then used:

ldi @grl7,_y), gr8

FDPIC ABI Summary

FDPIC enables the creation of executables and dynamic libraries that enables a
multi-process system to share the text segments of multiple processes running the
same program or using the same dynamic library, even on a machine without a
memory management unit. Thisis accomplished by using gri5 asthe PIC register,
that points to aglobal offset table (GOT). Every address computation uses the PIC
register, either by adding an offset to it when an addressis part of a data segment, or
by loading an address from the GOT otherwise. Function calls sequences must set
grl5 to the same value it had at the function entry, and not expect it to remain
unchanged after the call. Callsto functionsin other translation units may go through a
procedure linkage table stub. Pointers to functions do not point to the function entry
point, but rather to afunction descriptor, that holds not only the address of the
function entry point, but also a pointer to the GOT address that must bein the PIC
register in order to call the function within the context of the process. Additional
detals are available in a separate document, that specifies the FDPIC ABI.

38 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Built-in Functions

Built-in Functions

GCC provides many FR-V-specific built-in functions for accessing features such as
saturated arithetic, cache prefetching and media operations. The term "built-in" refers
to the fact that the functions are integrated into GCC itself; there is no need to include
aspecial header file.

Argument and return types

The arguments to built-in functions can be divided into three groups: register
numbers, compile-time constants and run-time values. In order to make this
classification clear at aglance, the arguments and return values are given the
following pseudo types.

Table 9: Arguments and return types.

Pseudo Type |Real C type Constant Description

uh unsi gned short |No an unsigned halfword
uwl unsi gned int No an unsigned word

swl i nt No asigned word

uw2 I ong | ong No an unsigned doubleword
sw2 long | ong No asigned doubleword
const i nt Yes an integer constant

acc i nt Yes an ACC register number
iacc i nt Yes an |ACC register number

Note that these pseudo types are not defined by GCC, they are simply a hotational
convenience used in this manual.

Arguments of type uh, uwl, swl, uw2 and sw2 are evaluated at run time. They
correspond to register operands in the underlying FR-V instruction.

const arguments represent immediate operands in the underlying FR-V instruction.
They must be compile-time constants.

acc arguments are evaluated at compile time and specify the number of an
accumulator register. For example, an acc argument of 2 will select the ACC2
register.

i acc arguments are similar to acc arguments but specify the number of an IACC
register. See the description of the IACC functions for more details.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 39

Reference

Directly-mapped built-in functions

Most of the built-in functions are named after the FR-V instruction which implements
them. This section summarizes these functions in tabular form. Each table has three
columns;

- Instruction

The assembly-language syntax for the underlying FR-V instruction.
Operands are denoted by lower case letters (a, b, €tc.).

- Function Prototype

A C-like prototype for the built-in function. See the previous section for the
meaning of argument and return types.

- Operand Mapping
An example of how the function might be used. Variables are denoted a, b, etc.,
and correspond to the operands of the same name in column 1.

Please see the FR-V instruction set manuals for a description of what each instruction

does.

Table 10: Integer Instructions

I nstruction Function Prototype Operand Mapping

ADDSS a, b, ¢ swl __ ADDSS (swl, swl) |[c = __ ADDSS (a, b)

SCAN a, b, c swl _ SCAN (swl, swl) c = __SCAN (a, b)

SCUTSS a, b swl __SCUTSS (swl) b = __SCUTSS (a)

SLASS a, b, c swl _ SLASS (swl, swl) |[c = __SLASS (a, bh)

SMASS a, b void __ SMASS (swi, __SMASS (a, b)
swl)

SMBSS a, b void __ SMBSS (swi, __SVBSS (a, b)
swl)

SMJ a, b void _ SMJ (swl, swl) |__SMJ (a, b)

SMJL a, b, c sw2 _ SMUL (swl, swl) c =__SMIL (a, b)

SUBSS a, b, ¢ swl __ SUBSS (swl, swl) |c = _ SUBSS (a, b)

UMIL a, b, c uw2 _ UMJUL (uwl, uwl) |c = __UMI (a, b)

40 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Built-in Functions

Table 11: Media I nstructions

I nstruction Function Prototype Operand Mapping
MABSHS a, b uwl _ MABSHS (swl) b = __ MABSHS (a)
MADDHUS a, b, ¢ uwl _ MADDHUS (uwl, uwl) ¢ = _ MADDHUS (a, b)
MADDHSS a, b, ¢ swl _ MADDHSS (swl, swl) c = __ MADDHSS (a, b)
MADDACCS a, b voi d __ MADDACCS (acc, acc) __ MADDACCS (b, a)
MAND a, b, c uwl _ MAND (uwl, uwl) c = __MAND (a, b)
MASACCS a, b void __ MASACCS (acc, acc) __MASACCS (b, a)
MAVEH a, b, ¢ uwl _ MAVEH (uwl, uwl) ¢ = __MAVEH (a, b)
MBTCH a, b uw2 _ MBTOH (uwl) b =_ MBTOH (a)
MBTOHE a, b void __ MBTOHE (uwl *, uwl) __ MBTOHE (&b, a)
MCLRACC a, #0 void __ MCLRACC (acc) __MCLRACC (a)
MCLRACC accO, #1 |void __ MCLRACCA (voi d) _ MCLRACCA ()

