-e:c-kier
BYASSHIEE

For programming applications under GEOS

Gibva your prograrma that news, prolessional
ook by wriling hem In BeckarBASIC. Use
pril-cown menus, dislogus bozes, hi-res,

! jhh dn,\—) il F1: Sel pluel

i FI. Erase plast
F8. Cisar rruirix
F7: Usa matric
Move curor wih

s
POLD Rocovars NEWed
PRENUMBE R- Renuimbens sections of your
GEOUON Atihsbon GEOS hires mode

FENCOM Ronames commands
THACE -Displays program ines s they are

BeckafASIC offers over 40 Hi-res N pafiems sxeculed

b4
L
e
i

Abacusiiiii

A Data Becker Product

BrelC kel
BYASSIEE:

For programming applications under GEOS

A Data Becker Product

Abacusliiii

Copyright Notice

Abacus Software makes this package available for use on a single computer
only. It is unlawful to copy any portion of this software package onto any
medium for any purpose other than backup. It is unlawful to give away or
resell copies of this package. Any unauthorized distribution of this product
deprives the authors of their deserved royalties. For use on multiple
computers, please contact Abacus Software to make such arrangements.

Warranty

Abacus Software makes no warranties, expressed or implied as to the
fitness of this software package for any particular purpose. In no event will
Abacus Software be liable for consequential damages. Abacus Software
will replace any copy of this software which is unreadable if returned
within 30 days of purchase. Thereafter, there will be a nominal charge for
replacement.

First Printing February 1988

Printed in U.S.A.

Copyright (C) 1988 Data Becker GmbH
MerowingerStr. 30
4000 Dusseldorf, W. Germany

Abacus, Inc.
5370 52nd Street
Grand Rapids, MI 49508

Commodore C64, 1541 are registered trademarks of Commodore Inc.
GEOS, deskTop, geoPaint, geoWrite are registered trademarks of Berkeley
Softworks.

ISBN 1-55755-033-6

Table of Contents

Foreword o i i it it it s e Jdv
1. Introduction « v v v v o v v s s v m 0 0 et an e 1
1.1 BeckerBASICStIUCIUI® . o v v o v ¢« ¢ s o o s s o s 0 0 s 8 s o 1
1.1.1 StartingBeckerBasic oo 3
1.1.2 The Input-System and Testing-System« v o v s o o v s 5
1.13 TheRun-Only-System. v v v v v v v o o 0t vt 000 s s 8
114 TheCONVERTER. it v v ot s o s v o s o ms s oo 9
12 Changingcommandnames o v v v v v o v s s s 0 s a0 s s 12
12.1 Settingupthecommandtable.o v 12
122 Handling command names andnumbers« . v v o 0 o v s 13
123 RenamingcommandS . . . v ¢ v v v v o v 0 0 v s e s e e e e n s 15
124 Saving and loading commandtables. 0000 17
13 BASIC20commands. v v v v v v v 0 0o s s 0 a0 s s 19
14 Adding commands & functions 0 e e 19
1.5 Miscellaneous . . + v v v v v o 0 o s o b e b e e e 20
2. Programdevelopment. v v v v v s e a b e e 25
2.1 L0 25
2.1.1 ProgrammingcommandS. v v v v v e e e e e e e e 25
212 Functionkeys. vt ot v vt oo aon o 27
22 Errorhandling ¢t v i vt oo vt nen v s aa s 29
223 TheTRACEcommandS. o v v v v o oo o s v o a0 s ss 33
3. Inputandoutput v vt v v it i e e 37
31 Datainput . . . v v v v v v v v v s s vt e e e 37
311 Keyboardinput. v v vt it i e 37
312 Screeninput. v v i e i e e e e e 43
32 Dataoutput . . . v v v v v v vt v et e e e e e e e 46
321 Screenoutput. v e v v u s e e e e e s e e e e e e e 46
322 PrinterOUtPUL. . . v v v v v v s o et e e a e e e 48
33 Screenmanagement e e e e e e e e e e 49
34 Cursorcontrol . . . v v v v v v i e e e s 51
4, Memoryaccesscommandst h et e e n e 55
4.1 Working withmemoryranges v v v v v v v v v o v v v vt S5
42 Accessing individual memorylocations . . , 57

Table of Contents BeckerBASIC 64

43

5.
5.1
52
53
531
532
533
54
54.1
542
543
544
5.5
5.6

6.1
6.2
6.3
6.4
6.5

71
7.11
7.2
721
7.3

8.1
8.2
83

Exchanging memory and variablecontents. 60
Diskcommands v v vttt vt v e e e 63
Commoncommands. oo v i vt v v e v ee e 64
Changing disk driveaddresses 68
Programmodecommands 69
Saving and verifyingprograms 000 ... 70
Loading programs v v v v v v v vt ettt e Td
Overlays ittt ittt s it it e e 75
Logicalfiles. ittt it i ie e 77
Logicalfilecommands¢¢ooevvunnnn 78
Sequential filecommands 82
Relativefilecommands000.... 84
Openinguserandprogramfileso v v v v v 88
Direct diskette aCCeSS . » . v v v v v v v e v h e e e e 89
Diskmemory access . . v v v v v v o v v e e e e 95
Structured programming v . e e h e e e e e e e 101
CommentS . . . v v v v v v v v o v s m o nnnas e e 102
Labels and calculated linenumbers 103
BranCh StruCtures v v v v o v n o v n s s n oo us 105
LOODSIUCIUTES & & &« v v v v o v v o s s v s s s s o s o o s s o 110
Procedures. . . . v v v v vt v v et i e e e 114
GEOS i it ittt ittt e st e e 129
Drop-downmenus v v v s« v s 0 0 s n et a0 s e 132
Using the Drop-down Menu ConstructionSet, 134
Dialogue boXeS . v v v v v v v e e e e e e e 135
Using the Dialogue Box ConstructionSet. 136
Entering and displaying hi-restext. v v v v o v v u 138
High-resolutiongraphics oot v vt v v v v vt 143
Initializing graphics v v ¢ v v 0 i e 143
Creating graphiCs v v v v v v v v vt v s i e 145
Loading and saving graphics« v oo o ool 151

ii

Abacus Table of Contents

9. Spritecommands e e e 153
9.1 Setting UPSPHteS v v v i e e e e e, 154
9.2 Positioning and moving sprites 0000 .. 162
9.3 Enabling and disabling sprites 164
94 Loading and saving spritedatablocks 165
9.5 Testing for spritecollisions , 166
9.6 The BeckerBASIC spriteeditor v v v v v v v v v v 168
10. Soundcommands00 173
101 Makingsounds., e e et e e 173
102 Turning voicesonandoff. v v 176
103 Filters.ottt it i e e e e 179
104 Synchronization andring modulation. 181
Appendix A: Commands and functions listed by number 185
Appendix B: Commands and functions listed alphabetically 203
Appendix C: Error messages e et e et e e 219
Appendix D:Memorymap vt v it it e e e 221
Appendix E: BeckerBASICinaction. v v v v v v v v v v v e v v 223
Appendix F: Distribution of the Run-Only System , 227
Appendix G: TheDBandDFcommands v o v v o0 v v v v 228
Index L e e e 229

Foreword BeckerBASIC 64

Foreword

BeckerBASIC is an extension to BASIC 2.0 which is fully compatible with the
GEOS user interface. BeckerBASIC includes programming tools, error handling
commands, hi-res graphics, sound and GEOS support.

Unlike some language extensions, BeckerBASIC supports all aspects of
programming. From programming tools and error handling to graphics and
sound, BeckerBASIC is just what you need for efficient programming.

BeckerBASIC can be summed up in two words: Flexible and practical!
BeckerBASIC even allows you to change the command and function names.

BeckerBASIC is one of the most complicated products ever released for the
C64. The testing process at Data Becker and Abacus was an exhaustive one.
However, it’s almost impossible to test any product on every piece of hardware
or software (e.g., disk drive enhancements, operating system extensions,
countless application programs, etc.) available for the C64. This means that
neither the author nor the publishers can be held responsible for support of
programming or application problems (aside from errors within BeckerBASIC
itself, of course).

To give you the complete picture of the program, BeckerBASIC comes with this
thorough, easy to follow manual. I hope that this manual will serve you well.

Best of luck in your work with BeckerBASIC.
Martin Hecht

Stuttgart, West Germany
September 20, 1987

iv

Abacus 1. Introduction

1. Introduction

BeckerBASIC consists of three interpreters, contains over 270 new commands,
and runs under GEOS. BeckerBASIC is much more than a normal BASIC
extension, however.

1.1 BeckerBASIC structure

You should learn the many commands and functions before you can program
efficiently in BeckerBASIC. That is where this manual comes in. It’s not
absolutely necessary that you read the entire book to learn BeckerBASIC.

BeckerBASIC contains a total of 273 commands, and is made up of three
interpreter systems: The Input-, the Testing- and the Run-Only-Systems.

If you look at the first directory page of your BeckerBASIC distribution diskette
from the GEOS deskTop, you’ll see three files named System 1, System 2 and
System 3. These three programs are the three BeckerBASIC interpreters in
VLIR format.

The three interpreters can be accessed directly from the deskTop by double-
clicking the desired icon. You can toggle between the Input- and the Testing-
Systems while a BeckerBASIC program resides in memory without losing the
program. '

Application programs written in BeckerBASIC can also be accessed from the
deskTop by double-clicking their icons. The BeckerBASIC Run-Only-System
loads, then the program loads and executes.

The CONVERTER program on the BeckerBASIC distribution diskette lets you
define an icon for your BeckerBASIC programs. Normally, this routine assigns
its own BASIC icons.

All three systems can be accessed at any time from the GEOS deskTop. They
are loaded in from the diskette, then GEOS keeps them in memory.

1. Introduction BeckerBASIC 64

Total loading time is between 10 and 15 seconds: Toggling between the Input-
and Testing-Systems takes nine seconds to load and initialize.

All three systems give you 15,800 bytes of free memory. If you stop to think
that GEOS and BeckerBASIC are in memory at the same time, this is a good
amount of memory. There are ways around memory limitations: BeckerBASIC
has overlay capabilities (loading multiple programs from diskette), and if you
avoid high-res graphics, the unused bitmap starting at location 40960 gives you
about 8K of additional memory.

The Input-System: The Input-System works much like the BASIC 2.0
editor—you type in and edit programs in this interpreter. Not all of
BeckerBASIC’s commands can be used here. Most of the available commands
are programmer’s tools.

All illegal commands produce an ILLEGAL COMMAND ERROR. The
Testing-System is used for trying out your BeckerBASIC programs. You toggle
to the Testing-System by pressing the key combination <CTRL><Commodore>.

The Testing-System: This interpreter lets you test run BeckerBASIC programs.
The Testing-System uses all BeckerBASIC commands, as well as the editing
and programmer’s utility commands.

After starting the system, a normal text screen appears with a menu for
controlling the entire operation. This menu is controlled by function keys.

Pressing the <F1> function key starts a BeckerBASIC program already in
memory. After the program executes, the Testing-System returns you to the
menu.

When an error occurs within the program, BeckerBASIC displays the prompt,
"Error in Program! Load Input Interpreter (y/n)?" When you press the <y> key,
BeckerBASIC loads the Input-System and displays the incorrect line number. If
ERRSHOWON is in effect, BeckerBASIC also displays the error in reverse
video. If you press the <n> key, the main menu of the Testing-System reappears.

Pressing <F3> asks for the name of a program you want loaded from diskette
and run. Pressing <F7> or <CTRL><Commodore> returns you to the Input-
System.

Abacus 1. Introduction

BeckerBASIC programs remain in memory when you switch from the Input-
System to the Testing-System and back. <F8> exits BeckerBASIC and returns
you to the deskTop.

The Run-Only-System: This interpreter allows royalty-free distribution of
BeckerBASIC program code without distributing BeckerBASIC itself. There are
no utilities or programming tools in this interpreter (no Input-System, no
TRACE function, etc.).

When an error occurs, the message "Error in Program! Contact this program’s
author” appears on the screen, and BeckerBASIC displays a menu similar to that
displayed from the Testing-System, except you cannot access the Input or
Testing-Systems from the Run-Only system.

CONVERTER program: This program converts BeckerBASIC programs to
GEOS format, for direct access by the Run-Only interpreter and the GEOS
deskTop. By supplying a command at the end of a BeckerBASIC program to
return you to the GEOS deskTop, the program runs as if it’s an independent
GEOS application.

The drop-down menus and dialogue boxes require the second hi-res bitmap
starting at memory location 24576. This reduces the amount of available BASIC
memory by eight kilobytes.

1.1.1 Starting BeckerBASIC

You start BeckerBASIC as you would start any GEOS application. Before you
start BeckerBASIC, however, make one or more working copies of - the
BeckerBASIC distribution diskette. Use the BACKUP or DISKCOPY program
from the GEOS system diskette to make backup BeckerBASIC diskettes. The
procedure is exactly the same as making a backup of other GEOS applications
(see your GEOS manual for information). When you’ve finished making backup
copies, put the original diskette in a safe place.

Copy the GEOS deskTop to your backup diskettes. You could also copy over

desk accessories such as the Notepad, but these accessories are inaccessible
from BeckerBASIC.

1. Introduction BeckerBASIC 64

You can now begin your tour through BeckerBASIC. All program sections
mentioned in this chapter are described in detail later on in the book. If you
don’t understand what you read here, the later descriptions should clear things
up.

You'’ll find all BeckerBASIC system files on the first page of the directory on
the GEOS deskTop. Open the BeckerBASIC work diskette by selecting the
open item from the disk menu. The upper row shows icons named System 1,
System 2 and System 3. These are BeckerBASIC’s three interpreters. The first
icon is the Input-System, the second icon represents the Testing-System and the
third is the Run-Only system. All these interpreters start when you double-click
the icons.

Look for the BASIC icon named DEMO. This demonstration program is a
BeckerBASIC program, handled as a GEOS application. DEMO displays just a
few of BeckerBASIC’s abilities. Start it by double-clicking the icon from the
deskTop.

The CONVERTER program converts your BeckerBASIC application to GEOS
format.

Most of the BeckerBASIC programs on the system diskette have a BASIC icon.
This icon is generated by the CONVERTER. If you want, you can make your
own icon using the CONVERTER.

The last three programs on the first page of the directory are discussed later in
this book. Chapter 9 describes SPRITE-EDIT, while Chapter 7 tells about
DDM.C.S (the Drop-Down Menu Construction Set) and D.C.S (the Dialogue
Box Construction Set). The second directory page lists different BeckerBASIC
utilities and sample programs.

