

 **

 This document contains confidential and proprietary information
 of Commodore Business Machines,Inc. Reproduction, dissemination, or
 disclosure to others without express written consent of Commodore
 Business Machines,Inc. is prohibited.

 Notice is hereby given that works of authorship herein, are owned
 by Commodore Business Machines,Inc., pursuant to the U.S. Copyright
 Laws, Title 17 U.S.C. 3101 et. seq.

 Copyright 1985 Commodore Business Machines,Inc.

 **

 * This specification reflects the latest information available at *
 * this time. Please be advised that updates will occur as the *
 * system evolves and when implementation is completed. *

 Page 2

 C - 1 2 8 S O F T W A R E F U N C T I O N A L
 --------- --------------- -------------------

 S P E C I F I C A T I O N

 Version 3.0

 4/18/85

 Approval ___________________ Date: __________

 Approval ___________________ Date: __________

 Approval ___________________ Date: __________

 Acknowledgement:

 This specification represents the contributions of several
 people including: Fred Bowen, Dave Haynie, Von Ertwine, Terry Ryan,
 Dave Siracusa, Dave Stong, and Julian Strauss.

 Page 3

 CONTENTS

CHAPTER 1 ABSTRACT

 1.1 ABSTRACT . 1-1

CHAPTER 2 INTRODUCTION

 2.1 MACHINE CONCEPT 2-1
 2.2 SOFTWARE/HARDWARE SPECIFICATION OVERVIEW 2-1
 2.3 HARDWARE COMPONENT SUMMARY 2-3
 2.4 COMPATIBILITY OBJECTIVE 2-3

CHAPTER 3 C-64 COMPATIBLE MODE

CHAPTER 4 MODE SWITCHING SUMMARY

CHAPTER 5 C64/C-128 MODE

 5.1 BASIC FUNCTIONS 5-1
 5.1.1 COMMAND AND STATEMENT FORMAT 5-1
 5.1.1.1 ALPHABETICAL LIST OF COMMANDS 5-4
 5.1.1.2 COMMAND DESCRIPTION 5-6
 5.1.1.3 ALPHABETICAL LIST OF STATEMENTS 5-29
 5.1.1.4 STATEMENT DESCRIPTION 5-32
 5.1.1.5 ALPHABETICAL LIST OF FUNCTIONS 5-71
 5.1.1.6 FUNCTION DESCRIPTION 5-73
 5.1.1.7 VARIABLES 5-86
 5.1.1.8 OPERATORS 5-89
 5.1.1.9 BASIC ERROR MESSAGES 5-91
 5.1.1.10 DOS ERROR MESSAGES 5-94
 5.2 MACHINE LANGUAGE MONITOR 5-99
 5.2.1 INTRODUCTION 5-99
 5.2.2 C-128 MONITOR COMMANDS 5-99
 5.2.2.1 C-128 MONITOR COMMAND DESCRIPTIONS 5-102
 5.3 C-128 EDITOR ESCAPE SEQUENCES 5-110
 5.4 C128 EDITOR CONTROL CODES 5-111

CHAPTER 6 SYSTEM MEMORY MANAGEMENT

 6.1 INTRODUCTION 6-1
 6.2 C128 MEMORY ORGANIZATION 6-1
 6.2.1 C-128 ROM MEMORY ORGANIZATION 6-3
 6.2.2 C-128 RAM MEMORY ORGANIZATION 6-5
 6.3 MMU AND I/O MEMORY ORGANIZATION 6-6
 6.4 MMU REGISTER DESCRIPTION 6-8

 - 3 -

 Page 4

 6.4.1 THE CONFIGURATION REGISTER 6-10
 6.4.2 THE PRECONFIGURATION MECHANISM 6-11
 6.4.3 THE MODE CONFIGURATION REGISTER 6-12
 6.4.4 THE RAM CONFIGURATION REGISTER 6-13
 6.4.5 THE PAGE POINTERS 6-14
 6.4.6 SYSTEM VERSION REGISTER 6-15

CHAPTER 7 KERNAL JUMP TABLE

 7.1 C/64 MODE AND C128 MODE KERNAL JUMP TABLE 7-1

CHAPTER 8 OVERALL DETAILED SYSTEM MEMORY MAP

 8.1 C128 BASIC MAP 8-2
 8.2 C128 DISPLAY MAP 8-3
 8.3 C128 RAM MAP 8-5

CHAPTER 9 DETAILS OF SOFTWARE INTERFACE TO 8563 (80 COLUMN CHIP)

 9.1 OVERVIEW . 9-1

CHAPTER 10 CP/M MODE

 10.1 GENERAL SYSTEM LAYOUT 10-1
 10.2 SYSTEM MEMORY ORGANIZATION 10-1
 10.2.1 COMMON MEMORY MAP 10-3
 10.2.2 Z80 MEMORY MAP 10-4
 10.2.3 8500 MEMORY MAP 10-5
 10.3 1571 DISK ORGANIZATION 10-6
 10.3.1 C64 CP/M DISK FORMAT 10-7
 10.3.2 C-128 CP/M DISK FORMAT 10-8
 10.4 MFM DISK FORMATS 10-9
 10.5 MEMORY DISK ORGANIZATION 10-11
 10.6 CODE ORGANIZATION OVERVIEW 10-11
 10.6.1 BLOCK TRANSFER OPERATIONS 10-12
 10.6.1.1 BOOTING OF CP/M PLUS 10-13
 10.6.1.2 READ A SECTOR OF DATA FROM DISK (FAST AND
 SLOW) . 10-14
 10.6.1.3 WRITE A SECTOR OF DATA TO DISK (FAST AND SLOW) 10-14
 10.6.1.4 READ A SECTOR OF DATA FROM RAM DISK 10-14
 10.6.1.5 WRITE A SECTOR OF DATA TO RAM DISK 10-15
 10.6.1.6 COPY CCP TO HIDDEN RAM FROM TPA 100H 10-15
 10.6.1.7 COPY CCP TO TPA 100H FROM HIDDEN RAM 10-15
 10.6.1.8 FORMAT DISK 10-15
 10.6.2 CHARACTER TRANSFER OPERATIONS 10-15
 10.6.2.1 KEYBOARD SCANNING 10-16
 10.6.2.2 UPDATE 40/80 COLUMN DISPLAY 10-18
 10.6.2.3 TERMINAL EMULATION PROTOCOLS 10-19
 10.6.2.3.1 LEAR SIEGLER ADM-3A 10-19

 - 4 -

 Page 5

 10.6.2.3.2 LEAR SIEGLER ADM-31 10-20
 10.6.2.3.3 VT52 . 10-21
 10.6.2.3.4 VT100 . 10-22
 10.6.2.4 PRINTER INTERFACE ON SERIAL BUS 10-25
 10.6.2.5 GET A CHARACTER FROM RS232C ADAPTER (WITH
 XON/XOFF) 10-25
 10.6.2.6 SEND A CHARACTER TO RS232C ADAPTER 10-26
 10.6.2.7 SET RS232C PARAMETERS 10-26
 10.6.3 SYSTEM OPERATIONS 10-26
 10.6.3.1 SET SYSTEM TIME 10-26
 10.6.3.2 UPDATE SYSTEM TIME 10-26
 10.6.3.3 MEMORY TO MEMORY MOVE 10-27
 10.7 8500 BIOS ORGANIZATION 10-28
 10.8 CP/M BIOS ORGANIZATION (BIOS80) 10-31
 10.8.1 DATA STRUCTURES 10-39

CHAPTER 11 FAST DISK INTERFACE

 11.1 SERIAL BUS INTERFACE 11-1
 11.2 FAST SERIAL PROTOCOL 11-3
 11.3 SERIAL BUS COMMANDS - MODIFIED 11-4
 11.4 STANDARD KERNAL CALLS 11-5
 11.5 BURST COMMANDS ADDED TO DOS 2.65 11-7

CHAPTER 12 RELATED DOCUMENTATION

 - 5 -

 CHAPTER 1

 ABSTRACT

1.1 ABSTRACT

 This document is the functional specification of the software
features to be provided in the C-128 product. References are made to
the hardware to the extent necessary to describe the support required
from hardware to implement the functions made available through the
software. For detailed information on the hardware refer to the C-128
Hardware Specification.

 - 6 -

 CHAPTER 2

 INTRODUCTION

2.1 MACHINE CONCEPT

 The C-128 is intended as an upgrade and successor to the
commercially successful C64. The C-128 takes advantage of the already
developed base of C-64 software by providing a totally C-64 compatible
mode of operation. In addition it provides an upgrade path by
implementing features that are normally found in much more expensive
machines. Specifically these features are:

 1. 128K bytes of user accessible RAM
 2. 80 character column output
 3. CP/M 3.0 operation

There are other features that are being added, but the ones listed
above are most significant in terms of value added versus the C-64.

2.2 SOFTWARE/HARDWARE SPECIFICATION OVERVIEW

 The software/hardware features provided by the C-128 machine are
summarized below:

 C-64 Compatible Mode
 ---- ---------- ----
 1. Standard C-64 Kernal
 2. BASIC 2.0
 3. 40 column output via VIC II chip - (modified 1 or 2 MHz
 clock, extra keyboard lines, etc.)
 4. Sound via SID chip
 5. Access to 64K bytes of RAM
 6. Standard C-64 keyboard layout
 7. Full compatibility with C-64 peripherals including standard
 C-64 cassette, joystick,user port, and serial bus devices
 8. Full compatibility with C-64 applications software
 9. C-64 composite video and RF output
 10. 8500 CPU at 1 MHZ

 C-128 Mode
 ----- ----
 1. New enhanced C-128 kernal
 2. BASIC 7.0
 3. 40 column output via VIC II
 4. 80 column output via 8563 chip
 5. Sound via SID chip
 6. Access to 128K bytes of RAM
 7. Enhanced keyboard (numeric pad,escape,tab,caps lock,help key)
 in addition to standard C-64 keyboard.
 8. Access to fast serial floppy disk and regular serial
 peripherals
 9. Access to RAM disk when 256K x 1 RAM are available(not in
 current design)

 CP/M Mode
 ---- ----
 1. CP/M 3.0 via integral Z-80A
 2. 40 column output via VIC II chip

 3. 80 column output via 8563 chip
 4. Sound via SID chip
 5. Access to 128K bytes of RAM
 6. Access to full keyboard
 7. Access to fast serial disk and regular serial peripherals
 8. Access to RAM disk when 256 x 1 RAM are available (only in
 CP/M design)

2.3 HARDWARE COMPONENT SUMMARY

 (For greater detail see C-128 Hardware Specification)

 Processors: 8500 (C64,C-128 Modes,I/O support for CP/M)
 Z80-A (CP/M Mode only)

 Memory:
 ROM: 64K standard (C-64 Kernal + BASIC, C-128 Kernal + BASIC,
 character ROMs and CP/M BIOS)
 1-32K slot available for function key software

 RAM: 128K bytes in 2-64K byte banks
 16 K bytes screen RAM for 8563 video chip

 Video Chips: 8567/856x 40 column video (version for NTSC and PAL
 TV standards)
 8563 80 column video

 Sound: 6581 SID Chip

 I/O: 6526 Joystick ports/keyboard scan/cassette
 6526 User and serial ports

 Memory
 Management: PLA (C-64 + C-128 Mapping Modes)
 MMU (Custom gate array)

2.4 COMPATIBILITY OBJECTIVE

 The C-128 system is designed as an upgrade to the C-64. The
prime objective is to maintain hardware and software compatibilty with
the C-64 when operating in C-64 Mode. The C-64 mode of the C-128 will
be capable of running all C-64 application software. It also will
support all C-64 peripherals except the external CP/M card (the C-128
has internal CP/M capability that supercedes that provided by the
external card).

 The C-128 mode is designed as a compatible superset to the C-64.
Specifically, all kernal functions provided by the C-64 will be
provided in the C-128 kernal. They are also provided at the same
locations in the jump table of the C-128 kernal to allow compatibility
with BASIC programs, However, locations within kernal/BASIC that may
have been called directly will not be guaranteed to be at the same
locations as in the C-64 kernal. Where possible new entries will be
added to the C-128 jump table to replace these direct calls to kernal
and BASIC routines. An attempt will be made to maintain zero page and
other system variables at the same addresses they occupy in C-64 mode.
This will simplify interfacing for many programs.

 The objective to provide full C-64 compatibility also leads to
certain constraints. The main constraint is that the C-64 Mode cannot
take advantage of all the new features of the machine (this is why the
C-128 mode was added). For example, a new fast serial disk will be

part of the C-128 system. Due to compatibility and memory constraints
it is not possible to modify the C-64 kernal to support the new fast
serial disk drive. C-64 will see this disk as a standard serial disk.
Similarly, the C-64 mode does not have an 80 column screen editor for
the same reasons. Also, C-64 BASIC does not automatically use the
second 64K bank of memory. This second bank is used for variable
storage by C-128 BASIC.

 - 10 -

 CHAPTER 3

 C-64 COMPATIBLE MODE

 The C-64 kernal and BASIC are included unchanged in the C-128
system to provide complete compatibility with C-64. For a complete
description of the following items refer to the C-64 Programmer's
Reference Guide.

 1. C-64 BASIC commands, statements, and functions
 2. How to use the VIC chip
 3. How to use the SID chip
 4. C-64 Kernal function accessible through jump table

 Note: in addition to the 46 registers that can be accessed in
the VIC chip there are 2 additional registers accessible to the user
for the C-128. They are:

 Reg. 47 - Keyboard Control Register

 The keyboard control register determines the status of the three
keyboard interface lines. Bits 0-2 of register 47 are directly
reflected in lines K0-K3. Bits 4-7 are not connected and return a
high when read.

 Reg. 48 - 2 MHZ BIT

 The 2 MHZ bit, bit 0 of register 48, sets the speed of the 2 MHZ
clock out. This bit also stops all VIC accesses, except DRAM refresh,
from occurring. VIC cannot generate any address except during these
refresh cycles. For normal VIC operations tthis bit must be clear.

 - 11 -

 CHAPTER 4

 MODE SWITCHING SUMMARY

The following table shows how to switch between the various C128 modes.
The columns of the table show the current state the user is in. The
rows of the table show the state the user would like the system to be
in. To change the state of the machine the user should locate the
column containing the state the machine is currently in. Then the user
should find the row containing the state they would like the system to
be in. The intersection of this column and row contains a brief
description of the action the user should take to change states of the
machine.

 C128 MODE SWITCHING

CURRENT		C64	C128	C128	CP/M	CP/M
STATE	OFF		80 COL	40 COL	40 COL	80 COL

DESIRED						
|STATE | | | | | | |
|------------------|----------|----------|----------|----------|----------|
|OFF | -- |TURN POWER|TURN POWER|TURN POWER|TURN POWER|TURN POWER|
		OFF	OFF	OFF	OFF	OFF
C64	TURN ON	--	GO64	GO64	TURN OFF	TURN OFF
	WITH C64		COMMAND	COMMAND	SEE OFF	SEE OFF
	CARTRIDGE				STATE	STATE
-------	----------	----------	----------	----------	----------	----------
				ESC-X OR		
C128	TURN ON	RESET	--	SET 40 COL	CYCLE PWR	CYCLE PWR
80 COL	W/80 COL	W/80 COL		SWITCH AND	W/80 COL	W/80 COL
	SWITCH SET	SWITCH SET		RESET OR	SWITCH SET	SWITCH SET
				RUN/STOP+		
				RESTORE		
-------	----------	----------	----------	----------	----------	----------
			ESC X OR			
C128	TURN ON	RESET	SET 40 COL		CYCLE PWR	CYCLE PWR
40 COL	W/40 COL	W/40 COL	SWITCH AND	--	W/40 COL	W/40 COL
	SWITCH SET	SWITCH SET	RESET OR		SWITCH SET	SWITCH SET
			RUN/STOP+			
			RESTORE			
-------	----------	----------	----------	----------	----------	----------
CP/M	AUTO BOOT	RESET WITH	BOOT CMD	BOOT CMD		ASSIGN VIA
40 COL	DISK IN	AUTO BOOT	OR RESET+	OR RESET+	--	DEVICE CMD
	DRIVE+40	IN DRIVE+	AUTO BOOT+	AUTO BOOT+		TO 40COL
	COL SW SET	40 COL SW	40 COL SW	40 COL SW		
-------	----------	----------	----------	----------	----------	----------
CP/M	AUTO BOOT	RESET WITH	BOOT CMD	BOOT CMD	ASSIGN VIA	
80 COL	DISK IN	AUTO BOOT	OR RESET+	OR RESET+	DEVICE CMD	--
	DRIVE+80	IN DRIVE+	AUTO BOOT+	AUTO BOOT+	TO 80COL	
	COL SW SET	80 COL SW	80 COL SW	80 COL SW		

NOTES:
 1. Pressing the reset switch reinitializes the machine in the same
 way as cycling power.
 2. The "RUN/STOP + RESTORE" sequence means that the "RUN/STOP" is
 held down while the "RESTORE" key is momentarily pressed. This
 performs a subset of the operations performed by cycling power
 or pressing the reset switch.
 3. An "AUTO BOOT DISK" is a special diskette that when loaded into
 a disk drive contains a program which will automatically load
 and run when the computer is powered on.
 4. A C64 cartridge takes precedence over an auto boot disk at
 system power up. If a C64 cartridge is plugged in, the system
 always powers up in C64 mode.
 5. In C128 mode the escape sequence ESC X toggles between 40 and
 80 column independent of the state of the 40/80 column switch.
 6. See the GRAPHIC command in BASIC for other ways of toggling 40
 and 80 column screens.
 7. Under certain conditions both 40 and 80 column screens can be
 made to appear active at the same time. Details on how this is
 done will appear in a later version of this spec.
 8. In C64 mode the system MMU is not accessible. However, the RAM
 bank the system executes from will be that selected in the MMU
 before the C64 kernel and BASIC ROMS were enabled.

 CHAPTER 5

 C64/C-128 MODE

5.1 BASIC FUNCTIONS

 This section lists BASIC 7.0 commands, statements, and functions by
group. It gives a complete list of the rules (syntax) of the C-128
BASIC 7.0, along with a concise description of each. Within the
section, the commands, statements, and functions are listed in
alphabetical order. Commands are used mainly in direct mode, while
statements are most often used in programs. In most cases, commands can
be used as statements in a program if prefixed with a line number. The
user is able to use many statements as commands by issuing them in
direct mode (i.e., without line numbers).

 The different types of operations in BASIC are listed in sections
based on the following criteria:

 1. COMMANDS: the commands used to work with the programs, edit,
 store, and erase them.

 2. STATEMENTS: the BASIC program statements used in numbered
 lines of program.

 3. FUNCTIONS: the string, numeric, and print functions.

 4. VARIABLES AND OPERATORS: the different types of variables,
 legal variable names, and arithmetic and logical operators.

 5. BASIC AND DOS ERROR MESSAGES

5.1.1 COMMAND AND STATEMENT FORMAT

 The commands and statements presented in this section are governed
by consistant format conventions designed to make them as clear as
possible. In most cases, there are several actual examples to
illustrate what the actual command looks like. The following example
shows some of the format conventions that are used in the BASIC commands

 EXAMPLE : DLOAD"program name"[D0, U8]

 additional arguments

 keyword argument (possibly optional)

 The parts of the command or statement that the user must type in
exactly as they appear are in capital letters. Words that don't have to
be typed exactly, such as the name of the program, are not capitalized.
When quote marks (" ") appear (usually around a program or file name),
the user should include them in the appropriate place according to the
format example.

 KEYWORDS, also called RESERVED WORDS, appear in uppercase letters.
THESE KEYWORDS MUST BE ENTERED EXACTLY AS THEY APPEAR. However, many
keywords have abbreviations that can also be used.

 Keywords are words that are part of the BASIC language that the
computer understands. Keywords are the central part of a command or
statement. They tell the computer what kind of action to take. These
words cannot be used as variable names.

 ARGUMENTS (also called parameters) appear in lower case. Arguments
are the parts of a command or statement; they complement keywords by
providing specific information about the command or statement. For
example, a keyword tells the computer to load a program, while the
argument tells the computer which specific program to load and a second
argument specifies which drive the disk containing the program is in.
Arguments include filenames, variables, line numbers, etc.

 SQUARE BRACKETS [] show OPTIONAL arguments. The user selects any
or none of the arguments listed, depending on the requirements.

 ANGLE BRACKETS <> indicates that the user MUST choose one of the
arguments listed.

 VERTICAL BAR | separates items in a list of arguments when the
choices are limited to those arguments listed, and no other arguments
can be used. When the vertical bar appears in a list enclosed in SQUARE
BRACKETS, the choices are limited to the items in the list, but still
have the option not to use any arguments.

 ELLIPSIS ..., a sequence of three dots, means that an option or
argument can be repeated more than once.

 QUOTATION MARKS " " enclose character strings, filenames, and other
expressions. When arguments are enclosed in quotation marks in a
format, the quotation marks must be included in a command file or
statement. Quotation marks are not conventions used to describe
formats; they are required parts of a command or statement.

 PARENTHESES () When arguments are enclosed in parentheses in a
format, they must be included in a command or statement. Parentheses
are not conventions used to describe formats; they are required parts of
a command or statement.

 VARIABLE refers to any valid BASIC variable name such as X, A$, or
T%.

 EXPRESSION means any valid BASIC expression, such as A+B+2 or
.5*(X+3).

5.1.1.1 ALPHABETICAL LIST OF COMMANDS -

 1. APPEND
 2. AUTO
 3. BACKUP
 4. BEGIN/BEND
 5. BLOAD
 6. BOOT
 7. BSAVE
 8. CATALOG
 9. CONCAT
 10. COLLECT
 11. CMD
 12. CONT
 13. COPY
 14. DELETE
 15. DIRECTORY
 16. DLOAD
 17. DSAVE
 18. DVERIFY
 19. FAST
 20. FETCH
 21. HEADER
 22. HELP
 23. KEY
 24. LIST
 25. LOAD
 26. MONITOR
 27. NEW
 28. PLAY
 29. RENAME
 30. RENUMBER
 31. RUN
 32. SAVE
 33. SCRATCH
 34. SLEEP
 35. SLOW
 36. SOUND
 37. SPRCOLOR
 38. SPRDEF
 39. SPRSAV
 40. STASH
 41. SWAP
 42. VERIFY
 43. WIDTH
 44. WINDOW

5.1.1.2 COMMAND DESCRIPTION -

 1. APPEND - file append

 APPEND # logical_file_number,file_name
 [,Ddrive number][<ON|,>Udevice]

 Opens file file_name for writing, and positions the file
 pointer at the end of the file. Subsequent PRINT#
 logical_file_number statements will cause data to be appended
 to the end of this file.

 2. AUTO - enable/disable automatic line numbering

 AUTO [line#]

 Turns on the automatic line numbering feature which eases
 the job of entering programs by typing the line numbers for the
 user. As each program line is entered by pressing RETURN the
 next line number is printed on the screen, with the cursor in
 position to begin typing that line. The [line#] argument
 refers to the increment between line numbers. AUTO with NO
 ARGUMENT turns off auto line numbering, as does RUN. This
 statement is executable only in direct mode.

 EXAMPLES:

 AUTO 10 automatically numbers line in increments of ten.
 AUTO 50 automatically numbers line in increments of fifty.
 AUTO turns off automatic line numbering.

 3. BACKUP - drive to drive disk backup

 BACKUP Ddrive_number TO Ddrive_number
 [<ON|,>Udevice]

 This command copies all the files on a diskette to another
 on a dual drive system. A copy onto a new diskette can be done
 without first using the HEADER command to format the new
 diskette because the BACKUP command copies all the information
 on the diskette, including the format. BACKUP should always be
 used in case the original diskette is lost or damaged. Because
 the BACKUP command also HEADERS diskettes, it destroys any
 information on the diskette onto which the information is being
 copied. So if backing up onto a previously used diskette, make
 sure it contains no programs that are meant to be kept. See
 also the COPY command. Default is unit 8.

 NOTE: This command can only be used with a dual disk drive.

 EXAMPLES:

 BACKUP D0 to D1 Copies all files from the disk in
 drive 0 to the disk in drive 1.
 (in disk drive unit 8).

 BACKUP D0 TO D1, ON U9 Copies all files from drive 0 to
 drive 1 in disk drive unit 9.

 4. BEGIN/BEND

 BEGIN/BEND are used to define a block of code which is considered
 by the IF statement to be one statement.

 The normal usage of IF/THEN/ELSE would be along the following lines:

 IF boolean THEN statement(s) : ELSE statement(s)

 The main restriction is that the entire body of the IF/THEN/ELSE
 construct can only occupy one line. BEGIN/BEND allows either the
 'THEN' or the 'ELSE' clause to run on for more than one line.

 IF boolean THEN BEGIN : statements....
 statements...
 statements... BEND : ELSE BEGIN
 statements...
 statements... BEND

 Remember, however, that this is only a way to extend the body for
 more than one line: all other 'IF/THEN' rules apply. For example:

 100 IF x=1 THEN BEGIN : a=5
 110 : b=6
 120 : c=7
 130 BEND : print "ah-ha!"

 In the above example, "ah-ha!" would be printed ONLY if the
 expression 'x=1' is TRUE. This is consistant with the IF/THEN
 statement's policy of executing ALL statements up to the end
 of the line if the expression evaluates to 'TRUE' (unless an
 else is encountered).

 5. BLOAD - loads a binary file into any memory location

 BLOAD filename [[<ON|,>Udevice],Bbanknumber][Pstart]

 where filename is the name of your file,
 banknumber lets yo selectone of the
 16 banks,
 Pstart is the location to start loading

 6. BOOT - load and execute program

 BOOT file_name [,Ddrive_number][<ON|,>Udevice]

 Loads the executable binary file file_name from
 device_number (default:U8), and begins execution at its
 starting address. BOOT with no arguments goes to the boot disk
 and loads (in the case of CP/M)

 7. BSAVE - Saves a binary file from any specified memory location

 BSAVE "filename"[,Bbanknumber][,Pstart][TO Pend]
 [<ON|,>Udevice]

 where filename is the name of the file to save,
 banknumber lets you select on of the 16 banks,
 Pstart is the location in the bank beginning
 the information to be saved,
 Pend is the location in the bank ending the
 information to be saved (last addr + 1).

 8. CATALOG - same as DIRECTORY command

 CATALOG [Ddrive_number][<ON|,>Udevice],
 [wildcard_string]

 9. COLLECT - free inaccessable disk space
 COLLECT [Ddrive_number][<ON|,>Udevice]

 Use this command to free up space allocated to improperly
 closed files and delete references to these files from the
 directory. Defaults to unit 8.

 EXAMPLE:

 COLLECT D0

 10. CONCAT - merge files

 CONCAT [Ds]"sourcefile" TO [Dd],"destfile"
 [<ON|,>Udevice]

 Concatenates (merges) two data files. Here "s" represents
 the drive number of the disk drive containing the "sourcefile,
 "d" is the drive number of the "destfile", and "Udevice" is the
 drive unit number if more than one drive on the same unit is
 present.

 11. CMD - redirect screen output

 CMD logical_file_number [,write list]

 CMD sends the output which normally would go to the screen
 (i.e. PRINT statement, LISTS, but not POKEs into the screen)
 to another device instead. This could be a printer, or a data
 file on tape or disk. This device or file must be OPENed
 first. The CMD command must be followed by a number or numeric
 variable refering to the file. The write list when specified,
 is sent to the logical file.

 EXAMPLE:

 OPEN 1,4 OPENS device #4, which is the printer.
 CMD 1 All normal output now goes to the printer.
 LIST The LISTing goes to the printer,
 not the screen - even the word READY.
 PRINT#1 Set output back to the screen.
 CLOSE 1 Close the file.

 12. CONT - continue program execution after STOP key depressed

 CONT

 This command is used to restart the execution of a program
 that has been stopped by either using the STOP key, a STOP
 statement, or an END statement within the program. The program
 will resume execution where it left off. CONT will not work if
 lines have been changed or added to the program (or even just
 moved the cursor to a program line and hit RETURN without
 changing anything), if the program stopped due to an error, or
 if the user caused an error before trying to re-start the
 program. The error message in this case is CAN'T CONTINUE
 ERROR.

 13. COPY - copy files between devices

 COPY [Ds,]"sourcefile" TO [Dd,]["otherfile]
 [<ON|,>Udevice]

 COPYs a file on the disk in one drive (the source file) to

 the disk in the same or other on a dual disk drive only, or
 creates a copy of a file on the same drive (with a different
 file name). Note: copying between units cannot be done.

 EXAMPLES:

 COPY D0, "test" TO D1, "test prog"
 Copies "test" from drive 0 to drive 1,
 renaming it "test prog" on drive 1.

 COPY D0, "STUFF TO D1, "STUFF"
 Copies "STUFF from drive 0 to drive 1.

 COPY D0 to D1
 Copies all files from drive 0 to drive 1.

 COPY "WORK.PROG" TO "BACKUP"
 Copies "WORK.PROG" as a program called
 "BACKUP" on the same drive.

 14. DELETE - deletes lines of BASIC text.

 DELETE [first line#] [-[last line#]]

 Deletes lines of BASIC text. This command can be executed
 only in direct mode.

 EXAMPLES:

 DELETE 75 Deletes line 75.
 DELETE 10 - 50 Deletes line 10 through 50 inclusive.
 DELETE - 50 Deletes all lines from the beginning
 of the program up to and including
 line 50.

 DELETE 75- Deletes all lines from 75 on to the
 end of the program.

 15. DIRECTORY - display contents of disk directory on screen

 DIRECTORY [Ddrive_number][<ON|,>Udevice][,filespec]

 Displays a disk directory on the C-128 screen. Use
 CONTROL-S or SCROLL KEY to pause the display (any other key
 restarts the display after a pause). Use the COMMODORE KEY to
 slow it down. The DIRECTORY command cannot be used to print a
 hard copy. The disk directory must be loaded (destroying the
 program currently in memory) to do that.

 EXAMPLES:

 DIRECTORY list all files on the disk(s)
 in unit 8.

 DIRECTORY D1, U9, "work" Lists the file on disk drive 1
 of unit 9.

 DIRECTORY "AB*" Lists all files starting
 with the letters "AB", like
 ABOVE, ABOARD, etc. on all
 drives of unit 8.