Mcopl a, b, c uwl _ Meopl (uwl, uwl) c = _ _Mopl (a, b)
Mcop2 a, b, c uwl _ Meop2 (uwl, uwl) c = __Mop2 (a, b)
MCPLHI a, #b, c uwl _ MCPLHI (uw2, const) c = _MPLH (a, b)
MCPLI a, #b, c uwl _ MCPLI (uw2, const) c = _MPLI (a, b)
MCPXI S a, b, ¢ void _ MCPXI S (acc, swl, swl)|_ MCPXIS (c, a, b)
MCPXI U a, b, ¢ void _ MCPXIU (acc, uwl, uwl) |_ MCPXIU (c, a, b
MCPXRS a, b, ¢ void _ MCPXRS (acc, swl, swl) | _ MCPXRS (c, a, b)
MCPXRU a, b, ¢ void _ MCPXRU (acc, uwl, uwl) |__ MCPXRU (c, a, b)
MCUT a, b, ¢ uwl _ MCUT (acc, uwl) c = __MUT (a, b)
MCUTSS a, b, ¢ uwl _ MCUTSS (acc, swl) c = __MUTSS (a, b)
VDADDACCS a, b voi d __ MDADDACCS (acc, acc) |__ MDADDACCS (b, a)
IVDASACCS a, b void __ MDASACCS (acc, acc) _ _MDASACCS (b, a)
MDCUTSSI a, #b, ¢ |uw2 __ MDCUTSSI (acc, const) c = __MDCUTSSI (a, b)
MDPACKH a, b, ¢ uw2 _ MDPACKH (uw2, uw2) c = _ _MDPACKH (a, b)
MDROTLI a, #b, ¢ |uw2 __ MDROTLI (uw2, const) c = __MDROTLI (a, b)
VDSUBACCS a, b voi d __ MDSUBACCS (acc, acc) |__ MDSUBACCS (b, a)
MDUNPACKH a, b void __ MDUNPACKH (uwl *, uw2) |__ MDUNPACKH (&b, a)
MEXPDHD a, #b, c uw2 _ MEXPDHD (uwl, const) c = __ MEXPDHD (a, b)
MEXPDHW a, #b, c uwl _ MEXPDHW (uwl, const) c = __ MEXPDHW (a, b)
VHDSETH a, #b, ¢ |uwl __ MHDSETH (uwl, const) ¢ = __ MIDSETH (a, b)
VHDSETS #a, b swl __ MHDSETS (const) b = __ MHDSETS (a)
MHSETHI H #a, b uwl _ MHSETHI H (uwl, const) |b = _ MHSETH H (b, a)
VHSETHI S #a, b swl _ MHSETH S (swl, const) |b = _ MHSETH S (b, a)
IVHSETLCH #a, b uwl _ IVHSETLOH (uwl, const) |[b = _ MHSETLCH (b, a)
IVHSETLCS #a, b swl _ MHSETLGCS (swl, const) |b = _ MHSETLGCS (b, a)

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Red Hat = 41

Reference

Table 11: Medialnstructions (cont)

I nstruction Function Prototype Operand Mapping

VHTOB a, b uwl _ VHTOB (uw2) b =__MTOB (a)

MVACHS a, b, c void _ MVACHS (acc, swl, swl) |__ MVACHS (c, a, b)

MMACHU a, b, ¢ void __ MVACHU (acc, uwl, uwl) |_ MVACHU (c, a, b)

MVRDHS a, b, ¢ void _ MVRDHS (acc, swl, swl) |_ MVRDHS (c, a, b)

MVRDHU a, b, ¢ void __ MVRDHU (acc, uwl, uwl) |_ MVRDHU (c, a, b)

MMULHS a, b, c void __ MMULHS (acc, swl, swl) |__ MMULHS (c, a, b)

MMULHU a, b, c void __ MMIULHU (acc, uwl, uwl) |__ MMULHU (c, a, b)

MMULXHS a, b, ¢ void __ MMIULXHS (acc, swil, __ MMULXHS (c, a, b)
swl)

MMULXHU a, b, ¢ void __ MMULXHU (acc, uwl, __ MMULXHU (c, a, b)
uwl)

MNOT a, b uwl _ WNOT (uwl) b = __MNOT (a)

MOR a, b, c uwl _ MOR (uwl, uwl) c=_ MR (a, b

MPACKH a, b, c uwl _ MPACKH (uh, uh) ¢ = __MPACKH (a, b)

MQAADDHSS a, b, ¢ [sw2 __ MQADDHSS (sw2, sw2) ¢ = _ MQADDHSS (a, b)

MAADDHUS a, b, ¢ |uw2 __ MQADDHUS (uw2, uw2) c = __ MQADDHUS (a, b)

MXPXI S a, b, c void __ MXPX S (acc, sw2, __ MXPXIS (c, a, b)
SW2)

MXPXI U a, b, c void __ MXPXI U (acc, uw2, __ MXPXIU (c, a, b)
uw2)

MXPXRS a, b, c void __ MXPXRS (acc, sw2, __ MXCPXRS (c, a, b)
SW2)

MXCPXRU a, b, c void __ MXPXRU (acc, uw2, _ MXPXRU (c, a, b)
uw2)

MALCLRHS a,b,c |[sw2 _ MQLCLRHS (sw2, sw2) c = __MYLCLRHS (a, b)

MAMIHS a, b, ¢ |[SW2 __MAMIHS (sw2, sw2) ¢ = _MJAMHS (a, b)

MAVACHS a, b, c void __ MQVACHS (acc, sw2, __ MOMACHS (c, a, b)
SW2)

MAVACHU a, b, ¢ void __ MQVACHU (acc, uw2, __ MOMACHU (c, a, b)
uw2)

MAVACXHS a, b, ¢ void _ MQVACXHS (acc, sw2, _ MOMACXHS (c, a, b)
SW2)

MOVULHS a, b, c void __ MOQMILHS (acc, sw2, _ MOMULHS (c, a, b)
SW2)

MIMULHU a, b, ¢ void __ MOQMULHU (acc, uw2, __ MOMULHU (c, a, b)
uw2)

MOMULXHS a, b, ¢ void _ MOQMIULXHS (acc, sw2, _ MOMULXHS (c, a, b)
SW2)