Appendix E takes you through the steps in creating a BeckerBASIC program.
The final program is called ADDRSAMPLE on your BeckerBASIC disk. The
program makes use of drop-down menus, dialogue boxes and many of the added
commands BeckerBASIC gives.

Abacus 1. Introduction

1.1.2 The Input-System and Testing-System

The first two BeckerBASIC interpreters, the Input-System and Testing-System,
work together. You enter and edit your BeckerBASIC programs in the Input-
System, and test the programs using the Testing-System.

BeckerBASIC was broken up into three separate interpreters to save memory on
the C64. The available memory is already low because of GEOS residing in
memory. If the entire BeckerBASIC system was put into memory, there
wouldn’t be any room left for program development.

BeckerBASIC gives you almost 16,000 bytes of free BASIC memory. This is
more than most non-GEOS BASIC extensions offer. When you consider that
you get both GEOS and BeckerBASIC in memory, 16000 bytes is plenty of
memory.

Each system has a limited number of the 273 BeckerBASIC commands
available.

The Input-System is the first interpreter that needs close examination. Double-
click the System 1 icon on the GEOS deskTop. The Input-System loads into the
computer.

At the end of the loading procedure, some graphic garbage prints on part of the
deskTop, the screen turns black, and the starting screen of the Input-System
appears.

You’ll find a number of programming utilities in the Input-System, like PDUMP
and PRENUMBER (see Chapter 2 for more information). To save a BASIC
program to diskette, simply type in DSAVEB"name". DLOADB"name" loads a
BeckerBASIC file from diskette (see Section 5.3 for more information).

In most cases, you must enter the Testing-System to test programs, especially
for GEOS hi-res and sound commands. You can test some programs from the
Input-System mode. Start the program by typing RUN and pressing the
<RETURN> key. To load and start a program with one command, type
DRLOADB"name" (see Section 5.3).

NOTE: You cannot run programs using GEOS hi-res commands from within the
Input-System.

1. Introduction BeckerBASIC 64

You can start the Input-System directly from Commodore BASIC 2.0 by typing
LOAD"DBL"38,1 and pressing the <RETURN> key. This gives you about
24,000 bytes of BASIC memory for development, as well as 20,000 bytes of
memory unoccupied by GEOS.

The Input-System works the same whether you run it with or without GEOS,
with one exception: If you run the Input-System from BASIC 2.0, you can’t
access the Testing-System or the deskTop.

You can see a complete list of Input-System commands in Appendix A. All
commands and functions marked with an asterisk (*) or number sign (#) can be
used in the Input-System.

If you use commands the interpreter doesn’t understand, the computer stops and
displays the ILLEGAL COMMAND ERROR message. When this happens, you
must switch to the Testing-System to test the program.

You can access the Testing-System from the Input-System in two ways. First,
you can save the program to diskette and type in DESKTOP <RETURN> to
return to the GEOS deskTop. When the deskTop finishes loading, double-click
the System 2 icon to load the Testing-System. The other method is to press the
key combination <CTRL><Commodore>. Pressing these two keys loads the
Testing-System in about nine seconds, while retaining the BeckerBASIC
program you were working on in memory.

NOTE: Make sure that a BeckerBASIC work diskette containing both the Input-
and Testing-System is in the drive when you make this switch, and not just a
diskette on which you store your programs. Otherwise, the computer may crash,
and destroy the program in memory.

Along with the current BASIC program, you also have the complete set of
debugging tools (e.g., TRACE, ERRSHOWON and ONERRORGO—see
Section 2.2), as well as all your variables.

A menu screen appears after the loading procedure which lists four options. The
Testing-System has no options for editing BASIC programs.

Abacus 1. Introduction

To start your BASIC program, press the <F1> key to "Start program.” Press the
<F3> key to load a program from diskette and run it. You can end program
name input by pressing the <RETURN> key. Pressing <SHIFT><RETURN>
returns you to the menu screen.

The use of drop-down menus, dialogue boxes and hi-res graphics have been
avoided in the operation of these interpreters for a number of reasons. First, they
take up too much memory, and second, function keys are faster. However, if you
really want to make your programming user-friendly, you can add GEOS
commands to your own programs (see Chapters 7 and 8).

If BeckerBASIC programs have errors, the screen displays the message "Error
in program!" and asks, "Load Input-System? (Y/N)". If you press the <n> key
(no), the system returns to the menu screen of the Testing-System. If you press
the <y> key (yes), the computer returns to the Input-System and displays the
€error messages.

If you have the extended error display on using the ERRSHOWON command
(see Section 2.2), the incorrect line is listed, and the error appears in reverse
video.

NOTE: As long as ONERRORGO is active (see Section 2.2), the error handling
follows this route only in the Testing-System.

When you toggle back to the Input-System, you have all variables available. For
example, you can now check the values of individual variables or print out
current variable contents with the PDUMP command (see Section 2.1).

You could do a lot of switching back and forth between the Input- and the
Testing-Systems when in the development phases of a program. This takes time,
but it’s something like working with a compiled language. For example, when
you work with a Pascal compiler, you have to enter the text in an editor, load the
compiler and try compiling the program. If the compilation fails, you have to
return to editing mode, fix the program and start over. Since BeckerBASIC’s
load times are so brief, this waiting time isn’t a problem.

The BeckerBASIC system will help you to learn structured programming: After
about the 15th or 20th error message, you’ll learn to be much more careful in
your program development.

1. Introduction BeckerBASIC 64

The last two menu options are self-explanatory. <F7> performs the same
function as <CTRL><Commodore>, returning you to the Input-System.

You have a total of three methods of returning to the Input-System. You can
press the <F7> key or the <CTRL><Commodore> key combination. The latter
is useful for going to the Input-System, fixing the program, and returning to the
Testing-System to retry the program. The third method returns you to the
deskTop. Pressing the <F8> key has the same effect as typing DESKTOP in the
Input-System (see Section 1.5). There are a few exceptions to available
commands in the Testing-System. The Appendices list all BeckerBASIC
commands. Those commands unavailable to the Testing-System and the Run-
Only-System are marked with a number sign, and result in an ILLEGAL
COMMAND ERROR.

1.1.3 The Run-Only-System

The entire program development and testing phases are performed in the Input
and Testing-Systems. The Run-Only-System is of interest when you want to
distribute your own BeckerBASIC programs as GEOS applications. The
CONVERTER routine adds icons and info data to BeckerBASIC programs.
Converted programs access the Run-Only-System when you double-click the
icons from the deskTop.

The Run-Only-System contains almost all the same coding as the Testing-
System. The big difference between the two is in error handling. The only error
you get in the Run-Only-System is the message, "Error in program! Contact this
program’s author!" The error then sends you to the menu screen.

The <F1> key starts a BASIC program already in memory. <F3> automatically
loads and runs the program name you request. <F8> returns you to the deskTop.

You cannot call the Input-System from the Run-Only-System. However, you
can set up an error trap with ONERRORGO (see Chapter 2) for eventually
catching errors. You can put a message in listing your address ("Error in
program: Please write me at the following address—...").

When the Run-Only-System finds ERRSHOWON, ERRSHOWOFF,TRON and
TROFF commands in a program, it returns either ILLEGAL COMMAND
ERROR or the "Error in Program” message.

Abacus 1. Introduction

Distribute the Run-Only-System ONLY when you want to distribute your
BeckerBASIC programs to other GEOS users. Distributing copies of the
BeckerBASIC system itself is illegal. The only other ground rule: The Run-
Only-System must be unchanged (leave the Run-Only-System named System
3.

The Run-Only-System should only be copied from the system diskette. Use the
GEOS deskTop to do this. If you can’t remember how to copy files, check your
GEOS manual or GEOS Inside and Out from Abacus for instructions.

1.1.4 The CONVERTER

The CONVERTER program is an application written in BeckerBASIC used to
convert your BeckerBASIC programs to GEOS format. Double-click the
CONVERTER icon to start the program.

The CONVERTER program serves two purposes: It converts a BeckerBASIC
program so that you can open it by double-clicking on its icon; and it also
contains an icon editor for creating your own BASIC program icons.

NOTE: When you wish to edit a program already converted with the
CONVERTER, you must run it through the CONVERTER program after
editing in the Input-System. Also, CONVERTER should be used to convert a
completely tested and debugged program only.

Here’s what the CONVERTER does:

First, the routine asks for the name of the file to be converted and its filetype.
The CONVERTER can handle both programs and data files (never try to start
data files direct from the deskTop). Be sure that the diskette containing the
program you want converted is in the drive.

If the program has not been converted, the CONVERTER mentions this. The
CONVERTER then asks whether you want this file converted to a
BeckerBASIC program or a data file.

1. Introduction BeckerBASIC 64

The CONVERTER then asks for the data you want placed in the Info screen.
You can select the default values by pressing <RETURN> for each entry (if the
program was converted before), or enter new values. NOTE: The year input
must be two digits (e.g., "88").

The CONVERTER asks "Use standard icon (y/n)?" If you respond with
<y><RETURN> (yes), the program assigns the standard BASIC icon to the

program, identifying the code as a BeckerBASIC program. Data files have
BASIC DATA icons.

If you answer the prompt with <n><RETURN> (no), the CONVERTER
branches to an icon editor, in which you can create your own program icons.
The following functions are available in the icon editor:

<F1> sets a pixel (turns it on)
<F3> unsets a pixel (turns it off)
<F6> clears the icon matrix

<F7> transmits the completed icon

Before saving the data to diskette, a confirmation prompt appears: "Save data
(y/m)?" If you respond with <n><RETURN> (no), the data clears and the
CONVERTER restarts. If you wish to convert several programs, answer the next
prompt (" Another program?") <y><RETURN> to restart the CONVERTER.

NOTE: You cannot use commas or semicolons when entering your info text.
However, the info text can be edited later from the Info screen on the deskTop.

Converted BeckerBASIC programs run when you double-click their icons from
the deskTop. The Run-Only-System must be on the same diskette as the
converted BeckerBASIC program.

NOTE: You can replace the END statement at the close of a program with the
DESKTOP command. The program then automatically returns to the GEOS
deskTop, making it look as if it's a real GEOS application. (BeckerBASIC
programs only look like GEOS applications; they don’t really run the same as
GEOS applications).

10

Abacus 1. Introduction

A good example of BeckerBASIC programming is the DEMO program on the
BeckerBASIC distribution diskette.

The deskTop can be on the same diskette, but it doesn’t have to be on the same
diskette. If the deskTop is unavailable, GEOS displays a dialogue box asking for
a diskette containing the deskTop.

Chapter 2 contains detailed information about the individual commands.
Chapters 2, 3, 5 and 6 are the minimum reading you should do before you start
working with BeckerBASIC.

One important note when renaming files: GEOS uses a different character
coding from BASIC. The uppercase lettering and the numbers O to 9 are
identical to BASIC character codes. However, the lowercase lettering is
different. When you rename a BeckerBASIC program from the deskTop, use
uppercase letters only, or else you may not be able to load the file from the
Input-System. The best examples are the BASIC programs stored on the system
diskette. When you display the GEOS deskTop directory, you’ll see that all
program names appear in uppercase lettering. However, if you read the directory
(see DIR, Chapter 5), the BeckerBASIC names appear in lowercase lettering.

11

1. Introduction BeckerBASIC 64

1.2 Changing command names

The option of renaming commands may seem unusual to you, but it’s more than
just a plaything, It allows you to program efficiently.

With over 250 commands, it’s hard to find command names that suit every user.
You can change the command names available to you from the Input-System.

Take the TRANSFER command, for example (Section 4.1). Since this is a
frequently used command, maybe the command name would work better for

you as the abbreviation TR. Or you could change the name to MEMSHIFT, or
even MOVE.

You can rename commands to whatever you want. The format (parameter
layout) and function stay as they are.

The new commands retain compatibility with other BeckerBASIC programs,
since the commands are coded independently of the commands in memory.

You can distribute a program written in your implementation of BeckerBASIC
to another user, and he can use your program with his Run-Only-System.

The entry and output of BASIC lines when editing takes a bit longer than
BASIC 2.0. The large command set in BeckerBASIC causes this drop in speed.
1.2.1 Setting up the command table

BeckerBASIC uses two command tables. The first table contains the original
command names; the second contains the user-defined new names.

OLDCOMTAB (021) (c)
NEWCOMTAB (020 (©)

OLDCOMTARB lets you switch to the original command name table, which is in
effect when BeckerBASIC initializes. During program input, OLDCOMTAB
compares all command names with those stored in the original table, and
interprets the commands.

12

Abacus 1. Introduction

NEWCOMTAB switches to the newly defined command names, whether
you’ve redefined a new name or not. BeckerBASIC automatically assigns the
original command names to the new command table when NEWCOMTAB is
called. You can assign new command names after calling NEWCOMTAB.

Format: NEWCOMTAB: ... :OLDCOMTAB

COMTAB (250) (0

As mentioned above, you can toggle back and forth between the two command
tables, either in direct mode or program mode.

COMTAB determines which command table is currently active.
Format: CT = COMTAB

The original table returns a value of 0 to CT; a new command table gives CT a
value of 1.

1.2.2 Handling command names and numbers

PHELP (019) (c)

The PHELP command gives you a general overview of BeckerBASIC
commands. PHELP displays all the commands on the screen, including their
numbers. The display appears in a format of 2 columns, each set containing 20
commands. This takes up seven screen of text, since the numbers must also be
visible.

Format: PHELP NO

NO is the number of the output page. Every page contains 40 commands.
Page 1 (NO=1) shows commands 1-40, page 2 (NO=2) commands 41-
80, etc. The seventh and last page (NO=7) lists commands 241-273.
NO can be a number between 1 and.7. The command name output
follows in the format COMMAND NUMBER:COMMAND NAME
(e.g., 1:GOTO, 2:GOSUB, etc.).

13

1. Introduction BeckerBASIC 64

NOTE: When you select the original command table with OLDCOMTAB, the
displayed command names come from this table. However, when the
NEWCOMTAB command is used, the names come from the new table.

COMNUM (231) (N

You’ll frequently want information about a specific command or function in
BeckerBASIC,

All BeckerBASIC commands and functions are in numerical order (see
PHELP). COMNUM gives the number of any command.

Format: A = COMNUM (BF$)
A contains the number of the command word listed in BFS$. Any string
can go into BF$.

COMNUM does essentially the same thing as PHELP: If the original command
table is active, COMNUM compares BF$ with the stored name, then checks the
new table. If BF$ doesn’t match the old or new table, then A is assigned the
value 0. A numerical expression for BF$ results in a TYPE MISMATCH
ERROR.