 DIRECTORY D0, "file ?.BAK" The ? is a wild card that
 matches any single character

 in that position: file 1.BAK,
 file 2.BAK, file 3.BAK all
 match the string.

 NOTE: To print the DIRECTORY of drive 0, unit 8,
 use the following:

 LOAD"$0",8
 OPEN4,4:CMD4:LIST
 PRINT#4:CLOSE4

 16. DLOAD - load program file from disk

 DLOAD "filename" [,Ddrive_number][<ON|,>Udevice]

 This command loads a program from disk into current
 memory. (Use LOAD to load programs from tape.) A program name
 must be supplied.

 EXAMPLES:

 DLOAD "BANKRECS" Searches the disk for the program
 "BANKRECS" and LOADs it.

 DLOAD (A$) LOADs a program from disk whose
 name is in the variable A$. An
 error is posted if A$ is empty.

 The DLOAD command can be used within a BASIC program to
 find and RUN another program on disk. This is called chaining.

 17. DSAVE - save program file to disk

 DSAVE "filename" [,Ddrive_number] [<ON|,>Udevice]

 This command stores a program on disk. (Use SAVE to store
 programs on tape.) A program name must be supplied.

 EXAMPLES:

 DSAVE "BANKRECS" SAVEs the program "BANKRECS" to disk.

 DSAVE (A$) SAVEs the disk program whose name is
 in the variable A$.

 DSAVE "PROG 3",D0,U9 SAVEs the program "PROG 3" to the
 disk with unit number (Serial bus
 address) of 9.

 18. DVERIFY - verify program in memory with one on disk

 DVERIFY filename [,Ddrive_number][<ON|,>Udevice]

 This command causes the C-128 to check the program on the
 specified drive (the default is drive 0 of unit 8) against the
 program in memory.

 NOTE: If a graphic area is allocated after a save (or
 deallocated after a save), verify and Dverify) will report an
 error. Technically this is correct. Because BASIC text moved
 from its original (saved) location, the link bytes changed.
 Hence, verify, which performs byte to byte comparisons, will
 fail even though the program is valid. To verify binary data
 see verify "name",8,1 form.

 19. FAST - Put machine in 2 MHz mode of operation

 The Fast command causes VIc 40 column screen to be
 blanked. All operations (except I/O) are sped up considerably.
 Graphics may be used, but will not be visible until a SLOW
 command is issued.

 20. FETCH - get data from expansion memory

 FETCH #bytes, intsa, expsa, expb

 where #bytes = number of bytes to get from expansion memory (0-
65535)
 intsa = starting address of host ram (in decimal) (0-65535)
 expa = starting address of expansion ram (in decimal)
 expb = expansion ram bank number (xxxx 4 bits)
 where xxxx = 0000 (first 64K bank)
 = 0001 (second)
 = 0010 .
 = 0011 .
 = 0100 .
 = 0101 .
 = 0110 .
 = 1111 (16th)
 xxxx is expressed in decimal 0-15

 NOTE: if the number of bytes = 0 this means a length of 65536.

 EXAMPLE :

 FETCH 1000,52000,2000,7

 21. HEADER - format diskette

 HEADER "diskname" [,Ii.d.#] [,Ddrive_number]
 [<ON|,>Udevice]

 Before a new diskette can be used for the first time it
 must be formatted with the HEADER command. To erase an entire
 diskette for reuse use the HEADER command. This command
 divides the disk into sections called blocks, and it creates a
 table of contents, called a directory or catalog, on the disk.
 The diskname can be any name up to 16 characters long. The
 i.d. number is any 2 characters. Give each disk a unique i.d.
 number. Be careful when using the HEADER command because it
 erases all stored data. Giving no i.d. number performs a
 quick header. The old i.d. number is used. The quick header
 can only be used if the disk was previously formatted, since
 the quick header only clears out the directory rather than
 formatting the disk. Defaults to drive 0, unit 8. There is no
 prompt displayed or a display of files that were scratched when
 in program mode.

 EXAMPLES:

 HEADER "MYDISK", I23
 HEADER "RECS", I45, D1, U8

 22. HELP - show line where error occurred

 HELP

 The HELP command is used after an error has been reported

 in a program. When HELP is typed, the line where the error
 occurred in a BASIC program is listed, with the portion
 containing the error displayed in reverse field for 40 column
 and underlined in 80 column mode.

 23. KEY - define or list function keys

 KEY [key #, string]

 There are eight (8) function keys available to the user on
 the C-128 computer: four unshifted and four shifted. The
 C-128 allows a definition for what each key does when pressed.
 KEY with no parameter specified gives a listing displaying all
 the current KEY assignments. The data assigned to a key is
 typed out when that function key is pressed. The maximum
 length for all the definitions together is 246 characters.
 Entire commands (or a series of commands) can be assigned to a
 key.

 EXAMPLES:

 KEY 7, "GRAPHIC0" + chr$(13) + "LIST" + chr$(13)

 This causes the computer to select text mode and list the
 program whenever the 'F7' key is depressed (in direct mode).
 The CHR$(13) is the ASCII character for RETURN. Use CHR$(141)
 for 'shifted RETURN' and CHR$(27) for 'ESCape'. Use CHR$(34)
 to incorporate a double quote into a KEY string. The keys may
 be redefined in a program. For Example:

 10 KEY 2,"TESTING" + chr$(34):KEY3, "NO"

 10 FOR I=1 to 8:KEY I, chr$(I+132):NEXT

 defines the function keys as they are
 defined on the Commodore 64 and VIC 20.

 To restore all function keys to their default values,
 reset the C-128 by turning it off and on, or press the RESET
 button.

 24. LIST - list BASIC program

 LIST [first line] [-[last line]]

 The LIST command lets the user look at lines of a BASIC
 program that have been typed or LOADed into the C-128's memory.
 When used alone (without numbers following it), the C-128 gives
 a complete LISTing of the program on the screen, which may be
 slowed down by holding down the C= key, paused by CONTROL-S or
 SCROLL KEY (unpaused by pressing any other key), or stopped by
 hitting the RUN/STOP key. If the word LIST is followed by a
 line number, the C-128 shows only that line number. If LIST is
 typed with two numbers separated by a dash, the C-128 shows all
 lines from the first to the second line number. If LIST is
 typed followed by a number and just a dash, it shows all lines
 from that number to the end of the program. And if LIST is
 typed, a dash, and then a number, all lines from the beginning
 of the program to that line number are LISTed. By using these
 variations, any portion of a program can be examined or easily
 brought to the screen for modification. LIST can be used in a
 program and the program can continue with the use of the CONT
 statement.

 EXAMPLES:

 LIST Shows entire program.
 LIST 100- Shows from line 100 until the end
 of the program.
 LIST 10 Shows only line 10.
 LIST-100 Shows lines from the beginning
 until line 100.

 LIST 10-200 Shows lines from 10 to 200, inclusive.

 25. LOAD - load program from device

 LOAD "filename" [,device_number [,relocate flag]]

 This is the command to use when a program stored on
 cassette tape or on disk is to be used. If LOAD is typed with
 no arguments followed by a RETURN key, the user is prompted as
 necessary before the screen goes blank. Press play, and the
 C-128 starts looking for a program on tape. When it finds one,
 the C-128 prints FOUND "filename". The Commodore key can be
 hit to LOAD or the spacebar to keep searching on the tape.
 Once the program is LOADed, it can be RUN, LISTed, or modified.
 Most often typed is the word LOAD followed by a program name in
 quotes ("program name"). The name may be followed by a comma
 (outside the quotes) and a number (or numeric value), which
 acts as a device number to determine where the program is
 stored (disk or tape). If no number is supplied, the C-128
 assumes device number 1, which is the cassette tape recorder.
 The other device commonly used with the LOAD command is usually
 the disk drive, which is device number 8. (though the DLOAD
 command is usually used in this instance).

 EXAMPLES:

 LOAD Reads in the next program from tape.
 LOAD "HELLO" Searches tape for a program called
 HELLO, and LOADs if found.
 LOAD A$ Looks for a program whose name is
 in the variable called A$.
 LOAD "HELLO",8 Looks for the program called HELLO
 on the disk drive, or the drive
 last accessed. (This is equivalent
 to DLOAD "HELLO"

 The LOAD command can be used within a BASIC program to
 find and RUN the next program on a tape or disk. This is
 called chaining. The RELOCATE FLAG determines where in memory
 a program is loaded. A relocate flag of 0 tells the C-128 to
 load the program at the start of the BASIC program area, and a
 flag of 1 tells it to LOAD from the point where it was SAVEd.
 The default value of the relocate flag is 0. This parameter is
 generally used when loading machine language programs.

 26. MONITOR - enter C-128 machine language monitor

 SEE SECTION 5.2 ON THE C-128 MONITOR.

 27. NEW - clear program and data memory

 NEW

 This command erases the entire program in memory and clears
 out any variables that may have been used. Unless the program

 was stored somewhere, it is lost until typed in again.
 Be careful with the use of this command.
 The NEW command also can be used as a statement in a BASIC
 program. When the C-128 gets to this line, the program is
 erased and everything stops. This is not especially useful
 under normal circumstances.

 28. PLAY - Play musical string

 PLAY "[Vn,On,Tn,Un,Xn,elements]"

 where On = Octave (n=0-6)
 Tn = Tune envelope # (n=0-9)
 (defaults)
 0= piano
 1= accordion
 2= calliope
 3= drum
 4= flute
 5= guitar
 6= harpsichord
 7= organ
 8= trumpet
 9= xylophone
 Un = Volume (n=0-9)
 Vn = Voice (n=1-3)
 Xn = filter on (n=1), off (n=0)

 Elements =
 A,B,C,D,E,F,G ... Notes
 # Sharp (precedes note)
 $ Flat (precedes note)
 Dotted (precedes
 W Whole note follows
 H Half note follows
 Q Quarter note follows
 I Eighth note follows
 S Sixteenth note follows
 R Rest
 M.................. Wait for all voices
 currently playing to
 end. (a measure)

 29. RENAME - rename files

 RENAME "old name" TO "new name" [,Ddrive_number]
 [<ON|,>Udevice]

 Used to rename a file on a diskette.

 EXAMPLE:

 RENAME "TEST" TO "FINALTEST",D0 Changes the name of
 the file "TEST" to
 "FINALTEST"

 30. RENUMBER - renumber lines of BASIC program

 RENUMBER [new starting line #
 [,[increment][,old starting line #]]]

 The new starting line is the number of the first line in
 the program after renumbering. It defaults to 10. The
 increment is the spacing between line numbers, i.e. 10, 20, 30

 etc. It also defaults to 10. The old starting line number is
 the line number in the program where renumbering is to begin.
 This allows renumbering of a portion of the program. It
 defaults to the first line of the program. This command can
 only be executed from direct mode.

 EXAMPLES:

 RENUMBER 20, 20, 1 Starting at line 1, renumbers
 the program. Line 1 becomes line
 20, and other lines are numbered
 in increments of 20.
 RENUMBER, , 65 Starting at line 65, renumbers
 in increments of 10. Line 65
 becomes line 10.

 31. RUN - execute BASIC program

 RUN [line #]
 RUN ["filename" [,Ddrive_number][<ON|,>Udevice]

 Once a program has been typed into memory or LOADed, the
 RUN command executes it. RUN clears all variables in the
 program before starting program execution. If there is no
 number following the command RUN, the computer starts with the
 lowest numbered program line. If there is a number following
 the RUN command, execution starts at that line number. If a
 filename is entered with the drive number and device number,
 the program is loaded into memory and executed. RUN may be
 used within a program.

 EXAMPLES:

 RUN Starts program execution from lowest number.
 RUN 100 Starts program execution at line 100.
 RUN "TEST" Loads the program TEST from the default drive and
starts
 program execution at the lowest line number.

 32. SAVE - save program to device

 SAVE ["filename" [,device_number[,EOT flag]]]

 This command stores a program currently in memory onto a
 cassette tape or disk. If the word SAVE is typed alone
 followed by RETURN, the C-128 attempts to store the program on
 the cassette tape. It has no way of checking if there is
 already a program on the tape in that location, so be careful
 with the tapes. If SAVE is typed followed by a name in quotes
 or a string variable name, the C-128 gives the program that
 name, so it may be more easily located and retrieved in the
 future. If a device number is to be specified for the SAVE,
 follow the name by a comma (after the quotes) and a number or
 numeric variable. Device number 1 is the tape drive, and
 number 8 is the disk. After the number on a tape command,
 there can be a comma and a second number, which is either 1,2,
 or 3. If the second number is 1 a machine language program is
 saved (alt load addr), if the number is a 2 write an
 END-OF-TAPE marker (EOT flag) after the program (tape output
 only), and 3 does both . If trying to LOAD a program and the
 C-128 finds one of these markers rather than the program trying
 to be LOADed, a FILE NOT FOUND ERROR is posted.

 EXAMPLES:

 SAVE Stores program to tape without a name.
 SAVE "HELLO" Stores on tape with the name HELLO.
 SAVE A$ Stores on tape with the name in
 variable A$.
 SAVE "HELLO", 8 Stores on disk with name HELLO.
 (equivalent to DSAVE "HELLO")

 SAVE "HELLO", 1, 1 Stores on tape with name HELLO and
 places an END-OF-TAPE marker after
 the program.

 33. SCRATCH - delete file from disk directory

 SCRATCH "filespec" [,Ddrive_number] [<ON|,>Udevice]

 Deletes a file from the disk directory. As a precaution,
 the system asks "Are you sure"(in direct mode only) before the
 C-128 completes the operation. Type a Y to perform the SCRATCH
 or type N to cancel the operation. Use this command to erase
 unwanted files, to create more space on the disk. Note: file
 name may contain template or wildcards.

 EXAMPLE:

 SCRATCH "MY BACK", D1 Erases the file MY BACK from
 the disk in drive 1, unit 8.

 34. SLEEP

 SLEEP N
 where N in seconds 0<= N <= 65535

 35. SLOW - Put machine in 1Mhz mode and unblanks VIC

 36. SOUND - produce sound effects

 SOUND v, f, d [,[dir] [,[m] [,[s] [,[w] [,p]]]]]

 where : v = voice (1..3)
 f = frequency value (0..65535)
 d = duration (0..32767 jiffys)
 dir = step direction (0(up) ,1(down) or 2(oscillate))
default=0
 m = minimum frequency (if sweep is used) (0..65535)
default=0
 s = step value for effects (0..65535) default=0
 w = waveform (0=triangle,1=saw,2=square,3=noise) default=2
 p = pulse width (0..4095) default=2048 (50% duty cycle)

 37. SPRCOLOR - Set Multi-color1 and/or Multi-color2 colors for all
 sprites

 SPRCOLOR [smcr-1][,smcr-2]

 where [smcr-1] sets Multi-color1 for all sprites,
 [smcr-2] sets Multi-color2 for all sprites.

 Either of these parameters may be any color from 1 - 16

 38. SPRDEF - Define sprite

 SPRDEF user input

 user input description
 1-8 selects destination sprite (prompted)
 A Automatic cursor movement toggle
 C Copies sprites (prompted)
 CRSR keys Moves cursor
 RETURN key Moves cursor to start of next line
 RETURN key Exits sprite designer mode (prompted)
 HOME key Moves cursor to top left of grid
 CLR key Erases entire grid
 1-4 selcts color source
 <CTRL> 1-8 selects sprite foreground color (1-8)
 Commodore key 1-8 selects sprite foreground color (9-
16)
 STOP key cancels changes and returns to prompt
 SHIFT RETURN saves sprites and returns to prompt
 X Expands sprite in X toggle
 Y Expands sprite in Y toggle
 M Multicolor sprite toggle

 39. SPRSAV - save sprite

 SPRSAV <origin>,<destination>

 SPRSAV 1,A$: REM transfers the dot patttern of sprite
1
 to the string named A$.
 SPRSAV B$,2: REM transfers the string B$ into sprite
2.

 40. STASH - Move contents of host memory to expansion ram

 STASH #bytes,intsa,expsa,expb

 refer to FETCH command for description of
parameters.

 41. SWAP - swap contents of host ram with contents of expansion
 ram.

 SWAP #bytes,intsa,expsa,expb

 refer to FETCH command for description of
parameters.

 42. VERIFY - verify program in memory with one on device

 VERIFY "filename" [,device_number [,relocate flag]]

 This command causes the C-128 to check the program on tape
 or disk against the one in memory. This is proof that the
 program just SAVEd is really SAVEd, in case the tape is bad or
 something isn't working. This command is also very useful for
 positioning a tape so that C-128 writes after the last program
 on the tape. It will do so, and inform the user that the
 programs don't match. Now the tape is positioned properly, and
 the next program can be stored without fear of erasing the old
 one. VERIFY with no arguments after the command causes the
 C-128 to check the next program on tape, regardless of its
 name, against the program now in memory. VERIFY followed by a
 program name in quotes or a string variable searches the tape
 for that program and then checks it when found against the
 program in memory. VERIFY followed by a name and a comma and a
 number checks the program on the device with that number (1 for
 tape, 8 for disk). The relocate flag is the same as in the

 LOAD command.

 EXAMPLES:

 VERIFY Checks the next program on the tape.
 VERIFY "HELLO" Searches for HELLO on tape, checks
 against memory.
 VERIFY "HELLO",8,1 Searches for HELLO on disk,
 then checks against memory.

 NOTE: If a graphic area is allocated after a save (or
 deallocated after a save),(VERIFY and DVERIFY) will report an
 error. Technically this is correct. Because BASIC text moved
 from its original (saved) location, the link bytes changed.
 Hence, verify, which performs byte to byte comparisons, will
 fail even though the program is valid.

 43. WIDTH
 WIDTH n

 This is a command to set the width of lines drawn using BASIC's
 graphic commands to either single (1) or double (2) width.
 This is used primarily in high res mode to make skinny lines
 more visible (in certain color combinations).

 44. WINDOW

 WINDOW allows the BASIC user to define a logical window within the
 physical text screen.

 WINDOW top_left_col,top_left_row,bot_right_col,bot_right_row
 [,clear]

 The coordinates must be legal in context of the current console
 screen. The clear flag, if provided, causes a screen-clear to be
 performed (only within the confines of the newly described window!).
 'CLEAR', if provided, can be 0 (no cls), or 1 (do a cls).

5.1.1.3 ALPHABETICAL LIST OF STATEMENTS -

 1. BANK
 2. BOX
 3. CHAR
 4. CIRCLE
 5. CLOSE
 6. CLR
 7. COLLISION
 8. COLOR
 9. DATA
 10. DCLEAR
 11. DCLOSE
 12. DEF FN
 13. DIM
 14. DO/LOOP/WHILE/UNTIL/EXIT
 15. DOPEN
 16. DRAW
 17. END
 18. ENVELOPE
 19. FILTER
 20. FOR/TO/STEP/NEXT
 21. GET
 22. GETKEY
 23. GET#
 24. GO64
 25. GOSUB
 26. GOTO/GO TO
 27. GRAPHIC
 28. IF/THEN/ELSE
 29. INPUT
 30. INPUT#
 31. LET
 32. LOCATE
 33. MOVSPR
 34. ON
 35. OPEN
 36. PAINT
 37. POKE
 38. PRINT
 39. PRINT#
 40. PRINT USING
 41. PUDEF
 42. READ
 43. RECORD
 44. REM
 45. RESTORE
 46. RESUME
 47. RETURN
 48. RREG
 49. SCALE
 50. SCNCLR
 51. SPRITE
 52. SSHAPE/GSHAPE
 53. STOP
 54. SYS
 55. TEMPO
 56. TRAP
 57. TRON
 58. TROFF
 59. VOL
 60. WAIT

5.1.1.4 STATEMENT DESCRIPTION -

 1. BANK - alter 64K bank for PEEK, POKE, WAIT and SYS

 BANK banknumber

 where banknumber = 0 - 15
 (bank number configurations listed in MONITOR section)

 Specify a 64K bank to be used for subsequent PEEK, POKE,
 WAIT and SYS statements.

 2. BOX - draw box at specified position on screen

 BOX [color source #], a1, b1[,[a2, b2]
 [,[angle] [,paint]]]

 color source Color source (0-3);
 default is 1 (foreground)
 a1, b1 Corner coordinate (scaled)
 a2, b2 Corner opposite a1,
 b1 (scaled); default
 is the PC.
 angle Rotation in clockwise
 degrees; default is
 0 degrees
 paint Paint shape with color
 (0:off, 1:on)
 default is 0

 NOTE: wrapping occurs if the degree is greater than 360.

 This command allows the user to draw a rectangle of any
 size anywhere on the screen. To get the default value, include
 a comma without entering a value. Rotation is based on the
 center of the rectangle. The Pixel Cursor (PC) is left at a2,
 b2 after the BOX statement is executed.

 EXAMPLES:

 BOX 1, 10, 10, 60, 60 Draws the outline of a
 rectangle
 BOX , 10, 10, 60, 60, 45, 1 Draws a filled, rotated
 box (a diamond)
 BOX , 30, 90, , 45, 1 Draws a filled, rotated
 polygon

 3. CHAR - display characters at specified position on screen

 CHAR [color source #],x,y [,[string][,rvs]]

 color source Color source (0-3)
 x Character column (0-79)
 y Character row (0-24)
 string String to print
 rvs reverse field flag
 (0=off, 1=on)

 Text (alphanumeric strings) can be displayed on any screen
 at a given location by the CHAR statement. Character data is
 read from the C-128 character ROM area. The user supplies the
 x and y coordinates of the starting position and the text
 string to be displayed, color source and reverse imaging are

 optional.

 The string is continued on the next line if it attempts to
 print past the right edge of the screen (in 40 column mode.
 When used in TEXT mode, the string printed by the CHAR command
 works just like a PRINT string, including reverse field,
 cursors, none, etc. These control functions inside the string
 do not work when the CHAR command is used to display text in
 GRAPHIC mode.

 4. CIRCLE - draw circles, ellipses, arcs, etc. at specified
 position on screen

 CIRCLE [color source] ,[a,b], xr [, [yr] [, [sa] [, [ea]
 [, [angle] [,inc]]]]]

 color source Color source (0-3)
 a,b Center coordinate (scaled)
 (defaults to the Pixel
 Cursor [PC])
 xr X radius (scaled)
 yr Y radius (default is xr)
 sa Starting arc angle (default 0)
 ea Ending arc angle (default 360)
 angle Rotation in clockwise degrees
 (default is 0 degrees)
 inc Degrees between segments
 (default is 2 degrees)

 With the CIRCLE command the user can draw a circle,
 ellipse, arc, triangle, octagon or other polygon. The final
 Pixel Cursor (PC) is on the circumference of the circle at the
 ending arc angle. Any rotation is about the center. Setting
 the Y radius equal to the X radius does not draw a circle,
 since the X and Y coordinates are scaled differently (see
 scale). Arcs are drawn from the starting angle clockwise to
 the ending angle. The segment increment controls the
 coarseness of the shape, with lower values for inc creating
 rounder shapes.

 EXAMPLES:

 CIRCLE , 160,100,65,10 Draws an ellipse.
 CIRCLE , 160,100,65,50 Draws a circle.
 CIRCLE , 60,40,20,18,,,,45 Draws an octagon.
 CIRCLE , 260,40,20,,,,,90 Draws a diamond.
 CIRCLE , 60,140,20,18,,,,120 Draws a triangle.

 5. CLOSE - Close logical file

 CLOSE file #

 This command completes and closes any files used by the
 DOPEN or OPEN statements. The number following the word CLOSE
 is the file number to be closed.

 EXAMPLE:

 CLOSE 2 logical file 2 is closed.

 6. CLR - Clear program variables

 CLR

 This statement erases any variables in memory, but leaves
 the program itself intact. This statement is automatically
 executed when a RUN or NEW command is given. It is not
 necessary to 'CLR' after editing because variables and text no
 longer share memory.

 7. COLLISION - Define handling for sprite collision interrupt

 COLLISION type [,statement]

 type Type of interrupt:
 0 = Sprite to sprite collision
 1 = Sprite to display data collision
 2 = Light pen - 40 col VIC only
 statement ... BASIC line number of a subroutine

 When the specified situation occurs, BASIC will finish
 processing the currently executing instruction and perform a
 GOSUB to the line number given. When the subroutine terminates
 (it must end with a RETURN) BASIC will resume processing where
 it left off. Interrupt action continues until a COLLISION of
 the same type but without any address is specified. More than
 one type interrupt may be enabled at the same time, but only
 one interrupt can be handled at a time (i.e., no recursion and
 no nesting of interrupts). Note that what caused an interrupt
 may continue causing interrupts for some time unless the
 situation is altered or the interrupt disabled. When a sprite
 is totally "off screen" and not visible it cannot generate an
 interrupt. To determine which sprites have collided since the
 last check use the BUMP function: BUMP(1) records which
 sprites have collided with each other and BUMP(2) records which
 sprites have collided with display data. COLLISION need not be
 active to use BUMP. The bit positions (7-0) in the BUMP value
 correspond to a sprite's number. In the case of multiple
 compares consider a sprite's position (via RSPPOS) to determine
 which sprite hit what. BUMP(n) is reset to zero after each
 call.

 8. COLOR - define colors for each color source

 COLOR area#, color #

 Assigns a color to one of the seven color sources:

 Area Source
 0 VIC background
 1 Graphic foreground
 2 Graphic multicolor 1
 3 Graphic multicolor 2
 4 VIC border
 5 Text color - whatever current
text
 screen is (40 or
80)
 6 8563 background color

 Colors that are useable are in the range 1 - 16
 (BLACK, WHITE ...). VIC colors differ slightly
 from 8563 colors.

 9. DATA - define data to be used by program in the program

 DATA list of constants separated by commas

 This statement is followed by a list of items to be used
 by READ statements. The items may be numbers or strings, and
 are separated by commas. Words need not be inside quote marks,
 unless they contain any of the following characters: SPACE,
 colon, or comma. If two commas have nothing between them, the
 value will be READ as a zero for a number, or an empty string.
 Also see the RESTORE statement, which allows the C-128 to
 reread data.

 EXAMPLE:

 DATA 100, 200, FRED, "HELLO MOM", , 3, 14, ABC123

 10. DCLEAR - clear all open channels on disk drive

 DCLEAR Ddrive_number [<ON|,>Udevice]

 Clears and closes all open channels on drive drive_number of the
 optionally specified unit device_number. Default is U8, drive 0.

 11. DCLOSE - close disk file

 DCLOSE [#lf][<ON|,>Udevice]

 Closes a single file or all the files currently open on a
 disk unit. Here "lf" represents the logical file number of the
 file to be closed on the disk and device_number is the number
 of the disk drive.(default = 8).

 EXAMPLES:

 1. DCLOSE (closes all files currently
 open on unit # 8.)
 2. DCLOSE #lf (closes the file associated
 with the logical file number "lf"
 on unit # 8).

 3. DCLOSE ON Uz (closes all files currently
 open on unit "z")

 12. DEF FN - define function

 DEF FN (DEFine FunctioN)
 DEF FN name (variable) = expression

 This statement allows definiton of a complex calculation
 as a function. In the case of a long formula that is used
 several times within a program, this can save a lot of space.
 The name given to the function begins with the letters FN,
 followed by any numeric (non-integer). First define the
 function by using the statement DEF followed by the name given
 to the function. Following the name is a set of parentheses ()
 with a dummy numeric variable name (in this case, X) enclosed.
 Then there is an equal sign, followed by the formula to be
 defined. The formula can be "called", substituting any number
 for X, using the format shown in line 20 of the example below:

 EXAMPLE:

 10 DEF FNA(X)=12*(34.75-X/.3)+X
 20 PRINT FNA(7)

 The number 7 is inserted each place X is located in the
 formula given in the DEF statement.

 13. DIM - declare array dimensions

 DIM variable (subscripts) [,variable(subscripts)]...

 Before arrays of variables can be used, the program must
 first execute a DIM statement to establish DIMensions of that
 array (unless there are 11 or fewer elements in the array).
 The statement DIM is followed by the name of the array, which
 may be any legal variable name. Then, enclosed in parentheses,
 put the number (or numeric variable) of elements in each
 dimension. An array with more than one dimension is called a
 matrix. Any number of dimensions may be used, but keep in mind
 that the whole list of variables being created takes up space
 in memory, and it is easy to run out of memory if too many are
 used. To figure the number of variables created with each DIM,
 multiply the total number of elements in each dimension of the
 array. (Each array starts with elememnt 0.)

 NOTE: Integer arrays take up 2/5ths of the space of
 floating point arrays.

 More than one array can be dimensioned in a DIM statement
 by separating the arrays by commas. If the program executes a
 DIM statement for any array more than once, the message
 "re'DIMed array error" is posted. It is good programming
 practice to place DIM statements near the beginning of the
 program.

 EXAMPLE:

 10 DIM A$(40),B7(15),CC%(4,4,4)
 | | |
 41 elements 16 elements 125 elements

 14. DO/LOOP/WHILE/UNTIL/EXIT - program loop definition and control

 DO[UNTIL boolean argument / WHILE boolean argument]
 statements [EXIT]

 LOOP[UNTIL boolean argument / WHILE boolean argument]

 Performs the statements between the DO statement and the
 LOOP statement. If no UNTIL or WHILE modifies either the DO or
 the LOOP statement, execution of the intervening statements
 continues indefinitely. If an EXIT statement is encountered in
 the body of a DO loop, execution is transferred to the first
 statement following the LOOP statement. Do loops may be
 nested, following the rules defined for FOR-NEXT loops. If the
 UNTIL parameter is used, the program continues looping until
 the boolean argument is satisfied (becomes true). The WHILE
 parameter is basically the opposite of the UNTIL parameter:
 the program continues looping as long as the boolean argument
 is TRUE. An example of a boolean argument is A=1, or G>65.

 EXAMPLE:

 DO UNTIL X=0 or X=1
 :
 LOOP

 DO WHILE A$="C": GETKEY A$: LOOP

 15. DOPEN - open disk file

 DOPEN #lf, "filename[,<S|P>]" [,Ly][,Ddrivenumber]
 [<ON|,>Udevice][,w]

 where S = sequential file
 P = program file

 This command opens a data file for a read and/or write
 access. Here "lf" represents the logical file number of the
 file to be opened. "y" is the record length for a relative
 file. "drive_number" is the disk drive number in which the
 disk containing the file is located, and "device_number" is the
 drive unit number if more than one drive unit is present. A
 sequential file is opened for write access if "W" is present:
 it is opened for read access if "W" is not present.