MOMULXHU a, b, ¢ void _ MOQMIULXHU (acc, uw2, _ MOMULXHU (c, a, b)
uw2)

MXSATHS a, b, ¢ swW2 _ MQSATHS (sw2, sw2) c = __ MXATHS (a, b)

42 = Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Built-in Functions

Table 11: Medialnstruction (cont)

I nstruction Function Prototype Operand Mapping

MXSLLH a, #b,c |uw2 __ MQSLLH (uw2, const) c = __MXBLLH (a, b)
MXBSRAHI a, #b,c [sw2 __ MQSRAH (sw2, const) c = _MXBRAH (a, b)
MXSUBHSS a, b,c |[sw2 _ MXBUBHSS (sw2, sw2) c = __ MXUBHSS (a, b)
MSUBHUS a, b, ¢ |[uw2 __ MXSUBHUS (uw2, uw?) c = __MJSUBHUS (a, b)

MXMACHS a, b, ¢

void _ MOXMACHS (acc,
SW2)

SW2,

MXMACHS (c, a, b)

MXMACXHS a, b, ¢ va/iz;j __ MXMACXHS (acc, sw2, |__ MXMACXHS (c, a, b)
s
MRDACC a, b uwl _ MRDACC (acc) b = __ MRDACC (a)
MRDACCG a, b uwl _ MRDACCG (acc) b = _ MRDACCG (a)
MROTLI a, #b, c uwl _ MROTLI (uwl, const) c = __MROTLI (a, b)
MROTRI a, #b, c uwl _ MROTRI (uwl, const) c = __MROTRI (a, b)
MSATHS a, b, ¢ swl _ MSATHS (swl, swl) c = __ MSATHS (a, b)
MBATHU a, b, ¢ uwl _ MSATHU (uwl, uwl) c = _ MBATHU (a, b)
MSLLHI a, #b, c uwl _ MSLLHI (uwl, const) c = __MSLLH (a, b)
MSRAHI a, #b, ¢ swl __ MSRAH (swl, const) c = __MSRAHI (a, b)
MSRLHI a, #b, c uwl _ MSRLHI (uwl, const) c = __MSRLH (a, b)
MSUBACCS a, b void __ MSUBACCS (acc, acc) _ _MBUBACCS (b, a)
MSUBHSS a, b, ¢ swl _ MSUBHSS (swl, swl) c = _ _MSUBHSS (a, b)
MSUBHUS a, b, ¢ uwl _ MSUBHUS (uwl, uwl) c = __MSUBHUS (a, b)
MIRAP voi d __MIRAP (voi d) __MIRAP ()
MUNPACKH a, b uw2 __ MUNPACKH (uwl) b = __ MINPACKH (a)
MACUT a, b, c uwl _ MACUT (uw2, uwl) c = _MACUT (a, b)
MATACC a, b void _ MATACC (acc, uwl) __MATACC (b, a)
MATACCG a, b void __ MATACCG (acc, uwl) _ MATACCG (b, a)
MXOR a, b, c uwl _ MXOR (uwl, uwl) c = __MKOR (a, b)

Other built-in functions

This section describes built-in functions that are not named after a specific FR-V

instruction.

sw2 __ | ACCreadl |

(iacc)

Returns the full 64-bit value of IACCO. The argument is reserved for future
expansion and must be 0.

swl | ACCreadl

(iacc)

__|ACCreadl (0) returnsthe value of IACCOH.
__|ACCreadl (1) returnsthe value of IACCOL

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture

Red Hat = 43

Reference

void _ | ACCsetl| (iacc, sw2)

Setsthe full 64-bit value of IACCO to the second argument. The first argument is
reserved for future expansion and must be 0.

void _ | ACCsetl (iacc, swl)

__IACCset! (0, X) sets|ACCOH to x.
__IACCset! (1, X) sets|ACCOL to X.

void _ data_prefetchO (const void *)

__data_prefetcho (X) preloadsone datacachelinefrom addressX. Itis
implemented asdcpl X, gr0, #0.

void __data_prefetch (const void *)

Thisfunctionislike _dat a_pref et ch0 but usesthe nl dub instruction. The
instruction will beissued in slot 11.

Example

Save the following code as exanpl e. c:

void f (unsigned int *z, unsigned int *x, unsigned int *y)
{

__MMULHU (2, x[0], y[O]);

__MWACHU (2, x[1], y[1]);

z[0] = __ _MRDACC (2);
z[1] = __MRDACC (3);
}

and compile it with:

frv-elf-gcc -2 -ncpu=fr550 -S exanple.c
The implementation of f inexanpl e. s will be something like:
ldf.p @gr10,gr0), fril

ldf @gr9,gr0), fr3

ldfi.p @gr10,4), froO

ldfi @gr9,4), fr2

mmul hu fr3, frl, acc?2

mrachu fr2, fr0, acc2

nrdacc acc2, frl

nrdacc acc3, fr0

44 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Assembler Features

stf.p frl, @agr8,gr0)
stfi.p fr0, @agr8,4)
ret

(Note that the exact output may vary between releases.)

Assembler Features

The following documentation describes FR-V specific features of the GNUPro
assembler. For generic assembler options, see “Command Line Options” in Using as
in GNUPro Auxilairy Devel opment Tools. For more information, see* Get Assembler
Listing from Source Code” on page 23. The instruction set is defined in the Fujitsu
manual, FRV Architecture Specification, Volume 1.
-pi ¢

Assembles position independent code (compiler passes - npi ¢ to the assembler if

passed - f pi c).
-nPl C

Assembles large position independent code (compiler passes - nPI C to the

assembler if passed - f PI C).
The following options are the same as the GCC equivalents, see page 28 for details

-ncpu

- Mmo- pack

-mibrary-pic

-nfdpic

-G

- ngpr - 64

- ngpr- 32

- nf pr- 64

- nf pr-32

- mo- nedi a

-mhard-f 1 oat

-msoft-fl oat

- mdoubl e

- mo- doubl e

- mdwor d

- mo- dwor d

- mul add

- mo- mul add

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 45

Reference

Opcodes are not case sensitive.
The assembler uses the register namesin Table 12.
Table 12: Registers and haming conventions

Register usage Registers

General purpose registers gr 0 through gr63

Floating point registers fro through fr63

Coprocessor registers cpr 0 through cpr63

Condition code registers iccO,iccl,icc2,icc3,fccO,fccl, fecc2,fce3,ccO,
ccl,cc2,cc3,cc4,cch5, ccb,andcc?