Examples:
A = COMNUM("GOTO") makes A=1.
B$ = "COMNUM":B = COMNUM(B$) makes B=231.

C = COMNUM("XYZ") results in C=0, since the command "XYZ" doesn’t
exist (unless you’ve created your own command named XYZ).

For example, you need a description of the HPRINT command. SCPRINT
COMNUM ("HRPRINT") gives a result of 214.

COMNUM is helpful, when used in conjunction with the table in Appendix A,
in figuring out renamed commands.

14

Abacus 1. Introduction

COMNAME (251) (]

COMNAME does the opposite of COMNUM: A number returns the command
corresponding to the number.

Format: NM$ = COMNAME (BN)

BeckerBASIC assigns the command name for BN to the variable NM$. Like
COMNUM, COMNAME accesses either table through OLDCOMTAB or
NEWCOMTAB.

Examples:

SCPRINT COMNAME (32) returns TRACE.

SCPRINT COMNAME (149) returns SDVOLUME, a sound command.

G$ = MID$(COMNAME(243),3,5) returns: G$="CHECK".

TR$ = COMNAME (400) gives an ILLEGAL QUANTITY ERROR, since no
command exists with the number 400.

1.2.3 Renaming commands

RENCOM (022) (©

RENCOM allows you to rename any BeckerBASIC command, including
RENCOM itself. There are two ways to do this:

1 RENCOM (BN) = (NN$)

Command number BN receives the new name listed in NN$.

2. RENCOM (ON$) = (NN$)

RENCOM replaces the command name listed in ON$ (OldName) with the new

name contained in NN$. ON$ is immediately compared with the newly defined
command name, which goes to the second command table.

15

1. Introduction BeckerBASIC 64

There are some rules you must remember when assigning new command names:

The new name must have a minimum of two characters, and a maximum of 15
characters. Going beyond these results in a COMMAND NAME ERROR.

BeckerBASIC provides 3000 bytes for newly defined command names, which
assumes an average name length of 10 characters. When the command table
goes past this 3000 byte limit, the result is a COMMAND NAME ERROR.

You cannot use quotation marks ("), apostrophes (’), or Commodore ASCII
codes higher than 127 in your names (see your C64 manual or Programmer’s
Reference Guide for ASCII code information). These characters result in a
COMMAND NAME ERROR.

Using a question mark (?), colon (:), semicolon (;), comma (,) space () or a
number from 0 to 9 at the beginning of a command name also results in a
COMMAND NAME ERROR.

A new command name should not contain part of another command name. For
example, say you had two commands named GOTHERE and GOTHERETOO.
When the interpreter encounters GOTHERETOQ, it will treat the command as
GOTHERE. That is, it executes GOTHERE, and interprets TOO as a parameter
or another command. This interpretation only occurs if both the GOTHERE and
GOTHERETOO commands are in the command table.

Here’s how BeckerBASIC interprets commands. If it recognizes a string as a
command name, then it compares all the names in the command table with the
string. When it finds a command name in the table whose name matches the
string in question, the command executes and the program continues.

If the comparison ends without finding a match, an error occurs. At best, t!}e
interpreter could treat the extension of a command name as a parameter, as in
the GOTHERETOO example described above.

As already mentioned, RENCOM checks the old command name against the

new command table. Here’s a little trick which allows you to use the original
command name:

16

Abacus g 1. Introduction

OLDCOMTAB:RENCOM(COMNUM(ONS) = (NN$)) changes to the original
command table. COMNUM searches for ONS$ in the original table. The intended
command number transfers through RENCOM, and the program continues (1st
command variant).

Examples:

RENCOM ("RENCOM") = ("COMCHGE") changes RENCOM to COMCHGE.
All you have to do is remember to use COMCHGE for renaming commands,
instead of RENCOM (e.g., COMCHGE ("GOTO")=("GOTHERE")).

RENCOM ("LIST") = (";LINLIST") results in a COMMANDNAME ERROR,
since the command LINLIST begins with a semicolon.

RENCOM ("ONERRORGO") = ("WHENOOPSGETLINE") assigns the
command ONERRORGO the name WHENOOPSGETLINE. This command has
the maximum of 15 characters.

5/DISPLAY OLD COMMANDS AND ASK FOR NEW NAMES’
10 FOR BN=1 TO 273

20 SCPRINT COMNAME (BN)

30 NN$="»

40 INPUT "NEW NAME:";NN$

50 IF NN$=""THEN NN$=COMNAME (BN) :ENDIF

60 RENCOM (BN) = (NN$)

70 NEXT BN

This short routine displays each command name and asks for a new command
name. If you don’t want the name changed, press the <KRETURN> key.

1.2.4 Saving and loading command tables

DSCOMTAB (023) (c)
DLCOMTAB (024) (c)

DSCOMTAB saves the new command name table to diskette. DLCOMTAB
loads a table into memory which was saved using DSCOMTAB.

Format: DSCOMTAB NAS$:DLCOMTAB NA$

17

1. Introduction BeckerBASIC 64

NA$ is the name under which the table is or was stored to diskette. This
string can be a maximum of 16 characters in length (a longer name
causes a STRING TOO LONG ERROR).

Example:

DSCOMTAB "NEWTAB" saves a new command table to diskette under the
name NEWTAB. DLCOMTAB "NEWTAB" loads the table into memory.

TABNAME (209) (c)

Another problem exists when you toggle from the Testing- to the Input-System:
Calling the Input-System loads the command name tables and the program code
from diskette.

If you’re working with new names, then the corresponding name table must be
reloaded, so that the system recognizes the command names. BeckerBASIC uses
the TABNAME command to convey the name of the table stored on diskette.

Format: TABNAME NM$

NMS$ is the name under which the table is stored on diskette. The name can
have a maximum length of 16 characters.

You can also use this command for loading a name table for a program restart.
Just put the necessary commands into a short program and save this under the
name TABINT on your work diskette:

10 DLCOMTAB "NAME" :NEWCOMTAB:TABNAME "NAME" :END
When you start up the Input-System, type the following in direct mode:
DRLOADB"TABINT"

The program loads and automatically starts, and initializes the command table
NAME (see Section 5.3 for more information).

18

Abacus 1. Introduction

1.3 BASIC 2.0 commands

All normal BASIC 2.0 commands function in all three BeckerBASIC
interpreters. Some of these commands were included in the BeckerBASIC
system (note the command numbers in parentheses): GOTO (001), RUN (005),
IF (110), THEN (111), RESTORE (003), ON (174), LIST (004) and NEW
(177). You can only change the names of these commands. The other BASIC
2.0 commands cannot be renamed for technical reasons.

BASIC 2.0 programs run under BeckerBASIC after you convert them to
BeckerBASIC. List the program lines on the screen under BeckerBASIC and
press the <KRETURN> key on each line so the line is accepted. This way, you
can set up the new BeckerBASIC coding in BASIC memory.

14 Adding commands & functions

DB (173) (c)
DF (244) 4]

Machine language programmers may add commands and functions to
BeckerBasic. NOTE: This section assumes that you have some knowledge of
machine language. If not, please go on to Section 1.5.

When BeckerBASIC finds a DB or DF, the program branches to memory
address 25500 or 25000, respectively. You can define new commands or
functions in these memory locations. See Appendix G (page 228) for examples
of DB and DF.

One note about new commands and functions: The command subroutine should
end with RTS, as you would with any machine language program.

The value of the function should be placed into the floating point accumulator 1.
Corresponding routines are available in the C64 operating system. For example,
a 1-byte value normally found in the Y-register can be placed in the floating
point accumulator by JSR $B3A2, or accessed in a routine with JMP $B3A2.

19

1. Introduction BeckerBASIC 64

1.5 Miscellaneous

LIST (004) (c)

The BeckerBASIC LIST command is basically the same as the BASIC 2.0
LIST. The big difference between the original LIST command and the
BeckerBASIC LIST is that the BeckerBASIC LIST can run within a program,
without stopping program execution.

Here is an example of in-program use of LIST:

100 SCPRINT "LINE 200:":LIST 200
200 SCPRINT "NEXT LINE:"LIST 300
300 SCPRINT"END"

The LIST parameters are as follows:

LIST 10 -100 lists program lines from 10 to 100.

LIST 10 - lists the program starting at line 10 to the end.

LIST - 100 lists from the start of the program up to and including line 100.

LIST lists the entire program.

NOTE: If you rename the LIST command (e.g., to PROGLIST), and you’ve
switched to the new command table, don’t use the LIST command!! You’ll get a
system crash.

Use the new name as soon as you start working with the new command table.

The old table always has LIST on it for your use.

PRLIST (170) (©)

PRLIST has the same purpose as LIST, except that PRLIST sends the output to
a printer.

The printer must have a device address of 4.

20

Abacus 1. Introduction

Examples:
PRLIST 10 - 25 lists lines from 10 to 25.

PRLIST 15:PRLIST 20:PRLIST 100 prints lines 15, 20 and 100.

PAUSE (007) (c)

This command inserts a pause in a program, to keep messages on the screen for
a period of time.

Format: PAUSE SC

The variable SC equals the number of seconds you want the program to wait.
SC=1 delays for about one second. Values for SC range from 0 to 255.

SWAP (071) (©)

The SWAP command swaps variable contents, and lets you avoid creating a
third variable.

Format: SWAP V1,V2: ... :SWAP V1§,V2$
The contents of variables V1 and V2 are exchanged with each other, as are the
contents of variables V1$ and V2$. Note that both variables should be of the

same type (floating-point/ floating-point, integer/ integer or string/ string).
SWAPping different variable types results in a TYPE MISMATCH ERROR.

Examples:
SWAP A,SD exchanges the contents of A and SD.

SWAP BF$(37),D$(2,3) exchanges the contents of the array elements BF$(37)
and D$(2,3).

SWAP W%,IR causes a TYPE MISMATCH ERROR, since W% is an integer
and IR is a floating-point variable.

21

1. Introduction BeckerBASIC 64

NEW a7 (c)

NEW works the same as the BASIC 2.0 command of the same name: It clears
BASIC memory of all program code and variables. BeckerBASIC’s NEW clears
stack memory, as well as initializing the stack pointer for the REPEAT,
WHILE, LOOP and PROCEDURE commands (see Chapter 6 for more
information).

RESET 175) (c)

RESET performs a partial reset of your computer. That is, it and BeckerBASIC
return to start-up status. The video chip, as well as all pointers, (variable pointer,
stack pointer, etc.) are reset. Also, all error traps such as ONKEYGO,
ONERRORGO, STOPOFF, etc. are cleared.

A BASIC program deleted with this command can be restored with POLD (see
Section 2.1.1). If GEOS is in memory, it is unaffected.

Format: RESET

DESKTOP (008) (c)

DESKTOP returns you to the GEOS deskTop from BeckerBASIC, provided the
deskTop is on the diskette currently in the drive. BeckerBASIC and any
program in memory are erased before the deskTop reloads.

Format: DESKTOP

22

Abacus 2. Program development

2, Program development

2.1 Utilities

This section describes the programming utilities available in the Input-System.
If you try using these utilities in any other system, you’ll get an ILLEGAL
COMMAND ERROR. The exceptions are PBCEND and GTBCEND, which can
be used in either system.

2.1.1 Programming commands

Here are the commands you’ll use most frequently in program development:

PAUTO (009) (c)

This enables automatic line numbering.

Format: PAUTO FL,LI

FL is the first line number you want given. Values for FL can range from 0
to 63999.

LI is the increment between line numbers. Values for LI can range from 1
to 255.

Here’s how it works: After you type in a command and press the <RETURN>
key, the next line number appears on the next line, followed by the cursor. Now
you enter your program text. Press the <RETURN> key again to get a new line
number and new program line. This next line will be LI higher than the earlier
line number (e.g., if LI=10, then the line following 200 would be 210, etc.).
Pressing <SHIFT><RETURN> disables auto line numbering.

Example:

PAUTO 100,5 makes the first program line 100, followed by 105, 110, etc.

23

2. Program development BeckerBASIC 64

PRENUMBER (010) (c)

This command renumbers program lines. All branch commands like GOTO and
GOSUB are unchanged, however. The reason is that BeckerBASIC allows you
to jump to labels and calculated line numbers. Changing line numbers is
unnecessary with labels, and calculated line numbers are self-adjusting
(e.g,GOTO A*2+10).

Why have a RENUMBER command? When you run short of program lines

(e.g., when you want to insert a line between lines 10 and 11), PRENUMBER
can make room between line numbers.

Format: PRENUMBER NL,LI[,[SL][- EL]]

NL is the first new line number of the program or program range being
renumbered. Values for NL can range from 0 to 63999.

LI is the increment between lines (see PAUTO) once they are renumbered.
Values for LI can range from 1 and 255.

If you don’t want to renumber the entire program, you can add the additional
parameters to limit the procedure to a selected range of lines.

SL,EL. SL is the first line and EL is the last line of the range to be renumbered.
The parameters can be stated in the same way as the LIST command:
SL, SL- or -EL.

Examples:

PRENUMBER 1000,10 numbers the entire program in steps of 10. The first
new line is 1000.

PRENUMBER 100,5,-200 numbers the program from the start to line 200 in
steps of 5. The first new line=100.

PRENUMBER 5000,2,4500-5000 renumbers lines 4500-5000 in increments of
2, starting at line 5000.

Abacus 2. Program development

PMERGE (012) (c)

PMERGE allows the merging of BASIC programs on diskette. The line
numbers of the programs make no difference, since PMERGE can merge any
program. The program to be merged sorts with the program in memory line for
line (old lines are deleted if line numbers match).

Format: PMERGE MN$

MN$ is the name of the merged program. PMERGE deletes all variables, so
you may want to use DOVERLAYK and DOVERLAYW (see Section
5.3.3), which do not delete variables.

NOTE: To avoid syntax errors in the program, make sure that no lines in the
program being loaded are overwritten by PMERGE. Merged program lines with
smaller line numbers than the current program will usually result in a program
stopping. PMERGE should only be used in direct mode.

PDEL (013) (©)

PDEL deletes a single line or a series of lines from a program. Like PMERGE,
PDEL deletes all variables:

Format: PDEL [[L1]-[L2]] [[L3]-[LA]IIL...]

L1-L4 are the line numbers or the starting and ending line numbers of the
range(s) to be deleted. To delete several lines or a range, you can use -
to connect ranges and commas to separate each range.

NOTE: If you use this command in program mode, do not delete the program
lines preceding or containing this command.

Examples:
PDEL 10,20,30 deletes program lines 10, 20 and 30.
PDEL 10-20,30- deletes program lines from 10 to 20, then lines 30 to the end.