 16. DRAW - draw lines and shapes at specified position on screen

 DRAW color source [, a1, b1,][TO a2, b2] ...

 With this statement individual dots, lines, and shapes can
 be drawn. The user supplies the color source (0-3), starting
 (a1, b1) and ending points (a2, b2).

 EXAMPLES:

 a dot: DRAW 1, 100, 50 -- no endpoint specified,
 defaults to a1, b1 value
 for a2, b2 to create a dot

 lines: DRAW , 10,10, TO 100,60
 DRAW TO 25,30

 a shape: DRAW , 10,10 TO 10,60 TO 100,60 TO 10,10

 17. END - define end of program execution

 END

 When the program executes the END statement, the program
 stops RUNning immediately. The CONT command can be used to
 restart the program at the next statement following the END
 statement (if any).

 18. ENVELOPE - define musical instruments envelopes

 ENVELOPE n, [,[atk] [,[dec] [,[sus] [,[rel]
 [,[wf] [,pw]]]]]]

 n.............. Envelope number (0-9)
 atk Attack rate (0-15)
 dec Decay rate (0-15)
 sus Sustain rate (0-15)
 rel Release rate (0-15)
 wf Waveform: 0 = triangle
 1 = sawtooth
 2 = pulse (square)
 3 = noise
 4 = ring modulation
 pw Pulse width (0 - 4095)

 A parameter that is not specified will retain its current
 value. Pulse width applies to pulse waves (wf=2) only and is
 determined by the formula (pwout = pw/40.95 %), so that pw =

 2048 produces a square wave and values of 0 and 4095 produce
 constant DC output. The C-128 initializes the ten (10) tune
 envelopes to:
 n A D S R wf pw instrument
 ENVELOPE 0, 0, 9, 0, 0, 2, 1536 piano
 ENVELOPE 1,12, 0,12, 0, 1 accordion
 ENVELOPE 2, 0, 0,15, 0, 0 calliope
 ENVELOPE 3, 0, 5, 5, 0, 3 drum
 ENVELOPE 4, 9, 4, 4, 0, 0 flute
 ENVELOPE 5, 0, 9, 2, 1, 1 guitar
 ENVELOPE 6, 0, 9, 0, 0, 2, 512 harpsichord
 ENVELOPE 7, 0, 9, 9, 0, 2, 2048 organ
 ENVELOPE 8, 8, 9, 4, 1, 2, 512 trumpet
 ENVELOPE 9, 0, 9, 0, 0, 0 xylophone

 19. FILTER - define sound filter parameters

 FILTER [freq] [,[lp] [,[bp] [,[hp] [,res]]]]

 freq Filter cut-off frequency (0-2047)
 lp Low pass filter on (1), off (0)
 bp Band pass filter on (1), off(0)
 hp High pass filter on (1), off(0)
 res Resonance (0-15)

 Unspecified parameters result in no change to the current
 value. The filter frequency is determined by the following
 formula:

 The filter output modes are additive. For example, both
 low pass and high pass filters can be selected to produce a
 notch (or band reject) filter response. For the filter to have
 an audible effect at least one filter output mode must be
 selected and at least one voice must be routed through the
 filter.

 20. FOR/TO/STEP/NEXT - program loop definition and control

 FOR variable = start value TO end value [STEP increment]

 This statement works with the NEXT statement to set up a
 section of the program that repeats for a set number of times.
 The user may just want the C-128 to count up to a large number
 so the program pauses for a few seconds, in case something
 needs to be counted, or something must be done a certain number
 of times (such as printing). The loop variable is the variable
 that is added to or subtracted from during the FOR/NEXT loop.
 The start value and the end value are the beginning and ending
 counts for the loop variable. The logic of the FOR statement
 is as follows. First, the loop variable is set to the start
 value. When the program reaches a line with the statement
 NEXT, it adds the STEP increment (default = 1) to the value of
 the loop variable and checks to see if it is higher than the
 end of the loop value. If it is not higher, the command line
 executed is that immediately following the FOR statement. If
 the loop variable is larger than the end of the loop number,
 then the next statement executed is the one following the NEXT
 statement. The opposite is true if the step size is negative.
 See also the NEXT statement. The maximum number of nested
 loops is determined by the amount of available stack space,
 which is 199 bytes. If the stack is overrun, then the message
 "formula too complex" is posted.

 EXAMPLE:

 10 FOR L = 1 TO 10
 20 PRINT L
 30 NEXT L
 40 PRINT "I'M DONE! L = "L

 This program prints the numbers from one to ten on the
 screen, followed by the message I'M DONE! L = 11.

 The end of the loop value may be followed by the word STEP
 and another number or variable. In this case, the value
 following the STEP is added each time instead of one. This
 allows counting backwards, by fractions, or any way necessary.

 The user can set up loops inside one another. This is
 known as nested loops. Care must be taken when nesting loops
 so that the last loop to start is the first one to end.

 EXAMPLE OF NESTED LOOPS:

 10 FOR L = 1 TO 100
 20 FOR A = 5 TO 11 STEP .5
 30 NEXT A
 40 NEXT L

 A FOR ... NEXT loop (line 20) is "nested" inside the
 larger one (line 10).

 21. GET - get input data from keyboard (no wait)

 GET variable list

 The GET statement is a way to get data from the keyboard
 one character at a time. When the GET is executed, the
 character that was typed is received. If no character was
 typed, then a null (empty) character is returned, and the
 program continues without waiting for a key. There is no need
 to hit the RETURN key, and in fact the RETURN key can be
 received with a GET. The word GET is followed by a variable
 name, usually a string variable. If a numeric were used and
 any key other than a number was hit, the program would stop
 with an error message. The GET statement may also be put into
 a loop, checking for an empty result, that waits for a key to
 be struck to continue. The GETKEY statement could also be used
 in this case. This statement can only be executed within a
 program.

 EXAMPLE:

 10 DO:GET A$: LOOP UNTILE A$ ="A"

 This line waits for the A key to be pressed
 to continue.

 22. GETKEY - get input character from keyboard (wait for key)

 GETKEY variable list

 The GETKEY statement is very similar to the GET statement.
 Unlike the GET statement, GETKEY waits for the user to type a
 character on the keyboard. This lets it be used easily to wait
 for a single character to be typed. This statement can only be
 executed within a program.

 EXAMPLE:

 10 GETKEY A$

 This line waits for a key to be struck.
 Typing any key will continue the program.

 23. GET# - get input data from file

 GET# file number,variable list

 Used with a previously OPENed device or file to input one
 character at a time. Otherwise, it works like the GET
 statement. This statement can only executed within a program.

 EXAMPLE:

 10 GET#1,A$

 24. GO64 - Switch to C64 mode

 GO64

 This statement switches from C128 mode to C64 mode. The question
 "Are You Sure?" Y/N (in direct mode only) is posted for the user
 to respond to. If Y is typed then the currently loaded program
 is lost and control is given to C64 mode. This statement can
 be used in direct mode or within a program.

 25. GOSUB - execute subroutine

 GOSUB line #

 This statement is like the GOTO statement, except that the
 C-128 remembers from where it came. When a line with a RETURN
 statement is encountered, the program jumps back to the
 statement immediately following the GOSUB. The target of a
 GOSUB statement is called a subroutine. A subroutine is useful
 if there is a routine in the program that can be used by
 several different portions of the program. Instead of
 duplicating the section of program over and over, it can be set
 up as a subroutine, and GOSUB to it from the different parts of
 the program. See also the RETURN statement.

 EXAMPLE:

 20 GOSUB 800 means go to the subroutine
 beginning at line 800 and execute it
 :
 :
 800 PRINT "HI THERE": RETURN

 26. GOTO/GO TO - transfer program execution to specified line
 number

 GOTO line number

 After a GOTO statement is executed, the next line to be
 executed will be the one with the line number following the
 word GOTO. When used in direct mode, GOTO line number allows
 starting of execution of the program at the given line number
 without clearing the variables.

 EXAMPLE:

 10 PRINT"COMMODORE"
 20 GOTO 10

 The GOTO in line 20 makes line 10 repeat
 continuously until RUN/STOP is pressed.

 27. GRAPHIC - select graphic mode

 GRAPHIC mode[,clear[,s]]
 GRAPHIC CLR

 This statement puts the C-128 in one of 6 graphics modes:

 mode description
 0 40 column normal text
 1 high-resolution graphics
 2 high-resolution graphics, split screen
 3 multicolor graphics
 4 multicolor graphics, split screen
 5 80 column text

 where ,s = number of first line of text in split modes (0..25)
 default is 19.

 When executed, GRAPHIC 1 - 4 allocates a 9K bit mapped
 area, and the start of BASIC text area is moved above the hi
 res area. This area remains allocated even if the user returns
 to TEXT mode (GRAPHIC 0). If 1 is given in the GRAPHIC
 statement as the second argument, the screen is also cleared.
 Executing a GRAPHIC CLR command then deallocates to 9K bit
 mapped area, and makes it available once again for BASIC text
 and variables.

 28. IF/THEN/ELSE - conditional program execution

 IF expression THEN then-clause [:ELSE else-clause]

 IF...THEN lets the computer analyze a BASIC expression
 preceded by IF and take one of two possible courses of action.
 If the expression is true, the statement following THEN is
 executed. This expression can be any BASIC statement. If the
 expression is false, the program goes directly to the next
 line, unless an ELSE clause is present. The ELSE clause, if
 present, must be in the same line as the IF-THEN part. When an
 ELSE clause is present, it is executed when the THEN clause
 isn't executed. In other words, the ELSE clause executes when
 the expression is FALSE.

 The expression being evaluated may be a variable or
 formula, in which case it is considered true if nonzero, and
 false if zero. In most cases, there is an expression involving
 relational operators (=, <, >, <=, >=, <>).

 EXAMPLE:

 50 IF X>0 THEN PRINT "OK": ELSE END

 Checks the value of X. If X is greater than 0, the THEN
 clause is executed, and the ELSE clause isn't. If X is less
 than or equal to 0, the ELSE clause is executed and the THEN
 clause isn't.

 NOTE: The colon is required after THEN for <escape>

 commands.

 29. INPUT - prompt on screen for input from keyboard

 INPUT [prompt string;] variable list

 The INPUT statement allows the computer to ask for data
 from the user running the program and places it into a variable
 or variables. The program stops, prints a question mark (?) on
 the screen, and waits for the user to type the answer and hit
 the RETURN key. The word INPUT is followed by a variable name
 or list of variable names separated by commas. There may be a
 message inside of quotes before the list of variables to be
 input. If this message (called a prompt) is present, there
 must be a semicolon (;) after the closing quote of the prompt.
 When more than one variable is to be INPUT, they should be
 separated by commas when typed in. If not, the computer asks
 for the remaining values by printing two question marks (??).
 If the RETURN key is pressed without INPUTting a value, the
 INPUT variable retains the value previously input for that
 variable. This statement can only be executed within the
 program.

 EXAMPLE:

 10 INPUT "PLEASE TYPE A NUMBER";A
 20 INPUT "AND YOUR NAME";A$
 30 INPUT B$
 40 PRINT "BET YOU DIDN'T KNOW WHAT I WANTED!"

 30. INPUT# - input data from file

 INPUT# file number, variable list

 This works like INPUT, but takes the data from a
 previously OPENed file or device. No prompt string is allowed.
 This statement can only be used in a program.

 EXAMPLE:

 10 INPUT#2, A$, C, D$

 31. LET - infrequently used keyword used with assignment statements

 [LET] variable = expression

 The word LET is hardly ever used in programs, since it is
 not necessary. Whenever a variable is defined or given a
 value, LET is always implied. The variable name that is to get
 the result of a calculation is on the left side of the equal
 sign, and the number,string, or formula is on the right side.
 Multiple assignments on LET statements are not allowed.

 EXAMPLE:

 10 LET A = 5
 20 B = 6
 30 C = A * B + 3
 40 D$ = "HELLO"

 32. LOCATE - position graphics pixel cursor on screen

 LOCATE x-coordinate, y-coordinate

 The LOCATE statement allows the Pixel Cursor (PC) to be
 put anywhere on the screen. The PC is the current default
 location of the starting point of the next drawing. Unlike the
 regular cursor, the PC cannot be seen, but it can be moved with
 the LOCATE statement.

 EXAMPLE:

 LOCATE 160,100

 Positions the PC in the center of the high resolution
 screen. Nothing will be seen until something is drawn. The PC
 can be found at any time by using the RDOT(0) function to get
 the X-coordinate and RDOT(1) to get the Y-coordinate. The
 color source of the dot at the PC can be found by PRINTing
 RDOT(2).

 33. MOVSPR - move sprite

 MOVSPR <number> <,x1,y1>

 +/- x1, +/- y1 = relative position
 x1#y1 = angle and speed

 <number> is sprite's number (1 through 8)
 <,x1,y1> is coordinate of new sprite location

 This statement is used to either initiate sprite motion at
 a specified rate, or to locate a sprite at a specific location
 on the screen.

 34. ON - conditional branching

 ON expression <GOTO/GOSUB> line #1 [, line #2...]

 This statement can make the GOTO and GOSUB statements into
 special versions of the IF statement. The word ON is followed
 by a formula, then either GOTO or GOSUB, and a list of line
 numbers separated by commas. If the result of the calculation
 of the formula (expression) is 1, the first line in the list is
 executed. If the result is 2, the second line number is
 executed. If the result is 0, or larger than the number of
 line numbers in the list, the next line executed is the
 statement following the ON statements. If the number is
 negative, an ILLEGAL QUANTITY ERROR results.

 EXAMPLE:

 10 INPUT X:IF X<0 THEN 10
 20 ON X GOTO 50, 70, 30 When X=1,ON sends control
 to the first line number
 in the list (50).
 When X=2, ON sends control
 to the second line (70),etc
 25 Print "FELL THROUGH":GOTO 10
 30 PRINT "TOO HIGH":GOTO 10
 50 PRINT"TOO LOW":GOTO 10
 70 PRINT "THAT'S IT"

 35. OPEN - open files for input or output

 OPEN file#, device_number [,secondary address]
 <[,"filename, type, mode"]/[,cmd string]>

 The OPEN statement allows the C-128 to access devices such
 as the cassette recorder and disk for data, a printer, or even
 the screen of the C-128. The word OPEN is followed by a
 logical file number, which is the number to which all other
 BASIC statements will refer. This number is from 0 to 255.
 There is always a second number after the first called the
 device number. Device number 0 is the C-128 keyboard, 1 is the
 cassette recorder, 3 is the C-128 screen, 4-7 is the
 printer(s), 8-11 is usually the disk(s). It is often a good
 idea to use the same file number as the device number because
 it makes it easy to remember which is which. Following the
 second number may be a third number called the secondary
 address. In the case of the cassette, this can be 0 for read,
 1 for write, and 2 for write with END-OF-TAPE marker at the
 end. In the case of the disk, the number refers to the channel
 number. In the printer, the secondary addresses are used to
 set the mode of the printer. There may also be a string
 following the third number, which could be a command to the
 disk or the name of the file on tape or disk. The type and
 mode refer to disk files only. (File types are prg, seq, rel,
 and usr; modes are read and write.)

 EXAMPLES:

 10 OPEN 3,3 OPENs the screen as a device
 10 OPEN 1,0 OPENs the keyboard as a device.
 20 OPEN 1,1,0,"DOT" OPENs the cassette for reading,
 file to be searched for is "DOT"
 OPEN 4,4 OPENs a channel to use the printer
 OPEN 15,8,15 OPENs the command channel on the
 disk.

 5 OPEN 8,8,12,"TESTFILE,SEQ,WRITE" creates a seq.
 disk file for
 writing, called
 "testfile".

 See also: CLOSE, CMD, GET#, INPUT#, and PRINT#
 statements, system variables ST, DS, and DS$.

 36. PAINT - fill area with color

 PAINT [color source] [,[a,b] [,mode]]

 color source (0-3); default is 1,
 foreground color
 a,b starting coordinate,
 scaled (default at PC)
 mode 0 = paint an area defined
 by the color
 source selected
 1 = paint an area defined
 by any non-background
 source

 The PAINT command fills an area with color. It fills in
 the area around the specified point until a boundary of the
 same color (or any non-background color, depending on which
 mode chosen) is encountered. The final position of the PC will
 be at the starting point (a,b).

 NOTE: If the starting point is already the color of color
 source (or any non-background when mode 1 is used), there is no
 change.

 EXAMPLE:

 10 CIRCLE , 160,100,65,50 draws outline of circle
 20 PAINT , 160,100 fills in the circle with
 color
 (using default color of
 foreground)

 37. POKE - change data in RAM

 POKE address, value

 The POKE statement allows changing of any value in the
 C-128 RAM, and allows modification of many of the C-128
 Input/Output registers. POKE is always followed by two
 numbers, (or expressions). The first number is a location
 inside the C-128 memory. This could have a value from 0 to
 65535. The second number is a value from 0 to 255, which is
 placed in the location, replacing any value that was there
 previously. The POKE occurs into the currently selected BANK.
 This command is bank sensitive, i.e. the user must "BANK 15"
 before I/O will be in map.

 EXAMPLE:

 10 POKE 28000,8 Sets location 28000 to 8
 20 POKE 28*1000,27 Sets location 28000 to 27

 NOTE: PEEK, a related function to POKE,
 is listed under FUNCTIONS
 (SECTION 5.1.1.3)

 38. PRINT - output to text screen

 The PRINT statement is the major output statement in
 BASIC. While the PRINT statement is the first BASIC statement
 most people learn to use, there are many variations to be
 mastered here as well. The word PRINT can be followed by any
 of the following:

 Characters inside of quotes ("text lines")
 Variable names (A, B, A$, X$)
 Functions (SIN(23), ABS(33))
 Punctuation marks (; ,)

 The characters inside of quotes are often called literals
 because they are printed exactly as they appear. Variable
 names have the value they contain (either a number or a string)
 printed. Functions also have their number values printed.
 Punctuation marks are used to help format the data neatly on
 the screen. The comma divides the screen into 4 columns for
 data, while the semicolon doesn't add spaces. Either mark can
 be used as the last symbol in the statement. This results in
 the next PRINT statement acting as if it is continuing the last
 PRINT statement.

 EXAMPLE:
 RESULT

 10 PRINT "HELLO" HELLO
 20 A$="THERE":PRINT "HELLO,A$ HELLO THERE
 30 A=4:B=2:PRINT A+B 6
 50 J=41:PRINT J;:PRINT J-1 41 40

 60 C=A+B:D=A-B:PRINT A;B;C,D 4 2 6 2

 See also: POS(), SPC(), TAB(), and CHAR FUNCTIONS

 39. PRINT# - output to files

 PRINT# file#, print list

 There are a few differences between this statement and the
 PRINT. First of all, the word PRINT# is followed by a number,
 which refers to the device or data file previously OPENed. The
 number is followed by a comma, and a list of things to be
 PRINTed. The comma and semi- colon act in the same manner for
 spacing as they do in the PRINT statement. Some devices may
 not work with TAB and SPC.

 EXAMPLE:

 100 PRINT#1,"HELLO THERE!",A$,B$

 40. PRINT USING - output using format

 PRINT [#filenumber] USING format list; print list;

 These statements define the format of string and numeric
 items for printing to the text screen, printer, or other
 device. The format is put in quotes. This is the list format.
 Then add a semicolon and a list of what is to be printed in the
 format for the print list. The list can be variables or the
 actual values to be printed.

 EXAMPLE:

 5 X=32: Y=100.23: A$="CAT"
 10 PRINT USING "$##.##";13.25,X,Y
 20 PRINT USING "###>#";"CBM",A$

 When this is RUN, line 10 prints out:
 $13.25 $32.00 $***** prints ***** instead
 of Y value because
 Y has 5 digits, which
 does not conform
 to format list
 (as explained below)
 Line 20 prints this:
 CBM CAT leaves three spaces before printing
 "CBM" as defined in format list

 CHARACTER NUMERIC STRING
 Pound sign (#) X X
 Plus sign (+) X
 Minus sign (-) X
 Decimal Point (.) X
 Comma (,) X
 Dollar Sign ($) X
 Four Carets (^^^^) X
 Equal Sign (=) X
 Greater Than Sign (>) X

 The pound sign (#) reserves room for a single character in
 the output field. If the data item contains more characters
 than # in the format field, the entire field is filled with
 asterisks (*). No numbers are printed.

 EXAMPLE:

 10 PRINT USING "####";X

 For these values of X, this format displays:
 A = 12.34 12
 A = 567.89 568
 A = 123456 ****

 For a STRING item, the string data is truncated at the
 bounds of the field. Only as many characters are printed as
 there are pound signs (#) in the format item. Truncation
 occurs on the right.

 The plus (+) and minus (-) signs can be used in either the
 first or last position of a format field but not both. The
 plus sign is printed if the number is positive. The minus sign
 is printed if the number is negative.

 If a minus sign is used and the number is positive, a
 blank is printed in the character position indicated by the
 minus sign.

 If neither a plus sign or a minus sign is used in the
 format field for a numeric data item, a minus sign is printed
 before the first digit or dollar symbol if the number is
 negative and no sign is printed if the number is positive.
 This means that one more character is printed if the number is
 positive. If there are too many digits to fit into the field
 specified by the pound sign and +/- signs, then an overflow
 occurs and the field is filled with asterisks (*).

 A decimal point (.) symbol designates the position of the
 decimal point in the number. There can be only one decimal
 point in any format field. If a decimal point is not specified
 in the format field, the value is rounded to the nearest
 integer and printed without any decimal places.

 When a decimal point is specified, the number of digits
 preceding the decimal point (including the minus sign, if the
 value is negative) must not exceed the number of pound signs
 before the decimal point. If there are too many digits an
 overflow occurs and the field is filled with asterisks(*).

 A comma (,) allows placing of commas in numeric fields.
 The position of the comma in the format list indicates where
 the commas appears in a printed number. Only commas within a
 number are printed. Unused commas to the left of the first
 digit appear as the filler character. At least one pound sign
 must precede the first comma in a field.

 If commas are specified in a field and the number is
 negative, then a minus sign is printed as the first character
 even if the character position is specified as a comma.

 EXAMPLES:

 FIELD EXPRESSION RESULT COMMENT
 ##.# -.1 -0.1 Leading zero added
 ##.# 1 1.0 Trailing zero added
 #### -100.5 -101 Rounded to no decimal
 places.
 #### -1000 **** Overflow because 4
 digits and minus sign

 cannot fit in field
 ###. 10 10. Decimal point added
 #$## 1 $1 Leading dollar sign

 A dollar sign ($) symbol shows that a dollar sign will be
 printed in the number. If the dollar sign is to float (always
 be placed before the number), specify at least one pound sign
 before the dollar sign. If a dollar sign is specified without
 a leading pound sign, the dollar sign is printed in the
 position shown in the format field. If commas and/or a plus or
 minus sign is specified in a format field with a dollar sign,
 the program prints a comma or sign before the dollar sign. The
 four up arrows or carets symbol is used to specify that the the
 number is to be printed in E + format(scientific notation). A
 pound sign must be used in addition to the four up arrows to
 specify the field width. The arrows can appear either before
 or after the pound sign in the format field. Four carats must
 be specified when a number is to be printed in E format. If
 more than one but fewer than four carats are specified, a
 syntax error results. If more than four carats are specified
 only the first four are used. The fifth carat is interpreted
 as a no text symbol. An equal sign(=) is used to center a
 string in a field. The field width is specified by the number
 of characters (pound sign and =) in the format field. If the
 string contains fewer characters than the field width, the
 string is centered in the field. If the string contains more
 characters that can be fit into the field, then the rightmost
 characters are truncated and the string fills the entire field.
 A greater than sign (>) is used to right justify a string in a
 field.

 41. PUDEF - redefine symbols in PRINT USING statements

 PUDEF "nnnn"

 PUDEF allows redefinition of up to 4 symbols in the PRINT
 USING statement. Blanks, commas, decimal points, and dollar
 signs can be changed into some other character by placing the
 new character in the correct position in the PUDEF control
 string.

 Position 1 is the filler character. The default is a
 blank. Place a new character here for another character to
 appear in place of blanks.
 Position 2 is the comma character. Default is a comma.
 Position 3 is the decimal point.
 Position 4 is the dollar sign.

 EXAMPLES:

 10 PUDEF "*" PRINTs * in the place of blanks.
 20 PUDEF " @" PRINTs @ in place of commas.

 42. READ - read data from DATA statements

 READ variable list

 This statement is used to get information from DATA
 statements into variables, where the data can be used. The
 READ statement variable list may contain both strings and
 numbers. Care must be taken to avoid reading strings where the
 READ statement expects a number, which produces an ERROR
 message.

 EXAMPLE:

 READ A, G$,

 43. RECORD - adjust relative file pointers

 RECORD# lf, rno [,bno]

 Adjusts a relative file pointer to select any byte
 (character) of any record in the relative file. (SEE DOPEN ,
 OPEN)

 44. REM - add explanatory text to program listing

 REM message

 The REMark is just a note to whomever is reading a LIST of
 the program. It may explain a section of the program, give
 information about the author, etc. REM statements in no way
 effect the operation of the program, except to add length to it
 (and therefore slow it down). No other executable statement
 can follow a REM on the same line.

 EXAMPLE:

 10 NEXT X: REM THIS LINE BUMPS X.

 45. RESTORE - reposition READ pointer at specified DATA statement

 RESTORE [line #]

 When executed in a program, the pointer to the item in a
 DATA statement that is to be read next is reset to the first
 item in the DATA statement. This provides the capability to
 reREAD the information. If a [line number] follows the RESTORE
 statement, the pointer is set to that line. Otherwise the
 pointer is reset to the beginning of the BASIC program.

 46. RESUME - define program execution after trap

 RESUME [line # / NEXT]

 Used to return to execution after TRAPping an error. With
 no arguments, RESUME attempts to re-execute the line in which
 the error occurred. RESUME NEXT resumes execution at the next
 statement following the one containing the error; RESUME line
 number will GOTO the specific line and resume execution from
 that line number. RESUME can only be used in program mode.

 47. RETURN - return from subroutine

 RETURN

 This statement is always used with the GOSUB statement.
 When the program encounters a RETURN statement, it goes to the
 statement immediately following the last GOSUB command
 executed. If no GOSUB was previously issued, then a RETURN
 WITHOUT GOSUB ERROR message is posted, and program execution is
 stopped.

 Note: All subroutines should be exited via a return to
 reduce stack verhead.

 48. RREG - get register values on return from SYS call

 RREG [a_var][,[x_var][,[y_var][,s_var]]]

 Assign to variables a_var, x_var, y_var and s_var the
 contents of the a, x, y, and s registers on return from the
 last SYS call.

 49. SCALE - alter scaling in graphics mode

 SCALE [1/0] [,xmax,ymax]
 ,xmax >= 320
 ,ymax >= 200
 default xmax,ymax =1023

 The scaling of the bit maps in multicolor and high
 resolution modes can be changed with the SCALE statement.
 Note: SCALE 0 turns scaling off. All future graphics will be
 drawn at default scale (300x200).

 Entering:

 SCALE 1

 turns scaling on. Coordinates may then be
 scaled from 0 to 1023 in both X and Y
 rather than the normal scale values,
 which are:

 multicolor mode X = 0 to 159 Y = 0 to 199
 high resolution mode . X = 0 to 319 Y = 0 to 199

 50. SCNCLR - clear screen

 SCNCLR [arg]

 With no arg clears the graphic screen, if any, else the
 current text screen. where arg = 0 for 40 column normal text 1
 for high res graphics 2 for high res graphics, split screen 3
 for multicolor graphics 4 for multicolor graphics, split screen
 5 for 80 column text

 51. SPRITE - Set up sprite attributes

 SPRITE <number> [,[on/off][,[fgnd][,[priority][,[x-exp]
 [,[y-exp][,mode]]]]]]

 where <number> is sprite number (1-8)
 on/off is sprite enable (1) or disable(0)
 fgnd is sprite foreground color (1-16)
 priority is sprite to display data priority:
 0/ sprite over display data
 1/ display data over sprite
 x-exp,y-exp - sprite expansion on (1) or off (0)
 mode - Sprite mode: 0/ High resolution
 1/ Multicolor

 Unspecified parameters cause those characteristics to stay. Don't
 confuse graphics modes (multicolor, high resolution, split screen)
 with sprite modes (multicolor, high resolution). High resolution
 sprites can appear in multicolor graphic mode and vice versa. To
 check the characteristics of a sprite use the RSPRITE function.

 52. SSHAPE/GSHAPE - save/retrieve shapes using strings

 SSHAPE and GSHAPE are used to save and restore rectangular
 areas of multicolor or high resolution screens using BASIC
 string variables. The command to save an area is :

 SSHAPE string_variable, a1, b1 [,a2,b2]

 string_variable .. String name to save data in
 a1,b1 Corner coordinate (scaled)
 a2,b2 Corner coordinate opposite
 (a1,b1) (default is the PC)

 NOTE: This is a subset of MOVESHAPE command. It is retained
 only for C64 mode.

 Because BASIC limits strings to 255 characters, the size
 of the area that can be saved is limited. The string size
 required can be calculated using one of the following
 (unscaled) formulas:

 L(mcm) = INT ((ABS(a1-a2) + 1) / 4 + .99) * (ABS(b1-b2)+1)+4
 L(h-r) = INT ((ABS(a1-a2) + 1) / 8 + .99) * (ABS(b1-b2)+1)+4

 GSHAPE string [, [a,b] [,mode]]

 string Contains shape to be drawn
 a,b Top left coordinate telling where to
 draw the shape (scaled - the default
 is the PC)
 mode Replacement mode:
 0: place shape as is (default)
 1: place field inverted shape
 2: OR shape with area
 3: AND shape with area
 4: XOR shape with area

 NOTE: beware using modes 1-4 with Multi-color shapes, as the
 color source is part ot the bit pattern in multi-color
 mode.

 53. STOP - halt program execution

 STOP

 This statement halts the program. A message, BREAK IN
 LINE xxx, (only in program mode vs. direct mode) where xxx is
 the line number containing the STOP. The program can be
 restarted at the statement following STOP if the CONT command
 is used. The STOP statement is usually used while debugging a
 program.