Special purpose registers There are 1024 special purpose registers.

Assembler special characters and directives

The FR-V-specific special characters are:
#

which starts a comment that extends to the end of theline, but only if it isthe first
non-whitespace character on the line.

which starts acomment that extends to the end of the line. It can be used
anywhere on the line, even if non-whitespace characters have preceeded it.

which seperates two instructions on the same line. In effect the ! character is
treated asif it were a new-line character.

The FR-V-specific assembler directives are:
. efl ags

which alows the user to set, and optionally clear, the flag bitswhich are stored in
thee_f1 ags field of the ELF header. The format of the directiveis:

.efl ags <set _bit_mask> [, <clear_bit_mask>]

Any bits present in <set _bi t _mask> will besetinthee_f 1 ags field. If the
<cl ear _bi t _mask> is also specified then any bitsin it will be removed from the
e flags field.

.picptr
which produces the same output as .4byte, but which is considered safe for usein

46 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Linker Features

position-independent code. It also supports the syntax:
.picptr funcdesc(f)
which generates an R_FRV_FUNCDESC relocation against "f .

Linker Features

The following documentation describes FR-V specific features of the GNUPro linker.

There are no FR-V specific command line linker options. For generic linker options,
see “Linker Scripts’ in Using | d in GNUPro Developer Tools.

The GNU linker uses a linker script to determine how to process each section in an
object file, and how to lay out the executable. The linker script is adeclarative
program consisting of a number of directives. For instance, the ENTRY() directive
specifies the symbol in the executable that will be the executable' s entry point.

When building executables to run under the simulator, the GNU linker usesitsbuiltin
linker script, which isageneric ELF linker script. Using a bash shell and having
navigated to the ~/ bi n directory, display the script with the following command:
frv-elf-1d --verbose

See Example 8 for the linker script specific to the FR-V. The linker script in the
example cannot be used to create FDPIC binaries. GCC implicitly passesthe

- el f 32f r v d option to the linker when linking FDPIC binaries, that causesit to usea
different set of linker scripts by default. .

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 47

Reference

Example 8: FR-V linker script

[* Default |inker script, for normal executables */

QUTPUT_FORNMAT("el f32-frv", "el f32-frv","el f32-frv")

QUTPUT_ARCH(f r v)

ENTRY(_start)

SEARCH DI R("/usr/local /frv-elf/lib");

/* Do we need any of these for elf?

__DYNAM C = 0; */SECTI ONS

{/* Read-only sections, nmerged into text segnent: */

PROVI DE (__executabl e_start = 0x10000); . = 0x10000;

.interp : { *(.interp) }

.hash : { *(.hash) }

.dynsym: { *(.dynsym }

.dynstr : { *(.dynstr) }

.gnu.version : { *(.gnu.version) }

.gnu.version_d : { *(.gnu.version_d) }

.gnu.version_r : { *(.gnu.version_r) }

.rel.init : { *(.rel.init) }

.rela.init : { *(.rela.init) }

.rel .text : { *(.rel.text .rel.text.* .rel.gnu.linkonce.t.*) }
.rela.text : { *(.rela.text .rela.text.* .rela.gnu.linkonce.t.*) }
.rel . fini @ { *(.rel.fini) }

.rela.fini : { *(.rela.fini) }

.rel.rodata : { *(.rel.rodata .rel.rodata.* .rel.gnu.linkonce.r.*) }
.rela.rodata : { *(.rela.rodata .rela.rodata.* .rel a.gnu.linkonce.r.*)
.rel.data : { *(.rel.data .rel.data.* .rel.gnu.linkonce.d.*) }
.rela.data : { *(.rela.data .rela.data.* .rela.gnu.linkonce.d.*) }
.rel.tdata : { *(.rel.tdata .rel.tdata.* .rel.gnu.linkonce.td.*) }
.rela.tdata : { *(.rela.tdata .rela.tdata.* .rela.gnu.linkonce.td.*) }
.rel.tbss : { *(.rel.tbss .rel.tbss.* .rel.gnu.linkonce.th.*) }
.rela.tbss : { *(.rela.tbss .rela.tbss.* .rela.gnu.linkonce.tb.*) }
.rel.ctors : { *(.rel.ctors) }

.rela.ctors : { *(.rela.ctors) }

.rel.dtors : { *(.rel.dtors) }

.rela.dtors : { *(.rela.dtors) }

.rel.got : { *(.rel.got) }

.rela.got : { *(.rela.got) }

.rel.sdata : { *(.rel.sdata .rel.sdata.* .rel.gnu.linkonce.s.*) }
.rela.sdata : { *(.rela.sdata .rela.sdata.* .rela.gnu.linkonce.s.*) }
.rel.shss : { *(.rel.sbss .rel.sbss.* .rel.gnu.linkonce.sh.*) }
.rela.sbss : { *(.rela.shss .rela.shss.* .rela.gnu.linkonce.sh.*) }
.rel.sdata2 : { *(.rel.sdata2 .rel.sdata2.* .rel.gnu.linkonce.s2.*) }
.rela.sdata2 : { *(.rela.sdata2 .rel a.sdata2.* rel a. gnu.linkonce.s2.*)
.sdata2 : { *(.sdata2 .sdata2.* .gnu.linkonce.s2.*) }