PDEL 10,1000-1040 deletes line 10, as well as lines 1000 to 1040.

25

2. Program development BeckerBASIC 64

POLD (011 (¢)

POLD restores a BASIC program just deleted with NEW, RESET or PDEL
(variable contents are unrestored).

It’s important that you type in this command immediately after typing NEW,
RESET or PDEL. If you type in a new program line, you won’t be able to
restore your program. This command works only in direct mode:

Format: POLD
PBCEND (014) (c)
GTBCEND (249) (f)

PBCEND changes the top of memory for BASIC programming. The default
value for this top of memory is around 32575. PBCEND is commonly used in
dialogue box and drop-down menu creation (see Chapter 7). GTBCEND returns
the current top of BASIC memory.

Format: PBCEND EN: ... :EN = GTBCEND

EN is the desired or the current top of BASIC memory. EN should be no
higher than 32575.

PMEM (015) (c)

PMEM displays the current BASIC memory layout. After you type in PMEM,
the output appears in the format:

PROGRAM: 00000
VARIABLES: 00000
ARRAYS: 00000
BYTES FREE: 00000

The current values appear instead of these zeroes. All values represent bytes.

26

Abacus 2. Program development

PDUMP (203) (©)

PDUMP list the currently defined variables, their names and current values.

Format: PDUMP
Example:

AD = 123.45

F$ = -14562

GT = V$="TEXT"
W = -3

BN$ = "EXAMPLE"

2.1.2 Function keys

You can program function keys to print frequently used commands or strings.

PDFKEY (016) (c)

PDFKEY assigns a text to a function key. This text can be up to ten characters
long.

Format: PDFKEY (NR) = (TX$)

NR is the number of the function key to be pressed. This number
corresponds to the keyboard layout of the Commodore 64. NR can be a
value from 1 to 8. Values above or below this range result in an
ILLEGAL QUANTITY ERROR.

TX$ contains a text used by the function key. Strings longer than 10
characters produce a STRING TOO LONG ERROR. Commands can
be abbreviated to three or four characters, so this is not a big
disadvantage.

NOTE: To set up a function key so that it does nothing, you must include
CHR$(0). You can do this either with PDFKEY(NR) = (CHR$(0)) or PDFKEY
(NR)=("").

27

2. Program development BeckerBASIC 64

PKEY (017) (c)

PKEY lists the current function key setup on the screen.

Format: PKEY

Here’s a typical display:

Fl: RUN

F2: PMEM

F3: PDUMP

F4: LIST

F5: POLD

F6: TRON

F7: TROFF

F8: COLORS

PFKEYON (179) (c)
PFKEYOFF (180) (c)

PFKEYON turns the function key setup on, and PFKEYOFF turns the setup off.

Before you use PFKEYOFF for the first time, the function key setup must
already be turned on with PFKEYON. Each function key contains CHR$(0)
when turned off (see the NOTE under the entry for PDFKEY above).

Function key assignments are active in direct mode only. Program mode can use
function keys also, without turning off the setup with PEKEYOFF.

NOTE: To execute a command assigned to a function key without pressing the
<RETURN> key, add a CHR$(13) to the end of the assignment for that function
key. For example, assign this command to the <F1> key:

PDFKEY (1) = ("RUN"+CHRS$(13))

Now when you want to run a BASIC program in memory, just press the <F1>
key.

When you have the ability to turn the function key layout on or off, is a question

of keyboard priority. Since interrupts control the keyboard reading system, the
function key layout set by PDFKEY has highest priority.

28

Abacus 2. Program development

The function key layout turned on by PFKEYON has higher priority than all
other function key settings. Other setups are assigned CHR$(0), so they cannot
execute.

2.2 Error handling

This section describes the commands available in both the Input-System and the
Testing-System for testing programs and handling errors. The TRACE
command is one of these, and can help you understand the workings of a very
complex program.

The BeckerBASIC error handling system operates on three levels: The lowest
level corresponds to the standard BASIC 2.0 error display; when an error
occurs, BASIC displays a message on the screen.

ERRSHOWON (030) (©)
ERRSHOWOFF (031) (c)

The second level of error handling displays the incorrect syntax in reverse
video. You can turn on this second level of error handling with ERRSHOWON
and off with ERRSHOWOFF.

NOTE: Remember three points about the ERRSHOWON command:

1) You cannot have ONERRORGO (see Section 2.2.2) and
ERRSHOWON on at the same time.

2) If the incorrect line appears in the last two lines of the screen, the
reverse video display may appear in the wrong area.

3) If you scroll the incorrect line up when listing, the reverse video
display may appear in the correct column, but a line or two too low. If
the error is at the end of a program line, it may be impossible to display
the bad area in reverse video.

29

2. Program development BeckerBASIC 64

These last two items can be bypassed if you remember the following rule: If an
incorrect line isn’t in reverse video, then look at the end of the line for the
incorrect command.

ONERRORGO (025) (c)
ONERROROFF (026) (c)

The third and most user-friendly level is the ONERRORGO command. It is the
only error tool which can be used in the Run-Only-System. This lets you branch
to a program line, and assign a variaable for holding the error message, as well as
the incorrect line’s number.

Format: ONERRORGO LN, FN, FT$, FZ
LN is the line number to which the program should branch on an error.

FN is the variable containing the error number. See Appendix B for a list
of all error messages.

FT$ is the string variable in which the error text is stored. Error texts are
similar to texts normally displayed on the screen (e.g., SYNTAX
ERROR, ILLEGAL QUANTITY ERROR, etc.).

FZ is the variable containing the line number of the incorrect line. An error
in direct mode assigns FZ a value of 0.

ONERRORGO can be placed anywhere within a program, but you can also
define it in direct mode as well. Also, any number of ONERRORGO commands
can exist in a program.

When an error occurs, BeckerBASIC displays the last command executed. Like
ERRSHOWON, ONERRORGQO has an off switch - ONERROROFF (026).

RESUMECUR ; (027) (©)

RESUMECUR continues program execution after error handling at the current
command.

30

Abacus 2. Program development

Format: RESUMECUR

RESUMENEXT (028) (©

RESUMENEXT continues program execution from the command following the
command that caused the error.

Format: RESUMENEXT

RESUME _(029) (c)

RESUME continues program execution at any point in the program.
Format: RESUME LN....: RESUME LN$

LN is the line to which the program should jump; LNS is the label of the

LN$ line to which the program should jump. When the third RESUME
command is used without having first run into an error, and without a
program jump (e.g., ONERRORGO), the system displays a RESUME
WITHOUT ONERRORGO ERROR. The RESUME command can
only be used for ending an error handling routine. If you compare
ONERRORGO with GOSUB, then RESUME is comparable to the
RETURN statement.

NOTE: When you encounter an error in direct mode, do not use the RESUME
command.

Error handling with ONERRORGO is complicated, but easy to work with once
you learn its essentials.

When you use only one error handling routine within a program, then the
ONERRORGO command should be at the beginning of the program. This traps
all errors within a program. First you must supply the line number to which the
error should branch, followed by the variable names for the error number, error
text and incorrect line.

31

2. Program development BeckerBASIC 64

Examples:

ONERRORGO 1000,A,B$,C places the error number in A, the error text in B$

and the error line in C. The program branches to line 1000 when the error
occurs.

PZ=3700:ONERRORGO PZ+ER,ER,ER$,EL puts the error number in ER, the
error text in ER$ and the error line in EL. The program branches to line
3700+ER, set according to the error number in ER.

Errors can be easily identified by their error numbers, as you saw from ER in the

last example. The given error text (ER$ in the last example) can be used to
display user information on the screen.

In most cases, the error handling ends with a program break, since it hardly
makes sense to continue a program that has errors. Then why is there a
RESUME command? This command can be very useful in many cases. Take
RESUMECUR, for example. If a program using disk access finds that either the
disk drive is turned off or that there is no diskette in the drive, you usually get a
DEVICE NOT PRESENT ERROR. ONERROR and RESUMECUR solve these
problems:

5 'DEMO OF ONERRORGO’

10 ONERRORGO 1010,A,BS,C

100 DLOADM "PRG"

1000 ’ERROR HANDLING’

1005 'DEVICE NOT PRESENT ERROR’

1010 IF NOT(A=5) THEN POPIF:GOTO 1500:ENDIF
1020 :

1030 SCPRINT;">>TURN DISK DRIVE ON<<" :SCPRINT
1040 SCPRINT">>INSERT A DISK, AND<<" :SCPRINT">>PRESS A KEY<<"
1050 :

1060 KEYDEL:WAITKEYA:'WAIT FOR A KEYPRESS’
1070 :

1080 RESUMECUR:’GO TO INCORRECT LINE’

1090 ..’

1100 ‘..’

1110 ../

1500 ’OTHER ERRORS HERE’

32

Abacus 2. Program development

Line 10 establishes the ONERRORGO parameters. If the LOAD command in
line 100 finds that the disk drive is off, then it branches to the error handling
routine at line 1000. Line 1010 checks to see if it is actually a DEVICE NOT
PRESENT ERROR. If so, line 1030 tells you to turn the disk drive on, insert a
diskette and press a key to execute the command (see Section 3.1.1 for more
information on KEYDEL and WAITKEYA).

Finally, RESUMECUR executes the normal LOAD command. ONERRORGO
and the RESUME command offer interesting and elegant programming options.

2.2.3 The TRACE commands

TRACE displays the program line number currently executing. This is useful for
testing program flow and getting a better understanding of program structure.

Of particular interest is single-step mode, which lets you single-step through a
program (command by command). Pressing a key (the <CTRL> key in
BeckerBASIC) moves the program from one command to the next. Single-step
mode is the best method of seeing what a program does and when.
BeckerBASIC’s TRACE command does still more.

The program being edited can be displayed in any area of the screen. The
beginning of the next command to be executed appears in reverse video. The
<F1> and <F3> keys turn the screen display on or off during program execution.

The biggest disadvantage of the TRACE commands in program mode is setting
up the TRACE parameters and switching on the TRACE mode with a command.

If you exit a program in normal mode, you must first turn off all TRACE
commands. You have to start the TRACE mode from the beginning of the
program.

BeckerBASIC gets around this disadvantage by splitting the mode into three
commands. ‘

33

2. Program development BeckerBASIC 64

TRACE (032) (c)

TRACE assigns the necessary parameters to trace mode. You can use as many
TRACE commands as you wish within a program. TRACE should be the last
command in that mode.

Format: TRACE LN, VW, AF

LN is the screen line number at which the program line to be traced should
appear. Values for LN range from 1 (topmost line) to 25 (bottom line).
The bottom two lines (lines 24 and 25) do the same as in
ERRSHOWON: If the current line scrolls up during output, the reverse
video could end up one or two lines too low. Therefore, try to stay
away from the last two screen lines.

VW is the value assigned to the delay loop. This loop sets the time delay
between commands. Values for VW can range from 0 to 255. The
longest possible delay occurs when VW=1; the shortest possible delay
results when VW=255, VW=0 turns on single-step mode.

AF determines whether or not the program line in process should be
displayed on the screen or not. If AF=0, output is suppressed. If AF=1,
the current line set in LN appears on the screen. If you want to turn on
the screen output only in selected places, set AF to O and input the
desired line in LN, <F1> and <F3> turns the output on and off.

As mentioned above, pressing the <CTRL> key executes the next command in
single-step mode. This also applies to direct mode (when you start a program
with RUN, you must press the <CTRL> key as well as the <RETURN> key).

The remaining functions of all the TRACE modes work in both direct mode and

program mode. NOTE: The current command display is unavailable in direct
mode.

34

Abacus 2. Program development

When reading program lines on the screen, the TRACE routines use the
available command name tables. These tables are in the hi-res graphic bitmap
memory (see Appendix C). When you use hi-res graphics in a program, these
tables are overwritten. Therefore, you should switch into hi-res graphics for
program output after you turn off TRACE (setting AF to zero), and leave the
TRACE mode off. Otherwise, you could get a system error. Besides that, to use
program line output, you should first load the Input-System into the computer,
then toggle over to the Testing-System, so that the name tables load over from
the Input-System.

TRON (006) (c)

TRON turns TRACE on. All commands following this (up to the last TRACE
command) run under a time delay.

Format: TRON

TROFF (167) ()

TROFF turns TRACE off, returning the computer to normal mode.
Format: TROFF

Both the TRON and TROFF commands can be used within a program as many
times as you wish. TROFF has no effect in normal mode.

Examples:

TRACE 5,100, 1 sets screen line 5 as the output line. A delay value of 100 is
given. This display follows immediately after the TRON command (AF=1).

ZE=1:EM=0:TRACE ZE,EM,0 makes the topmost line the display line. EM=0
turns on single-step mode. The 0 suppresses the output.

35

S . B i « .
. ' . i . . 3 ’ L . [T
. i ! 9 . R o - . ' !
. i C . HRER] Ea 5 o : N g ! :

Abacus 3. Input and Output

3. Input and output

The most important areas of programming are the lines of communication
between user and computer, and computer and peripherals. This chapter is
devoted to input and output, paying particular attention to screen and cursor
control.

3.1 Datainput

3.1.1 Keyboard input

The most important input device is the keyboard. BeckerBASIC has numerous
commands for making keyboard input easier and more comfortable.

KEYREPEATON (033) (c)

KEYREPEATON switches on the keyboard repeat function. Note that the cursor
is turned on with the repeat function.

Format: KEYREPEATON

The speed at which the key repeats is adjusted by the CRFREQ command (see
Section 3.4 for more information).

KEYREPEATOFF (034) (c)

KEYREPEATOFF turns the keyboard repeat function off.

Format: KEYREPEATOFF

37

3. Input and Output BeckerBASIC 64

STOPOFF (036) (c)
STOPON (035) (c)

The keyboard of the C64 has one key that can be a nuisance, the <STOP> key.
If a user presses this key at the wrong time (e.g., during diskette access), serious
problems could result. BeckerBASIC offers the STOPOFF and STOPON
commands.

STOPOFF disables the <STOP> key. A running program cannot be stopped by
pressing the <STOP> key.

Format: STOPOFF

STOPON has the opposite effect of STOPOFF: The <STOP> key is enabled - a
running program can now be stopped by pressing the <STOP> key.

Format: STOPON

The next command extends BASIC’s ability to read the keyboard.

KEYDEL (176) (c)

The C64 has a keyboard buffer into which up to 10 characters (keypresses) are
stored. The computer reads the keypresses from this buffer. Since the keypresses
register through an interrupt, the buffer may already be full after every keypress.