 54. SYS - execute machine language subroutine at specified address

 SYS address [,[a][,[x][,[y][,s]]]

 Perform a call to subroutine at given address in a memory
 configuration set up by the BANK statement. Optionally,
 arguments a,x,y and s are loaded into the accumulator, x, y and
 status registers before the subroutine is called.

 Address range is 0 to 65535. The program begins executing
 the machine language program starting at that memory location.
 This is similar to the USR function, but does not pass a
 parameter. SYS is bank sensitive. (SEE BANK)

 55. TEMPO - define note duration

 TEMPO n

 n Relative duration (1-255)

 The actual duration is determined by
 using the formula given below:

 duration = 19.22/n seconds

 The default value is 8, and note duration increases with n.

 56. TRAP - handle error processing

 TRAP [line #]

 When turned on, TRAP intercepts all BASIC execution error
 conditions (including the STOP KEY) except "UNDEF'D STATEMENT
 ERROR". In the event of any execution error, the error flag is
 set, and execution is transferred to the line number in the
 TRAP statement. The line number in which the error occurred
 can be found by using the system variable EL. The specific
 error condition is contained in system variable ER. The string
 function ERR$(ER) gives the error message corresponding to any
 error condition ER.

 NOTE: An error in a TRAP routine cannot be trapped. The
 RESUME statement can be used to resume execution. TRAP with no
 line number turns off error TRAPping.

 57. TRON - BASIC program trace enable

 TRON

 TRON is used in program debugging. This statement begins
 trace mode.

 58. TROFF - BASIC program trace disable

 TROFF

 This statement turns off trace mode.

 59. VOL - define output level of sound

 VOL volume level

 This statement sets the volume for SOUND statements.
 VOLUME can be set from 0 to 15, where 15 is the maximum volume,
 and 0 is off. VOL affects all 3 voices.

 60. WAIT - halt program execution until data condition satisfied

 WAIT <location>, <mask-1> [,mask-2>]

 The WAIT statement causes program execution to be
 suspended until a given memory address recognizes a specified
 bit pattern. In other words, WAIT can be used to halt the
 program until some external event has occurred. This is done
 by monitoring the status of bits in the Input Output registers.
 The data items used with the WAIT can be any numeric
 expressions, but they will be converted to integer values. For
 most programmers, this statement should never be used. It

 causes the program to halt until a specific memory location's
 bits change in a specific way. This is used for certain I/O
 operations and almost nothing else. The WAIT statement takes
 the value in the memory location and performs a logical AND
 operation with the value in mask-1. If there is a mask-2 in
 the statement, the result of the first operation is exclusively
 ORed with mask-2. In other words mask-1 "filters out" any bits
 not to be tested. Where the bit is 0 in mask-1, the
 corresponding bit in the result will always be 0. The mask-2
 value flips any bits, so that an off condition can be tested
 for as well as an on condition. Any bits being tested for a 0
 should have a 1 in the corresponding position in mask-2. If
 corresponding bits of the <mask-1> and <mask-2> operands
 differ, the exclusive-OR operation gives a bit result of 1. If
 the corresponding bits get the same result the bit is 0. It is
 possible to enter a infinite pause with the WAIT statement, in
 which case the RUN/STOP and RESTORE keys can be used to
 recover. Hold down the RUN/STOP key and the press RESTORE.
 The first example below WAITs until a key is pressed on the
 tape unit to continue with the program. The second example
 will WAIT until a sprite collides with the screen background.
 NOTE: The bank must be set.

 EXAMPLES:

 WAIT 1, 32, 32
 WAIT 53273, 6, 6
 WAIT 36868, 144, 16

 (144 & 16 are masks. 144 = 10010000
 in binary and 16 = 10000 in binary.

 The WAIT statement will halt the
 program until the 128 bit is on or
 until the 16 bit is off)

 NOTE: Wait may require use of BANK statement before use
 to access memory not currently in context.

5.1.1.5 ALPHABETICAL LIST OF FUNCTIONS -

 1. ABS
 2. ASC
 3. ATN
 4. BUMP
 5. CHR$
 6. COS
 7. DEC
 8. ERR$
 9. EXP
 10. FNxx
 11. FRE
 12. HEX$
 13. INSTR
 14. INT
 15. JOY
 16. LEFT$
 17. LEN
 18. LOG
 19. MID$
 20. PEEK
 21. PEN
 22. PI
 23. POINTER
 24. POS
 25. POT
 26. RCLR
 27. RDOT
 28. RGR
 29. RIGHT$
 30. RND
 31. RSPCOLOR
 32. RSPPOS
 33. RSPRITE
 34. RWINDOW
 35. SGN
 36. SIN
 37. SPC
 38. SQR
 39. STR$
 40. TAB
 41. TAN
 42. USR
 43. VAL
 44. XOR

5.1.1.6 FUNCTION DESCRIPTION -

 FUNCTION (argument)

 Where the argument can be a numeric value, variable, or string.

 1. ABS - absolute value

 ABS(X)

 The absolute value function returns the positive value of
 the argument X.

 2. ASC - returns CBM ASCII code for character

 ASC(X$)

 This function returns the ASCII code of the first
 character of X$.

 3. ATN - returns angle whose tangent is X radians

 ATN(X)

 This function returns the angle whose tangent is X,
 measured in radians.

 4. BUMP - returns sprite collision information

 BUMP(N)

 To determine which sprites have collided since the last
 check use the BUMP function: BUMP(1) records which sprites
 have collided with each other and BUMP(2) records which sprites
 have collided with the display data. COLLISION need not be
 active to use BUMP. The bit positions (7-0) in the BUMP value
 correspond to a sprite's number. In the case of multiple
 compares consider a sprite's position (via RSPRITE) to
 determine which sprite hit what. BUMP(n) is reset to zero
 after each call.

 5. CHR$ - returns ASCII character for specified CBM ASCII code

 CHR$(X)

 This is the opposite of ASC, and returns the string
 character whose CBM ASCII code is X.

 NOTE: When using CHR$(14) and CHR$(142) in 40 column text
 mode the entire screen reflects all upper or all lower case,
 whereas in 80 column text mode, upper and lower case characters
 can be displayed at the same time on the screen, giving the
 user the capability to display 512 characters.

 6. COS - returns cosine for angle of X radians

 COS(X)

 This function returns the value of the cosine of X, where
 X is an angle measured in radians.

 7. DEC - returns decimal value of hexadecimal number string,
 "0-FFFF"

 DEC (hexidecimal-string)

 8. ERR$ - returns string describing error condition

 ERR$(N)

 This function returns a string describing an error
 condition.

 9. EXP - return value of an approximation of e (2.7182813) raised
 to the X power

 EXP(X)

 This function returns a value of e (2.71828183) raised to
 the power of X.

 10. FNxx - returns value from user defined function

 FNxx(x)

 This function returns the value from the user-defined
 function xx created in a DEF FNxx statement.

 11. FRE - returns number of unused bytes in memory

 FRE(X)

 where x = bank number (0-15)
 where x = 0 for text storage available
 x = 1 for variable storage available

 This function returns the number of unused bytes available
 in memory. X is a bank #.

 12. HEX$ - returns hexadecimal number string from decimal number

 HEX$(X)

 This function returns a 4 character string containing the
 hexadecimal representation of value X (0<=X<65535).

 13. INSTR - returns position of string 1 in string 2

 INSTR (string 1, string 2 [,starting position])

 This function returns the position of string 1 in string 2
 at or after the starting position. The starting position
 defaults to the beginning of string 1. If no match is found, a
 value of 0 is returned.

 14. INT - returns integer form (truncated) of floating point value

 INT(X)

 This function returns the integer value of the expression.
 If the expression is positive, the fractional part is left out.
 If the expression is negative, any fraction causes the next
 lower integer to be returned.

 15. JOY - returns position of joystick and fire button state

 JOY(N)

 When N=1 returns position of joystick 1
 When N=2 returns position of joystick 2

 Any value of 128 or more means that the fire button is
 also depressed. The direction is indicated as follows:

 Fire = 128+ 1

 8 2

 7 0 3

 6 4

 5

 EXAMPLE:

 JOY(2) = 135 Joystick 2 fires to the left.

 16. LEFT$ - returns N leftmost characters of string

 LEFT$ (<string>,<integer>)

 This function returns a string comprised of the leftmost
 <integer> characters of the string. The integer argument value
 must be in the range 0 to 255. If the integer is greater than
 the length of the string, the entire string will be returned.
 If an <integer> value of zero is used, then a null string (of
 zero length) will be returned.

 17. LEN - returns length of string

 LEN (<string>)

 This function returns the number of characters in the
 string expression. Non-printed characters and blanks are
 counted.

 18. LOG - returns natural log of X

 LOG(X)

 This function returns the natural log of X. The natural
 log is log to the base e (see EXP(X)). To convert to log base
 10, divide by LOG(10).

 19. MID$ - return substring from a larger string

 MID$ (<string>, <numeric-1> [,<numeric-2>])

 This function returns a sub-string which is taken from
 within a larger <string> argument. The starting position of
 the substring is defined by the <numeric-1> argument and the
 length of the sub-string by the <numeric-2> argument. Argument
 1 is the pointer and can range from 1 to 255. Argument 2 is
 the length and can range from 0 to 255. If the <numeric-1>
 value is greater than the length of the <string>, or if the
 <numeric-2> value is zero, then MID$ gives a null string value.
 If the <numeric-2> argument is left out, then the computer will
 assume that a length of the rest of the string is to be used.

 20. PEEK - returns content at specified memory location

 PEEK(X)

 This function gives the contents of memory location X,
 where X is located in the range 0 to 65535, returning a result
 from 0 to 255. This often used in conjunction with the POKE
 statement. The data will be from the 64K bank selected by the
 most recent BANK command.

 21. PEN - returns X and Y coordinates of light pen

 PEN (n)

 when n=0 X coordinate of light pen position on VIC
 n=1 Y coordinate of light pen position on VIC
 n=2 X row and column of character in 80 column mode
 n=3 Y row and column of character in 80 column mode
 n=4 returns 0 if no light pen triggered
 returns 1 if light pen triggered
 - resets so next read will be different

 EXAMPLE:
 100 DO UNTIL PEN(4):LOOP
 105 PRINT PEN(2),PEN(3)

 Note that, like sprite coordinates, the PEN value is not
 scaled and uses "real" coordinates, not graphic bit map
 coordinates. The X position is given as an even number ranging
 from approximately 60 to 320 while the Y position can be any
 number from about 50 to 250, staying within the surrounding
 border area. A value of zero for either position means the
 light pen is off screen and has not triggered an interrupt
 since the last read. Note that COLLISION need not be active to
 use PEN. A white background is usually required to stimulate
 the light pen. PEN values vary from CRT to CRT.

 22. PI symbol -
 PI symbol - returns value for PI (3.14159265)

 23. POINTER - return address of the descriptor for variable name

 POINTER (variable_name)

 EXAMPLE:
 A = POINTER(maxcnt) - returns the address
 of the descriptor maxcnt
 in A.

 NOTE: All references to the descriptor must have the
 bank set to bank 1 (where descriptors are located)

 24. POS - returns character cursor position on line

 POS (<dummy>)

 This function returns the current cursor column within the
 current screen window.

 25. POT - returns value of game paddle potentiometer

 POT (n)
 when n=1 Position of paddle #1
 n=2 Position of paddle #2
 n=3 Position of paddle #3
 n=4 Position of paddle #4

 The values for POT range from 0 to 255. Any value of 256
 or more means that the fire button is also depressed.

 26. RCLR - returns color of color source

 RCLR(N)

 This function returns the color assigned
 to source n (0<= n <= 6)

 Where 0 = VIC background
 1 = foreground
 2 = multicolor 1
 3 = multicolor 2
 4 = VIC border
 5 = text color
 6 = 8563 background color

 Color range is 1 to 16

 27. RDOT - returns current position or color of pixel cursor.

 RDOT(N)

 This function returns information about the current
 position of the pixel cursor (PC) at XPOS/YPOS.

 Where N = 0 for XPOS
 = 1 for YPOS
 = 2 color source

 28. RGR - returns current graphic mode

 RGR(X)

 This function returns current graphic mode (X is a dummy
 argument).

 29. RIGHT$ - returns substring from rightmost end of string

 RIGHT$ (<string>, <numeric>)

 This function returns a sub-string taken from the
 rightmost end of the <string> argument. The length of the
 sub-string is defined by the <numeric> argument which can be
 any integer in the range of 0 to 255. If the value of the
 numeric expression is zero, then a null string ("") is
 returned. If the value given in the <numeric> argument is
 greater than the length of the <string> then the entire string
 is returned.

 30. RND - returns random number

 RND(X)

 This function returns a random number between 0 and 1.
 This is useful in games, to simulate dice rolls, and other
 elements of chance, and is also used in some statistical
 applications. The first random number should be generated by
 the formula RND(-TI), to start things off differently every
 negative value for X seeds the random number generator using X
 and gives a random number sequence. Using the same negative
 number for X as a seed results in the same sequence of random

 numbers. A positive value gives random numbers based on the
 previous seed.

 31. RSPCOLOR - Check what sprite Multi-Color values last set.

 RSPCOLOR (<register>)

 where register =1 for return of multi-color
 color mode as a number 1-16.
 where register =2 for return of color code
 for SPRITE multi-color 2

 32. RSPPOS - check speed and position of sprite

 RSPPOS(<sprite>,<data>)

 where sprite identifies which sprite is being checked,
 data specifies what information is to be returned.

 data=0 - current X position is returned
 =1 - current Y position is returned
 =2 - speed is returned (0-15)

 33. RSPRITE - returns sprite attributes

 RSPRITE (N,X)

 Where N = sprite number (1-8)
 Where x= 0 Enabled(1) / disabled(0)
 1 Sprite color (1-16)
 2 Priority over background yes =1, no=0
 3 Expand in X direction yes =1, no=0
 4 Expand in Y direction yes= 1, no=0
 5 multicolor yes= 1, no=0

 RSPRITE is used to test various sprite attributes
 and properties.

 34. RWINDOW

 This is a function that returns information about the current
 console display environment.

 RWINDOW (n)

 where: n=0 : number of lines in the current window
 =1 : number of columns in the current window
 =2 : returns either 40 or 80, depending on the
 current console device

 35. SGN - return sign of argument

 SGN(X)

 This function returns the sign of X. The result is + 1 if
 X > 0, 0 if X = 0, and -1 if X < 0.

 36. SIN - return sine of argument

 SIN(X)

 This is the trigonometric sine function. The result is
 the sine of X. X is measured in radians.

 37. SPC - adds space characters to output

 SPC (<numeric>)

 The SPC function is used to control the formatting of
 data, as either an output to the screen or into a logical file.
 The number of SPaCes given by the <numeric> argument is the #
 of character positions skipped over.. For screen or tape files
 the value of the argument is in the range 0 to 255 and for disk
 files up to 254. For printer files, an automatic
 carriage-return and line-feed will be performed by the printer
 if a SPaCe is printed in the last character position of a line.
 No SPaCes are printed on the following line.

 38. SQR - returns square root of argument

 SQR (<numeric>)

 This function returns the value of the SQuare Root of the
 <numeric> argument. The value of the argument must not be
 negative, or the BASIC error message ?ILLEGAL QUANTITY is
 posted.

 39. STR$ - returns string representation of number

 STR$ (<numeric>)

 This function returns the STRing representation of the
 numeric value of the argument. When the STR$ value is
 converted to each variable represented in the <numeric>
 argument, any number shown is followed by a space and, if it's
 positive, it is also preceded by a space. (negative #'s are
 preceeded by a "-" sign). Numbers in exponential form are
 printed as such also.

 40. TAB - move cursor to tab position in present statement

 TAB (<numeric>)

 The TAB function moves the cursor forward if possible to a
 relative position on the text screen given by the <numeric>
 argument, starting with the left most position of the current
 line. The value of the argument can range from 0 to 255. The
 TAB function should only be used with the PRINT statement,
 since it has no effect if used with the PRINT# to a logical
 file. It also has no effect if the curent cursor position is
 beyond the given tab column.

 41. TAN - returns tangent of X.

 TAN(X)

 This function returns the tangent of X, where X is an
 angle in radians.

 42. USR - call user defined subprogram

 USR(X)

 When this function is used, the program jumps to a machine
 language program whose starting point is contained in memory
 locations 4633H and 4634H. The parameter X is passed to the
 machine language program in the floating point accumulator.
 Another number is passed back to the BASIC program through the

 calling variable. In other words, this allows the user to
 exchange a variable between machine code and BASIC. The user
 must redirect the vector to his code before using, else
 "Illegal Quantity Error" is returned

 Example:
 A=USR(X)

 43. VAL - returns numeric value of a number string

 VAL(X$)

 This function converts the string X$ into a number, and is
 essentially the inverse operation of STR$. The string is
 examined from the left most character to the right, for as many
 characters as are in recognizable number format. If the C-128
 finds illegal characters, only the portion of the string up to
 that point is converted.

 44. XOR
 This function provides the exclusive - or of the argument
values.

 x = XOR (n1, n2)

 where n1, n2 are 2 byte (0-65535) unsigned values.

5.1.1.7 VARIABLES -

 The C-128 uses three types of variables in BASIC. These are:
normal numeric, integer numeric, and string (alphanumeric) variables.

 Normal NUMERIC VARIABLES, also called floating point variables, can
have any value from up to nine digits of accuracy. When a number
becomes larger than nine digits can show, as in +10 or -10, the computer
displays it in scientific notation form, with the number normalized to 1
digit and eight decimal places, followed by the letter E and the power
of ten by which the number is multiplied. For example, the number
12345678901 is displayed as 1.23456789E+10.

 INTEGER VARIABLES can be used when the number is a signed whole
number from +32767 to -32768. Integer data is a number like 5, 10, or
-100. Integers take up less space than floating point variables,
particularly when used in an array.

 STRING VARIABLES are those used for character data, which may
contain numbers, letters, and any other character that the C-128 can
make. An example of string data is "Commodore 128".

 VARIABLE NAMES may consist of a single letter, a letter followed by
a number, or two letters. Variable names may be longer than 2
characters, but only the first two are significant. An integer is
specified by using the percent (%) sign after the variable name. String
variables have a dollar sign ($) after their names.

 EXAMPLES:
 Numeric Variable Names: A, A5, BZ
 Integer Variable Names: A%, A5%, BZ%
 String Variable Names: A$, A5$, BZ$

 ARRAYS are lists of variables with the same name, using an extra
number (or numbers) to specify an element of the array. Arrays are
defined using the DIM statement, and may be floating point, integer, or
string variable arrays. The array variable name is followed by a set of
parentheses () enclosing the number of the variable in the list.

 EXAMPLE:
 A(7), BZ%(11), A$(87)

 Arrays can have more than one dimension. A two dimensional array
may be viewed as having rows and columns, with the first number
identifying the row and the second number identifying the column (as if
specifying a certain grid on the map).

 EXAMPLE:
 A(7,2), BZ%(2,3,4), Z$(3,2)

 RESERVED VARIABLE NAMES are names that are reserved for use by the
C-128, and may not be used for another purpose. These are the variables
DS, DS$, ER, ERR$, EL, ST, TI, and TI$. KEYWORDS such as TO and IF or
any other names that contain KEYWORDS, such as RUN, NEW, or LOAD cannot
be used.

 ST is a status variable for input and output (except normal
screen/keyboard operations). The value of ST depends on the results of
the last I/O operation. In general, if the value of ST is 0 then the
operation was successful.

 TI and TI$ are variables that relate to the real-time clock built
into the C-128. The system clock is updated every 1/60th of a second.

It starts at 0 when the C-128 is turned on, and is reset only by
changing the value of TI$. The variable TI gives the current value of
the clock in 1/60ths of a second. TI$ is a string that reads the value
of the real-time clock as a 24 hour clock. The first two characters of
TI$ contain the hour, the 3rd and 4th characters are the minutes, and
the 5th and 6th characters are the seconds. This variable can be set to
any value (so long as all characters are numbers), and will be
automatically updated as a 24 hour clock.

 EXAMPLE:
 TI$ = "101530" sets the clock to 10:15 and 30 seconds (AM)

 The value of the clock is lost when the C-128 is turned off. It
starts at zero when the C-128 is turned on, and is reset to zero when
the value of the clock exceeds 235959 (23 hours, 59 minutes, and 59
seconds).

 The variable DS reads the disk drive command channel, and returns
the current status of the drive. To get this information in words,
PRINT DS$. These status variables are used after a disk operation, like
a DLOAD or DSAVE, to find out why the red error light on the disk drive
is blinking.

 ER, EL, and ERR$ are variables used in error trapping routines.
They are usually only useful within a program. ER returns the last
error encountered since the program was RUN. EL is the line where the
error occurred. ERR$ is a function that allows the program to print one
of the BASIC error messages. PRINT ERR$(ER) prints out the proper error
message.

5.1.1.8 OPERATORS -

 The BASIC OPERATORS include ARITHMETIC, RELATIONAL, and LOGICAL
OPERATORS. The ARITHMETIC operators include the following signs:

 + addition
 - subtraction
 * multiplication
 / division
 ^ raising to a power (exponentiation)

 On a line containing more than one operator, there is a set order
in which operations always occur. If several operators are used
together, the computer assigns priorities as follows: First,
exponentiation, then multiplication and division, and last, addition and
subtraction. If two operators have the same priority, then calculations
are performed in order from left to right. If these operations are to
occur in a different order, C-128 BASIC allows giving a calculation a
higher priority by placing parentheses around it. Operations enclosed
in parentheses will be calculated before any other operation. Make sure
that the equations have the same number of left and right parentheses,
or a SYNTAX ERROR message is posted when the program is run.

 There are also operators for equalities and inequalities, called
RELATIONAL operators. Arithmetic operators always take priority over
relational operators.

 = is equal to
 < is less than
 > is greater than
 <= or =< is less than or equal to
 >= or => is greater than or equal to
 <> or >< is not equal to

 Finally, there are three LOGICAL operators, with lower priority
than both arithmetic and relational operators:

 AND
 OR
 NOT

 These are most often used to join multiple formulas in IF ... THEN
statements. When they are used with arithmetic operators, they are
evaluated last (i.e., after + and -). If the relationship stated in the
expression is the true the result is assigned an integer value of -1 and
if false a value of 0 is assigned.

 EXAMPLES:

 IF A=B AND C=D THEN 100 requires both A=B & C=D to be true
 IF A=B OR C=D THEN 100 allows either A=B or C=D to be true
 A=5:B=4:PRINT A=B displays a value of 0
 A=5:B=4:PRINT A>3 displays a value of -1
 PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

5.1.1.9 BASIC ERROR MESSAGES -

 The following error messages are displayed by BASIC. Error
messages can also be displayed with the use of the ERR$() function. The
error number refers only to the number assigned to the error for use
with this function.

 ERROR # ERROR NAME DESCRIPTION
 1 TOO MANY FILES There is a limit of 10 files OPEN
 at one time.
 2 FILE OPEN An attempt was made to open a file
 using the number of an already open
 file.
 3 FILE NOT OPEN The file number specified in an
 I/O statement must be opened before
 use.
 4 FILE NOT FOUND Either no file with that name exists
 (disk) or an end-of-tape marker was
 read (tape).
 5 DEVICE NOT PRESENT The required I/O device not available
 or buffers deallocated (cassette).
 6 NOT INPUT FILE An attempt made to GET or INPUT data
 from a file that was specified as
 output only.
 7 NOT OUTPUT FILE An attempt was made to send data to
 a file that was specified as input
 only.
 8 MISSING FILE NAME filename missing in command.
 9 ILLEGAL DEVICE An attempt made to use a device
 NUMBER improperly (SAVE to the screen, etc).
 10 NEXT WITHOUT FOR Either loops are nested incorrectly,
 or there is a variable name in a
 NEXT statement that doesn't corres-
 pond with one in FOR.
 11 SYNTAX ERROR A statement is unrecognizable by
 BASIC. This could be because of
 missing or extra parenthesis,
 mispelled keyword, etc.
 12 RETURN WITHOUT GOSUB A RETURN statement encountered
 when no GOSUB statement was active.
 13 OUT OF DATA A READ statement encountered,
 without data left unREAD.
 14 ILLEGAL QUANTITY A number used as the argument of
 a function or statement is outside
 the allowable range.
 15 OVERFLOW The result of a computation is
 larger than the largest number
 allowed (1.701411833E+38).
 16 OUT OF MEMORY Either there is no more room
 for program and program variables,
 or there are too many DO, FOR, or
 GOSUB statements in effect.
 17 UNDEF'D STATEMENT A line number referenced doesn't
 exist in the program.
 18 BAD SUBSCRIPT The program tried to reference
 an element of an array out of
 the range specified by the DIM
 statement.
 19 REDIM'D ARRAY An array can only be DIMensioned
 once.
 20 DIVISION BY ZERO Division by zero is not allowed.
 21 ILLEGAL DIRECT INPUT or GET statements are only
 allowed within a program.

 22 TYPE MISMATCH This occurs when a number is used
 in place of a string or vice-versa.
 23 STRING TOO LONG A string can contain up to 255
 characters.
 24 FILE DATA Bad data read from a tape file.
 25 FORMULA TOO COMPLEX Simplify the expression (break
 into two parts or use fewer
 parentheses).
 26 CAN'T CONTINUE The CONT command does not work
 if the program was not RUN, there
 was an error, or a line has been
 edited.
 27 UNDEFINED FUNCTION A user defined function referenced
 that was never defined.
 28 VERIFY The program on tape or disk does
 not match the program in memory.
 29 LOAD There was a problem loading.
 Try again.
 30 BREAK The stop key was hit to halt
 program execution.
 31 CAN'T RESUME A RESUME statement encountered
 without TRAP statement in effect.
 32 LOOP NOT FOUND The program has encountered a
 DO statement and cannot find
 the corresponding LOOP.
 33 LOOP WITHOUT DO LOOP encountered without a DO
 statement active.
 34 DIRECT MODE ONLY This command allowed only in
 direct mode, not from a program.
 35 NO GRAPHICS AREA A command (DRAW, BOX, etc.) to
 create graphics encountered be-
 fore the GRAPHIC command was
 executed.
 36 BAD DISK An attempt failed to HEADER a
 diskette, because the quick
 header method (no ID) was at-
 tempted on an unformatted
 diskette, or the diskette is
 bad.
 37 BEND NOT FOUND A BEND statement not found for BEGIN
 38 LINE NUMBER TOO LARGE Line number cannot exceed 64000

5.1.1.10 DOS ERROR MESSAGES -

 The following error messages are returned through the DS and DS$
variables. NOTE: Error message numbers less than 20 should be ignored
with the exception of 01, which gives information about the number of
files scratched with the SCRATCH command.

 ERROR # DESCRIPTION
 20: READ ERROR (block header not found)
 The disk controller is unable to locate the header of the
 requested data block. Caused by an illegal sector number,
 or the header has been destroyed.
 21: READ ERROR (no sync character)
 The disk controller in unable to detect a sync mark on the
 desired track. Caused by misalignment of the read/write
 head, no diskette is present, or unformatted or improperly
 seated diskette. Can also indicate a hardware failure.
 22: READ ERROR (data block not present)
 The disk controller has been requested to read or verify a
 data block that was not properly written. This error occurs
 in conjunction with the BLOCK commands and indicates an il-
 legal track and/or sector request.
 23: READ ERROR (checksum error in data block)
 This error message indicates that there is an error in one
 or more of the data bytes. The data has been read into the
 DOS memory, but the checksum over the data is in error.
 This message may also indicate grounding problems.
 24: READ ERROR (byte decoding error)
 The data or header has been read into the DOS memory, but a
 hardware error has been created due to an invalid bit pat-
 tern in the data byte. This message may also indicate ground-
 ing problems.
 25: WRITE ERROR (write-verify error)
 This message is generated if the controller detects a mis-
 match between the written data and the data in the DOS mem-
 ory.
 26: WRITE PROTECT ON
 This message is generated when the controller has been re-
 quested to write a data block while the write protect switch
 is depressed.
 27: READ ERROR
 This message is generated when a checksum error is in the
 header.
 28: WRITE ERROR
 This error message is generated when a data block is too long.
 29: DISK ID MISMATCH
 This message is generated when the controller has been re-
 quested to access a diskette which has not been initialized.
 The message can also occur if a diskette has a bad header.
 30: SYNTAX ERROR (general syntax)
 The DOS cannot interpret the command sent to the command
 channel. Typically, this is caused by an illegal number of
 file names, or patterns are illegally used. For example,
 two file names appear on the left side of the COPY command.
 31: SYNTAX ERROR (invalid command)
 The DOS does not recognize the command. The command must
 start in the first position.
 32: SYNTAX ERROR (invalid command)
 The command sent is longer than 58 characters.
 33: SYNTAX ERROR (invalid file name)
 Pattern matching is invalidly used in the OPEN or SAVE
 command.
 34: SYNTAX ERROR (no file given)

 The file name was left out of the command or the DOS does
 not recognize it as such.

 39: SYNTAX ERROR (invalid command)
 This error may result if the command sent to the command
 channel (secondary address 15) is unrecognized by the DOS.
 40: UNIMPLEMENTED COMMAND
 Command is not implemented at this time.
 41: FILE READ
 The file cannot be read
 50: RECORD NOT PRESENT
 Result of disk reading past the last record through INPUT#
 or GET# commands. This message will also occur after posi-
 tioning to a record beyond end_of_file in a relative file.
 If the intent is to expand the file by adding the new record
 (with a PRINT# command), the error message may be ignored.
 INPUT and GET should not be attempted after this error is
 detected without first repositioning.
 51: OVERFLOW IN RECORD
 PRINT# statement exceeds record boundary. Information is
 truncated. Since the carriage return which is sent as a
 record terminator is counted in the record size, this mes-
 sage will occur if the total characters in the record
 (including the final carriage return) exceeds the defined
 size.
 52: FILE TOO LARGE
 Record position within a relative file indicates that disk
 overflow will result.
 60: WRITE FILE OPEN
 This message is generated when a write file that has not
 been closed is being opened for reading.
 61: FILE NOT OPEN
 This message is generated when a file is being accessed that
 has not been opened in the DOS. Sometimes, in this case, a
 message is not generated; the request is simply ignored.
 62: FILE NOT FOUND
 The requested file does not exist on the indicated drive.
 63: FILE EXISTS
 The file name of the file being created already exists on
 the diskette.
 64: FILE TYPE MISMATCH
 65: NO BLOCK
 66: ILLEGAL TRACK AND SECTOR
 The DOS has attempted to access a track or block which does
 not exist in the format being used. This may indicate a prob-
 lem reading the pointer of the next block.
 67: ILLEGAL SYSTEM T OR S
 This special error message indicates an illegal system
 track or sector.
 70: NO CHANNEL (available)
 The requested channel is not available, or all channels are
 in use. A maximum of five sequential files may be opened at
 one time to the DOS. Direct access channels may have six
 opened files.
 71: DIRECTORY ERROR
 72: DISK FULL
 Either the blocks on the diskette are used or the directory
 is at its entry limit. DISK FULL is sent when two blocks are
 available on the 1571 to allow the current file to be closed.
 73: DOS MISMATCH
 DOS 1 and 2 are read compatible but not write compatible.
 Disks may be interchangeably read with either DOS, but a
 disk formatted on one version cannot be written upon with
 the other version because the format is different. This er-

 ror is displayed whenever an attempt is made to write upon
 a disk which has been formatted in a non-compatible format.
 (A utility routine is available to assist in converting
 from one format or another.) This message may also appear
 after power up.
 74: DRIVE NOT READY
 An attempt has been made to access the Floppy Disk Drive
 without any diskette present.