48 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Linker Features

Example 8: FR-V linker script (cont’ d)
.rel.shss2 : { *(.rel.sbss2 .rel.sbss2.* .rel.gnu.linkonce.sb2. *) }
.rela.sbss2 : { *(.rela.sbss2 .rela.sbss2.* .rela.gnu.linkonce.sh2.*)
}
.rel.bss : { *(.rel.bss .rel.bss.* .rel.gnu.linkonce.b.*) }
.rela.bss : { *(.rela.bss .rela.bss.* .rela.gnu.linkonce.b.*) }
.rel.plt : { *(.rel.plt) }
.rela.plt : { *(.rela.plt) }
.init
{
KEEP (*(.init))
} =0x80000000
plt = { *(.plt) }
.text
{
(.text .stub .text. .gnu.linkonce.t.*)
/* .gnu.warni ng sections are handl ed specially by el f32.em */
*(. gnu. war ni ng)
} =0x80000000
Lfini
{
KEEP (*(.fini))
} =0x80000000
PROVIDE (__etext = .);
PROVIDE (_etext = .);
PROVI DE (etext = .);
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }
.rodatal : { *(.rodatal) }
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.rofixup : { *(.rofixup) }
.eh_frame_hdr : { *(.eh_franme_hdr) }
/* Adjust the address for the data segnment. W want to adjust up to
the same address within the page on the next page up. */

= ALIGN(256) + (. & (256 - 1));
/* Ensure the _ preinit_array_start |abel is properly aligned. W
could i nstead nove the | abel definition inside the section, but
the linker would then create the section even if it turns out to
be empty, which isn't pretty. */

= ALIGN(32 / 8);
PROVIDE (__preinit_array_start = .);
.preinit_array : { *(.preinit_array) }
PROVIDE (__preinit_array_end = .);
PROVIDE (__init_array_start = .);

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 49

Reference

Example 8: FR-V linker script (cont’ d)
.init_array : { *(.init_array) }
PROVIDE (__init_array_end = .);
PROVIDE (__fini_array_start = .);
.fini_array : { *(.fini_array) }
PROVIDE (_ _fini_array_end = .);

.data :

{

__data_start = .

(.data .data. .gnu.linkonce.d.*)
SORT(CONSTRUCTORS)

}

.datal : { *(.datal) }

.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }

.tbss : { *(.tbss .thss.* .gnu.linkonce.tbh.*) *(.tcomon) }
.eh_frame : { KEEP (*(.eh_frane)) }

.gcc_except _table : { *(.gcc_except_table) }

.dynamic : { *(.dynamc) }

.ctors :

{

/* gcc uses crtbegin.o to find the start of the constructors, so we
make sure it is

first. Because this is a wildcard, it doesn’'t matter if the user does
not actually |ink against crtbegin.o; the linker won’'t | ook for a file
to match a wildcard. The wildcard al so neans that it doesn’'t matter
which directory crtbegin.o is in. */

KEEP (*crtbegi n*. o(.ctors))

/* We don’t want to include the .ctor section from

fromthe crtend.o file until after the sorted ctors.

The .ctor section fromthe crtend file contains the

end of ctors marker and it nust be |ast */

KEEP (*(EXCLUDE_FI LE (*crtend*.o *frvend.o) .ctors))

KEEP (*(SORT(.ctors.*)))

KEEP (*(.ctors))

}

.dtors :
{
KEEP (*crtbegin*.o(.dtors))
KEEP (*(EXCLUDE_FI LE (*crtend*.o *frvend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
}
.jer : { KEEP (*(.jcr)) }
= ALIGN(8); _gp = . + 2048;
PROVIDE (gp = _gp);
.got : { *(.got.plt) *(.got) }

50 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Linker Features

Example 8: FR-V linker script (cont’ d)

/* We want the small data sections together, so single-instruction
of fsets can access themall, and initialized data all before
uninitialized, so

we can shorten the on-di sk segnent size. */

.sdata :

{

(.sdata .sdata. .gnu.linkonce.s.*)
}

_edata = .;

PROVI DE (edata = .);

__bss_start = .;

. Sbss :

{

PROVIDE (__shss_start = .);

PROVIDE (___sbss_start = .);

*(. dynsbss)

(.sbss .sbss. .gnu.linkonce.sb. *)
*(. scommon)

PROVIDE (__sbss_end = .);

PROVIDE (___sbss_end = .);

}

. bss :

{

*(. dynbss)

(.bss .bss. .gnu.linkonce.b.*)

* (COMMON)

/* Align here to ensure that the .bss section occupi es space up to

_end. Align after .bss to ensure correct alignnment even if the

. bss section di sappears because there are no input sections. */
= ALIGN(32 / 8);

}
= ALIGN(32 / 8);

_end = .;

_end=

PROVIDE (end = .);

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 51

Reference

Example 8: FR-V linker script (cont’ d)

/* Stabs debuggi ng sections. */

.stab 0 : { *(.stab) }

.stabstr 0 : { *(.stabstr) }

.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.coment) }

/* DWARF debug sections

Synbol s in the DWARF debuggi ng sections are relative to the begi nning
of the section so we begin themat 0. */

/* DWARF 1 */

.debug 0 : { *(.debug) }

.line 0 : { *(.line) }

/* GNU DWARF 1 extensions */

.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnanes 0 : { *(.debug_sfnanes) }

/* DWARF 1.1 and DWARF 2 */

.debug_aranges 0 : { *(.debug_aranges) }

. debug_pubnanes 0 : { *(.debug_pubnanes) }
/* DWARF 2 */

.debug_info 0 : { *(.debug_info .gnu.linkonce.w.*) }
. debug_abbrev 0 : { *(.debug_abbrev) }
.debug _line 0 : { *(.debug_line) }

.debug frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }

.debug loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_nacinfo) }

/* SE@/MPS DWARF 2 extensions */

. debug_weaknames 0 : { *(.debug_weaknanes) }
. debug_funcnanmes 0 : { *(.debug_funcnanes) }
. debug_typenanes 0 : { *(.debug_typenanes) }
.debug_varnanes 0 : { *(.debug_varnanes) }

. stack 0x200000

{

_stack = .