The buffer may read a previous keypress instead of the input you want it to read,
resulting in an error. The keyboard buffer can be deleted with the KEYDEL
command.

Format: KEYDEL

WAITKEYA (037) ©

WAITKEYA waits for any keypress. The keyboard buffer is deleted befoge
reading, so KEYDEL is unnecessary in this case. This command can be used in
connection with GET.

38

Abacus 3. Input and Output

Example:

10 PRINT"PLEASE PRESS THE <A> KEY."

20 WAITKEYA:’WAIT FOR A KEYPRESS’

30 :

40 GET EG$:'READ KEYPRESS’

50 :

60 "IF IT IS NOT <A>, WAIT UNTIL IT IS’

70 IF NOT(EGS$="A") THEN POPIF:GOTO 20:ENDIF

WAITKEYS (038) (©

WAITKEYS waits for a specific keypress, assigned with the ASCII code of the
desired key (see your C64 manual for ASCII codes).

Format: WAITKEYS TE

TE is the ASCII code of the desired key. Values for TE can range from 0
to 255. WAITKEY 65 waits for the <A> key.

KGETV (039 (c)

This command is similar to the BASIC 2.0 GET command: It reads data from
the keyboard. However, it is much more flexible than GET.

Format: KGETV VR$,LE [K$]

VR$ s astring variable which recieves the input.

LE sets the input length. Values for LE can range from 1 to 255.

K$ limits the amount of input allowed. All keys you want included must be
in K$. For example, if you want only the numbers from O to 9 read as

legal input, K$ would equal "0123456789". The K$ parameters are

optional; if parameters are included, they must be enclosed in quotation
marks.

KGETYV reads data only as a string. Input can be changed to numeric input using
the BASIC 2.0 VAL command.

39

3. Input and Output BeckerBASIC 64

Examples:

10 SCPRINT "ENTER A NUMBER BETWEEN 1 AND 5."
20 KGETV EG$,1,"12345":'READ NUMBER
30 EG = VAL(EGS) :' CONVERT TO NUMBER
40 SCPRINT EG" IS THE NUMBER YOU SELECTED."

10 2L$ = "+-0123456789":’ LEGAL CHARACTERS'
20 ’'READ 4-DIGIT NUMBER WITH LEADING CHAR’
30 KGETV EG$,5,2L$:A = VAL(EGS$) :PRINT A

10 SCPRINT "MENU":’DISPLAY MENU’

20 SCPRINT "MODULE A: A"

30 SCPRINT "MODULE B: B"

40 SCPRINT "YOUR CHOICE (A OR B)?"

50 KGETV MN$,1,"AB":’MODULE CHARACTERS’
60 GOTO MN$:'JUMP TO DESIRED MODULE’

70 "A":SCPRINT"MODULE A":END

80 "B":SCPRINT"MODULE B":END

KBGETV (040) (©

KBGETYV is similar in format to the KGETV command. However, this
command displays the character at the current cursor position, which can be
useful for longer inputs.

Format: KBGETV VRS$,LE [,K$]
See KGETYV above for these parameters.

Example:

10 CRSET 5,1:’SET CURSOR’

20 PRINT "YOUR INPUT:";

30 CRON:’CURSOR ON"

40 KBGETV D$,10:’10-CHARACTER INPUT"
50 CROFF:’'CURSOR OFF’

As you can see in the example, the input goes where the cursor is assigned (see
Section 3.4 for more information on cursor commands).

Cursor control is used here for controlling the reading of the string during input.
If you’d prefer to avoid this command, there are alternatives in Section 3.1.2.

40

Abacus 3. Input and Output

KGETV and KBGETYV are intended for shorter input. However, there are other
commands in this chapter which can handle input on an entire screen page.

The next two commands can read the <SHIFT>, <CTRL>, <Commodore> keys
and others.

STTEST (232) (D

STTEST checks for input from one of these alternate keys.
Format: WT = STTEST

WT can also test for the <SHIFT>, <Commodore> and <CTRL> keys. WT can
be assigned the following values to show one or more of these keys pressed:

NONE OF THESE THREE KEYS

<SHIFT> KEY

<COMMODORE> KEY

<SHIFT> AND <COMMODORE> KEYS

<CTRL> KEY

<SHIFT> AND <CTRL> KEYS

<COMMODORE> AND <CTRL> KEYS

<SHIFT>, <CTRL> AND <COMMODORE> KEYS

o s WN O

Example:

IF STTEST=5 THEN POPIF:GOTO 1000:ENDIF branches to 1000 if the
<SHIFT> and <CTRL> keys are pressed during the current keyboard reading.

WAITST (178) (©

WAITST waits for one or more alternate keys to be pressed, then immediately
continues on with the next command in the program.

Format: WAITST GT

GT determines which key or key combination to expect. The list of values
is the same as for STTEST (i.e., GT=1 means the <SHIFT> key, etc.).
Values for GT range from 0 to 7. Any numbers outside this range result
in an ILLEGAL QUANTITY ERROR.

41

3. Input and Output BeckerBASIC 64

Example:

WAITST 3:SCPRINT "SHIFT+COMMODORE" waits until the <SHIFT> and
<Commodore> keys are pressed simultaneously.

When these comands are used in conjunction with the ONKEYGO command
(see below), a whole new set of programming possibilities opens. You can even
jump to a predetermined program routine while editing a program in direct
mode.

ONKEYGO (041) (©)

The ONKEYGO command allows you to interrupt a program with a keypress,
branch to a subroutine and continue the main program at the point at which the
ONKEYGO occurred.

Format: ONKEYGO CR,LN

CR contains the ASCII code of the key pressed. Values for CR
theoretically range from 0 to 255.

LN is the line to which the program should jump on this keypress. Values
for LN range from 0 to 63999. Numbers outside of this range result in
an ILLEGAL QUANTITY ERROR.

You can have as many ONKEYGO commands in a program as you wish,

however only the last ONKEYGO command is active. NOTE: Multiple

definitions are not allowed (e.g., branching to line 1000 when the <A> key is
pressed, line 2000 when the key is pressed, etc.).

Examples:

ONKEYGO 65,5000 branches to line 5000 when the user presses the <A> key.

ONKEYGO ASC("A"),5000 performs the same function. When you don’t know
the ASCII code for a character, you can use the ASC function.

ONKEYGO 137,61000 branches to line 61000 when the user presses the <F2>
key.

42

Abacus 3. Input and Output

RETKEY (042) (c)

RETKEY acts as the close of a subroutine branched to by ONKEYGO.
Format: RETKEY

If a program encounters a RETKEY without having first executed an
ONKEYGO, the result is a RETKEY WITHOUT ONKEYGO ERROR.

To get a better grasp of what happens, here are descriptions of what occurs after
ONKEYGO:

Direct mode: Direct mode branches direct to the given program line and runs the
program code to the next RETKEY command. After RETKEY, the computer
returns to direct mode.

Program mode: The program executes to the end of the current line, the next
line number is stored in a buffer. The program then branches to the line number
specified in the ONKEYGO command. When RETKEY is encountered the line
number in the buffer is used to return to the main program, and executes the
next command in the main program.

ONKEYOFF (166) (c)

There are two options for cancelling an ONKEYGO definition: Either you set a
new definition, or you invoke ONKEYOFF.

Format: ONKEYOFF
The ONKEYGO command should be turned off at the end of a program with

ONKEYOFF. The reason is that the ONKEYGO may accidentally branch to a
program line when in direct mode.

3.1.2 Screen input

The screen is not an input device, and doesn’t directly provide data input. Still,
"screen input” describes the process of displaying keyboard input on the screen,
and BeckerBASIC has numerous commands for this type of programming.

43

3. Input and Output BeckerBASIC 64

To write data easily on the screen, there are many commands. One small
example is the WINPROC procedure at the end of Chapter 6. With this program,
you can define input windows of any size and type on the text screen, store
screen contents in a buffer and restore these contents on the screen.

As long as the data only shows on the screen, it is not very useful.
BeckerBASIC has two commands to transfer screen data into computer memory
or a string variable.

SGETV (043) (c)

SGETYV converts screen data into a string variable.
Format: SGETV VRS, LE, RO, CO
VR$ s the name of the string variable to which the data is assigned.

LE gives the number of characters to be read, based on RO and CO’s
screen position. Values for LE can range from 1 to 255.

RO are the row (RO) and column (CO) of the screen position from which

CO the data is read. After command execution, the cursor returns to the
home position of the screen. Values for RO range from 1 to 25, while
values for CO range from 1 to 40.

Examples:

SGETV EG$,10,17,5 puts 10 characters from row 17, column § into the variable

EGS$.

CRHOME:SCPRINT"HELLO":SGETV T$,5,1,1 puts the text HELLO into T$.
CRHOME places the cursor in the home position of the screen (see Section 3.4).

SGETM (044) (©

SGETM reads screen data and stores it in a preassigned area of memory.

Format: SGETM SA, LE, RO, CO

44

Abacus 3. Input and Output

SA gives the starting address of the memory range into which the data is
stored. Values for SA can range from 0 to 65535.

LE gives the length of the data being read, based upon RO and CO as the
starting point. Values for LE range from 1 to 255.

RO are the row (RO) and column (CO) of the screen position from which

co the data is read. After command execution, the cursor returns to the
home position of the screen. Values for RO range from 1 to 25, while
values for CO range from 1 to 40.

Unlike the TRANSFER command described in Chapter 4, SGETM prepares the
memory for storage and processes the data into a variable, which it converts
from BSC (true ASCII) to Commodore ASCII code.

There are two good places to store data:

The hi-res bitmap (40960 to 48960) gives you 8000 bytes. Naturally, you can
only use this range if you aren’t using hi-res graphics.

Smaller quantities of data can be stored in the cassette buffer from memory
locations 828 to 1023.

Both areas of memory have the advantage that they lie outside of BASIC
memory, and thus won’t disturb that memory.

Examples:

SGETM 41000,22,3,7 reads 22 characters from row 3, column 7 and puts these
characters into memory starting at memory location 41000.

SGETM 828,50,1,10:MGETV EG$,10,828 reads 50 characters starting at row 1,

column 10, and stores the characters starting at memory location 828. The
MGETYV (see Section 4.3) places the first ten characters into the variable EG$.

45

3. Input and Output BeckerBASIC 64

3.2 Data output

3.2.1 Screen output

To make all screen output easier, BeckerBASIC includes the commands
SCPRINT and AT. '

SCPRINT (047) (©

SCPRINT is much the same as the BASIC 2.0 PRINT statement. You can
position the text when you add AT to SCPRINT (see below).

AT (048) (©

AT puts the cursor at a specified screen position. This command can be used
only in connection with the SCPRINT command.

Format: SCPRINT [AT RO,CO;]"EXPRESSION"

RO RO is the row position and CO is the column position at which the text

co appears. Values for RO range from 1 to 25, while values for CO range
from 1 to 40. The EXPRESSION follows CO, separated by a
semicolon. The expression between quotation marks appears at the
cursor position marked by RO and CO. You can omit the expression
between quotation marks just to position the cursor without text. The
semicolon cannot be omitted.

Remember that the AT must immediately follow SCPRINT. Syntax like
SCPRINT "TEXT ",AT is not allowed. Another consideration in SCPRINT is
the status of the BeckerBASIC RVS flags (see RVSON and RVSOFF below).

You may find it easier to set cursor positioning with the CRSET command (see
Section 3.4).

46

Abacus 3. Input and Output

RVSON (049 (c)
RVSOFF (050 (c)

A disadvantage to the PRINT command in BASIC 2.0 is the fact that the
computer changes reverse video to normal video when the end of a PRINT
statement is reached.

If you wish to display longer PRINT statements in reverse video, you must end
each PRINT statement with a semicolon. This makes it much more difficult to
plan screen format. BeckerBASIC solves this problem with the RVSON and
RVSOFF commands.

RVSON turns reverse video on. All output in a SCPRINT command appears in
reverse video. RVSOFF turns the text back to normal mode.

Example:

10 RVSON:’REVERSE MODE ON'
20 SCPRINT AT 1,1;"HERE"

30 SCPRINT AT 2,5;"Is"

40 SCPRINT AT 3,7;"AN"

50 SCPRINT AT 4, 9;"EXAMPLE"
60 RVSOFF:’'REVERSE MODE OFF’

LETTERON (133) (c)
LETTEROFF (134) (c)

LETTERON tumns on lowercase lettering, while LETTEROFF returns the
system to uppercase lettering. You can switch balck and forth between modes
in direct mode by pressing <SHIFT><Commodore>. LETTERON and
LETTEROFF were intended for use in program mode.

LOCKON (135) (c)
LOCKOFF (136) (c)

LOCKON disables the uppercase/lowercase toggling. LOCKOFF enables the
toggling. LOCKON is useful when you want to keep the user from switching
between character sets.

47

3. Input and Output BeckerBASIC 64

3.2.2 Printer output

BeckerBASIC provides two easy methods for printing data.

PRPRINT (171) (©

PRPRINT sends any alphanumeric data to the printer, much like the SCPRINT
command. The rules for PRPRINT are identical to those used in SCPRINT and
the BASIC 2.0 PRINT statement.

Format: PRPRINT "EXPRESSION"

PRCOM (172) (©)

PRCOM sends individual printer codes to the printer. This is especially useful
for sending control codes such as bold, expanded print, etc.

When used within a program line, PRCOM can have as many control codes as
you like, as long as each code is separated from the next by a comma. PRCOM
is the same as the BASIC 2.0 sequence:

OPEN 14,4:PRINT#14, CHR$(C1):CLOSE14
Format: PRCOM C1[,C2,C3...]

C1,C2 is the code normally sent in the form of a CHR$(..) code. PRCOM can
handle individual printable characters. The ASCII code must be
concluded by a <RETURN> (ASCII code 13). PRCOM ASC("A"),13
sends an A.

NOTE: All BeckerBASIC printer commands correspond to the BASIC 2.0
sequence:

OPEN 14, 4:PRINT#14,..:CLOSE14

Never use any other file commands with a logical file number of 14! This
number was assigned to the printer since it’s an unusual logical number.

48

Abacus 3. Input and Output

3.3 Screen management

This section includes commands for clearing and changing the screen, as well as
loading and saving areas of the screen.

PCOLORS (018) (c)

PCOLORS states the list of colors available to the user, and their respective
color numbers.

When you have trouble remembering the correct color and number, just enter
PCOLORS and press the <RETURN> key to display the following table:

0 black 8 orange

1 white 9 brown

2 red 10 Itred

3 turquoise 11 grey 1

4 purple 12 grey 2

5 green 13 It.green

6 blue 14 It.blue

7 yellow 15 grey 3
BORDER (051) (c)
CLBORDER (246) ()

BORDER changes the screen border color. CLBORDER reads the current
border color.