5.2 MACHINE LANGUAGE MONITOR

5.2.1 INTRODUCTION

 The C-128 MONITOR is a built in machine language program that lets
the user easily write machine language programs. C-128 MONITOR includes
a machine language monitor, a mini assembler, and a disassembler.

 Machine language programs written using C-128 MONITOR can run by
themselves, or be used as very fast 'subroutines' for BASIC programs
since C-128 MONITOR has the ability to coexist peacefully with BASIC.

 Care must be taken to position the assembly language programs in
memory so that the BASIC program does not overwrite them.

5.2.2 C-128 MONITOR COMMANDS

 1. A ASSEMBLE - Assemble a line of 6502 code
 2. C COMPARE - Compare two sections of memory and report
 differences
 3. D DISASSEMBLE - Disassemble a line of 6502 code
 4. F FILL - Fill memory with the specified byte
 5. G GO - Start execution at specified address
 6. H HUNT - Hunt through memory within a specified range for all
 occurences of a set of bytes
 7. L LOAD - Load a file from tape or disk
 8. M MEMORY - Display the hexidecimal values of memory locations
 9. R REGISTERS - Display the 6502 registers.
 10. S SAVE - Save to tape or disk
 11. T TRANSFER - Transfer code from one section of memory to
 another
 12. V VERIFY - Compare memory with tape or disk
 13. X EXIT - EXIT C-128 MONITOR
 14. (period) - Assembles a line of 6502 code
 15. > (greater than) - Modifies memory
 16. ; (semi-colon) - Modifies 6502 register displays
 17. @ (at sign) - Display disk status

1/ The MONITOR now accepts binary, octal, decimal and hexidecimal
 values for any numeric field. This was accomplished by totally
 re-coding PARSE and portions of ASSEM, and installing a new
 routine called EVAL. Numbers prefixed by one of the characters
 $ + & % are interpreted by EVAL as base 16, 10, 8, or 2 values
 respectively. In the absence of a prefix, the base defaults to
 hexidecimal always. ASSEM will use the zero-page form wherever
 possible unless the value is preceeded by extra zeros to force
 the absolute form (except binary notation).

2/ The MONITOR now performs limited number conversion. Additions
 were made to MAIN1 and CMDCHR and a new routine called CONVERT
 was installed to handle the conversions. Any of the characters
 $ + & % entered as a command and prefixing a numeric value are
 PARSEd (see #1 above) and the hexidecimal value printed. Full
 conversion between bases may be added in a later release.

 The 5th most significant nybble of the address field specifies the
memory configuration to implement at the time the given command is
executed. There are 16 (0-$F) possible memory configurations. Refer to
the 'Memory Configuration Table' below for the specific assignments.
(These assignments apply to all BASIC and KERNAL routines).

 Example of memory display in monitor mode:

 Mx2000

 MEMORY CONFIGURATION TABLE
 ------ ------------- -----
 where x =
 0 - RAM 0 only
 1 - RAM 1 only
 2 - RAM 2 only
 3 - RAM 3 only
 4 - INT ROM, RAM 0, I/O
 5 - INT ROM, RAM 1, I/O
 6 - INT ROM, RAM 2, I/O
 7 - INT ROM, RAM 3, I/O
 8 - EXT ROM, RAM 0, I/O
 9 - EXT ROM, RAM 1, I/O
 A - EXT ROM, RAM 2, I/O
 B - EXT ROM, RAM 3, I/O
 C - KERNAL + INT (lo), RAM 0, I/O
 D - KERNAL + EXT (lo), RAM 1, I/O
 E - KERNAL + BASIC, RAM 0, CHARROM
 F - KERNAL + BASIC, RAM 0, I/O

5.2.2.1 C-128 MONITOR COMMAND DESCRIPTIONS -

 COMMAND: A
 PURPOSE: Enter a line of assembly code.
 SYNTAX: A <address> <opcode mnemonic> <operand>
 <address> A hexadecimal number indicating the location
 in memory to place the opcode.
 <opcode mnemonic> A standard MOS technology assembly
 language mnemonic, eg., LDA, STX, ROR
 <operand> The operand, when required, can be of any
 of the legal addressing modes. (For zero-page
 modes a 2 digit hex number is whose value is
 less than $100. For non-zero page addresses
 4 digit hex numbers are required.)

 A RETURN is used to indicate the end of the assembly line. If
there are any errors on the line, a question mark is displayed to
indicate an error, and the cursor moves to the next line. The screen
editor can be used to correct the error(s) on that line.

 EXAMPLE:

 .A 1200 LDX #$00
 .A 1202

 NOTE: A period (.) is equal to the ASSEMBLE command.

 EXAMPLE:

 . 2000 LDA #$23

 COMMAND: C
 PURPOSE: Compare two areas of memory.
 SYNTAX: C <address 1> <address 2> <address 3>

 <address 1> is a hexadecimal number indicating the start
 of the area of memory to compare against.
 <address 2> is a hexadecimal number indicating the end
 of the area of memory to compare against.
 <address 3> is a hexadecimal number indicating the start
 of the other area of memory to compare with.

 Addresses that do not agree are printed
 on the screen.

 COMMAND: D
 PURPOSE: Disassemble machine code into assembly language mnemonics
 and operands.
 SYNTAX: D [<address>] [<address 2>]

 <address> A hexadecimal number setting the address to
 start the disassembly.
 <address 2> An optional hexadecimal ending address of code
 to be disassembled.

 The format of the disassembly is only slightly different than the
input format of an assembly. The difference is that the first character
of a disassembly is a comma rather than an A (for readability), and the
hexadecimal of the code is listed as well.

 A disassembly listing can be modified using the screen editor.
Make any changes to the mnemonic or operand on the screen, then hit the
carriage return. This enters the line and calls the assembler for

further instructions.

 A disassembly can be paged. Typing a D <return>causes the next
page of disassembly to be displayed.

 EXAMPLE:

 D 3000 3003
 .3000 A900 LDA #$00
 .3002 FF ???
 .3003 D0 2B BNE $3030

 COMMAND: F
 PURPOSE: Fill a range of locations with a specified byte.
 SYNTAX: F <address 1> <address 2> <byte>

 <address 1> The first location to fill with the <byte>.
 <address 2> The last location to fill with the <byte>.
 <byte value> A 1 or 2 digit hexadecimal number to be written

 This command is useful for initializing data structures or any
 other RAM area.

 EXAMPLE:

 F 0400 0518 EA

 Fills memory locations from $0400 to $0518 with
 $EA (a NOP instruction).

 COMMAND: G
 PURPOSE: Begin execution of a program at a specified address.
 SYNTAX: G <address>

 <address> The address where execution is to start.
 When address is left out, execution begins
 at the current PC. (The current PC can be
 viewed using the R command.)

 The GO command restores all registers (displayable by the R
command) and begins execution at the specified starting address.
Caution is recommended in using the GO command. To return to C-128
MONITOR mode after executing a machine language program, use the BRK
instruction at the end of the program.

 EXAMPLE:

 G 140C

 Execution begins at location $140C.

 COMMAND: H
 PURPOSE: Hunt through memory within a specified range for all
 occurences of a set of bytes.
 SYNTAX: H <address 1> <address 2> <data>

 <address 1> beginning address of hunt procedure
 <address 2> ending address of hunt procedure
 <data> data set to search for data may be
 hexadecimal or an ASCII string.

 EXAMPLE:

 H A000 A101 A9 FF 4C Search for data $A9,

 $FF, $4C, from A000
 to A101.

 COMMAND: L
 PURPOSE: Load a file from cassette or disk.
 SYNTAX: L <"filename">[, <device>] [,alt_load_address]

 <"filename"> Is any legal C-128 filename.
 <device> Is a hexadecimal number indicating the
 device to load from.

 [alt_load_address] option to load a file to a
 specified address.

 1 is cassette
 8 is disk (or 9, A, etc.)

 The LOAD command causes a file to be loaded into memory. The
starting address is contained in the first two bytes of the file (a
program file). In other words, the LOAD command always loads a file
into the same place it was saved from. This is very important in
machine language work, since few programs are completely relocatable.
The file is loaded into memory until the end of file (EOF) is found.

 EXAMPLE:

 L "PROGRAM 1",8 Load the file named PROGRAM
 from the disk.

 COMMAND: M
 PURPOSE: To display memory as a hexadecimal and ASCII dump within the
 specified address range.
 SYNTAX: M [<address 1>] [<address 2>]

 <address 1> First address of memory dump. Optional;
 if omitted, one page is displayed.
 The first byte is the bank number to
 be displayed, the next 4 bytes are the
 first address to be displayed.
 <address 2> Last address of memory dump. Optional;
 if omitted, one page is displayed.
 The first byte is the bank number to
 be displayed, the next 4 bytes are the
 ending address to be displayed.

 Memory is displayed in the following format:

 >1A048 41 E7 00 AA AA 00 98 65 45 :A!.*..VE

 Memory content may be edited using the screen editor. Move the
cursor to the data to be modified and type the desired correction and
hit return. If there is a bad RAM location or an attempt to modify ROM
has occured, an error flag (?) is displayed. An ASCII dump of the data
is displayed in REVERSE (to contrast with other data displayed on the
screen) to the right of the hex data. When a character is not
printable, it is displayed as a reverse period (.). As with the
disassembly command, paging down is accomplished by typing M and RETURN.

 EXAMPLE:

 >21C00 41 E7 00 AA AA 00 98 56 45 :A!.*..VE
 >21C08 42 43 02 AZ AD 11 94 57 44 :BC.*..WD
 >21C10 45 E7 00 DF FE 07 06 46 47 :E!.*..EF

 COMMAND: R
 PURPOSE: Show important 6502 registers. The program status register,
 the program counter, the accumulator, the X and Y index
 registers and the stack pointer are displayed.
 SYNTAX: R

 EXAMPLE:

 R
 PC SR AC XR YR SP
 ; 1002 01 02 03 04 F6

 NOTE: ; (semi-colon) can be used to modify register displays
 in the same fashion as > can be used to modify memory
 registers.

 COMMAND: S
 PURPOSE: Save the contents of memory onto tape or disk.
 SYNTAX: S <"filename">,<device>,<address 1>,<address 2>

 <"filename"> Any legal C-128 filename. To save the data,
 the filename must be enclosed in double
 quotes. Single quotes cannot be used.
 <address 1> Starting address of memory to be saved.
 <address 2> Ending address of memory to be saved + 1.
 All data up to but not including the byte
 of data at this address is saved.

 The file created by this command is a program file. The first two
bytes contain the starting address <address 1> of the data. The file
may be recalled by the L command.

 EXAMPLE:

 S "GAME",8,0400,0BFF

 Saves memory from $0400 to $0BFF onto disk.

 COMMAND: T
 PURPOSE: Transfer segments of memory from one memory area to another.
 SYNTAX: T <address 1> <address 2> <address 3>

 <address 1> Starting address of data to be moved.
 <address 2> Ending address of data to be moved.
 <address 3> Starting address of new location where data
 will be moved.

 Data can be moved from low memory to high memory and
 vice-versa. Additional memory segments of any length can
 be moved forward or backward. An automatic 'compare' is
 performed as each byte is transfered and any differences
 are listed by address.

 EXAMPLE:

 T 1400 1600 1401

 Shifts data from $1400 up to and including
 $1600 one byte higher in memory.

 COMMAND: V
 PURPOSE: Verify a file on cassette or disk with the memory contents.
 SYNTAX: V <"filename">[, <device>] [,alt_start_address]

 <"filename"> Is any legal C-128 filename.
 <device> Is a hexadecimal number indicating which
 drive the file is on;

 cassette is 1 or 01, disk is 8 or 08, 09, etc.

 [alt_start_address] option to start verification at
 this address.

 The verify command compares a file to memory contents. The C-128
responds with VERIFYING. If an error is found, the word ERROR is added;
if the file is successfully verified, the cursor reappears.

 EXAMPLE:

 V "WORKLOAD", 8

 COMMAND: X
 PURPOSE: Exit to BASIC
 SYNTAX: X

 COMMAND: > (greater than)
 PURPOSE: Can be used to set 1 to 8 memory locations at a time.
 SYNTAX: > address data byte 1 <data byte 2...8>

 address: First memory address to set
 data byte 1 Data (in HEX) to be put at address
 <data byte 2...8>: Data to be placed in the successive
 memory locations following the first
 address. (optional)

 COMMAND: @ (at sign)
 PURPOSE: Can be used to display the disk status
 SYNTAX: @ [unit#], disk cmd string

 unit # device unit number (in HEX)
 disk cmd string String command to disk

 NOTE: @ alone gives the status of the disk drive.

5.3 C-128 EDITOR ESCAPE SEQUENCES

This section contains a definition of the escape sequences that are
present in the C128.

The following is a definition of the ESCAPE sequences that are available
on the C128 and a brief description of what each sequence does. ESCAPE
sequences are entered by momentarily pressing the "ESC" key followed by
the key listed below.

KEY FUNCTION
--- --------
A Enable auto-insert mode
B Set bottom of screen window at cursor position
C Disable auto-insert mode
D Delete current line
E Set cursor to non-flashing mode
F Set cursor to flashing mode
G Enable bell (control-G)
H Disable bell
I Insert line
J Move to start of current line
K Move to end of current line
L Enable scrolling
M Disable scrolling
N Return screen to normal (non-reverse video) state (80 column
 screen only)
O Cancel insert, quote, and reverse modes
P Erase to start of current line
Q Erase to end of current line
R Set screen to reverse video (80 column screen only)
S Change to block cursor (80 column screen only)
T Set top of screen window at cursor postion
U Change to under (80 column screen only)
V Scroll up
W Scroll down
X Swap 40/80 column display output device
Y Set default tab stops (8 spaces)
Z Clear all tab stops
@ Clear to end of screen

5.4 C128 EDITOR CONTROL CODES

The following control characters in the CBM ASCII table have been added
or changed from those found in the C64. Codes not shown in this table
have the same function as found in the C64.

CHR$ KEYBOARD
VALUE CONTROL CHARACTER FUNCTION
----- -------- --------- --------
2 B Underline on (80 column screen only)
7 G Produces bell tone
9 I Tab character
10 J Line feed character
11 K Disable shift Commodore key (formerly code 9)
12 L Enable shift Commodore key (formerly code 8)
15 O Turn on flash on (80 column screen only)
24 X Tab set/clear
27 [Escape character
130 Underline off (80 column screen only)
143 Turn flash off (80 column screen only)

 CHAPTER 6

 SYSTEM MEMORY MANAGEMENT

6.1 INTRODUCTION

 The MEMORY MANAGEMENT UNIT (MMU) is designed to allow complex
control of the C-128 system memory resources. It handles all of the
standard C64 modes of operation in a fashion as to be completely
compatible with the C64. Additionally, it controls the management of
particular C-128 modes including the Z80 mode. Below is a list of MMU
features:

 1. Generation of Translated Address Bus (TA8 - TA15).
 2. Generation of control signals for different processor modes
 (C-128, C64, Z80).
 3. Generation of CAS select lines for RAM banking.

6.2 C128 MEMORY ORGANIZATION

 Essential to the understanding of the MMU is an understanding of
the C-128 system memory organization, which is controlled through the
registers of the MMU. These registers control the MMU's translation of
addresses from the 8500 processor, totalling 64K bytes of address space,
into the 1M bytes of RAM and up to 96K internal bytes and 32K bytes
external ROM available to the C-128 system. Following is a diagram of
the C-128 memory map.

 insert map here from MMU spec pg 2-2

6.2.1 C-128 ROM MEMORY ORGANIZATION

 Refer to figure 6.1 entitled C128 Memory Map. The memory map is an
important consideration in maintaining C64 compatibility. The standard
map is shown for the C64 mode and some of the alternate modes are shown
in figure 6.2, C64 Alternate Memory Organization (To be supplied). All
C64 modes are completely compatible with the C64 computer, as the C-128
basically becomes a C64 when in C64 mode. The details of MMU Register
location/operation are discussed further in this chapter.

 C-128 mode is achieved at system reset, and is controlled by a bit
in the MMU configuration register. In C-128 mode the MMU asserts itself
in the C-128 memory map at $FF00 and in the I/O space starting at $D500.
Use of MMU registers located at $FF00 allows memory management without
actually having the I/O block banked in at the time and with a minimum
loss of contiguous RAM. The MMU is completely removed from the memory
map in C64 mode (though it is still used by the hardware to manage
memory).

 The ROM's in C64 mode, both internally and externally, look just
like the C64 ROM's. The internal BASIC and KERNAL provide the C64 mode
with the normal C64 operating system in ROM. This ROM actually
duplicates some of the ROM used in C-128 Mode. In C-128 mode, up to 48K
of Operating System is present, with the exact amount being set by
software control. This allows quicker access to underlying RAM by
turning off uneeded sections of the Operating System.

 The External ROM's represented on the memory map are those used in
the C64 mode, and obey the C64 rules for mapping, i.e. cartridges
assert themselves in hardware via the /EXROM and /GAME lines. External
ROM's in C-128 mode obey rules similar to the TED scheme for ROM
banking, i.e. they are polled at system initialization to see if they
exist and what priority they are to run with. This allows much more
flexibility than the hardwire ROM substitution method, since the kernal
and Basic ROM,s can be swapped out for an application program, swapped
out for external program control, or turned off all together. This
banking manipulation is accomplished by writing to the Configuration
Register at location $D500 or $FF00 in the MMU.

 The hardware also features the ability to store preset values for
the configuration and force a load of the configuration register by
writing to one of the LCR (LOAD CONFIGURATION REGISTER) registers. This
allows the programmer to imply that any time an access to a bank where
data is stored occurs, for example, that ROM not appear in the bank by
default.

 insert C64 Alt mem map here

6.2.2 C-128 RAM MEMORY ORGANIZATION

 Refer again to figure 6.1, the C128 Memory Map. The RAM present in
the system is actually composed of 128K by 8 bytes of contiguous DRAM.
The RAM is accessed by banking in pages of 64K (the maximum range of the
8500 and Z80). The area shown as RAM is representative of what the
microprocessor would see if all ROM were disabled. Bank switching can
be accomplished in one of two ways.

 The bank in use is a function of the value stored in the
configuration register. (There are actually a couple of memory modes
that override parts of the bank as selected here. These modes are
mentioned and covered in detail in a later section.) A store to this
register will always take effect immediately. An indirect store to this
register, using programmed bank configuration values, can be
accomplished by writing to one of the indirect load registers known as
LCR's (Load Configuration Register), located in the $FF00 region of
memory. By writing to an LCR the contents of its corresponding PCR
(PreConfiguration Register) will be latched into the configuration
register. This allows the programmer to set up four different
preprogrammed configurations that allow each bank to be personalized
ahead of time. i.e., Bank 1 being a Data Bank might be strictly a RAM
bank with no ROM or I/O enabled, where Bank 0 being the system ROM and
I/O enabled by default. Additionally , reading any LCR will return the
value of its corresponding PCR.

 When dealing with 64K banks of memory at once, it may be desirable
to bank in Bank 1 but still retain the system RAM (Stack, Zero page,
Screen,etc.) The MMU has provisions for what is referred to as commom
RAM. This is RAM that does not bank, and is programmable in size as to
whether it appears at the top, bottom, or both in the memory map. The
size is set by bits 0 and 1 in the RAM Configuration Register (RCR). If
the value of the bits is zero, 1K will be common. Values of one, two
and three produce common areas of 4K, 8K, and 16K respectively. If bit
two of the RCR is set, bottom memory is held common, if bit 3 is set,
then top of memory is common. In all cases, common RAM is physically
located in Bank 0.

 Zero page and page one can be located (or relocated) independently
of the RCR. When the processor accesses an address that falls within
zero page or page 1, the MMU adds to the high order processor address
the contents of the P0 register pair or the P1 register pair,
respectively, and puts this new address on the bus, including the
extended addressing bits A16 and A17. RAM banking will occur as
appropriate to access the new address. Write to the P0 and P1 registers
will be stored in a prelatch until a write to the low byte of the zero
page register occurs. This prevents any change to the system
configuration from occuring until all changes have been completed,
preventing an invalid interim state.

 At the same time, the contents of the P0 and P1 registers are
applied to a digital comparator, and a reverse substitution occurs if
the address of the 8500 falls within the page pointed to by the
register. This results in not just relocating the zero or one page but
swapping the zero or one page with the memory that it replaced. Note
that upon system reset, the pointers are set to true zero page and true
page one.

 For VIC chip access, two bits in the MMU status register substitute
for address lines A16 and A17, making it possible to steer the VIC
anywhere in the 256K range.

 Note that AEC is the mechanism that the MMU uses to steer a VIC

space address, i.e., when AEC is low a VIC access is assumed. This
results in the VIC bank being selected as well for an outside DMA, since
this too will pull the AEC line low.

6.3 MMU AND I/O MEMORY ORGANIZATION

 The block of memory represented by the I/O block on figure 6-3 is
an expanded view of the memory block entitled I/O +CHAROM, shown on the
C-128 memory map, figure 6-1. When the I/O block exists (And it may not
depending on the configuration in place at the time), access to VIC,
SID, and I/O as well as the addition of the MMU can be accomplished.
All I/O functions remain as they were previously on the C64 with the
exception that the MMU has been added. With the exception of four
registers that are asserted in the zero page in the C-128 mode, all new
MMU registers appear in an unused slot in the memory I/O block, though
they will only appear in C-128 mode. The descriptions for the MMU
registers can be found in the section entitled THE MEMORY MANAGEMENT
UNIT.

 insert figure 6-2 here I/O block

6.4 MMU REGISTER DESCRIPTION

 The MMU is the mechanism by which the various memory modes shown in
the C-128 Memory Map are chosen. Additionally, the MMU provides for Z80
mode, which is not shown on that diagram. Following is a description of
the MMU register types. The figure entitled MMU Register Map is
provided to illustrate some of the text that is to follow. Note that in
C64 mode the MMU completely disappears from the system's memory map.

 Note that the data out of the MMU is valid only on AEC high. This
is necessary to avoid bus contention during a VIC cycle.

 insert MMU map here - fig 6-4.

6.4.1 THE CONFIGURATION REGISTER

 The CONFIGURATION REGISTER (CR) controls the ROM, RAM, and I/O
configuration of the C-128 system. It is located at $D500 in I/O space
and at $FF00 in system space.

 In C-128 mode, bit 0 controls whether an I/O space ($D000 - $DFFF)
or a ROM/RAM access occurs. A low will select I/O, a high will enable
some kind of ROM/RAM acccess, the nature of which is controlled by other
bits in this register. The value of this bit is stored in a prelatch
until the fall of the clock in order to prevent its changing in an
unstable situation. In C64 mode of the I/OSE line, the hardware line
driven by this bit, is forced high. Note that when not I/O space, the
ROM/RAM access is controlled by the defined ROM Hi configuration bits,
that are described later. This bit resets to 0. When the I/O bit is
high, MMU registers D500 to D508 will assert themselves; when the bit is
low, these registers disappear from the memory map. MMU registers FF00
to FF04 are always available in C128 mode. The hardware line I/OSE
always reflects the polarity of this bit when in C128 mode.

 Bit number 1 controls processor access to ROM low space ($4000 -
$7FFF), in C-128 mode. If the bit is high, the area appears as RAM, and
a RAM access CAS enable is generated to the appropriate RAM bank, which
is determined by the other bits in this register. If low, system ROM is
located in the space. This bit affects the memory status lines MS0 and
MS1 which are decoded by the PLA to generate ROM chip selects.
Selecting ROM here drives both memory status lines low when the
processor address falls within the specified low space range. This bit
resets low to include the C-128 Basic Low ROM.

 The next two bits, bits 2 and 3, determine for C-128 the type of
memory that will be located in the mid space ($8000 $BFFF). If they are
both low, system ROM will be located here. If bit 2 alone is high,
internal function ROM is located here. External function ROM appears
for bit 3 being alone high, and RAM appears, along with the proper CAS
generation, for both bits set high. These bits also affect the hardware
memory access lines. When in the aforementioned mid block address
range, MS0 reflects the status of bit 3, and MS1 reflects the status of
bit 2. These bits both reset low to start out with Basic high.

 Bits 4 and 5 determine the contents of the high block ($C000 -
$FFFF) for C-128 mode, and have no effect on C64 mode. As with the mid
space, both bits zero set up system ROM, bit 4 high sets up internal
function ROM., bit 5 high sets up external function ROM, and both bits
high set up RAM. Note that the I/O configuration bit, when set for I/O
space, leaves the area from $D000 to $DFFF as I/O space regardless of
the values of these bits. If not set for I/O space, $D000 to $DFFF
contain the character ROM; thus, there is always a hole in high ROM. As

with the other ROM selection bits, these bits are reflected by the
memory status lines when this region of address is accessed. Bit 5
corresponds to MS0 and bit 4 to MS1. Both of these bits reset to low to
permit Kernal and Character ROM to locate this address space.

 Note that there is always a hole in high ROM during C128 mode for
the MMU registers at FF00 to FF04. This hole is brought about by
holding both MS lines high and both CAS enable lines high.

 Finally, bits 6 and 7 control the RAM bank selection. Their
actionis dependent, though, upon the version of the MMU. For the
current, 128K system, only bit 6 is actually significant. Bit 6 low
will select bank zero by dropping CAS0; bit 6 will select bank one by
dropping CAS1. Bit 7 in this configuraation does not do anything. Note
that for a RAM share status that is non-zero will override the normal
CAS enable generation to provide CAS0 for all shared memory. Also, for
any area of memory that does not have its ROM bank bits set for RAM
access, both CAS enable lines will be high. For any access to the MMU
registers from FF00 to FF04, both CAS enable lines and both MS lines
will be high. Not ethat in C64 mode the bank used follows the same
rules as in C128 mode, thoough banks cannot be changed once in C64 mode.
The 256K bonding option replaces the two CAS lines with translated
address lines TA16 and TA17. In this configuration, bit 6 becomes TA16
and bit 7 becomes TA17. Thus, when both bits are low, RAM bank 0 is
selected. When bit 6 is high, RAM bank 1 is selected. Bit 7 high and 6
low selects RAM bank 2, and both high selects RAM bank 3. At the
present no simple way has been defined to turn off RAM selection for
holes like the FF00 to FF04 MMU registers with this method of selection
as there was with CAS steering for the 128K MMU. Regardless of the MMU
version, the reset configuration of both of these is zero, selecting ROM
bank 0. The schemes of extended addressing used here are also used for
Page Zero and Page One offset and for VIC bank selection.

6.4.2 THE PRECONFIGURATION MECHANISM

 The preconfiguration mechanism is a feature of the MMU that allows
the Configuration Register to be loaded with one of several memory
configurations with a minimum of time and memory on part of the user.
The scheme makes use of two sets of registers, the PreConfiguration
Registers and the Load Configuration Registers.

 The PreConfiguration registers (PCRA - PCRD) are used to store
several different memory configurations that may be changed between with
a single store instruction. The format of each PCR is the same as for
the CR, but when a value is stored to a PCR, no immediate effect takes
place. They occupy I/O space from $D501 to $D504. These registers
always reset to all zeros.

 Load Configuration Registers (LCRA - LCRD) directly correspond with
the PCR on a one to one basis. A write to an LCR causes the contents of
the corresponding PCR to be transferred to the CR. A read of any LCR
returns the value of its corresponding PCR. LCR's are located in system
space from $FF01 to $FF04. Neither the LCR's nor the PCR's have any
effect in C64 mode. These registers reset to all zeros. Note that
these and the configuration register at $FF00 will always be available,
completely independent of the ROM, RAM, or bank configuration defined
for HI ROM space; any address in this range causes the MMU to force both
memory status lines and both CAS enable lines high.

6.4.3 THE MODE CONFIGURATION REGISTER

 The control of the current system mode is governed by the Mode
Configuration Register (MCR). It controls which processor (8500 or Z80)
and which operating system mode (C64 or C-128) is currently in

operation, and handles other overhead of the different operating modes.
This register is located in the I/O space at $D505.

 The first bit, bit 0, controls which processor is in control. It
is usually seen inverted as the output signal /Z80EN. When low, it
indicates that the processor is the 8502. This is the reset
configuration. When high, the Z80 processor takes over, and all
accesses to memory from $0000 to $0FFF, is translated to $D000 to $DFFF,
where the CP/M ROM BIOS physically exists in ROM. A change to this bit
is held in prelatch until a clock transition in order to prevent
processor changing in the midst of an instruction execution. For Z-80
BIOS operation the memory status lines MS0 and MS1 reflect system ROM
(both low) for accesses from 001F to 0FFF, otherwise they will both be
high. RAM can still be banked by the A16 bit, which controls CAS0 and
CAS1. Note that in C64 mode the /Z80EN line is forced low regardless of
the value of this bit.

 Bits 1 and 2 are unused, but are reserved for future expansion as
port lines. Currently, they return high if read, and cannot be written
to.

 Bit 3 is the FSDIR control bit. It is used as an output to control
the fast serial disk data direction buffer hardware, and as an input to
a sense fast disk enable signal. The MMU pin FSDIR reflects the status
of this bit, which is reset to zero. This register bit is implemented
as a bidirectional port, similar to a bit of an MOS 6529 port. The
value written to the port effects the output polarity and the value that
will be read unless the port is driven low externally, at which time it
will read low. If the external driving source is removed, the bit will
then resume its previous state.