*(. stack)

}

/DI SCARD : { *(.note.G\U stack) }

}

52 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Debugger Features

Debugger Features

The following documentation describes FR-V specific features of the GNUPro
debugger. For information on debugging, see “ Run the Debugger through an
Executable” on page 7, “ Debug with the Simulator” on page 10, and Debugging with
GDB in GNUPro Debugging Tools. Use RedBoot for remote debugging; see
“RedBoot Features’ on page 54 and see the RedBoot User’s Guide
(http://sources. redhat.con redboot /). Having connected the serial ports (host
operating system and target board), use the following GDB commands from a bash
shell:

set renotebaud 38400

target renote comnl

To debug, using abash shell, usethefrv-el f-gdb nyapp. exe command
(substituting your executable file's name for nyapp). Copyright text displays are
followed by the (gdb) prompt, waiting for you to enter commands likerun or hel p.
If your program crashes and you want to determine why it crashed, typerun and let
the debugging process run. After it crashes, use the wher e command to determine
where it crashed, or thei nfo | ocal s command to see the values of all the local
variables. Thereisalsothepri nt command that lets you examine individual
variables. If your program is doing something unexpected, usethe br eak command to
stop the debugging process when the process getsto a specific function or line number
and use other commands to look at the state of your program at that point, to modify
variables, or to step through your program’ s statements one at atime.

Insight Features

For debugging, GNUPro Toolkit also includes Insight, a graphical user interface.
Insight isinvoked by frv-el f -i nsi ght command. Insight works on arange of host
systems and target microprocessors, alowing development with complete accessto a
program’ s state, for source and assembly level, with the ability to manage breakpoints,
variables, registers, memory, threads, and other functionality. Providing an interface
into the debugging process, Insight gives you awide range of system information. See
Figure 17 for an example of the main windows that Insight uses for analyzing and
debugging programs.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 53

Reference

Figure 17: A composite view of working with Insight
Function Browser window

,% Function Browser ’% Processes [=i=ike
= Filter | ~—
=| Breakpoints ==
Show if function |motches regej™= = ™~ 1
. ﬁmukpmnt Global Pr ocesses window
-~ Files— | Thread| Address| File | Line| Function
eoh s AL 0a wain.c 101 nain
alloca. h AL x4 noin.c 104 o}
orsiderl.h o I
bcoche. b

™~ Breakpoints window

bfd.h
breakpoint. h
call-cnds.h Addresses

cdefs.h =
confin.h Address |0xged El

confname. b
rhine_h

OxffTfdoc OxfobBa5c7 0x01B6FFFT
- | 0x85c70a75 OxfIFFfdbd 000000102

1 Hide .h files g 0xBbSIFFFT 0xfFobcS 0xBE347TTT 0x0001bbAG |..0....... 4.h...
— 0x0035F F00 0xeG000000 0xfFFFffffc OxfF10c4B3 |..5.............

™~ Memory window

% main.c — Source YWindow HQ@@
File Run ¥iew Control Preferences
* oo

Ao a-d8[W 0 &as
a7

98 stotic int =
99 coptured_comnond_loop (void =data)
- 100 {

[~ . .
™~ Register s window

= 101 if (commond_loop_hook == WULL)
- 102 command_loop (3;
103 else
104 e

- red Taon ol (- 5
No program looded.
noin.c ~| [nain | [SOURCE v

Source Window

For developing with Insight, see Insight, the GNUPro Debugger GUI Interface in
GNUPro Debugging Tools.

RedBoot Features

To debug a program running the GNU debugger, GDB, you can use remote debugging
by booting with RedBoot (see “ Get RedBoot for Debugging” on page 8). RedBoot
helps with manipulating atarget system’s environment, for both product devel opment
(debug support) and for end product deployment (flash and network booting). Using
seria (terminal) or Ethernet (telnet) connectivity, RedBoot has integrated GDB stubs
(sub-routines) for connection to a host-based debugger (Ethernet connectivity is
limited to local network) with attribute configuration (for control of aspects such as
system time and date, default flash image from which to boot, a default fail safe image,
static |P address, etc.). Extensible, specifically adapted to atarget’s environment with
network bootstrap support including setup and download, with capability of using
BOOTP, DHCP and TFTP (not available for all systems or targets), RedBoot can
include X/Y Modem support for image download. For more information on RedBoot,
see “Run the Debugger through an Executable” on page 7 and see