Format: BORDER FN: ... :FN = CLBORDER

FN is the color code corresponding to the output from PCOLORS. Values
for FN can range from O to 15.

Values for BORDER can theoretically range from 0 to 255, although once you
pass 15, the color numbers just repeat (16=0, 17=1, etc.).

49

3. Input and Output BeckerBASIC 64

GROUND (052) (c)
CLGROUND (245) ()

GROUND changes the screen background color. CLGROUND reads the current
background.

Format: GROUND EN: ... :FN = CLGROUND
FN represents the background color. Values for FN can range from 0 to 15.
Values for GROUND can theoretically range from 0 to 255, although once you

pass 15, the color numbers repeat (16=0, 17=1, etc.).

CLS (053) (e

CLS clears the text screen, and corresponds to the BASIC 2.0 statement PRINT
CHR$(147). The cursor moves to the home position after the screen clears. To
move the cursor to the home position without clearing the screen, use the
CRHOME command (see Section 3.4).

Format: CLS
SCRON (054) (c)
SCROFF (055) (c)

These commands turn the screen on (SCRON) and off (SCROFF) through
software. These don’t literally turn the screen power on or off; they blank out
the screen.

Format: SCRON: ... :SCROFF

This is useful for quickly blanking and retrieving screen masks.

50

Abacus 3. Input and Output

SCRDSAVE (056) (c)
SCRDLOAD (057) (©

SCRDSAVE stores the current screen to diskette. SCRDLOAD loads a stored
screen file.

Format: SCRDSAVE NAS: ... :SCRDLOAD NA$

NA$ is the name under which the screen is stored. This name can have a
maximum of 16 characters.

SCRDLOAD loads direct into the current screen and overwrites the old screen.

SCRDSAVE is used to save a screen mask setup for later recall.

34 Cursor control

CRHOME (058) (©

CRHOME moves the cursor to its home position (the upper left corner of the
screen).

Format: CRHOME

CRSET (059) (c)
CRPOSL (233) (f)
CRPOSC (234) ()

CRSET sets the cursor at any location on the screen. CRPOSL (line) and
CRPOSC (column) read the current cursor position.

Format: CRSET RO,CO: ... :RO = CRPOSL: ... :CO = CRPOSC
RO RO is the current row position and CO is the current column position

CO returned by CRPOSL and CRPOSC. Values for RO range from 1 to 25,
while values for CO range from 1 to 40.

51

3. Input and Output BeckerBASIC 64

CRCOL (060) (c)
CLCURSOR (247) 1]

CRCOL changes the cursor color and the text color. CLCURSOR reads the
current cursor color.

Format: CRCOL FN: ... :FN = CLCURSOR
FN is the color code corresponding to the output from PCOLORS. Values

for FN can theoretically range from 0 to 255, although once you pass
15, the color numbers repeat (16=0, 17=1, etc.).

CRON (061) (c)
CROFF (168) (©)

CRON turns on the cursor at the current cursor position. This is useful when you
want the user to make an important input. CROFF turns the cursor off again.

Format: CRON: ... :CROFF
CRREPEATON (062) ()
CRREPEATOFF (063) (c)

CRREPEATON turns on the cursor repeat function, i.e., the repeated movement
of the cursor as you hold down one of the cursor keys (this function is built into
the operating system). This command acts much the same as the
KEYREPEATON command (see Section 3.1.1). CRREPEATOFF tumns off
cursor and keyboard repeat.

Format: CRREPEATON: ... :CRREPEATOFF

CRFREQ (064) (©

CRFREQ changes the cursor and keyboard reading frequency. That is, it
changes the speed at which the cursor movement and keyboard output occur
(faster or slower).

52

Abacus 3. Input and Output

Format: CRFREQNR

NR is the rate at which the system reads the cursor and keyboard. Values
for NR range from O to 255. It is best to use values between 25 and

125. Smaller numbers cause faster movement, while larger values slow
the movement.

Another effect can be put to good use with BASIC programs that depend on
time: The slower the cursor movement (i.e., the larger the NR value), the faster a
BASIC program executes, in cases of NR values larger than 125.

53

Abacus 4. Memory access

4. Memory access commands

This chapter describes the most important memory commands. The most vital
commands are MYFILL, which fills a memory range with the user’s choice of
characters; and TRANSFER, which moves any area of memory to another area
of memory (e.g., the character generator in ROM). See how the original memory
range, the destination and end range can overlap in Section 4.3, using the
VGETM, MGETYV and VARADR commands.

4.1 Working with memory ranges

The following four commands are intended specifically for handling memory,
from a large range of memory down to a single memory location.

TRANSFER (065) (©

TRANSFER moves a designated memory range to a free area of memory. The
memory range to be moved can be in ROM as well as RAM. The destination
range can only be in RAM, since you can’t write to ROM.

Format: TRANSFER BA, BE, NA [,KN]

BA BA is the first memory location of the range. BE is the ending location
BE of the range. Values for BA and BE can range from 0 to 65535.

NA contains the starting address of the destination range to which the
memory range is transferred. Values for NA can range from 0 to
65535.

KN states the type of memory to which BA and BE are being moved.
KN=1 is the character generator; KN=3 is RAM, and KN=5 is the
ROM. The default value for KN is 3 (RAM).

Examples:

55

4. Memory access BeckerBASIC 64

TRANSFER 1024,1062,1025 transfers the contents of the topmost screen line
one location to the right.

TRANSFER 1025,2023,1024 moves the entire screen one character to the left.

TRANSFER 1024,2023,42000 puts the current screen contents at memory
location 42000.

TRANSFER 42000,42999,1024 wipes out the screen.

TRANSFER 48000,48100,48000,5 moves the ROM from 48000 to 48100, and
transfers it to the RAM below it.

10 AD = 1024+40%*(ZE-1)+(SP-1)
20 TRANSFER AD,AD+(LE-1),2L

This short program takes the contents or the screen at row ZE, column SP and a
length of LE, and puts it at destination range ZL.

MYFILL (067) (c)

MYFILL fills the specified memory range with a given value or character.
Format: MYFILL BA, BE, WT

BA BA gives the first memory location to be filled, BE is the last memory
BE location to be filled and WT the fill value. Values for WT can range
WT from O to 255.

Examples:
MYFILL 1024,1103,32 clears the topmost screen lines.

MYFILL 55296,55495,1 colors the first five screen lines white.

10 CLS:SCPRINT AT 14,5;"MYFILL DEMO"
20 PAUSE 2

30 FOR WT=0 TO 255

40 MYFILL 1024,2023,WT:PAUSE .75

50 NEXT WT

56

Abacus 4. Memory access

This program displays each character on the screen, 1000 characters at a time.

BSCASCW : (070) (c)
ASCBSCW (069) (c)

When you set data into RAM from the screen (e.g., with TRANSFER), a
problem can occur: Screen memory data is in BSC format (Berkeley Softworks
Code - true ASCII), while the strings must be in Commodore ASCII format for
editing.

BSCASCW converts these strings from BSC to ASCII format. When you need
to transfer string data to a memory range on screen, you need to convert it from
ASCII to BSC format. The ASCBSCW performs this conversion.

Format; BSCASCW BA, BE: ... :ASCBSCW BA, BE

BA BA give the starting address and BE the ending address of the memory
BE range to be converted.

Examples:

BSCASCW 41000,41500 converts the RAM area from 41000 to 41500 from
BSC code to ASCII code.

ASCBSCW 47000,48000 converts the RAM area from 47000 to 48000 from
ASCII to BSC code.

CRHOME:SCPRINT "PICT":BSCASCW 1024,1027 converts the text "PICT"
(visible on the screen) from BSC to ASCII code.

4.2 Accessing individual memory locations

In addition to the BASIC 2.0 POKE and PEEK commands, BeckerBASIC offers
the following memory access commands.

57

4. Memory access BeckerBASIC 64

DOKE (066) (c)

DOKE places a value in two consecutive memory locations, unlike POKE,
which accesses just one memory location. The value is divided into low
byte/high byte format.

Format: DOKE AD,WT

AD is the starting memory location. Values for AD can range from 0 to
65535.

WT is the value inserted into memory locations AD and AD+1. Values for
WT can range from 0 to 65535. DOKE can be assigned parameters for
machine language programs.

Examples:

DOKE 48000,35000 puts the value 35000 into memory locations 48000 and

48001. After execution, memory location 48000 contains 184 and 48001

contains 136.

DOKE 828,VR(10) puts the contents of the array element VR(10) into locations

828 and 829.

DEEK (235) (c)

DEEK reads the contents of two consecutive memory locations and gives the
total value as a variable. The first memory location is read as the low byte, while
the second location is read as the high byte.

Format: VR = DEEK (AD)

AD is the starting address of the two memory locations read. Values for AD
range from 0 to 65535.

Examples:

58

Abacus 4. Memory access

WT = DEEK(50000) gives the contents of locations 50000 and 50001 in WT. If
location 50000 contains 10 and location 50001 contains 120, then WT returns
the value 30730.

SCPRINT DEEK(43) displays the start of BASIC pointer on the screen.

TEEK (236) ()

Like PEEK, TEEK reads individual memory contents. In addition, it determines
whether the character generated is in ROM or RAM.

Format: VR = TEEK (AD [,KN])

AD is the desired memory address. Values for AD can range from 0 to
65535.

KN states the type of memory accessed. KN=1 is the character generator;
KN=3 is RAM, and KN=5 is the ROM. The default value for KN is 3
(RAM).

Examples:

W = TEEK (56325,1) reads the contents of memory location 56325 in the
character generator.

W = TEEK (56325) reads RAM location 56325 (from the CIA register).

59

4. Memory access BeckerBASIC 64

4.3 Exchanging memory and variable contents

The memory range from 40969 to 48960 is hi-res memory, an ideal area for
storing data of all kinds (provided you aren’t using the hi-res memory for
anything else). These three commands are designed for storing different data.

VGETM (181) (c)

VGETM puts the contents of a specific string variable or alphanumeric
expression into RAM memory.

Format: VGETM BA, VRS

BA is the first memory location at which the string data is placed. Values
for BA range from 0 to 65535.

VR$ is the given string expression.

Examples:

VGETM 830,"TEXT" puts the string "TEXT" starting at memory location 830.
T$="EXAMPLE":VGETM 42000,"AN "+T$ Stores the string "AN EXAMPLE"

starting at location 42000.

MGETV (068) (c)

MGETYV reads the conttents of a memory range into any string variable.
Format: MGETYV VRS, LE, BA

VR$ s the name of the string variable into which the memory contents are
loaded.

LE,BA LE is the length of the memory range, BA is the first memory location
to be placed in the string variable.

Abacus 4. Memory access

Examples:

MGETYV T$,10,890 reads the contents of locations 890 to 899 into variable T$.

10 TRANSFER 1024,1028,41500:BSCASCW 41500,41504
20 MGETV EG$,5,41500

TRANSFER takes the first five characters of the screen starting at memory
location 41500, converts the result from BSC to ASCII code, and puts the result
into the variable EG$.

NOTE: When you move data directly from the screen to RAM (e.g., with
TRANSFER), you should convert the memory area from BSC code into ASCII
code using the BSCASCW command (see Section 4.2).

VARADR (237) (]

VARADR conveys the starting address of a variable into BASIC variable
memory.

Format: V1=VARADR (VR): ... :V2 = VARADR (VR$)

VR is the starting address of the variable.

VR$ is the name of the variable.

Aside from easy memory access, there are very few uses for VARADR. One
possibility of this function lies in the buffer storage of larger variable arrays, or
sections of variable arrays. You can compute the first and last array elements
and then move the array with TRANSFER (see Section 4.1).

Examples:

A = VARADR(ZT) computes the address of variable ZT and stores it in A.

5 DIM A% (55) _

10 W1=VARADR (A% (1)) :W2=VARADR (A% (52)) : CONVEY ADDRESS
20 W2=W2+1:’ENDADR.+1, AN INTEGER MADE UP OF TWO BYTES'
30 TRANSFER W1,W2,43000:’ TRANSFER CONTENTS'

61

4. Memory access BeckerBASIC 64

This short program transfers the contents of the array elements A%(1)-A%(52)
to memory starting at 43000.

The following program lets you put the values in any integer array:

10 W1=VARADR (A% (1)) :’ TRANSMIT STARTING ADDRESS’
20 ’STORE VALUE IN INTEGER ARRAY’
30 TRANSFER 43000,43103,Wl1:’2 BYTES PER VARIABLE * 52’

62

Abacus 5. Disk commands

S. Disk commands

The 1541 disk drive is an extremely versatile storage device. It performs simple
loading and saving, as well as allowing user-created data access.

The most interesting capabilities of the 1541 can only be achieved by complex
programming. And even the simplest tasks, such as deleting a file, involves a bit
of program code.

BeckerBASIC has many commands to make your diskette programming easier.
For example, deleting a file in BASIC 2.0 required the command OPEN
15,8,15,"S:NAME":CLOSE1S. In BeckerBASIC, all you do is type in
DSCRATCH"NAME".

Please bear the following rules in mind when using BeckerBASIC diskette
commands:

Never use BeckerBASIC diskette commands together with BASIC 2.0 diskette
commands, since conflicts with secondary addresses could occur.

Syntax of command parameters is most important at the disk drive level. This is
vital when you’re uncertain about sending commands on the disk channel (see
DSTATUS, Section 5.1).

Three diskette commands can cause trouble when used in conjunction with
GEOS disk management:

1) The DSENDCOM "V" command validates a diskette (organizes space).
Never use this command on a GEOS diskette, since it could destroy
important program information (e.g., the info block) and actual
program data.

2) DHEADER formats a diskette. Use this command in GEOS with
caution, since DHEADER creates a diskette in normal DOS format.
You can correct this by converting the formatted diskette to GEOS
format from the deskTop.

63

5. Disk commands BeckerBASIC 64

3) DRENAME (rename a disk file) should not be used in conjunction
with completed BeckerBASIC programs, since a program run through
the CONVERTER program could be destroyed when you try to change
the directory entry (name) of the program. If you must rename a
completed BeckerBASIC program, do it from the GEOS deskTop with
the rename menu option.

5.1 Common commands

Here are the diskette commands which you’ll use most often.

DIR (072) (c)

DIR displays a diskette directory on the screen without disturbing the program
in memory.

Format: DIR [SL$]

If you type in DIR without any parameters, the entire directory appears. Pressing
the <STOP> key halts the directory display.