 Bits 4 and 5 are the /GAME and /EXROMIN sense bits, respectively.
They directly reflect the hardware cartridge control lines /GAME and
/EXROM as used in C64 mode. They are not used by C-128 cartridges, so
if they are detected in C-128 mode, a C64 cartridge is present and C64
mode should be asserted. These bits are defined to be bidirectional
bits which act very much like the bits in a 6529 port, i.e., a value
written to the bit effects the output polarity of its corresponding
hardware line and the value thatwill be read from the bit unless the
port is driven low externally, at which time it will read low. If the
external driving source is removed the bit will resume its previous
state. The /GAMEIN bit is used as an output to control the banking of
color RAM that permits split screen graphics in C128 mode. The /EXROMIN
sense bit has no dedicated output function at the present time.

 The operating system mode is set by the next bit, bit 6. This bit
is cleared to zero upon reset and its presence enables all MMU registers
and other C-128 features, as well as asserting the C-128 control line in
hardware. Setting this bit removes the MMU from the memory map and sets
the system up in C64 mode. Note that the C-128/64 (MS3) hardware line
reflects a logical inversion of the level of this bit.

 Bit 7 is a read-only bit used to detect the status of the screen
mode switch, as presented in hardware to the 40/80 column pin. If this
bit is high, the 40/80 column switch is open, if low, the switch is
closed. The display mode is set according to a software interpretation
of this bit. This bit is also available as an output bit, similar in
characteristics to the /GAMEIN and /EXROMIN bits, but its output
function is undedicated at this time.

6.4.4 THE RAM CONFIGURATION REGISTER

 The RAM Configuration Register sets up the RAM segmenting
parameters for both the processor and the block pointer for the VIC

chip. This register is located in the I/O space at $D506.

 Bits 0 and 1 function together to determine the size of the RAM to
be shared between banks (assuming that sharing is enabled). With common
RAM, the RAM bank bits of the configuration register are basically
overridden, as the selected bank of RAM is used for the non-common
areas, while bank 0 is used for the specified common areas. ROM and I/O
block configuration bits, however, are still important, If the value of
the bits together is 0, then 1K of RAM is held common. If the value is
1, then 4K, 2, then 8K, 3, then 16K. These bits have no effect in C64
mode, and the reset value of both bits is defined to be zero.

 Bits 2 and 3 function to determine how and if RAM is kept common.
If both are low, no sharing takes place. If bit 2 is set, the bottom
RAM is shared. If bit 3 is set, the top RAM is shared. Both may be set
for sharing in top and bottom. The reset configuration sets both of
these bits zero, such that no common memory is present. For the 128K
MMU, the selection of the common memory is done by forcing CAS0 low and
CAS1 high for all common memory accesses. In the 256K MMU, accesses to
common memory must be translated to access only bank 0 RAM.

 The next two bits, numbers 4 and 5, are not used presently, but are
reserved as block pointer bits for addressing up to 1 megabyte of RAM,
in 256K blocks. Taking 5 and 4 together as a number, if they are set to
zero, block 1 is in effect; if 1 block 2 is in effect; and so on,
permitting four blocks of 256K to be selected. The present MMU does
nothing with these bits, they always return low when read. A future MMU
may take advantage of the extended banking that these bits provide, but
to do so, two pins must be freed. Currently, the A4/A5 and A6/A7 inputs
can become one A4/A5/A6/A7 input, freeing one pin. The other pin to be
freede will be MUX. The MMU bonding scheme will allow for these
aformentioned pins to become A18 and A19.

 Bits 6 and 7 function together as a RAM block pointer for VIC. For
the 128K MMU, bit 7 is ignored, while bit 6 is used to drive CAS0 low
when set low or CAS1 low when set high, thus selecting either RAM bank 0
or RAM bank 1. A 256K MMU selects the bank by bringing out bit 6 as
TA16 and bit 7 as TA17. Either scheme allows the VIC to be selected
independently from the processor bank. When in 2MHz mode the 80-column
chip takes over causing the VIC to be diswabled. The disabling is
affected by the VIC chip itself holding AEC constantly high, and thus is
not directly affected by actions of the MMU. Note that since a VIC
cycle is detected by AEC low, that any DMA will put the MMU into VIC
configuration, as it too brings AEC low. In future systems with
multiple 256K blocks, the VIC chip will be able to access RAM in Block 0
only.

6.4.5 THE PAGE POINTERS

 The page pointers are four registers that allow independent
relocation of pages zero and one when running under either processor.
These are especially useful when running under the 8502 as they help to
remove some of the zero page and stack limitations normally associated
with the 6502 family processors.

 For zero page relocation the MMU provides the Page Zero Pointer
High (P0H) and Page Zero Low (P0L) registers. Bits 0 and 3 of the P0H
register correspond to translated address TA16 and TA19, respectively,
for any page zero access ($0000 - $00FF). In the 128K system, bit 0
controls the generation of CAS0 or CAS1 depending on whether it is low
or high, nad bits 1 to 3 are ignored. In a 256K system bits 0 and 1 are
directly translated to TA16 and TA17 and bits 2 and 3 are ignored. In a
1 Megabyte extended system, bits 2 and 3 become extended addressing bits
TA18 and TA19. The remaining bits will always return zero. These bits

override the RAM bank bits. The ROM block, and the I/O block bits
determine which physical page appears as zero page for all zero page
accesses. A write to the POH register is stored in prelatch until a
write to the P0L register occurs. Bits 0 to 7 of the P0L correspond to
Translated Addresses TA8 to TA15 for any zero page access, thus
relocating the zero page. Any access to the area that has become the
relocated zero page is switched back to the original zero page. A write
to this register sets up the zero page transfer, which can occur as soon
as the next low clock cycle. Register P0L is located in the I/O space
at $D507, while register P0H is located at $D508.

 The registers for page one relocation, the Page One Pointer High
(P1H) and the Page One Pointer Low (P1L) do for page one essentially
what P0H and P0L do for the zero page. The functions and bit
correspondences are exactly the same. P1L is located in the I/O space
at $D509 and P1H at $D50A. Note that both register pairs are
initialized to zero upon reset, forcing true page zero and true page one
access.

6.4.6 SYSTEM VERSION REGISTER

 The final register discussed here is the System Version Register,
which is located at $D50B in the I/O block. This register is a
read-only register that returns a code containing the version of the MMU
and the size and capability of the system's memory. The lower nybble,
bits 0 through 3, contain the version of the MMU in the system. The
upper nybble, bits 4 through 7, contains a code relating the number of
memory blocks available in the system. This allows software to
compensate for any later systems with more memory available, and should
make it quite simple for the current C-128 to remain compatible with any
software written in the future for an expanded C-128. The initial C128
will read 2 2 here, indicating two 64K blocks are available. A zero in
this nybble would indicate sixteen 64K blocks.

 Note : For a physical description and MMU pin layout and
definitions, absolute maximum ratings, operating conditions refer to the
MMU specification.

 CHAPTER 7

 KERNAL JUMP TABLE

7.1 C/64 MODE AND C128 MODE KERNAL JUMP TABLE

 Vectors for C128

 HEX VECTOR
 ADDRESS NAME FUNCTION
 FF53 boot_call ;boot load program from disk
 FF56 phoenix ;call all function card's cold start routines
 FF59 lkupla ;search tables for given la
 FF5C lkupsa ;search tables for given sa
 FF5F swapper ;swap to alternate display device (editor)
 FF62 dlchr ;init 80-col character ram (editor)
 FF65 pfkey ;program function key (editor)
 FF68 setbnk ;set bank for load/save/verify
 FF6B getcfg ;convert bank to mmu configuration
 FF6E jsrfar ;JSR to any bank, RTS to calling bank
 FF71 jmpfar ;JMP to any bank
 FF74 indfet ;LDA (fetvec),Y from any bank
 FF77 indsta ;STA (stavec),Y to any bank
 FF7A indcmp ;CMP (cmpvec),Y to any bank
 FF7D primm ;print immediate (always JSR to this routine!)

 C64 vectors

 HEX VECTOR
 ADDRESS NAME FUNCTION
 FF80 .byte 0 ;release number of kernal
 FF81 cint ;init screen editor & display chips (editor)
 FF84 ioinit ;init i/o devices (ports, timers, etc.)
 FF87 ramtas ;initialize ram for system
 FF8A restor ;restore vectors to initial system
 FF8D vector ;change vectors for user
 FF90 setmsg ;control o.s. messages
 FF93 secnd ;send sa after listen
 FF96 tksa ;send sa after talk
 FF99 memtop ;set/read top of memory
 FF9C membot ;set/read bottom of memory
 FF9F key ;scan keyboard (editor)
 FFA2 settmo ;set timeout in ieee ????????? unused ???????????
 FFA5 acptr ;handshake serial byte in
 FFA8 ciout ;handshake serial byte out
 FFAB untlk ;send untalk out serial
 FFAE unlsn ;send unlisten out serial
 FFB1 listn ;send listen out serial
 FFB4 talk ;send talk out serial
 FFB7 readss ;return i/o status byte
 FFBA setlfs ;set la,fa, sa
 FFBD setnam ;set length and fn adr
 FFC0 open ;open logical file
 FFC3 close ;close logical file
 FFC6 chkin ;open channel in
 FFC9 ckout ;open channel out
 FFCC clrch ;close i/o channel
 FFCF basin ;input from channel
 FFD2 bsout ;output to channel
 FFD5 loadsp ;load from file
 FFD8 savesp ;save to file
 FFDB settim ;set internal clock
 FFDE rdtim ;read internal clock

 FFE1 stop ;scan stop key
 FFE4 getin ;get char from queue
 FFE7 clall ;close all files
 FFEA clock ;increment clock
 FFED jscrorg ;return screen size
 FFF0 jplot ;read/set x,y coord (editor)
 FFF3 jiobase ;return i/o base

 FFFA nmi
 FFFC reset
 FFFE irq

 CHAPTER 8

 OVERALL DETAILED SYSTEM MEMORY MAP

 There are three memory maps shown on the following pages. The maps
include: 1.) C128 BASIC MAP, 2.) C128 DISPLAY MAP and 3.) C128 RAM MAP.

8.1 C128 BASIC MAP

 a brief explanation of the pointer structure in basic:

 RAM bank 0 RAM bank 1
 FFFF |---------------|<=(MAX_MEM_0)* |---------------|<=(MAX_MEM_1)
 | | | |
 | | | |
 | Free RAM | | Strings |
 | | | |
 | | | |
 | | |---------------|<===(FRETOP)
 | | | |
 |---------------|<==(TEXT_TOP) | |
 | | | |
 | | | |
 | | | |
 | Text area | | |
 | | |---------------|<===(STREND)
 | | | |
 | | | |
 4000===>|---------------|<=\ | Arrays |
 | | \ | |
 | Bit Mapped | \ | |
 | Screen | (TXTTAB) | |
 | (Sometimes) | / |---------------|<===(ARYTAB)
 |(and color RAM)| / | |
 1C00===>|---------------|<=/ | |
 | | | |
 | Misc. Buffers | | |
 | | | |
 1000===>|---------------| | |
 | | | Variables |
 | Misc. Var's | | |
 | | | |
 0800===>|---------------| | |
 | | | |
 | Text Screen | | |
 | | | |
 0400===>|---------------|<=============>|---------------|<===(VARTAB)
 | | | |
 | Common RAM | | Common RAM |
 | | | |
 0000 |_______________| |_______________|

 1. * indicates a new pointer.

8.2 C128 DISPLAY MAP

 TEXT HIRES MULTI HIRES MULTI
 MODE BIT-MAPPED BIT-MAPPED SPLIT SPLIT
$DC00 |---------- ------------ ------------ ------------ ------------
 | |Text color Bit-mapped Text color Text color/ (*1)
 | | info. color info. info. BM color info.
$D800 |---------- ------------ ------------ ------------ ------------
 |

 |
 ~
 |
 |
$4000 | --------- ------------ ------------ ------------ ------------
 | |
 | | Not Bit Bit Bit Bit
 | ~ map map map map
 | | used. screen screen screen screen
 | |
$2000 | --------- ------------ ------------ ------------ ------------
 | | Not Bit-mapped Bit-mapped Bit-mapped Bit-mapped
 | | used. color info. color info. color info. color info.
$1C00 | --------- ------------ ------------ ------------ ------------
 |
 |
 |
$0800 | --------- ------------ ------------ ------------ ------------
 | | Text Not Not Text Text
 | | screen used. (*2) used. (*2) screen screen
$0400 | --------- ------------ ------------ ------------ ------------
 |

 (*1) There are actually 2 banks of RAM that can be mapped into this slot in
 the map. By selecting one bank during the Bit Mapped portion of the
 screen (top), and the other during the TEXT portion of the screen
 (bottom), each mode will have unique RAM for it's own purposes.

 (*2) Although the information on the TEXT screen is not actually being
 displayed at this time, it is still being accessed and updated during
 any operation normally routed to the screen (such as default print
 statements, error messages, etc.) "Not used" is NOT meant to imply
 that during this mode, all print operations are going into the
 bit-bucket.

 3) Text mode requires 1000 character pointer for screen data, and 1000 low
 bit nybbles for foreground color.

 4) Hi-Res mode requires 8000 bytes for the bit map screen and 1000 bytes for
 foreground and background data.

 5) Multi-color bit map mode requires 8000 bytes for the bit map screen and
 2000 bytes for multicolor data.

 6) Hi-Res split requires the same memory as Hi-Res plus the memory normally
 used in text mode

 7) Multi-split requires the same memory as Multi Color Bit Mapped Mode plus
the same amount of memory as text mode. Per note 1 above separate memory must
be used to separate text color nybbles from the multi-color mode nybbles.

8.3 C128 RAM MAP

 $0A00>|---------------| $1300>|---------------| $1C00>|---------------|
 | | | Basic | | |
 | | | Absolute | | |
 | Basic | | Variables | | |
 | | | | | |
 $0900>| Run-Time | $1200>|---------------| $1B00>| |
 | | | | | |
 | Stack | | Basic | | Available |
 | | | DOS / VSP | | |
 | | | Variables | | For |
 | | | | | |

 $0800>|---------------| $1100>|---------------| $1A00>| Function |
 | | | | | |
 | | | Function | | Key |
 | | | Key | | |
 | | | Buffer | | Software |
 | VIC | | | | |
 | | $1000>|---------------| $1900>| |
 | Text | | | | |
 ~ ~ | | | |
 | Screen | | | | |
 | | | Sprite | | |
 | (VM#1) | | | | |
 | | $0F00>| Definition | $1800>|---------------|
 | | | | | |
 | | | Area | | |
 | | | | | RESERVED |
 $0400>|---------------| $0E00>|---------------| $1700>|---------------|
 | Basic RAM Code| | | | |
 $0380>| - - - - - - - | | RS-232 | | |
 | Kernal Tables | | Output | | RESERVED |
 $033C>| - - - - - - - | | Buffer | | |
 $02FC>|---------------| $0D00>|---------------| $1600>|---------------|
 |Kernal RAM Code| | | | |
 $02A8>| - - - - - - - | | RS-232 | | |
 |Basic & Monitor| | Input | | RESERVED |
 | Input | | Buffer | | |
 | Buffer | | | | |
 $0200>|---------------| $0C00>|---------------| $1500>|---------------|
 | System Stack | | | | |
 $0149>| - - - - - - - | | | | |
 |Basic DOS,USING| $0BC0>| - - - - - - - | | RESERVED |
 $0110>| - - - - - - - | | Cassette | | |
 | FBUFFER | | Buffer | | |
 $0100>|---------------| $0B00>|---------------| $1400>|---------------|
 | | | Monitor & | | |
 | Kernal Z.P. | | Kernal | | |
 $0090>| - - - - - - - | | Absolute | | RESERVED |
 | Basic Z.P. | | Variables | | |
 $0000>|_______________| $0A00>|---------------| $1300>|---------------|

 $FFFF>|---------------|
 $FF80>| CP/M RAM Code |
 | Kernal Intrpt |
 | RAM Code |
 $FF05>|---------------|
 | MMU |
 $FF00>|---------------|
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | Basic |
 | |
 | |
 | |
 ~ Text ~
 | |
 | |
 | |
 | Area |

 | |
 | |
 | (Basic Text |
 | begins at |
 | $1C00> |
 | if Bit-Map |
 | unallocated) |
 $4000>|---------------|
 | |
 | |
 | |
 | VIC |
 | |
 ~ Bit-Map ~
 | |
 | Screen |
 | |
 | |
 | |
 | - - - - - - - |
 | |
 | VIC |
 ~ Bit-Map ~
 | Color |
 | (VM#2) |
 $1C00>|---------------|

 CHAPTER 9

 DETAILS OF SOFTWARE INTERFACE TO 8563 (80 COLUMN CHIP)

9.1 OVERVIEW

 The 80-column chip integrates several features that are presently
implemented with a 6545E and a large number of TTL packages. The
80-column text display chip is designed to work like a 6545E
CRT-Controller. To fully understand the features of the chip, refer to
the 8563 DESIGN SPEC (2/10/84) for the pin and register layouts.

 The CPU interface (D0-D7, Phase-2,R/W, RS, CS) remains the same as
the 6545E. The LPEN, RES, HSYNC and VSYNC pins also remain the same.
The display RAM Address lines are extended to 16 bits, and are
multiplexed onto 8 pins in an address-low/address-high configuration.
Timing signals RAS and CAS are output to drive dynamic RAMs. A CCLOCK
output is generated to allow this chip to supply a phase-2 signal for a
processor in a shared memory addressing configuration. The DISPLAY
ENABLE output pin performs the same function as before but now has
programmable location and duration.

 A single Display RAM interfaced to the 80-column chip serves as
storage for character pointers and character data. An 80-column double
line buffer is implemented on-chip for both character pointers and
attributes. The chip has an output pixel shift register. An 8 bit
Display Data Bus is used to transfer data to and from the Display RAM.

 The Display Data Bus has several uses: to transfer CPU data that
is passed transparently through the 80-column chip, to transfer
character pointers and attributes from the Display RAM to the on-chip
line buffers and to transfer character data from the Display RAM to the
on-chip shift register.

 Four video outputs reflect either the four-bit character foreground
attribute, the background register bits or the foreground register bits
(if an individual character attribute is disabled). A high speed Dot
Clock (DCLK) is used as a clock input.

 All the registers of the 6545E are implemented exactly the same on
this chip with the exception of Register 8 (Mode Control): Bit 7 is not
used as well as bit 6, bit 5 and bit 4. New registers are needed to
implement new functions. (These registers can be found in detail in the
8563 Spec, as well as timing diagrams, sequencing of display memory bus
accesses, DRAM timing, and AC parameters for the 8563). This spec is
not intended to cover those particular areas in detail.

 CHAPTER 10

 CP/M MODE

10.1 GENERAL SYSTEM LAYOUT

 The C-128 is a two processor system with the primary processor
being the 8500 and the secondary processor being the Z80. The 8500 has
the same instruction set as the 6502. The C-128 powers up running BASIC
using the 8500. The Z80's primary function is to run CP/M Plus. This
chapter relates to the requirements, methods and solutions for
implementing CP/M Plus within the C-128. When CP/M is running, the
normal functions of the C128 are not supported (CP/M and BASIC cannot
run at the same time). CP/M does not directly support all of the
display modes of the VIC chip (an application could be written to run
under CP/M that could use the extra graphics capabilities, but the
application must keep track of all the details such as memory maps).

 There are a number of system parameters that are configurable by
running a configuration program. Following is a list of options that
are selectable:

 1. RS232C XON/XOFF on receiver enabled disabled
 2. RS232C XON/XOFF on transmitter enabled disabled
 3. Number of disk drives
 4. Type of printer(s) connected

10.2 SYSTEM MEMORY ORGANIZATION

 The memory map is limited to 64K at any one point in time.
However, the RAM bank can be selected and then different ROM areas can
overlay the RAM (with bleed-thru on write lines). The actual memory map
is controlled by the MMU. The MMU can be accessed in the I/O area or
through the load configuration registers located at FF00 through FF04.

If the load configuration registers are read then the current value is
read. A write to FF00 changes the configuration after completing the
current instruction. A write to FF01 to FF04 updates the current
configuration to the value stored in the preconfiguration registers (the
data written is not used). The MMU page pointers have both a low (page)
and a high (page) pointer, the high is written first and latched in the
MMU, the high value is updated from the latch when the low byte is
written. The MMU control registers are as follows:

D500 (FF00) Configuration Register 7 A17 RAM Bank - reserved
D501 (FF01) Preconfig Register A 6 A16 RAM Bank - 0 - 1
D502 (FF02) Preconfig Register B 5 ROM HI Block - 00-System ROM
D503 (FF03 Preconfig Register C 4 ROM HI Block - 01-INT Func ROM
D504 (FF04) Preconfig Register D 3 ROM MID Block - 10-EXT Func ROM
 2 ROM MID Block - 11-RAM
 1 ROM LOW Block - 0-System ROM,
 1-RAM
 0 I/O Block 0-System I/O,
 1-HI ROM
D505 Mode Configuration Register 7 40/80 Sense
 6 OS Mode 0-C128, 1-C64
 5 /EXROM Sense
 4 /GAME Sense
 3 Fast Serial Port 0-Data IN,
 1-Data OUT
 2 (reserved)
 1 (reserved)

 0 Proc Mode 0-8500, 1-Z80
D506 RAM Configuration Register 7 VA17 - VIC RAM BANK
 6 VA16 -
 5 RAM Block - 00 0-256K,
 01 256K-512K *
 4 RAM Block - 10 512-768K, *
 01 768K-1M *
 3 Shared RAM Top 0-No, 1-Yes
 2 Shared RAM Bot 0-No, 1-Yes
 1 Shared RAM Size 00-1K,01-4K
 0 Shared RAM Size 10-8K,11-16K
D507 Page 0 Pointer Low High Pointer
D508 Page 0 Pointer High xxx xxx xxx xxx ??? ??? A17 A16
D509 Page 1 Pointer Low Low Pointer
D50A Page 1 Pointer High A15 A14 A13 A12 A11 A10 A09 A08

* denotes not in C128 implementation - reserved for future use

10.2.1 COMMON MEMORY MAP

 COMMON MEMORY MAP

 +------+------+------+------+ +------+------+------+------+------+ -
 | | | | | |8KC128| Func | Func | 8K | 8K | HI
F000| | | | | |KERNAL| INT | EXT |(C64) | GAME | ROM
 | | | | | |ML MON|HI ROM|HI ROM|KERNAL| CARD |
E000| | | | | + - - -+ - - -+ - - -+------+------+
 | | | | | | I/O & CHAROM |
D000| | | | | + - - -+ - - -+ - - -+------+
 | | | | | |KERNAL| Func | Func |
C000| | | | | +------+------+------+------+------+ -
 | | | | | | | | | 8K | 8K |
B000| | | | | | 32 K | Func | Func |BASIC |Lang. |
 | | | | | |BASIC | INT | EXT | 2.2 | Card | MID
A000| R | R | R | R | | 3.x | | +------+------+ ROM
 | A | A | A | A | | | | | | 8K |
9000| M | M | M | M | | (HI) |LOROM |LOROM | |Extens|
 | | | | | | | | | | Card |
8000| B | B | B | B | +------+------+------+ +------+ -
 | A | A | A | A | | |
7000| N | N | N | N | | 32 K | | |
 | K | K | K | K | |BASIC | LOW
6000| | | | | | 3.x | | | ROM
 | 0 | 1 | 2 | 3 | | |
5000| | | | | | LOW | | |
 | | | | | | |
4000| | | | | +------+ | |
 | | | F |E |
3000| | | U | X | | | |
 | | | T | P |
2000| | | U | A | | | |
 | | | R| N |
1000| | | E| S| | | |
 | | | | |
0000+------+------+------+------+ | | |

 | C128 | C64 |

10.2.2 Z80 MEMORY MAP

 Z80 Memory Map

 FFFF +------------------------------------+
 | MMU and 8500 reserved area |
 FF00 +------------------------------------+
 | |
 | |
 | Common |
 | BDOS & BIOS & SCB |
 | |
 E000 +------+--------+----------+---------+
 | | | |
 |Banked| | |
 | BDOS | | |
 | & | | |
 | BIOS | | |
 | | | |
 2800 +______+ | |
 | | 5 | |
 | CCP | 9 | 127 K |
 |block | K | |
 | 2 | | |
 | | | |
 1800 +------+ | R A M |
 | | | |
 | VIC | | |
 |SCREEN| T | |
 | | P | |
 1000 +------+ A | D I S K |
 | | | |
 0100 | CP/M +________+ |
 |BANKED| | (future expansion) |
 | ROM | CP/M | |
 | CODE | page 0 | |
 | | | |
 0000 +------+--------+---------+----------+
 Bank 0 1 2 3

10.2.3 8500 MEMORY MAP

 8500 Memory Map

 FFFF +---------+---------+---------+---------+
 | MMU IMMEDIATE REGISTERS |
 FFF0 +---------+---------+---------+---------+
 | | | |
 | Kernal | CCP | |
 | ROM | block 1 | |
 | | | |
 E000 +---------+---------+ |
 | | | |
 | I/O | | |
 | | | |
 D000 +_________+ | |
 | | 5 | |
 | Kernal | 9 | 127 K |
 | ROM | K | |
 | (cont) | | |
 | | | |
 C000 +---------+ | |
 | | | |
 | Banked | | |
 | BDOS | | |
 | & | | |
 | BIOS | | |
 2800 +---------+ | |
 | | | |
 | CCP | | R A M |
 | block | | |
 | 2 | | |
 1800 +---------+ | |
 | | T | |
 | VIC | P | |
 | SCREEN | A | |
 | | | |
 1000 +---------+ | |
 | DISK | | |
 | BUFFER | | D I S K |
 0F00 +---------+ | |
 | | |(future expansion) |
 | 8500 | | |
 | BIOS | | |
 | | | |
 0400 +---------+---------+---------+---------+
 | Kernal |
 | RAM |
 0100 +---------+---------+---------+---------+
 | 8500 |
 | Page 0 |
 0000 +---------+---------+---------+---------+
 Bank 0 1 2 3

10.3 1571 DISK ORGANIZATION

 CP/M Plus supports many different diskette formats. The first
being compatible with CP/M 2.2 that runs on the C64. With this format
the File Control Block (FCB) is set up as 32 tracks of 17 sectors each
and a track offset of two. The BIOS routine adds a 1 to tracks greater
than 18 (this is the C64 directory track). The second format is new and
takes advantage of the full disk capacity. This is done by setting up
the FCB with 638 tracks of one sector each and a track offset of one (1
sector). This has the effect of having CP/M set the track to the block
number relative to the beginning of the disk with the sector always set
to zero. The following algorithm is used to convert the requested TRACK
to a real track and sector number.

 The remaining formats require that the user have the new 1571 disk
drive. This disk drive supports both single and double sided diskettes
and both the Commodore GCR and industry standard MFM data coding
formats. The third GCR format is double sided. The disk is treated as
1276 sectors of data with a track offset of one. Side one is used first
then side two is used.

 Note: This is not the normal way to handle a two sided disk but by
allocating the disk in this manner the user with a 1541 may still be
able to read data written at the start of a two sided disk.

 Effective Track (1-35) = INT(Function)
 Effective Sector (0-20) = MOD(Function)

 Block Number Function Region
 000 >= TRACK > 357 ((TRACK-000-0)/21)+01 1
 357 > TRACK > 490 ((TRACK-357-1)/19)+18 2
 490 > TRACK > 598 ((TRACK-490-1)/18)+25 3
 598 > TRACK > 683 ((TRACK-598-1)/17)+31 4

 The effective sector is then translated to provide a skew that
speeds up operations. The skew is used only with the new larger format.
A different skew table is used for each region of the disk.

10.3.1 C64 CP/M DISK FORMAT

 C/64 CP/M Disk Format

 This format is provided to maintain compatibility with the C64 CP/M 2.2
 system currently on the market. Notice all of the unused space.

 Sector
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0 B B B B B B B B B B B B B B B B B x x x x
 1 B B B B B B B B B B B B B B B B B x x x x
 2 x x x x
 3 x x x x
 4 x x x x
 5 x x x x
 6 x x x x
 7 x x x x
 8 x x x x
 9 x x x x
 10 x x x x
 11 x x x x
 12 x x x x
 13 x x x x
 14 x x x x
 15 x x x x
 16 x x x x
 17 D D D D D D D D D D D D D D D D D D D
 18 x x
 19 x x
 20 x x
 21 x x
 22 x x
 23 x x
 24 x
 25 x
 26 x
 27 x
 28 x
 29 x
 30
 31
 32
 33
 34

. Used by CP/M
B Boot Sector (System)
D Directory Sector
x Not used by CP/M

10.3.2 C-128 CP/M DISK FORMAT

 C128 CP/M Plus Disk Format

 Sector
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0 B B B
 1 .
 2 .
 3 .
 4 .
 5 .
 6 .
 7 .
 8 .
 9 .
10 .
11 .
12 .
13 .
14 .
15 .
16 .
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

. Used by CP/M , reg. = region(1-4)
B Boot Sector (System)

 r SKEW TABLE
 e
 g. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1 00 17 13 09 05 01 18 14 10 06 02 19 15 11 07 03 20 16 12 08 04
 2 00 04 08 12 16 01 05 09 13 17 02 06 10 14 18 03 07 11 15
 3 00 11 04 15 08 01 12 05 16 09 02 13 06 17 10 03 14 07
 4 00 07 14 04 11 01 08 15 05 12 02 09 16 06 13 03 10

10.4 MFM DISK FORMATS

 The following disk formats will be built in and selectable from the
keyboard: OSBORNE, KAYPRO, EPSON, and IBM CP/M-86. Other formats will
be available and selected by running a configuration program. The built
in formats will be selectable from the keyboard by using a special key
sequence.

 The IBM CP/M-86 capability is provided so that data can be
transfered between machines. We cannot run CP/M-86 programs on the C128
(CP/M Plus is running on a Z80 not an 8088).