http://sources. redhat.com redboot/

54 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Simulator Features

Simulator Features

The following content discusses special simulator functionality for use with the
Fujitsu FR-V architecture. See al'so “Debug with the Simulator” on page 10. Use the
- - hel p option to the simulator with the following syntax.
frv-elf-run [options] program [program args]
The simulator supports general registers, gr 0 through gr 63, the floating-point
registers, f r 0 through f r 63, the co-processor registers, cpr 0 through cpr 63, and any
special purpose registers. The simulator alocates a contiguous chunk of memory
starting at address zero (0). The default memory sizeis 8 MB.
The following options are for the simulator.
--architecture machi ne-type
Allows for specifying si npl e, fr 400, fr 450, fr500, fr550,frv for
machi ne- t ype. Default isf r500.
--architecture-info
--info-architecture
Lists supported architectures.
--alignment strict|nonstrict|forced
Sets memory access alignment. nonst ri ct isthe only accepted alignment.
-D
- -debug
Prints debugging messages.
- -debug-i nsn
Prints instruction debugging messages.
-debug-file fil ename
Specifies the debugging output file.
--envi ronnent user|virtual | operating
Sets the running environment.
-H
--help
Displays a complete list of options recognized by the simulator.
-c[[size]]
--scache-size [[=size]]
Specifies the size of the simulator execution cache.
- -dat a- cache[=ways[, sets[, | i nesi ze]]]
--insn-cache[=ways|[, sets[, | inesize]]]
- - dat a- cache enables the data cache. - - i nsn- cache enablesthe instruction
cache. Defaults differ, depending on the setting of the - - ar chi t ect ur e option.
These options enable simulations of the data cache and instruction cache
respectively. The caches are disabled by default since the HSRo. | CE and HSRo. DCE

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 55

Reference

bits are O initially. The program being simulated can also enable the caches by
setting these bitsto 1.

ways isan integer specifying how many cache lines are associated with each SET;
the default is 4 for the FR500 and FR550 architectures and 2 for the FR400
architecture (specifying 0 resultsin the default).

set s isaninteger specifying how many sets arein the cache; the default is 64 for
the FR500 architecture and 128 for the FR400, FR450 and FR550 architectures
(specifying 0 results in the default).

li nesi ze isaninteger specifying the size of each cache ling; the default is 64
bytes for the FR500 and FR550 architectures and 32 bytes for the FR400 and
FR450 architectures (specifying 0 results in the default).

-p

--profile
These options perform profiling. - p option displays information about the
execution of the simulated program. In addition, for the FR-V architecture, the - p
option, when used with the -t option (simulation trace) will display information
about data hazards, resource hazards and instruction fetch hazards. This
information isinterspersed with the instruction trace and provides information on
the number of cycleswhich the program must wait for resolution of these hazards.

--profil e-cache[=on| of f]
Profiles caches. Displays access statistics for both caches at the end of the
simulation. Also enabled by the - p flag.

--profil e-scache
Performs simulator execution cache profiling.

--profile-core
Performs CORE profiling.

--profile-file filenane
Specifies the profile output file.

--profile-insn
Performs instruction profiling.

--profil e-nmenmory
Performs memory profiling.

--profil e-nodel
Performs model profiling.

--profile-parallel[=on|off]
Profiles parallelism. Displays statistics on parallel execution at the end of the
simulation. This option is also enabled by the - p flag.

--profile-range start, end
Specifies the range of addresses for instruction and model profiling.

56 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Simulator Features

--timer cycles,interrupt
Setsthe Interrupt Timer.
--nmenory-al i as address, si ze[, addr ess]
Adds a memory shadow.
--menory-cl ear
Clears all memory regions.
--nmenory-del et e address| al
--del ete-nmenory address
Deletes memory at address (or with al |, all addresses).
--nmenory-info
--info-menory
Lists configurable memory regions.
--menory-| atency cycles
This option sets the latency of memory, by setting the number of cycles required
to access main memory during the simulation. The default is 24 cycles.
--nmenory-regi on address, si ze[, nodul 0]
Adds a memory region.
--menory-size size
Adds memory at address zero.
--nmenory-| atency cycl es
Sets for configuring memory latency. The default latency is assumed to be 24
cycles (read and write). Address trandation is not implemented. Latency for loads
and stores use the standards in Table 13.

Table 13: Configuring latency

Usage CacheHit Cache Miss

GR load/store 2 --menory- 1| atency

FR load/store 3 --menory-latency + 1
Instruction fetch 2 --menory-1I atency

--nodel nodel
Specifiesamodel to simulate. f r vbf isthe only model accepted for MODEL.
--target BFDname
Specifies the object-code format for the object files. f r v- unknown- el f istheonly
accepted target for BFDnane.
--timer cycles,interrupt
Setsthe interrupt timer. The timer expires periodically after afixed number of
execution cycles. When the timer expires an external interrupt is generated. The
arguments are used to configure the timer properties.

cycl es specifies the number of cycles between interrupts.

i nterrupt specifiesthe number of the interrupt generated and must be an
integer between 1 and 15.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat m 57

Reference

-t[=on| of f]
--trace [=on| of f]

Traces useful things.

--trace-insn [=on|of f]

Performs instruction tracing.

--trace-extract [=on|off]

Traces instruction extraction.

--trace-linenum [=on| of f]

Performs line number tracing (implies- -t r ace-i nsn).

--trace-semantics [=on| of f]

Performs ALU, FPU, MEMORY, and BRANCH tracing.

--trace-core [=on|of f]

Traces core operations.

--trace-events [=on| off]

Traces events.

--trace-range =start, end

Specifies range of addresses for instruction tracing.

--trace-debug [=on]| of f]

Adds information useful for debugging the simulator to the tracing output.

--trace-file =fil enane

-V

Specifiestracing output file.

--verbose

Specifies verbose output.

The following interrupts are available when using the simulator.

RESET
A software reset may be initiated by setting RSTR. SR or RSTR. HRt0 1. RSTRIiS
located at address 0xf ef f 0500. Hardware reset is currently not supported.

BREAK

The BREAK instruction is supported. No other BREAK interrupts are supported.
PROGRAM

Program interrupts work as documented in the FRV Architecture, Volume 1.
SOFTWARE

Software interrupts are supported.

EXTERNAL

External interrupts work in order to implement the timer interrupt.