SL$ selects certain parts of the directory for display. DIR "$*=P" displays
program files (PRG) only; DIR "$*=S" displays sequential files (SEQ);
DIR "$*=R" displays relative files (REL); and DIR "$*=U" displays
user files (USR).

Along with filetypes, you can use the wildcards * and ? for selecting individual
filenames.

The asterisk (*) replaces all characters following it. "$FD*" selects all files
starting with the characters FD. "$DIR*" gives all files starting with DIR (e.g.,
DIRECTORY, DIRTY, etc.).

Abacus §. Disk commands

The question mark (?) can represent any character in a filename. DIR
"$AD??CF" lists all six-character filenames starting with AD and ending with
CF. The two characters in between can be any letter or number. DIR
"$277TT?FP?1" selects all ten-character files containing T as the fourth and fifth
characters, F as the seventh character, P as the eighth character and 1 as the
tenth character.

The asterisk and question mark can be used together. For example, DIR
"$CIT*" reads all files starting with C and containing a T as its third character
(e.g., COT, CAT, CITIES, etc.).

The wildcards can also be used in conjunction with the filetype s\élection. DIR
"$OUT*=S" selects all sequential files beginning with OUT.

DSENDCOM (074) (©

DSENDCOM sends any commands to the disk drive. It is the equivalent of the
BASIC 2.0 OPEN 1,8,15, "COMMAND":CLOSE1.

Format: DSENDCOM KN$

KN$ contains the disk command. DSENDCOM "S:NAME" deletes the file
NAME. KNS is a string up to 40 characters in length. Longer strings
result in a STRING TOO LONG ERROR.

You’ll find other commands in this section that are more convenient to use than

DSENDCOM.

DSTATUS (073) (c)

DSTATUS reads the disk error channel.
Format: DSTATUS [FMS$]
FM$ is the name of the string variable in which the error message should be

placed. If you omit FM$, then the message appears on the screen at the
current cursor position. The message appears in the format:

65

5. Disk commands BeckerBASIC 64

ERROR_NUMBER, ERROR_TEXT, TRACK, SECTOR

ERROR_NUMBER lists the number on which ERROR_TEXT is based. You
can isolate ERROR _NUMBER from the message with FN=VAL(FMS).
TRACK and SECTOR indicate the specific data block at which the error
occurred. See your 1541 owner’s manual for a complete list of error messages.

If the disk status is okay, then the result is 00,0K,00,00. The obvious signal for

a disk error is the flashing status light on the disk drive. When that occurs, read
the error channel to find out the problem.

DSCRATCH (079) (©)

DSCRATCH deletes files from diskette.
Format: KN$="NAME1[[NAME2,...]":DSCRATCH KN$

KN$ contains the name of the file to be deleted. Additional files can be
added to KN$, each separated by commas. The string within KN$ can
be a maximum of 38 characters. The wildcards * and ? can be used
here, just as in the DIR command. For example, DSCRATCH "NIM*"
deletes all files containing N as the first character and M as the third
character.

DRENAME (078) (©)

DRENAME renames files stored on diskette.
Format: KN$="NEW NAME=OLD NAME":DRENAME KN$

KN$ contains the new and current filenames. These filenames can be up to
16 characters long.

Example:

DRENAME "COMPUTATION=TEST.FILE" renames the file TEST.FILE to
COMPUTATION.

66

Abacus 5. Disk commands

DHEADER (075) (©

Before using a new diskette, it must be formatted. The BeckerBASIC formatting
command is DHEADER.

Format: KN$="DISKNAME [,ID]":DHEADER KN$

KN$ contains the diskette name and the identification characters (ID). If you
omit ID, an already formatted diskette can be cleared and renamed. A
new, unformatted disk must have an ID assigned to it the first time you
format it. The formatting process takes about 80 seconds.

NOTE: Formatting an already formatted diskette destroys all the data currently
on that diskette.

Examples:

DHEADER "TEST,TT" formats a new diskette and assigns it the name TEST
and the id TT.

DHEADER "DATA" deletes the directory of an already formatted diskette and
names the diskette DATA.

DINIT (076) (©

DINIT loads the BAM (Block Availability Map) into disk memory. The BAM
shows how data is organized on diskette. Normally the BAM automatically
loads into disk drive memory when you change a diskette.

There are occasions when the disk drive can confuse two diskettes. This happens
when the id characters are the same when you switch from one diskette to
another. If this happens, the disk drive assumes that the newly inserted diskette
is the same diskette as the old one.

When this happens, and you know that the diskette ids are the same, you can
initialize the diskette (load the BAM) with the DINIT command.

Format: DINIT

67

5. Disk commands BeckerBASIC 64

DRESET (077) (c)

DRESET sets the disk drive into the power-up state, something like resetting the
computer, without the disadvantages.

Format: DRESET

5.2 Changing disk drive addresses

The default address of the disk drive is 8. If you work with two disk drives (the
C64 allows up to 5 disk drives), the addresses must be different from one
another.

The following three commands allow address changes and multiple disk drive
operation.

DADRCHANGE (199 (c)

DADRCHANGE allows the change of a disk drive’s device number through
software (see your 1541 manual for hardware address changes):

Format: DADRCHANGE DN

DN is the new disk drive device number. Values for DN can range from 4
to 15. Other values result in an ILLEGAL QUANTITY ERROR.

The disk drive not planned for an address change must be switched off.

DKDEVNB (195) (©)
DDEVADR (253) (©

DKDEVNB determines which disk drive should be assigned the following
commands. DEDEVNB is followed by the address of the desired device.
DDEVADR gives the address of the disk drive.

Format: DKDEVNB DN: ... :DN = DDEVADR

68

Abacus 5. Disk commands

DN is the new disk drive device number. Values for DN can range from 4
to 15. Other values result in an ILLEGAL QUANTITY ERROR.

Example:

This example is in two parts. Type the first program in and save it with
DSAVEB"TEST" on drive 8. Do not RUN this program.

25 'TYPE THIS PROGRAM IN FIRST AND SAVE IT AS "TEST"’
30 DKDEVNB 9

40 DSAVEB "TEST"

50 SCPRINT DDEVADR

Clear your memory with NEW, then type in the next program listing. After you
save it, RUN it.

5 'TYPE IN, SAVE AND RUN THIS PROGRAM.’
10 DADRCHANGE 9:WAITKEYA
20 DLOADB"TEST"

Turn off the disk drive you want kept as device 8. Line 10 changes the device
number of the currently switched on disk drive to 9. Turn on the other drive
(device 8) and press a key (WAITKEY A waits for a keypress). Line 20 loads the
program "TEST" into memory, overwriting the first program. The program now
in memory saves itself as "TEST" to device number 9 and the SCPRINT
command displays the current device number (9).

NOTE: You only need to change disk drive addresses once with the extra drive
turned off. From then on, you can change addresses within the program while
the power is on.

DKDEVNB 8:DADRCHANGE 11 changes disk drive 8 to device 11.
5.3 Program mode commands

The commands described in this section work best with BASIC and machine
language programs. The first topic is the saving and loading of programs,
including machine language. Screen memory, hi-res bitmaps and other data have
their own commands for dealing with data.

69

5. Disk commands BeckerBASIC 64

NOTE: As already explained in Chapter 1, some commands can also access
ROM under RAM. This category includes loading and saving machine language
programs.

Disk files can be handled by their filetypes (see Section 5.4.4 below).
5.3.1 Saving and verifying programs

DSAVEB (082) (©)
DCSAVEB (084) (c)

DSAVEB saves a BASIC program from memory to diskette. DCSAVEB deletes
a program of the same name from diskette, then saves the program in memory to
diskette under that name.

Format: DSAVEB PR$... :.DCSAVEB PR$

PR$ is the name under which the program is saved. PR$ can be a maximum
of 16 characters in length.

DCSAVEB is the equivalent of BASIC 2.0’s SAVE"@:NAME". This command
has two advantages: First, DCSAVEB deletes and replaces programs with up to
16 characters in the filename (SAVE"@:NAME" allows only 14 characters).
Second, DCSAVEB avoids most file errors or data loss.

Examples:

DSAVEB "UTILITY" saves the BASIC program in memory to diskette under
the name UTILITY.

DCSAVEB "UTILITY" deletes a file named UTILITY from diskette and saves
the program currently in memory to diskette under the name UTILITY.

70

Abacus 5. Disk commands

DSAVEL ‘ (197) (©
DCSAVEL (198) (©

DSAVEL and DCSAVEL let you save selected program lines to diskette.
DCSAVEL deletes the program of the same name from diskette, then saves the
program lines in memory to diskette under that name.

Format: DSAVEL PR$ [,[EL]-[LL]]: ... :DCSAVEL PR$ [,[EL]-[LL]]

PR$ is the name under which the BASIC program is saved. PR$ can be up
to 16 characters in length.

EL is the first program line to be saved.

LL is the last program line to be saved.

Examples:

DSAVEL "NAME1",10-30 saves program lines 10 to 30 as the file NAMEL.

DCSAVEL "NAME2",125 deletes the old file NAME2 from the diskette and
saves line 125 to diskette as NAME2.

DSAVEL "NAME3",-10:DSAVEL "NAMEA4",25- saves the program from the
beginning to line 10 to diskette as NAME3. Then lines 25 to the end of the
program are saved to diskette as the file NAME4.

NOTE: If you attempt to DSAVEL a line number larger than the highest
program number, BeckerBASIC returns an ILLEGAL QUANTITY ERROR.

For example, take a program that has lines numbered 10, 12, 17, 20, 21 and 49:
DSAVEL"NAME",10-30 saves lines 10 to 21 correctly, but no line 30 exists.

DSAVEL"NAME",-60 causes an error, since the number 60 is larger than the
maximum line number (49).

1

5. Disk commands BeckerBASIC 64

DSAVEM (083) (c)
DCSAVEM (085) (©

DSAVEM and DCSAVEM save machine language programs and all kinds of
data to diskette. DCSAVEM deletes a machine language program of the same
name from diskette, then saves the program currently in memory to diskette
under that name.

Format: DSAVEM PRS, BA, BE:DCSAVEM PRS$, BA, BE

PR$ is the filename under which the program in memory is saved. PR$ can
be up to 16 characters long.

BA BA is the starting and BE the ending memory locations of the program.
BE Values for these two addresses can range from 0 to 65535.

Examples:

DSAVEM "FILE1",41000,42000 saves the RAM area between locations 41000
and 42000 as the file FILE1.

DCSAVEM "MP1",828,850 deletes the file already on diskette under the name
MP1, and saves the memory range from location 828 to location 850 under the
same name.

DSAVEM"SCREEN",1024,2023 saves the current screen contents to diskette

under the name SCREEN. For better screen saving and loading commands, see
SCRDSAVE and SCRDLOAD (Section 3.3).

DVERIFYB (086) (©

DVERIFYB compares the BASIC program currently in memory with a program
stored on diskette. If both programs are identical, the computer responds with
OK, otherwise the result is a VERIFY ERROR.

Format: DVERIFYB PR$

PR$ is the name of the program on diskette that you want compared to the
program in memory.

72

Abacus 5. Disk commands

Example:

DSAVEB"NAME":DVERIFYB"NAME" saves the program in memory to
diskette as NAME, then compares the program in memory with the program
NAME on diskette.

DVERIFYM (087) (c)
DVERIFYAM (199) (©

DVERIFYM cdmpares a machine language program or other data file on
diskette with an equivalent program in memory. The starting address of the
program in memory is taken as the starting address of the program on diskette.

DVERIFY AM compares a machine language or other program on diskette with

a program in memory. The starting address of the program in memory can be
assigned.

Both commands result in either OK (both programs are identical) or VERIFY
ERROR.

Format: DVERIFYM PRS: ... :-DVERIFYAM PR$,BA

PR$ is the name of the program to be compared with the program currently
in memory.

BA s the starting memory address at which the machine language program
begins in memory.

Examples:

DSAVEM"NAME",48000,48020.DVERIFYM "NAME" saves the memory
range from 48000 to 48020 to diskette as NAME, then compares the program on
diskette with the code in memory.

DSAVEM "NAME",830,950:.DVERIFYAM "NAME",47500 saves the memory

range from 830 to 950, and compares it with the memory range starting at
address 47500.

73

5. Disk commands BeckerBASIC 64

5.3.2 Loading programs

DLOADB (088) (c)
DRLOADB (091) (c)

DLOADB and DRLOADB loads a BASIC program from diskette into memory.
DRLOADB automatically starts the program after loading it, so you don’t have
to type RUN.

Format: DLOADB PRS: ... DRLOADB PR$

PR$ is the name of the file to be loaded from diskette. PR$ can be up to 16
characters in length.

DLOADM (089) (c)

DLOADAM (090) (¢

DLOADM and DLOADAM load machine language programs or other data
files. DLOADM loads the program at the memory address at which it was
saved. DLOADAM lets you load the program at any address. Neither command
affects the BASIC pointer. The OUT OF MEMORY ERROR you could get by
loading machine language in BASIC 2.0 (LOAD "NAME",8,1) doesn’t occur
with DLOADM and DLOADAM.

Format: DLOADM PR§$: ... :DLOADAM PR$,BA

PR$ is the name of the file to be loaded from diskette. PR$ can be a
maximum of 16 characters long.

BA gives the load address of the program. Values for BA range from 0 to
65535.

Examples:

DLOADM"NAMEL!" loads the program NAME1 into memory.

DLOADAM "NAME2",42000 loads the program NAME2 into memory starting
at address 42000.

74

Abacus S. Disk commands

5.3.3 Overlays

When you write larger programs, it may be necessary to break the program up
into smaller programs and load the sections as the program executes. The
biggest problem here is retaining variable contents, since BASIC normally
destroys variables when a new program loads. Overlay commands solve this
problem!

DOVERLAYK (092) (c)

DOVERLAYK loads a specified BASIC program into memory at the start of
BASIC. All variables from the previous BASIC program are retained. When the
new BASIC program finishes loading, it executes immediately. The previous
program is deleted from memory when the new program loads.

Format: DOVERLAYK PR$

PR$ is the name of the program to be loaded. PR$ can be a maximum of 16
characters in length.

DOVERLAYW (093) (©

DOVERLAYW lets you load line numbers into a program already in memory.
Identical line numbers in memory are deleted.

DOVERLAYW has a similar function to the PMERGE command (Section
2.1.1). The exception. DOVERLAYW keeps the variables in the original
program intact.

What applies to PMERGE also applies to DOVERLAYW: When you use this
command within a program, the program being loaded in cannot have line
numbers smaller than or equal to the number of the current BASIC line (in
which the DOVERLAYW command stands). In such a case, the program may
stop with a SYNTAX ERROR message.