 OSBORNE (single sided only)
 KAYPRO
 Single sided
 Double sided
 EPSON
 IBM CP/M-86
 four different formats
 Single sided 8 sectors/track (SS-8)
 Single sided 9 sectors/track (SS-9)
 Double sided 8 sectors/track (DS-8)
 Double sided 9 sectors/track (DS-9)
 SS-8 (IBM)
 40 tracks/side 1 side
 8 sectors 512 bytes sectors/track
 1 track offset
 1K allocation size
 64 directory entries (2 allocation units)
 SS-9 (IBM)
 40 tracks/side 1 side
 9 sectors 512 bytes sectors/track
 1 track offset
 1K allocation size
 64 directory entries (2 allocation units)
 DS-8 (IBM)
 40 tracks/side 2 sides
 8 sectors 512 bytes sectors/track
 1 track offset
 2K allocation size
 64 directory entries (2 allocation units)
 DS-9 (IBM)
 40 tracks/side 2 sides
 9 sectors 512 bytes sectors/track
 1 track offset
 2K allocation size
 64 directory entries (2 allocation units)

10.5 MEMORY DISK ORGANIZATION

 The Memory Disk will only be available in systems that support 256K
of DRAM. System utilities allow the user to generate a system with or
without the RAM disk. The RAM disk file control block (FCB) is set up
as two tracks each with 508 sectors of 128 bytes. The track then
becomes the bank and the sector is an offset.

 This Memory Disk should NEVER use any LRU blocks (CP/M uses LRU's
to buffer disk sector, the method used in maintaining these buffers is
called Least Recently Used (LRU). This wastes memory by duplicating
copies of sectors in memory. This is also the reason for using 128 byte
sectors. Larger sectors require blocking/deblocking LRU block.

 NOTE: This is not part of C128, maybe future C256, also possible
external DMA RAM disk.

10.6 CODE ORGANIZATION OVERVIEW

 The 8500 and Z80 share many of the low level FUNCTIONS for CP/M
Plus. This is done to optimize the speed and code requirements. The
following functions are performed and are defined within the following
sections.

 1. Booting of CP/M Plus
 2. Keyboard scanning
 3. Update 40/80 column display
 4. Printer interface on serial bus
 5. Get a char from RS232C adapter (with XON/XOFF)
 6. Send a char to RS232C adapter
 7. Read a sector of data from disk (fast and slow)
 8. Write a sector of data to disk (fast and slow)
 9. Read a sector of data from the RAM disk
 10. Write a sector of data to the RAM disk
 11. Format disk
 12. Copy CCP to Hidden RAM from TPA 100H
 13. Copy CCP to TPA 100H from Hidden RAM
 14. Set system time
 15. Update system time
 16. Memory to memory move

10.6.1 BLOCK TRANSFER OPERATIONS

 There are three different types of block operations that must be
performed. These are Disk support, RAM Disk support, and moving the CCP
to and from a holding buffer.

 The Z80 has a routine that can move data from any address and bank
to any other address and bank (non-overlapping). The routine relies on
the fact that the MMU page 0 and page 1 can be pointed to any page
boundary within the system. This routine uses th LDIR instruction but
must break down the transfer into moves of 256 bytes or less. This
routine is a major routine in the development of the CP/M Plus system.
All other routines use this routine to do block moves between banks.

 There are two types of disk drives for the C128. The Commodore
1541, a slow disk drive and the Commodore 1571, a new high speed disk
drive that normally is sold with the C128. The BIOS85 module determines
which type of drive that is connected and calls the appropriate KERNAL
routines. All data transfers done by the BIOS85 are done to a 256 byte
buffer. The Z80 is then responsible for moving data to the proper
memory location (bank and address).

10.6.1.1 BOOTING OF CP/M PLUS -

 The autoboot method used with the C128 is to read the first sector
on the disk, check that it is a boot sector (first three bytes are CBM).
If it is a boot sector it is loaded into memory at $1000 and executed.
The CP/M boot sector will meet the above requirements and in turn load
the 8500 BIOS. Control is then given to the 8500 BIOS. The 8500 BIOS
sets up the Z80 memory map and transfers control to the Z80 (at location
0000 bank 0). The CP/M ROM gets control and loads the CP/M system from
disk (using 8500 BIOS to do disk functions). After CP/M is loaded,
control is transferred to CP/M cold boot. The cold boot routine then
reads CCP.COM to 100H in bank 1. A copy of the CCP.COM file is then
transferred to banked memory so that warm boots do not have to load
CCP.COM from disk, but instead transfers the CCP from banked memory.
With the CCP in the TPA program control is transferred to it at location
100H in bank 1.

 The structure of the boot sector is defined and is presented below.
The boot sector has the following format.

 1/ read disk block at track 1 sector 0 into ram at $0b00 ('tbuffr').
 2/ check for auto-boot signature. RTS if not. the relative format is:

 $00 $01 $02 $03 $04 $05 $06 ---------- A ---------- B -----> $FF
 | | | | | | | (optional) | (optional) |
 C B M adrl adrh bank #blk diskname 0 filename 0 6502 code

 3/ IF #blk > 0 THEN block_read sequential sectors into ram at
 given adrl, adrh, bank location.
 4/ IF filename THEN load filename into ram bank0 (normal load).
 5/ JSR to user code following filename (system map).

10.6.1.2 READ A SECTOR OF DATA FROM DISK (FAST AND SLOW) -

 Prior to calling this routine CP/M sets the track, sector, DMA
address, DMA bank and the number of sectors. CP/M sets the track and
sector using the data in the DPB. This means that for the new disk
format the sector is always zero and the track is the block number
relative to the start of the disk. The Z80 BIOS translates this to the
proper track and sector number for the disk drive (sector translation
also). If the disk is the older type (C64 CP/M) then the track and
sector numbers set by CP/M do not need to be converted. If the disk
drive is the new high speed drive, then the BIOS80 determines the number
of consecutive sectors on the same track. The BIOS85 routine is called
to set up the multiple sector transfer. Control is then returned to
BIOS80 and the Z80 then reads the disk data from the I/O buffer
directly, and writes it to system memory (at the DMA address). If the
disk drive is the older and slower 1541, then the BIOS85 reads one
sector at a time to a 256 byte sector buffer and the BIOS80 moves the
data to the correct location in memory (DMA address). The BIOS85
routines are responsible for doing retries and reporting hard errors and
relogging of the disk to the Z80.

10.6.1.3 WRITE A SECTOR OF DATA TO DISK (FAST AND SLOW) -

 Prior to calling this routine CP/M sets the track, sector, DMA
address, DMA bank and sector count. CP/M sets the track and sector
using the data in the DPB. This means that for the new disk format the
sector is always zero and the track is the block number relative to the
start of the disk. The Z80 BIOS translates this to the proper track and
sector number for the disk drive (sector translation also).If the disk
drive is the new high speed drive, then the BIOS80 counts the number of
consecutive sectors on the same track and passes this info to the
BIOS85. The BIOS85 routine then sets up the transfer of multiple
sectors and returns to the BIOS80. The BIOS80 then reads the data from
the current DMA address and writes this data directly to the I/O port.
If the disk is the older type, then BIOS80 writes one sector at a time
by moving the DMA buffer contents to the 256 byte disk read/write
buffer. The BIOS85 is then called and the buffer is written to disk.The
8500 BIOS also checks whether a disk has been changed and returns the
appropriate error code if it has.

10.6.1.4 READ A SECTOR OF DATA FROM RAM DISK -

 Copies 128 bytes of data from the RAM disk addressed by the track
and sector to the current DMA bank and address. This function is
performed totally by the Z80.

10.6.1.5 WRITE A SECTOR OF DATA TO RAM DISK -

 Copies 128 bytes of data from the current DMA address and bank to
the RAM disk addressed by the track and sector. This function is
performed totally by the Z80.

10.6.1.6 COPY CCP TO HIDDEN RAM FROM TPA 100H -

 This function is performed only when the system is first booted.
The CCP.COM file is loaded from disk into the TPA. Normally the CCP.COM
file would be read from disk each time the system is warm started (going
back to the A> prompt). The reloading of the CCP is done so often,
which slows down the system (by doing a lot of disk accessing), that it
makes it worth keeping a copy of the CCP in banked memory. This routine
is responsible for saving a copy of the CCP.COM file the first time it
is loaded. This copy of the CCP is then copied to 100H in bank 1 (the
TPA area) when the system is warm started. This function is performed

totally by the Z80.

10.6.1.7 COPY CCP TO TPA 100H FROM HIDDEN RAM -

 This function is called when the system performs a warm boot. See
section 10.5.1.6 for more details on how and why the function is used.
The CCP is copied from its RAM buffer to 100H in Bank 1. This function
is performed totally by the Z80.

10.6.1.8 FORMAT DISK -

 This function reformats the disk. The fill character is normally
E5's for CP/M systems but this is only required for the directory
sectors (first track). This function should only be used with a format
program that can create a system disk. The format program is able to
create two different disk formats. The first being the old C64 CP/M
format. There is an option of copying the C64 system tracks from
another disk or just leave the system tracks blank (the directory track
(18) is also set up). The second format is the new C-128 CP/M disk
format. This version creates the boot sectors on the new disk, formats
the directory area and gives the user the option of copying the CPM.SYS
and/or the CCP.COM files to the newly formatted disk.

10.6.2 CHARACTER TRANSFER OPERATIONS

 The character transfer operations are handled mostly by the 8500.
One major exception to this is the 40/80 column display system which is
handled by the Z80.

10.6.2.1 KEYBOARD SCANNING -
 The keyboard scan routine that is called to get a keyboard
character returns the key code of the pressed key of FFh if no key is
currently being pressed. The keyboard scan code is also responsible for
handling programmable keys, programmable function keys, setting
character and background colors, selecting MFM disk formats, and
selecting current screen emulation type.

 Any key on the keyboard can be defined to generate a code or
function except the following keys:
 Left Shift (and lock key)
 Right Shift
 Commodore Key
 Control Key
 Restore (8502 NMI)
 80/40 Display (used to select key)
 Caps lock Key

 The keyboard recognizes the following special functions:
 Cursor left key - define key
 Cursor right key - define string (points to function keys)
 ALT Key - toggle key filter

 Define key:
 This function allows the user to define the code that a key can
produce. Each key has four definitions; Normal, alpha shift, shift, and
control. The alpha shift is toggled on/off by pressing the Commodore
Key. After entering this mode a small white box will appear on the
bottom of the screen. The first key that is pressed is the key to be
defined. The current HEX value defined to this key is displayed and the
user can then type the new hex code for the key or abort by typing a
non-hex key. The following is a definition of the codes that can be
assigned to a key. (In ALT mode, codes are returned to the application.
See ALT. mode)

 00h Null (same as not pressing a key)
 01h-7Fh normal ASCII codes
 80h-9Fh string assigned
 A0h-AFh 80 column character color
 B0h-BFh 40 column backgroung color
 C0h-CFh 40 column character color
 D0h-DFh 40 colomn background color
 E0h-EFh 40 column border color
 F0h-FFh special functions

 F0h toggle enable/disable disk status indicator
 F1h XON/XOFF display (pause)
 F2h (undefined)
 F3h 40 column screen window right
 F4h 40 column screen window left
 F5 undefined
 . .
 FFh undefined

 Define string:
 This function allows the user to assign more than one key code to a
single key. Any key that is typed in this mode is placed in the string.
The user can see the results of typing in a long box at the bottom of
the screen. NOTE: some keys may not display what they are. To allow
the user control of entering data, five special functions are available.
They are all control right shift functions (this allows the user to
enter any key into the buffer).

 EDIT string functions: (CTRL RT. SHIFT)

 RETURN - done defining a string
 main '+' - insert a space into string
 main '-' - delete cursor character
 lf arrow - cursor left
 rt arrow - cursor right

 ALT mode:
 This function is a toggle (on/off) and is provided to allow the
user to send 8 bit codes to an application without the keyboard driver
eating the code from 80h to FFh.

10.6.2.2 UPDATE 40/80 COLUMN DISPLAY -

 There are two totally different display systems within the C-128.
The first is the VIC chip that produces a 25 line by 40 column display
and has many graphics modes of operation and can be used with a standard
color TV or color monitor. The only mode of operation that is being
used by CP/M is normal character mode with each character and screen
background having up to 16 colors. The second display system will only
work with a monitor (black and white or color), called the 8563, and is
structured after the 6545 display controller. The display format of
this controller is 24 lines by 80 columns with character color
attributes. The VIC chip is a memory mapped display and the 6845E is
I/O controlled. The two display subsystems are being treated as two
totally separate displays. CP/M Plus can assign them both or only one
to the console output device. Both displays are controlled by a common
terminal emulation package (probably a ADM-3A driver). The display
subsystems are controlled totally by the Z80 BIOS. The emulations
software is written in such a way so that different terminal emulators
can be substituted for the ADM-3A emulation by the user.

 The terminal driver is divided into two different parts: terminal
emulation and terminal functions. A number of different emulations may
be provided. A few of the options are the ADM-3A, ADM-31, H19, VT52,

and VT100. The terminal emulation is part of the Z80 BIOS and the
terminal function part is primarily in the Z80 ROM.

10.6.2.3 TERMINAL EMULATION PROTOCOLS -

10.6.2.3.1 LEAR SIEGLER ADM-3A -

 LEAR SIEGLER ADM-3A
 ---- ------- ------
 Character Sequence HEX Char Code
 Position cursor <ESC>=(row#+32)(col#+32) 1B 3D 20+ 20+
 Cursor Left ^H 08
 Cursor Right ^L 0C
 Cursor Down ^J 0A
 Cursor Up ^K 0B
 Home & Clear Screen ^Z 1A
 Carriage Return ^M 0D
 Escape ^[1B
 Bell ^G 07

 NOTE: display is 24 (1-24) by 80 (1-80), cursor origin is always 1/1

10.6.2.3.2 LEAR SIEGLER ADM-31 -

 LEAR SIEGLER ADM-31
 ---- ------- ------
 Characater Sequence HEX Char Codes
 Clear to End of Line <ESC>T 1B 54
 <ESC>t 1B 74
 Clear to End of Screen <ESC>Y 1B 59
 <ESC>y 1B 79
 Home & Clear Screen <ESC>: 1B 3A
 <ESC>* 1B 2A
 Half Intensity On <ESC>) 1B 29
 Half Intensity Off <ESC>(1B 28
 Reverse Video On <ESC>G4 1B 47 34
 Blinking On <ESC>G2 1B 47 32
* Underline On <ESC>G3 1B 47 33
* Select Alt Char Set <ESC>G1 1B 47 31
 Rev. Video & Blinking Off <ESC>G0 1B 47 30
 Insert Line <ESC>E 1B 45
 Insert Character <ESC>Q 1B 51
 Delete Line <ESC>R 1B 52
 Delete Character <ESC>W 1B 57
* Set screen colors <ESC ESC ESC> color #
 where color # = 20h to 2Fh - character color
 30h to 3Fh - backgrd color
 40h to 4Fh - border color
 (40 col only)
* NOTE: This is not a normal ADM31 sequence.

 Note: display is 24 (1-24) by 80 (1-80),
 cursor origin is always 1/1

10.6.2.3.3 VT52 -

 VT52

 Cursor Up <ESC>A
 Cursor Down <ESC>B
 Cursor Right <ESC>C
 Cursor Left <ESC>D
 Enter Graphics Mode <ESC>F
 Exit Graphics Mode <ESC>G

 Cursor Home <ESC>H
 Reverse Line Feed <ESC>I
 Erase to End of Screen <ESC>J
 Erase to End of Line <ESC>K
 Cursor Addressing <ESC>Y (row#+1Fh)(col#+1Fh)
 Identify <ESC>Z
 Enter Alt. Keypad Mode <ESC>=
 Exit Alt. Keypad Mode <ESC>>
 Enter VT100 Mode <ESC><

 NOTE: display is 24 (1-24) by 80 (1-80), cursor origin is always 1/1

10.6.2.3.4 VT100 -
 VT100

 A subset of the ANSI X3.64-1979 and X3.41-1974 standards

 Video Attributes <ESC>[(Ps);...;(Ps)m
 where (Ps) is:
 0 Normal (all att. off)
 1 Bold
 4 Underscore
 5 Blink
 7 Reverse

 Character Sets G0 Set G1 Set
 UK <ESC>(A <ESC>)A
 ASCII <ESC>(B <ESC>)B
 Special Graphics <ESC>(0 <ESC>)0
 Alt. ROM <ESC>(1 <ESC>)1
 Alt. ROM Special Graphics <ESC>(2 <ESC>)2

 Character Size
 Double High Top Half <ESC>#3
 Double High Bottom Half <ESC>#4
 Single Width Single Height <ESC>#5
 Double Width Single Height <ESC>#6

 Cursor Movements
 Position Cursor <ESC>[(row#dec);(col#dec)H 1B xx 30+ xx 30+ 48
 <ESC>[(row#dec);(col#dec)f 1B xx 30+ xx 30+ 66
 Cursor Left <ESC>[(#)D 1B xx 30+ 44
 Cursor Right <ESC>[(#)C 1B xx 30+ 43
 Cursor Down <ESC>[(#)B 1B xx 30+ 42
 Cursor Up <ESC>[(#)A 1B xx 30+ 41
 Index <ESC>D 1B 44
 New Line <ESC>E 1B 45
 Reverse Index <ESC>M 1B 4D
 Save Cursor & Attrib. <ESC>7
 Restore Cursor & Att. <ESC>8
 Erase
 Clear to End of Line <ESC>[K 1B xx xx
 Clear to End of Screen <ESC>[J 1B xx xx
 Clear from Start of Line <ESC>[1K 1B xx 31 xx
 Clear from Start of Scrn <ESC>[1J 1B xx 31 xx
 Clear cursor line <ESC>[2K 1B xx 32 xx
 Clear Entire Screen <ESC>[2J 1B xx 32 xx

 LED's <ESC>[(Ps);...;(Ps)q
 0 Extinguish All
 1 L1 on
 2 L2 on
 3 L3 on
 4 L4 on

 Media Copy <ESC>[(Ps)h
 Modes
 Enable <ESC>[(Ps)h
 Disable <ESC>[(Ps)l
 where (Ps) is:
 20 New Line Line Feed
 ?1 Application Cursor (cursor key mode)
 ?2 n/a VT52 mode
 ?3 132 Column 80 Column
 ?4 Smooth Scrolling Jump Scrolling
 ?5 Screen Rev Video Screen Normal Video
 ?6 Screen Origin
 Relative Screen Origin Absolute
 ?7 Line Wrap On Line Wrap Off
 ?8 Auto Repeat On Auto Repeat Off
 ?9 Interlace On Interlace Off

 Keypad Applications Mode <ESC>=
 Keypad Numeric Mode <ESC>>

 Reports
 Cursor Position
 -invoked by <ESC>[6n
 -response <ESC>[(Pl);(Pc)R
 Status Report
 -invoked by <ESC>[5
 -response <ESC>[0n (terminal OK)
 <ESC>[3n (terminal not OK)
 Terminal Parameters
 -invoked by <ESC>
 -response <ESC>

 What are you
 -invoked by <ESC>[c or (<ESC>Z)
 -response <ESC>[?];(Ps)c
 where (Ps) is
 0 Base VT100, no options
 1
 2
 3
 4
 5
 6
 7

 Reset to Initial State <ESC>c
 Scrolling Region <ESC>[(Pt);(Pb)r
 where (Pt) is top line #
 (Pb) is bottom line #
 Tabs
 Set tab <ESC>H
 Clear tab <ESC>g
 Clear all tabs <ESC>3g
 Test
 Fill screen with E's <ESC>#8
 Null 00
 Bell ^G 07
 HT ^I 09
 LF ^J 0A
 VT (same as LF) ^K 0B
 FF (same as LF) ^L 0C
 CR ^M 0D
 SO (select G1 char set) ^N 0E

 SI (select G0 char set) ^O 0F
 CAN (terminate escape seq) ^X
 SUB (same as CAN) ^Z

 Note: Display is 24(1-24) by 80(1-80) or 24 by 132,
 cursor origin can be set from 1/1 to 24/1.

10.6.2.4 PRINTER INTERFACE ON SERIAL BUS -

 The Commodore printers are very cost effective but connect to the
serial bus and are not very fast. For this reason two different printer
drivers are installed in the system. The RS232C driver allows the
connection of any RS232C printer but at a much higher cost and the loss
of the RS232 port for other operations. The driver for this interface
is described in section 10.5.2.6 This section deals with the serial bus
printers. All of these printers work with PET ASCII (two sets of
printable characters, upper case with graphics, and an upper and lower
case with upper and lower case swapped) and a few also work with normal
ASCII. Thus the real ASCII characters from CP/M must be convertedto PET
ASCII in most cases before it is sent to the printer. To further
complicate things some of the printers only have upper case so a force
to upper case may also be necessary. The Z80 BIOS handles all of the
conversion and gives the character to the 8500 to send to the printer.
The 8500 is set up to time out if the printer is missing or out of
service so that the system does not hang.

 The following printers are supported:
 MPS-801 Dot Matrix Printer (50 cps)
 MPS-802 Dot Matrix Printer (80 cps)
 MPS-803 Dot Matrix Printer (60 cps)
 DPS-1101 Daisy Wheel Printer (supports normal ASCII)

10.6.2.5 GET A CHARACTER FROM RS232C ADAPTER (WITH XON/XOFF) -

 The RS232C port does not have a USART to do the dirty work for it.
This means that the serialization of the data must be done by the
microprocessor. The 8500 microprocessor KERNAL contains routines that
receive the bits and builds the characters. For these routines to work
the 8500 processor must be running. To get around this problem XON/XOFF
logic is used. When the Z80 wants a character it asks the 8500 to get
it. The 8500 then sends an XON character. After the first character is
received an XOFF is sent. The 8500 waits for a full character time
after the XOFF is sent or until the next received character is received
before the Z80 is turned back on. Any characters that came in after the
first are buffered and the next time the Z80 wants a character, if one
is in the buffer, it is returned to the Z80 without turning on the
channel again (with an XON).

10.6.2.6 SEND A CHARACTER TO RS232C ADAPTER -

 The RS232C port output is simpler than the input (see 10.5.2.5).
The Z80 gives the character to be sent to the 8500 and the 8500 retains
control until the character is totally sent (including the stop bits).
Then the Z80 is given back control. One special case that is handled is
that before the first character is sent, an XOFF is sent so that the
device that is being communicated with knows that it cannot talk. Also,
the device being communicated with may send an XON or XOFF. Since we
may not be in there when it comes in, we must stay in the Send Char
routine long enough to receive a control character. Some devices may
never send an XON/XOFF and then the added delay may not be necessary.
Thus, this added delay is menu selectable. The effect of the added
XON/XOFF delay is to divide the effective BAUD rate by approximately 2.
(1200 BAUD would have an effective rate of approximately 600 BAUD).

10.6.2.7 SET RS232C PARAMETERS -

 The BAUD rate can be set from 110 to 1200 BAUD. This function
changes the BAUD rate to the value supplied and sends an XOFF char to
the connected device (see 10.5.2.5)

10.6.3 SYSTEM OPERATIONS

10.6.3.1 SET SYSTEM TIME -

 The time of day is set with this function. The time of day is
stored in packed BCD format in the System Control Block (SCB) in three
locations (hours,minutes,seconds). This routine reads the SCB time and
writes that time to the time of day clock within the 6526. This time is
updated on the chip and is used by CP/M. The Z80 is able to set and
read the 6526 directly.

10.6.3.2 UPDATE SYSTEM TIME -

 The SCB time is updated from the time of day clock on the 6526.
This function is done by the Z80.

10.6.3.3 MEMORY TO MEMORY MOVE -

 This routine is the key to using the extra RAM banks. This routine
is passed the source address and bank number, the destination address
and bank number and the number of bytes to transfer. The transfer is
done using the two MMU page pointers and the Z80's block move. There
are three basic cases that are handled. The first is 256-byte moves
that are page aligned. The second is a page aligned move of less than
256 bytes. The third case is where the 8 LSB's are not equal, and the
effective addresses must be computed twice for each 256 byte block
moved. The third case should not occur normally, but it should be
tested for and handled in the event that it does occur. The majority of
the moves are of the first type and this routine is optimized for speed.
The second and third cases occur less frequently and do not need to be
as fast. This code MUST reside in the common memory area and bank 0
cannot be enabled when it's invoked. The reason for this is that the
Z80 ROM will overlay page 0 and 1 when bank 0 is selected.

10.7 8500 BIOS ORGANIZATION

 The 8500 is responsible for most of the low level I/O functions.
The request for these functions is made through a set of mailboxes.
Once the mailboxes are set up the Z80 shuts down and the 8500 starts up
(BIOS85). The 8500 looks at the command in the mailbox and performs the
required task, sets the command status and shuts down. The Z80 is
reenabled and looks at the command status and takes the appropriate
actions.

 The structure of the mailboxes is as follows:
 Command 1 byte
 Status 1 byte
 Drive 1 byte
 Track 1 byte
 Sector 1 byte

 The Commands are :
 Reset, return control to the 8500 (BASIC)
 Disk read
 Disk write
 Format the disk
 Get a key
 Send a byte to RS232C

 Read a byte from RS232C

 SEE BELOW

 The status format is as follows :
 MSB LSB
 X7 X6 X5 X4 X3 X2 X1 X0
 No errors if all bits are off
 If X7 is on then an error has occured and the error type can be found
 by looking at the rest of the bits. The meaning of the rest of the
 bits is dependent on the command.

 C O M M A N D S

00 Reset, return control to 8500 (BASIC)
 Input: None
 Output: None
 Function: Returns control to the 8500 BASIC. The CP/M environment
 is lost, and the system must be rebooted to re-enable
 CP/M.
01 Disk read (slow)
 Input: Track, sector, and drive number
 Output: Command status
 Function: Read a sector of data from disk to the sector buffer.
02 Disk write (slow)
 Input: Track, sector, and drive number
 Output: Command status
 Function: Write a sector of data from the sector buffer to disk.
03 Disk read setup (fast)
 Input: Track, sector, and drive number
 Output: Command status
 Function: Used to setup a read of the specified number of sectors
 from disk.
04 Disk write setup (fast)
 Input: Track, sector, and drive number
 Output: Command status
 Function: Used to setup a write of the specified number of sectors
 to disk.
05 Format a new disk
 Input: Drive number
 Output: Command status
 Function:
06 Send character to the printer
 Input: Character to send
 Output: Command status
 Function: Send a character to the printer on the serial bus.

10.8 CP/M BIOS ORGANIZATION (BIOS80)

0 BOOT

 Bank: 0

 Input: None

 Output: None

 Function: This code does all of the hardware initialization,

 sets up zero page, prints any sign-on message and

 loads the CCP and then transfers control to the CCP.

1 WBOOT

 Bank: 0 or 1

 Input: None

 Output: None

 Function: This code sets up page zero, reloads the CCP and

 then executes the CCP. (relocate the stack to common

 memory to make BDOS calls).

2 CONST

 Bank: 0 or 1

 Input: None

 Output: A=0FFH if console character

 A=00H if no console character

 Function: Checks the console input status of the current

 console device. If any of the devices have a

 character available, FFH is returned, else 00H

 is returned.

3 CONIN

 Bank: 0 or 1

 Input: None

 Output: A=ASCII console character

 Function: Reads a character from any ONE of the assigned

 console input devices. A scan of each assigned

 device is done until an input character is found.

 The character is returned in the A register.

 - 181 -

CP/M MODE Page 10-32

4 CONOUT

 Bank: 0 or 1

 Input: C=ASCII character to display

 Output: None

 Function: Send the character in C to ALL devices that are

 currently assigned to the console. Wait for all

 slower devices.

5 LIST

 Bank: 0 or 1

 Input: C=ASCII character to print

 Output: None

 Function: Send the character in C to ALL devices that are

 currently assigned to the LIST device. Wait for

 all slower devices.

6 AUXOUT

 Bank: 0 or 1

 Input: C=ASCII Character to send to AUX device

 Output: None

 Function: Send the character in C to ALL devices that are

 currently assigned to the AUXOUT device. Wait for

 ALL slower devices.

7 AUXIN

 Bank: 0 or 1

 Input: None

 Output: A=ASCII character from AUX device

 Function: Reads a character from any ONE of the assigned

 AUXIN devices. A scan of each assigned device is

 done until an input character is found. The

 character is returned in the A register.

 - 182 -

CP/M MODE Page 10-33

8 HOME

 Bank: 0

 Input: None

 Output: None

 Function: Homes the head on the currently selected disk

 drive. This function sets the current track to 0

 and does not move the head of the disk in this

 product.

9 SELDSK

 Bank: 0

 Input: C=Disk Drive (0-15) (A=0)

 E=Initial Select Flag

 Output: HL=Address of disk parameter Header (DPH) if

 drive exists.

 HL=000H if drive does not exist.

 Function: Selects the disk drive whose address is in C as the

 current drive for all further disk operations. If

 the LSB of the E register is a zero, then this is the

 first time logging of this disk. The disk type (C64

 CP/M or C128 CP/M) should be checked and the DPB

 parameters adjusted for the diskette currently in the

 drive.

10 SETTRK

 Bank: 0

 Input: BC=Track number (0-34)

 Output: None

 Function: Register pair BC contains the track number to be used

 in the subsequent disk access. This value is saved.

11 SETSEC

 Bank: 0

 Input: BC=Sector number

 Output: None

 Function: Register pair BC contains the sector number to be used

 in the subsequent disk access. This value is saved. The

 value in BC is the value returned by the sector trans-

 lation routine.

 - 183 -

CP/M MODE Page 10-34

12 SETDMA

 Bank: 0

 Input: BC=Direct memory access address

 Output: None

 Function: The value in BC is saved as the current DMA address.

 This is the address where ALL disk read or writes occur

 to or from. The DMA address that is set is used until

 it is changed by a future call to this routine to

 change it.

13 READ

 Bank: 0

 Input: None

 Output: A=000H if no errors

 A=001H if nonrecoverable error

 A=0FFH if media has changed

 Function: Reads the sector addressed by the current disk, track

 and sector to the current DMA address. If the data is

 read with no errors then A=0 on return. If an error

 occurs, the operation is tried several more times,

 and if a good read does not occur then A is set to

 001H. A test for media change should be done each

 time this routine is called and A is set to -1 if

 the media has been changed.

14 WRITE

 Bank: 0

 Input: C=Deblocking code (not used)

 Output: A=000H if no errors

 A=001H if nonrecoverable error

 A=002H if disk is read only

 A=0FFH if media has changed

 Function: Writes the sector addressed by the current disk, track

 and sector from the current DMA address. If the data

 is written with no errors, then A is set to 0 on return.