58 m Red Hat

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Cygwin Features

Cygwin Features

The Cygwin tools that GNUPro Toolkit provides alow you to work on Windows
systems as if emulating a UNIX system. For more information, see the current

http: // ww. r edhat . conf docs/ manual s/ gnupr o/ documentation. Cygwin, a
full-featured Win32 porting layer for UNIX programs, is compatible with Win32
hosts (currently, these are Microsoft Windows NT/2000/X P systems). With Cygwin,
you can make al directories have similar behavior, with al the UNIX default toolsin
their familiar place. Scripting languages include bash, t sh, and t csh. Tools such as
Perl, Tcl/Tk, sed, awk, vi m Emacs, xemacs, t el netd and f t pd. In order to emulate a
UNIX kernel to access all processes that can run with it, use the Cygwin DLL
(dynamically linked library). The Cygwin DLL will create shared memory areas so
that other processes using separate instances of the DLL can access the kernel.

For more details, seeht t p: / / sour ces. redhat . com cygwi n/ for documentation.

GNUPro Toolkit User’s Guide for Fujitsu FR-V Architecture Red Hat = 59

Reference

60 = Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

A

accumulator 30
as See assembler
assembler 2, 23, 45-46
attributes 54
directive 36
opcodes 46
optimization 55
registers 46
attributes 32, 54

B

binary utilities 1, 2

BOOTP 54

Bourne-compatible shells, setting patH 3
breakpoint 18-19

build and installation directories 25

C

C shell, setting pAaTH 3
cache optimization 55, 56
case sengitivity 3
compiler 1, 2, 6, 23, 28-32, 37
accumulators 30
attributes 32, 54
e flags field 36
floating-point instructions 30
instructions 30
opcodes 46

Index

optimization 37,55

options
assembler 23
-fpic 29,30
-fpic 28,29
-¢ 30
-macc-4 30
-macc-8 30
-ncond- exec 31
-ncond- move 31
-mdoubl e 30
-miword 30
-nfpr-32 30
-nfpr-64 30, 45
- nmgpr - 32 30
- ngpr - 64 30, 45
-nhard-float 30
-mibrary-pic 28, 45
-media 30
-mul add 30
-mo- doubl e 30
-mo-dword 30
-mo-media 30
-mo-mul add 30
- nmpack 28
-nPIC 45
-mpic 45

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

Red Hat = 61

D-O

-mscc 31 G
-msoft-float 30 GAS see assembler
position independent code 38 GCC see compiler or see compiler options
preprocessor symbols GDB see debugger
T oy GLD see linker
—ng—g\c;v%—RD?’l 31 global and sxati(;variables _29
TFRV_FPR_ 31 GNUPro Compiler Collection (GCC) 28
_FRV_GPR__ 31 H
__FRV_HARD _FLOAT__ 31 hard
" FRV_VLIW_ 31,32 pardware 2,58
registers 30, 46
relocation names and numbers 35
simulator 55-58 |
configuring 3, 25, 54, 57 Insight 13-23
connectivity 54 installation 1, 2, 25
contacting Red Hat ii instruction scheduling optimizations 55
CPU 1 instructions 28, 30, 31, 36, 38
CPUID information 15
Cygwin 24, 26, 59 K
D Korn shell 3
datatype sizes and alignments 32 L
debugger 1,2,7-23,53, 54 latency 57
attributes 54 LD see linker
breakpoints 19, 21 - :
embedded projects, working with 14 libraries 1
Insight 13-23 linker 2,23, 47-2?
jumps 17 linker script 48-??
local variables 18 Linux 1
RedBoot 54 case sengitivity 3
threads 22, 23 environment variables, setting 3
DHCP 54 local variables 21
documentation 1, 3, 15
double-word load and store instructions 31 M
mediainstructions 28, 30, 31
E memory latency 57
ELF object fileformat 2 multiple threads 23
embedded development, defined 14
ENTRY() 47 N
environment variables, setting 2, 3, 15 :
Ethernet (telnet) connectivity 54 naming 2
executable 3, 47
O
F object fileformat 2, 32
opcodes 46

floating-point instructions 30, 31

functions 12, 33, 35 optimization 31, 37, 55

62 m Red Hat GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture

P

page 37 28

page 38 38

porting layer for UNIX applications 59
position independent code 38, 45
preprocessor 31

processor version 1

R

ramdisk 2

rebuilding, Windows 24-26
RedBoot 8, 15, 53, 54

registers 30, 31, 35, 46

rel ocation names and numbers 35

S
shell 3
simulator 6, 7, 10, 47, 55-58
single-precision instructions 30
Solaris 1,2

case sengitivity 3

environment variables, setting 3
sources 6, 23, 25
stack 33
static and global variables 29
stubs 54

symbols 31, 47

T
TFTP 54
threads 23
toolchain 3
triplet name 3
tutorials 5-26

U
UNIX programs, porting to Windows 59

\Y,

variables, environment, setting 2
variables, local, changing 21
version, processor 1

w

warnings 15, 22
Windows 1
binaries 2
case sengitivity 3
Cygwin 59
environment variables, setting 2
rebuilding tools 24

GNUPro Toolkit User’'s Guide for Fujitsu FR-V Architecture Red Hat = 63

	GNUPro® Toolkit User’s Guide for Fujitsu™ FR-V Architecture
	Contents
	Introduction
	Tutorial
	Create Source Code
	Compile from Source Code
	Run the Executable on the Simulator
	Run the Debugger through an Executable
	Get RedBoot for Debugging
	Debug with the Simulator
	Debug with Insight
	Get Assembler Listing from Source Code
	Rebuild GNUPro for Cygwin/ Windows NT/2000/XP Systems

	Reference
	Compiler Features
	EABI Summary of Features
	FDPIC ABI Summary

	Built-in Functions
	Argument and return types
	Directly-mapped built-in functions
	Other built-in functions
	Example

	Assembler Features
	Linker Features
	Debugger Features
	Insight Features
	RedBoot Features
	Simulator Features
	Cygwin Features

	Index