 If an error occurs, the operation is tried several more

 times, and if a good write does not occur, then A is

 set to 001H. A test for media change should be done

 each time this routine is called and A is set to -1

 if the media has been changed. Also, if an attempt

 is made to write to a read-only disk, then the A

 register is set to 002H.

 - 184 -

CP/M MODE Page 10-35

15 LISTST

 Bank: 0 or 1

 Input: None

 Output: A=00H if list device is not ready to accept a character.

 A=0FFH if list device is ready to accept a character.

 Function: This routine scans the currently assigned list devices

 and returns with A set to 0FFH if ALL assigned devices

 are ready to accept a character. If any assigned device

 is not ready then A is set to 00H.

16 SECTRN

 Bank: 0

 Input: BC=Logical sector number (0-n)

 DE=Translation table address (from DPB)

 Output: HL=Physical sector number

 Function: This routine converts the physical sector number to a

 logical sector number. If no translation is needed then

 move the BC register to HL and return.

17 CONOST

 Bank: 0 or 1

 Input: None

 Output: A=0FFH if Ready

 A=000H if not Ready

 Function: This routines scans the currently assigned console

 devices and returns with A set to 0FFH if ALL assigned

 devices are ready to accept a character. If any assigned

 device is not ready then A is set to 000H.

18 AUXIST

 Bank: 0 or 1

 Input: None

 Output: A=0FFH if console character present

 A=000H if no console characeter

 Function: Checks the status of the current AUXIN device. If any

 of the devices have a character available, 0FFH is

 returned, else 000H is returned.

 - 185 -

CP/M MODE Page 10-36

19 AUXOST

 Bank: 0 or 1

 Input: None

 Output: A=0FFH if ready

 A=000H if not ready

 Function: This routine scans the currently assigned AUXOUT

 devices and returns with A set to 0FFH if ALL devices

 are ready to accept a character. If any assigned device

 is not ready then A is set to 00H.

20 DEVTBL

 Bank: 0 or 1

 Input: None

 Output: HL=address of character I/O table

 Function: This routine returns the address of the Character I/O

 table. This table is used to name each of the driver

 modules and set/control the baud rate and XON/XOFF

 logic for each driver. Note: the device drive mech-

 anism is used to replace the IOBYTE used with CP/M 2.2.

21 DEVINI

 Bank: 0 or 1

 Input: C=device number

 Output: None

 Function: Used to initialize the physical character device

 specified in the C register to the BAUD rate in the

 DEVTBL.

22 DRVTBL

 Bank: 0

 Input: None

 Output: HL=address of the drive table

 Function: Returns the address of the drive table in HL (NOTE:

 first instruction MUST be LXI H,DRVTBL). The drive

 table is a list of 16 word pointers that point to

 the DPH for that drive. If a drive is not present

 in the system, then the pointer for that drive is

 set to zero.

 - 186 -

CP/M MODE Page 10-37

23 MULTIO

 Bank: 0

 Input: C=multisector count

 Output: None

 Function: The Multisector count is set before the track, sector,

 and DMA address and the reads/writes of the sectors

 occur. A maximum of 16K can be transferred by each

 multisector count. The 1541 has 256 byte sectors,

 thus the maximum count is 64. When sector skewing is

 done, a list should be created that contains the phys-

 ical track, sector, and DMA address of each read/write

 sector and after the last sector is entered into the

 list. The list should be sortedby track and sector.

 The read/write operation should then be performed.

 Multisector transfer is ONLY worth while with the new

 faster disk drive.

24 FLUSH

 Bank: 0

 Input: None

 Output: A=000H if no errors

 A=001H if nonrecoverable error

 A=002H if disk is read-only

 A=0FFH if media has changed

 Function: This routine is used only if blocking/deblocking is

 done in the BIOS (it is not). This code ALWAYS returns

 with A =00H.

25 MOVE

 Bank: 0 or 1

 Input: HL=destination address

 DE=source address

 BC=count

 Output: HL=HL(in)+BC(in)

 DE=DE(in)+BC(in)

 Function: Move a block of data. Data to be moved is to/from the

 current memory bank (or common) unless the XMOVE

 routine is called first, then the move is an interbank

 data movement.

26 TIME

 Bank: 0 or 1

 Input: C=000H (Time Get) / 0FFH (Set Time)

 Output: None

 Function: This function is called with C=00H if the system time

 in the SCB needs to be updated by the clock. If C=0FFH,

 then the time in the SCB has just been updated and the

 clock should be set to the SCB time. NOTE: HL and DE

 MUST be preserved.

 - 187 -

CP/M MODE Page 10-38

27 SELMEM

 Bank: 0 or 1

 Input: A=memory bank

 Output: None

 Function: Used to change the current memory bank. This code MUST

 be in common memory. NOTE: ONLY A can be changed.

28 SETBNK

 Bank: 0

 Input: A=DMA memory bank

 Output: None

 Function: Set the DMA bank for the next READ/WRITE operation.

29 XMOVE

 Bank: 0

 Input: B=destination bank

 C=source bank

 Output: None

 Function: Provides the system with the ability to do memory to

 memory DMA through the entire system space. This func-

 tion does not have to be supplied. If this function

 is missing, the first instruction MUST be a RET.

30 USERF

 Bank: N/A

 Input: N/A

 Output: N/A

 Function: N/A

31 RESERV1

 Bank: N/A

 Input: N/A

 Output: N/A

 Function: N/A

32 RESERV2

 Bank: N/A

 Input: N/A

 Output: N/A

 Function: N/A

 - 188 -

CP/M MODE Page 10-39

10.8.1 DATA STRUCTURES

 System Control Block - SCB

 The System Control Block is a 100 byte data structure. The data

structure is used as the basic communication between the various modules

that make up the CP/M Plus system. The contents of the data structure

are system parameters and variables.

 DRVTBL Drive Table

 DPH0 through DPH15

 A list of 16 word pointers (reverse byte format). The first

pointer (DPH0) is drive A and the last pointer (DPH15) is drive P. The

pointers point to the XDPH for that disk drive. Any drive that is not

in the system has its pointers set to zero.

 XDPH Extended Disk Parameter Header (Normal DPH with a header)

 WRT READ LOGIN INIT TYPE UNIT XLT -0- MF DPB CSV ALV DIRBCB DTABCB HASH HBANK

 16b 16b 16b 16b 8b 8b 16b 72b 8b 16b 16b 16b 16b 16b 16b 8b

 -10 -8 -6 -4 -2 -1 0 +2 +11 +12 +14 +16 +18 +20 +22 +24

WRT Contains the address of the sector write routine for this drive.

READ Contains the address of the sector read routine for this drive.

LOGIN Contains the address of the login routine for this drive.

INIT Contains the address of the first time initialization routine

 for this drive.

TYPE This byte is used by the BIOS to keep track of density and media type.

UNIT Contains the drive number relative to the disk controller.

XLT Contains the address of the sector translation table or zero if none.

-0- BDOS scratch area. (9 bytes).

MF Media flag set to zero if disk logged in. BIOS sets to 0FFH if media

 has changed.

DPB Contains a pointer to the current DPB that describes the current

 media type.

CSV Contains a pointer to directory checksum area (one per disk drive).

ALV Contains a pointer to allocation vector area (one per disk drive).

DIRBCB Contains a pointer to a single directory Buffer Control Block (BCB).

DTSBCB Contains a pointer to a single data Buffer Control Block (BCB).

HASH Contains a pointer to an optional directory hashing table (FFFFH is not

 used).

HBANK Contains a bank number of the directory hashing table.

 - 189 -

CP/M MODE Page 10-40

 Disk Parameter Block - DPB

SPT BSH BLM EXM DSM DRM AL0 AL1 CKS OFF PSH PHM

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b 8b 8b

SPT Number of 128 records per track

BSH Data allocation block shift factor

BLM Block mask

EXM Extent mask

DSM Number of allocation block on disk minus one.

DRM Number of directory entries minus one.

AL0 First byte: directory block allocation vector. Filled from MSB to LSB

AL1 Second byte: (up to 16 allocation blocks can be used for the directory.

CKS Size of the directory check vector, (DRM+1)/4.

OFF Number or reserved tracks at the beginning of the disk.

PSH Physical record shift factor.

PHM Physical record mask.

 Buffer Control Block (LRU Control Block) - BCB

DRV REC# WFLG 00 TRACK SECTOR BUFFAD BANK LINK

8b 24b 8b 8b 16b 16b 16b 8b 16b

DRV Drive associated with this record. Set to 0FFH when not used.

REC# Contains the absolute sector number of the buffer.

WFLG Set to 0FFH when buffer contains data that must be written to disk

00 Scratch byte used by BDOS

TRACK Physical track address of buffer

SECTOR Physical sector address of buffer.

BUFFAD Address of the buffer associated with this BCB.

BANK Bank number of buffer associated with this BCB.

LINK Contains the address of the next BCB in this linked list.

 Set to zero if last.

 - 190 -

 CHAPTER 11

 FAST DISK INTERFACE

11.1 SERIAL BUS INTERFACE

 The FSD implements a modified 1541 serial interface. This bus is

compatible with the Commodore 64, Vic 20, and the Plus 4 Series

Computers. In addition it is compatible with peripherals such as

printers, plotters, and especially the 1541 disk drive.

 Fast Serial communication is transparent to the slower peripherals.

There are three types of operations over a serial bus - Control, Talk,

and Listen. The host is the controller and initiates all protocol on

the serial bus. The host requests the peripheral to listen or talk (if

the peripheral is capable of talking). All devices connected to the

serial bus receive data transmitted over the bus. To allow the host to

route its data to an intended destination, each device has a bus

address. Device addresses are as follows:

 DEVICE ADDRESS 0-30 POSSIBLE

 0-3 INTERNAL DEVICES OS

 4-7 NORMAL CBM PRINTERS

 8-11 NORMAL CBM DISK UNITS

 12-30 UNUSED CBM DEVICES

 The bus consists of the following:

 Pin 1 - SRQ (Service Request)

 Unused by the current serial bus. Fast Serial will

 use this line as a bi-direction fast clock line.

 Pin 2 - GND

 Chassis ground.

 - 191 -

FAST DISK INTERFACE Page 11-2

 Pin 3 - ATN (in)

 The host brings this signal low which then generates

 an interrupt on the controller board. The attention

 sequence is followed by an address. If the device does not

 respond within a preset time the host will assume the

 device addressed is not on the bus.

 Pin 4 - CLK (in/out)

 This signal is used for timing the data sent on the

 serial bus (software clocked).

 Pin 5 - DATA (in/out)

 Data on the serial bus is transmitted one bit at a

 time (software toggled). In addition this line is wire

 'ored' and used as a FAST DATA line to compliment the FAST

 CLOCK on the SRQ line.

 Pin 6 - RESET

 This line will reset the peripheral upon host reset.

 - 192 -

FAST DISK INTERFACE Page 11-3

11.2 FAST SERIAL PROTOCOL

 The FSD drive powers up in the slow serial mode. The host has to

init the drive to fast mode (The drive will remain in the fast mode

until the command has terminated). There are no addition kernal calls

required to interface to a FSD. Existing kernal routines are modified

to allow slow and fast serial operation. Within the kernal a fast

serial flag contains whether the current addressed peripheral is a fast

device. To initiate the FSD as a fast peripheral the host must send a

HRF (Host Request Fast) message. (see Fig. 1) This is accomplished by

sending eight clock pulses down the SRQ (Service Request) line. The

6526 on the drive's controller board will sense the transitions and the

6526 will generate an interrupt. Within the drive a flag is toggled to

the fast mode. While in the fast mode the drive will send fast bytes to

the host, and when addressed as a listener the drive will send a DRF

(Device Request Fast) message (see Fig. 1). This message lets the host

know that the addressed peripheral can receive bytes fast (or slow).

The fast serial flag within the host can be cleared in the following

ways: unlisten, untalk, serial bus error, and <run-stop> <restore>. As

mentioned before bytes are clocked on the SRQ line with the data line be

toggled to the appropiate state. Existing routines used to accept bytes

were modified to accept a fast byte as well as a slow byte.

 - 193 -

FAST DISK INTERFACE Page 11-4

11.3 SERIAL BUS COMMANDS - MODIFIED

EXPLANATION OF TERMS:

 HRF - Host request fast

 drf - device request fast (sourced by the drive)

 LA - Listen address

 TA - Talk address

 SA - Secondary address

 SA(O) - Secondary address open

 SA(C) - Secondary address close

 DB - Data Byte

 FN - File name byte

 eoi - End or identify handshake

 TKATN - Talk-Atn handshake

 Command Abbreviation Binary value

 * host request fast HRF 1111 1111

 ** device request fast DRF 0000 0000

 talk address (TA) 010x xxxx

 listen address (LA) 001x xxxx

 untalk (UNTLK) 0101 1111

 unlisten (UNLSN) 0011 1111

 secondary address open (SA(O)) 1111 yyyy

 secondary address close (SA(C)) 1110 yyyy

 secondary address normal (SA) 011z zzzz

* Fast Byte messages (clocked over the SRQ line)

** Fast byte message sourced by the drive

Device Address (TA) (LA) = x xxxx values 0-30 possible

 0-3 Internal devices

 4-7 Normal CBM printers

 8-11 Normal disk units

 12-30 Unused

Channel Address (SA(O)) (SA(C)) = yyyy values 0-15 possible

 Disk Units 154X

 0 - PRG-TYPE Read Data Channel (special)

 1 - PRG-TYPE Write Data Channel (special)

 2-14 - Channel for all file types (read/write)

 15 - Unit command channel (read/write)

Normal Secondary Address (SA) = z zzzz values 0-31 possible

 - 194 -

FAST DISK INTERFACE Page 11-5

11.4 STANDARD KERNAL CALLS

 Load:

 This routines loads data bytes from any input device

 directly into the hosts memory.

 HRF LA SA(O) drf FN1 FN2...FNn-1 eoi FNn HRF UNLSN =>

 HRF TA SA TKATN DB1 DB2...DBn-1 eoi DBn UNTLK =>

 HRF TA SA(C) HRF UNLSN

 Save:

 This routines saves a section of memory.

 HRF LA SA(O) FN1 FN2...FNn-1 eoi FNn HRF UNLSN =>

 HRF LA SA drf DB1 DB2...DBn eoi DBn-1 HRF UNLSN =>

 HRF LA SA(C) HRF UNLSN

 Open: with SA

 This routine is used to open a logical file for I/O operations.

 HRF LA SA(O) drf FN1 FN2...FNn-1 eoi FNn HRF UNLSN

 Close: with SA

 This routine is used to close a logical file after all I/O

 operations have been completed on that file.

 HRF LA SA(C) HRF UNLSN

 Chkout: with SA

 This routine must be called before any data is sent to any

 output device.

 HRF LA SA

 Chkin: with SA

 This routine is called to define any previously opened

 - 195 -

FAST DISK INTERFACE Page 11-6

 channel as a input channel.

 HRF TA SA TLKATN

 Chrout:

 This uses a single character buffer, and will

 send previously buffered character, if any exists. This

 buffer is also sent along with eoi, prior to sending any

 SERIAL BUS COMMAND sequence (HRF, LA, TA, SA(O), SA(C),

 SA, UNTLK, UNLSN).

 Chrin:

 This routine is called to get a byte of data from a

 channel already setup as a input channel.

 DBc or eoi DBc (if external device sends eoi)

 Getin:

 - see Chrin -

 Clrchn:

 This routine is used to clear and restore all open

 channels to there default values.

 If Chkin channel open: UNTLK.

 If Chkout channel open: eoi DBc HRF UNLSN

 Clall:

 - see Clrchn -

 Stop:

 This routine is used to detect the stop key. If stop

 key down, Clrchn called.

 - 196 -

FAST DISK INTERFACE Page 11-7

11.5 BURST COMMANDS ADDED TO DOS 2.65

NOTE: ALL BURST COMMANDS ARE SENT VIA KERNAL I/O CALLS.

BURST CMD ONE - READ

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 T E B S 0 0 0 N

--

 03 DESTINATION TRACK

--

 04 DESTINATION SECTOR

--

 05 NUMBER OF SECTORS

--

 06 NEXT TRACK (OPTIONAL)

--

 RANGE:

 MFM ALL VALUES ARE DETERMINED UPON THE PARTICULAR DISK FORMAT.

 GCR SEE SOFTWARE SPECIFICATIONS.

SWITCHES:

 T - TRANSFER DATA (1=NO TRANSFER)

 E - IGNORE ERROR (1=IGNORE)

 B - BUFFER TRANSFER ONLY (1=BUFFER TRANSFER ONLY)

 S - SIDE SELECT (MFM ONLY)

 N - DRIVE NUMBER

PROTOCOL:

 BURST HANDSHAKE.

CONVENTIONS:

 CMD ONE MUST BE PRECEEDED WITH CMD 3 OR CMD 6 ONCE TO LOG

 THE DISK IN, THEN READS OR WRITES CAN BE PERFORMED UNTIL

 THE DISK IS CHANGED.

 - 197 -

FAST DISK INTERFACE Page 11-8

OUTPUT:

 ONE BURST STATUS BYTE PRECEEDING BURST DATA WILL BE SENT

 FOR EVERY SECTOR TRANSFERED. ON AN ERROR CONDITION

 DATA WILL NOT BE SENT UNLESS THE E BIT IS SET.

 - 198 -

FAST DISK INTERFACE Page 11-9

BURST CMD TWO - WRITE

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 T E B S 0 0 1 N

--

 03 DESTINATION TRACK

--

 04 DESTINATION SECTOR

--

 05 NUMBER OF SECTORS

--

 06 NEXT TRACK (OPTIONAL)

--

 RANGE:

 MFM ALL VALUES ARE DETERMINED UPON THE PARTICULAR DISK FORMAT.

 GCR SEE SOFTWARE SPECIFICATIONS.

SWITCHES:

 T - TRANSFER DATA (1=NO TRANSFER)

 E - IGNORE ERROR (1=IGNORE)

 B - BUFFER TRANSFER ONLY (1=BUFFER TRANSFER ONLY)

 S - SIDE SELECT (MFM ONLY)

 N - DRIVE NUMBER

PROTOCOL:

 BURST DATA TO THE DRIVE, THEN HOST MUST PERFORM THE FO-

 LLOWING: FAST SERIAL INPUT, PULL THE CLOCK LOW AND WAIT

 FOR THE BURST STATUS BYTE, PULL CLOCK HIGH, GO OUTPUT

 FOR MULTI-SECTOR TRANSFERS AND CONTINUE.

CONVENTIONS:

 CMD TWO MUST BE PRECEEDED WITH CMD 3 OR CMD 6 ONCE TO LOG

 THE DISK IN, THEN READS OR WRITES CAN BE PERFORMED UNTIL

 THE DISK IS CHANGED.

INPUT:

 - 199 -

FAST DISK INTERFACE Page 11-10

 HOST MUST TRANSFER BURST DATA.

OUTPUT:

 ONE BURST STATUS BYTE FOLLOWING EACH WRITE OPERATION.

 - 200 -

FAST DISK INTERFACE Page 11-11

BURST CMD THREE - INQUIRE DISK

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 X X X S 0 1 0 N

--

SWITCHES:

 S - SIDE SELECT (MFM ONLY)

 N - DRIVE NUMBER

OUTPUT:

 ONE BURST STATUS BYTE FOLLOWING THE INQUIRE OPERATION.

 - 201 -

FAST DISK INTERFACE Page 11-12

BURST CMD FOUR - FORMAT MFM

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 P I D S 0 1 1 N

--

 03 M=1 T LOGICAL STARTING SECTOR

--

 04 INTERLEAVE (OPTIONAL DEF-0)

--

 05 SECTOR SIZE * (OPTIONAL DEF-01,256 BYTE SECTORS)

--

 06 LAST TRACK NUMBER (OPTIONAL DEF-39)

--

 07 NUMBER OF SECTORS ** (OPTIONAL DEPENDS ON BYTE 05)

--

 08 LOGICAL STARTING TRACK (OPTIONAL DEF-0)

--

 09 STARTING TRACK OFFSET (OPTIONAL DEF-0)

--

 0A FILL BYTE (OPTIONAL DEF-$E5)

--

 0B-?? SECTOR TABLE (OPTIONAL T-BIT SET)

 --

* 00 - 128 BYTE SECTORS ** DEF 26 - 128 BYTE SECTORS

 01 - 256 BYTE SECTORS 16 - 256 BYTE SECTORS

 02 - 512 BYTE SECTORS 9 - 512 BYTE SECTORS

 03 - 1024 BYTE SECTORS 5 - 1024 BYTE SECTORS

SWITCHES:

 P - PARTIAL FORMAT (1=PARTIAL)

 I - INDEX ADDRESS MARK WRITTEN (1=WRITTEN)

 D - DOUBLE SIDED FLAG (1=FORMAT DOUBLE SIDED)

 S - SIDE SELECT

 T - SECTOR TABLE INCLUDED (1=INCLUDED, ALL OTHER PARMS

 MUST BE INCLUDED)

 N - DRIVE NUMBER

PROTOCOL:

 CONVENTIONAL.

CONVENTIONS:

 - 202 -

FAST DISK INTERFACE Page 11-13

 CMD FOUR MUST BE FOLLOWED WITH CMD 3 OR CMD 6 ONCE TO LOG

 THE DISK IN.

OUTPUT:

 NONE. STATUS WILL BE UPDATED WITHIN THE DRIVE.

 - 203 -

FAST DISK INTERFACE Page 11-14

BURST CMD FOUR - FORMAT GCR (NO DIRECTORY)

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 X X X X 0 1 1 N

--

 03 M=0

--

 04 ID LOW

--

 05 ID HIGH

--

SWITCHES:

 N - DRIVE NUMBER

 X - DON'T CARE.

PROTOCOL:

 CONVENTIONAL.

CONVENTIONS:

 CMD FOUR MUST BE PRECEEDED WITH CMD 3 OR CMD 6 ONCE TO LOG

 THE DISK IN. THIS COMMAND DOES NOT WRITE THE BAM OR THE

 DIRECTORY ENTRIES (DOUBLE SIDED FLAG WILL NOT BE ON TRACK 18

 SECTOR 0). IT IS SUGGESTED THAT THE CONVENTIONAL FORMAT

 COMMAND BE USED.

OUTPUT:

 NONE. STATUS WILL BE UPDATED WITHIN THE DRIVE.

 - 204 -

FAST DISK INTERFACE Page 11-15

BURST CMD FIVE - SECTOR INTERLEAVE

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 W X X 0 1 0 0 N

--

 04 INTERLEAVE

--

SWITCHES:

 W - WRITE SWITCH

 N - DRIVE NUMBER

 X - DON'T CARE

PROTOCOL:

 CONVENTIONAL.

CONVENTIONS:

 THIS IS A SOFT INTERLEAVE USED FOR MULTI-SECTOR BURST

 READ AND WRITE.

OUTPUT:

 NONE (W=0), INTERLEAVE BURST BYTE (W=1).

 - 205 -

FAST DISK INTERFACE Page 11-16

BURST CMD SIX - QUERY DISK FORMAT

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 F X X S 1 0 1 N

--

 03 OFFSET (OPTIONAL F-BIT SET)

--

SWITCHES:

 F - FORCE FLAG (F=1, WILL STEP THE HEAD WITH THE

 OFFSET SPECIFIED IN BYTE 03.

 N - DRIVE NUMBER

 X - DON'T CARE.

PROTOCOL:

 CONVENTIONAL.

CONVENTIONS:

 THIS IS A METHOD OF DETERMINING THE FORMAT OF THE DISK ON

 ANY PARTICULAR TRACK, IT ALSO LOGS NON-STANDARD DISKS

 (IE. MINIMUM SECTOR ADDRESSES OTHER THAN ZERO).

OUTPUT:

 * BURST STATUS BYTE (IF THERE WAS AN ERROR OR IF THE

 FORMAT IS GCR NO BYTES WILL FOLLOW)

 ** BURST STATUS BYTE (IF THERE WAS AN ERROR IN COMPILING

 MFM FORMAT INFORMATION NO BYTES

 WILL FOLLOW)

 NUMBER OF SECTORS (THE NUMBER OF SECTORS ON A PARTICULAR

 TRACK)

 LOGICAL TRACK (THE LOGICAL TRACK NUMBER FOUND IN THE

 DISK HEADER)

 MINIMUM SECTOR (THE LOGICAL SECTOR WITH THE LOWEST

 VALUE ADDRESS)

 MAXIMUM SECTOR (THE LOGICAL SECTOR WITH THE HIGHEST

 VALUE ADDRESS)

 CP/M INTERLEAVE (THE HARD INTERLEAVE FOUND ON A PARTICULAR

 TRACK)

 * STATUS FROM TRACK OFFSET ZERO.

** IF F BIT IS SET STATUS IS FROM OFFSET TRACK.

 - 206 -

FAST DISK INTERFACE Page 11-17

BURST CMD SEVEN - INQUIRE STATUS

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 W C X 0 1 1 0 N

--

 03 NEW STATUS (W-BIT CLEAR)

--

SWITCHES:

 W - WRITE SWITCH

 C - CHANGE (C=1 & W=0 - LOG IN DISK, C=1 & W=1 - RETURN WHETHER

 DISK WAS LOGGED IE. $B ERROR OR OLD STATUS)

 N - DRIVE NUMBER

 X - DON'T CARE

PROTOCOL:

 BURST.

CONVENTIONS:

 THIS IS A METHOD OF READING OR WRITING CURRENT STATUS.

OUTPUT:

 NONE (W=0), BURST STATUS BYTE (W=1)

 - 207 -

FAST DISK INTERFACE Page 11-18

BURST CMD EIGHT - BACKUP DISK

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 ? ? ? ? 1 1 1 ?

--

SWITCHES:

 ? - UNKNOWN

 - 208 -

FAST DISK INTERFACE Page 11-19

BURST CMD NINE - CHGUTL UTILITY

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 X X X 1 1 1 1 0

--

 03 UTILITY COMMANDS: 'S', 'R', 'T', 'M', 'H', #DEV

--

 04 COMMAND PARAMETER

--

SWITCHES:

 X - DON'T CARE.

UTILITY COMMANDS:

 'S' - DOS SECTOR INTERLEAVE.

 'R' - DOS RETRIES.

 'T' - ROM SIGNATURE ANALYSIS.

 'M' - MODE SELECT.

 'H' - HEAD SELECT.

 #DEV - DEVICE #.

NOTE: BYTE 02 IS EQUIVALENT TO A '>'

EXAMPLES:

 "U0>S"+CHR$(SECTOR-INTERLEAVE)

 "U0>R"+CHR$(RETRIES)

 "U0>T"

 "U0>M1"=1571 MODE, "U0>M0"=1541 MODE

 * "U0>H0"=SIDE ZERO, "U0>H1"=SIDE ONE (1541 MODE ONLY)

 "U0>"+CHR$(#DEV), WHERE #DEV = 8-30

 * FOR DUAL DRIVE ADD ,1 FOR DRIVE ONE AND ,0 FOR DRIVE ZERO.

 - 209 -

FAST DISK INTERFACE Page 11-20

BURST CMD TEN - FASTLOAD UTILITY

 BYTE BIT 7 6 5 4 3 2 1 0

==

 00 0 1 0 1 0 1 0 1

--

 01 0 0 1 1 0 0 0 0

--

 02 P X X 1 1 1 1 1

--

 03 FILE NAME

--

SWITCHES:

 P - SEQUENTIAL FILE BIT (P=1, DOES NOT HAVE TO BE A PROGRAM

 FILE)

 X - DON'T CARE.

PROTOCOL:

 BURST.

OUTPUT:

 BURST STATUS BYTE PRECEEDING EACH SECTOR TRANSFERED.

STATUS IS AS FOLLOWS:

 0000000X OK

 * 00000010 FILE NOT FOUND

 00011111 EOI

* VALUES BETWEEN THE RANGE 3-15 SHOULD BE CONSIDERED A FILE READ ERROR.

 - 210 -

FAST DISK INTERFACE Page 11-21

STATUS BYTE BREAK DOWN

 BIT 7 6 5 4 3 2 1 0

==

 MODE DN SECTOR SIZE [CONTROLLER STATUS]

--

 MODE - 1=MFM, 0=GCR

 DN - DRIVE NUMBER

 SECTOR SIZE - (MFM ONLY)

 00 128 BYTE SECTORS

 01 256 BYTE SECTORS

 10 512 BYTE SECTORS

 11 1024 BYTE SECTORS

 CONTROLLER STATUS (GCR)

 000X OK

 0010 SECTOR NOT FOUND

 0011 NO SYNC

 0100 DATA BLOCK NOT FOUND

 0101 DATA BLOCK CHECKSUM ERROR

 0110 FORMAT ERROR

 0111 VERIFY ERROR

 1000 WRITE PROTECT ERROR

 1001 HEADER BLOCK CHECKSUM ERROR

 1010 DATA EXTENDS INTO NEXT BLOCK

 1011 DISK ID MISMATCH/ DISK CHANGE

 1100 RESERVED

 1101 RESERVED

 1110 SYNTAX ERROR

 1111 NO DRIVE PRESENT

 CONTROLLER STATUS (MFM)

 000X OK

 0010 SECTOR NOT FOUND

 0011 NO ADDRESS MARK

 0100 RESERVED

 0101 DATA CRC ERROR

 0110 FORMAT ERROR

 0111 VERIFY ERROR

 1000 WRITE PROTECT ERROR

 1001 HEADER BLOCK CHECKSUM ERROR

 1010 RESERVED

 1011 DISK CHANGE

 1100 RESERVED

 1101 RESERVED

 1110 SYNTAX ERROR

 1111 NO DRIVE PRESENT

 - 211 -

 CHAPTER 12

 RELATED DOCUMENTATION

 1. 6510 Chip Specification

 2. 6567 Chip Specification

 3. 8563 Chip Specification

 4. C/64 Programmer's Reference Guide

 5. CP/M PLUS Reference Manual

 6. C/128 Hardware Specification

 7. C/128 MMU Specification

 8. SY6545E CRT Controller

 9. IC, LSI, Sound Interface Device - 8580

 10. IC, LSI, Video Controller - 8564

 11. The C128 Fast Serial Disk Software Specification