Format: DOVERLAYW PR$

75

5. Disk commands BeckerBASIC 64

PR$ s the name of the program you want loaded. This name is a string up to
16 characters long. NOTE: Strings normally written in the form
VR$="TEXT" must be written as VR$="TEXT"+"" so that the string is
handled correctly in the loading process. The added +""ensures that the
string is copied into the top of string memory. You can also perform
this in DATA statements: READ VRS :VR$=VRS$+VS+"",

Example:
« First program in memory (P1)

10 M$(1l) = "HERE’S ":’1ST PART OF MSG’

20 DOVERLAYW "P2":’LOAD IN 2ND PROGRAM NAMED P2’

30 M$(3) = "EXAMPLE OF "+"":’3RD PART OF MESSAGE’

40 :

50 FOR I=1 TO 4:SCPRINT M$ (I) :NEXT I:’'DISPLAY MESSAGE’

« Program loaded by P1 (P2)

25 M$(2)
35 M$(4)

"AN ":’2ND PART OF MESSAGE’
"DOVERLAYW.":’4TH PART OF MESSAGE’

non

Running P1 results in this message on the screen:

HERE'’S

AN

EXAMPLE OF
DOVERLAYW.

List the program when it’s done running. It will look like this:

10 M$(1) = "HERE'S ":’1ST PART OF MsSG’
20 DOVERLAYW "P2":’LOAD IN 2ND PROGRAM NAMED P2’

25 M$(2) = "AN ":’2ND PART OF MESSAGE’

30 M$(3) = "EXAMPLE OF "+"":’3RD PART OF MESSAGE’
35 M$(4) = "DOVERLAYW.":’4TH PART OF MESSAGE’

40 :

50 FOR I=1 TO 4:SCPRINT M$(I) :NEXT I:’DISPLAY MESSAGE’

NOTE: When you can’t arrange the program so that line numbers don’t conflict,
then you should use the DLOADPROC command (see Chapter 6). This sets up
procedures independent of programs whose line numbers will not conflict with
the main program.

76

Abacus 5. Disk commands

LDEL - (132) (c)

LDEL has a similar function to the PDEL command (Chapter 2). It deletes
individual lines or sets of lines from a program. Unlike PDEL, variable contents
remain intact.

Format: LDEL 71 [, Z2-Z3,...]

Z1 is the line to be deleted.

22,73 is the optional set of lines to be deleted.

You can put as many parameters into LDEL as you can fit into a program line.
Example:

10 ..
20 LDEL 50,72-79,100
30 .

The LDEL in line 20 deletes program lines 50,72 to 79 and 100.

54 Logical files

The logical file is an efficient way to handle data of all kinds on diskette. Every
logical file has a name under which it is stored on diskette. Every logical file has
a logical file number. This number easily lets you see whether the file is set for
reading or writing.

This section lists the essential commands needed for logical file access. They
follow the same principles as stated earlier.

71

5. Disk commands BeckerBASIC 64

5.4.1 Logical file commands

Logical file access consists of three basic actions:
« Open the file

» Read /write the file

» Close the file

When you open a file, the filename and logical file number state the necessary
parameters. BeckerBASIC’s DGETV and DGETM replace the BASIC 2.0
commands GET# and INPUT# for reading file data. Writing data is performed
by the BASIC 2.0 PRINT# command. All read and write errors are signalled
according to the logical file number.

DCLOSE closes the file and ends the access. If you wish to re-access the file, it
must again be opened by the DOPEN command.

NOTE: You must use the DCLOSE command to close the file; you can’t just
leave the file open. Also, remember to use the proper secondary addresses when
closing and opening files with DCLOSE and DOPEN.

The disk drive system allows a maximum of three open files at one time. If you
open a fourth file, a TOO MANY FILES ERROR results. You should also keep
in mind that one relative file is equal to two normal files. If you have a relative
file open, you can only have one sequential file open as well.

DOPEN (080) (c)

DOPEN opens a file of any type for reading or writing. All filetypes have their
own special open commands (more on this below).

Format: KN$="FILENAME FILETYPE,MF":DOPEN LF,KN$
LF is the logical file number of the file. Values for LF can range from 1 to
127 (you can theoretically use values higher than 127, but it doesn’t

usually make sense for disk access). The logical file number identifies
the file, and has nothing to with the type of file access itself.

78

Abacus 5. Disk commands

KN$ contains the filename. Filenames can be a maximum df 16 characters.
It is separated from the mode flag (MF) by a comma.

There are four filetypes available:

. S sequential (SEQ)

. P program file (PRG)
. U user file (USR)

. R relative file (REL)

MF is the mode flag, which states whether the file is open for reading or
writing. You have a choice of two letters for MF:

. R Read data

. w Write data

One exception exists when opening a relative file with DOPEN: You omit the
mode flag and replace it with the record length in character code form. Another
peculiarity stands in opening sequential files: Using A for MF lets you append
an existing sequential file to an open file.

Examples:

DOPEN 1,"EX1,S,W" opens EX1 as a sequential file for writing.

DOPEN 2,"EX2,P,R" opens program file EX2 for reading.

DOPEN 4,"EX4,L."+CHR$(82) opens EX4 as a relative file with a record length
of 82 characters. You can perform both read and write access on this file.

DOPEN 5,"EX5,S,A" opens sequential file EXS for appending data to the file
previously opened by DOPEN.

79

5. Disk commands BeckerBASIC 64

FILENUM (252) (f)

FILENUM lists the number of files currently open. Checking this occasionally
helps you avoid having more than three files open at a time.

After opening the desired file with the DOPEN command, you can write or read

any data in the file, depending upon which mode is active when the file opens.
The next two commands are used for reading data.

DGETV ' (045) ()

DGETYV reads data from any disk file and puts this data into a string variable.
Format: DGETVLF, VR$, LE

LF is the logical file number.

VR$ is the name of the string variable into which the data goes.

LE is the number of characters that should be read from the file. Values for
LE can range from 1 to 255.

DGETV has the advantage over BASIC 2.0’s INPUT# in that it can handle up to
255 characters at a time.

Examples:

DGETV 7,EG$,23 reads 23 characters from logical file 7, and places these
characters into string variable EGS$.

FOR I=1 TO 3:DGETV 2,A$(I),12:NEXT I reads 12 bytes three times from

logical file 2 and inserts the contents into variable array A$(1), A$(2) and
AS$(3).

DGETM (046) (c)

DGETM reads data from any disk file, and places this data in any area of
memory.

80

Abacus §. Disk commands

Format: DGETMLF, SA,LE
LF is the logical file number of the corresponding file.

SA is the address of the first memory location of the data read. Values for
SA range from 0 to 65535.

LE sets the number of bytes to be read from the file. Values for LE range
from 1 to 255.

The use of DGETM instead of DGETV is useful when the data must be
transferred directly to the screen, and variable contents must stay free (see
Chapter 4 for memory access commands).

Examples:

DGETM 2,42000,52 reads 52 characters from logical file 2, and places the data
in the computer starting at memory location 42000.

110 DGETM 5,48000,120:'READ DATA’
120 MGETV A$,50,48000:
130 MGETV B$,20,48050:
140 MGETV C$,50,48070:

Line 110 reads the data and places it in memory starting at address 48000. Lines
120 to 140 put the data in memory location 48000 and place it in string variables
AS, B$ and CS.

EOF (238) 1]

EOF helps you determine the end of the current disk file.
Format: FL = EOF

When the end of file is reached, FL = -1 (logical true); otherwise FL is equal to
0 (logical false).

81

S. Disk commands BeckerBASIC 64

Example:

110 Z=0:REPEAT:DGETM 3,42000+2,1:2=2+1:UNTIL EOF

This short routine reads the data from logical file 3 until it reaches the end of the
file. The file goes into memory starting at memory address 42000 (more on the
REPEAT/UNTIL construct in Chapter 6).

DCLOSE (081) (c)

DCLOSE closes a logical file, signalling the computer and disk drive that the
file access is finished.

Format: DCLOSE LF
LF is the logical file number of the file accessed.
Example:

10 OPEN 6,"DATA,S,R":'OPEN SEQ. FILE FOR READING’
20 DGETV 6,E$,21:"'READ DATA’
30 DCLOSE 6:’CLOSE FILE’

This routine reads the data from a sequential file and places it in E$.

54.2 Sequential file commands

The following three commands simplify sequential file access.

DSQOPEN (094) (c)

DSQOPEN is designed for opening sequential files. The simplest form uses the
logical file number and the corresponding filename.

Format: KN$="FILENAME [,LS]":DSQOPEN LF,KN$

82

Abacus 5. Disk commands

LF is the desired logical file number. Legal values for LF range from 1 to
127.

KN$ s the filename. KNS is a string containing up to 16 characters.

LS is the mode flag. This flag can be one of 4 characters:

. R read data

. w write data

. A append data to existing file

. M open a file not previously closed by DCLOSE (merge)

Omitting the mode flag defaults the file to read status (R).
Two mode flags are new: A and M.

A If you try writing to an existing sequential file with new data using the
W mode flag, the error message FILE EXISTS results. You can add to
this file by opening it with the mode flag A. All data sent through
PRINT# is appended to the existing file.

M As already mentioned, every logical file must be closed with DCLOSE
after a session. If you forget to close a file, the next time you try to read
it, you'll get a WRITE FILE OPEN error. One possibility for opening a
saved file is with the M mode flag. Once the file is open, read the entire
file, write the data into a new file (remember to close it) and delete the
old file with DSCRATCH.

Examples:

DSQOPEN 5,"DATA" opens the sequential file DATA for reading. The logical
file number is 5.

DSQOPEN 12,"DAT2,W" opens the sequential file DAT2 for writing.
DSQOPEN 1,"DATF,M" opens the improperly closed sequential file DATF for

reading.

83

S. Disk commands BeckerBASIC 64

NOTE: Close sequential files with DCLOSE.

DSQCONCAT (095) (c)

DSQCONCAT allows multiple sequential files to be added to a new file
(maximum 4 files).

Format: KN$="NF=F1,F2,...":DSQCONCAT KN$
Fl,.. are the names of sequential files added to the new file.
NF is the name of the new file.

KN$ is the string containing the data about NF, F1, etc. This string can be up
to 38 characters in length.

Examples:

If you want to add a file to an existing file, you can do the following:

10 DSQCONCAT "ZW=F1,F2"
20 DSCRATCH"F1"
30 DRENAME "F1=ZW"

This program appends file F2 to file F1.

DSQCONCAT "DATG=DAT1,DAT2,DAT3,DAT4" combines files DAT1
through DAT4 into the new file DATG. DAT1 through DAT4 remain as
separate files, as well as the combined file DATG.

5.4.3 Relative file commands

With the help of these three commands, you can easily handle relative files.

DRLOPEN (096) (c)

DRLOPEN is for opening relative files for writing or reading. There is no
differentiation between reading and writing with relative files.

84

Abacus §5. Disk commands

Format: DRLOPEN LF, FN§$, RL
LF is the desired logical file number (1-127).
FN$ is the desired or already existing filename (maximum of 16 characters).

RL is the record length. Relative files are divided into records, and all
records have the same length. This parameter must be given on every
file opening, regardless of whether the file is new or existing. Values
for RL can range between 1 and 254 bytes. .

NOTE: Once you set a record length on initially opening a file, the record length

cannot be changed. Trying to re-open a file using a different record length

results in a RECORD NOT PRESENT ERROR.

When the input is sent with PRINT#1 and concluded with <RETURN> (e.g.,
PRINT#1,A$), you must allow 1 byte for the CHR$(13) (<RETURN> key)
within each record. A 50-byte record can only contain 49 characters plus
<RETURNS>.

Thanks to the special BeckerBASIC reading commands, the record length
doesn’t include the <RETURN> key. This is something like adding a semicolon
to the end of the PRINT# command (e.g., PRINT#1, AS$;).

Examples:

DRLOPEN 2,"DATA",70 opens a relative file named DATA with a record
length of 70 bytes and a logical file number of 2.

DRLOPEN 7,"LAYOUT",254 opens a relative file named LAYOUT with the
maximum record length of 254 bytes.

DRLCLOSE (200) (©)

DRLCLOSE is the close command for relative files.
Format: DRLCLOSE LF

LF is the logical file number used with DRLOPEN.

85

5. Disk commands BeckerBASIC 64

Example:
DRLCLOSE 7 closes the relative file assigned logical file number 7. One

similarity between DCLOSE and DRLCLOSE: When a disk error occurs during
the time a file is open, you must close the corresponding file.

DRLRECORD (097) (©

All data records in a relative file are accessed by record numbers, with values
from 1 to 65535. To access a record (i.e.; read from it or write to it), you must
set the computer to the record’s position.

Format: DRLRECORD LF, RN, RP
LF is the logical file number of the file currently being accessed.

RN is the record number you want. Values for RN can range from 1 to
65535.

RP allows you to move to a position within the record. Legal values for
this can range from 1 (first byte of the record) to 254 (last byte of the
record).

There are two things to keep in mind about positioning:

1) When writing a record, RP must start out set to 1. Data records are sent
from that point in one group through the PRINT# command. When a
position is found that is larger than the last data record of the
corresponding file, the result is a RECORD NOT PRESENT ERROR.
However, the next write access to the record with PRINT# executes
correctly. The message RECORD NOT PRESENT signals that you
have gone past the previous end of the file.

2) A write access to a record fills all data records with lower numbers that
haven’t been written to yet with CHR$(255). For example, you define a
new relative file with DRLOPEN 7,"DATA",50. Using DRLRECORD
3,70,1:PRINT#3,RD$ writes to record 70. Records 1 to 69 are written
with CHR$(255), and can be written to later on.

86

Abacus 5. Disk commands

To avoid unnecessary waiting time during file access, if you know the length of
the file, you can move to the last record position and fill in the entire file with
CHR$(255). For instance, a program to fill in a relative file containing 200
records and record length of 72 bytes can look like this:

5 'THIS PROGRAM WRITES DATA TO THE 200TH RECORD OF A REL FILE’
10 DRLOPEN 1, "DATA",72:'OPEN FILE’

20 DRLRECORD 1,200,1:/POSITION TO 200TH RECORD’

30 PRINT#1,CHRS$ (255) : "WRITE RECORD’

40 DRLCLOSE 1:’CLOSE FILE’

Now for a complete example of relative file handling using the simple file
handling commands included in BeckerBASIC:

5 'RELFILE MGR.BECKERBAS’

10 LF=1:’'LOGICAL FILE NUMBER’

20 DN$="DATA":’'FILENAME’

30 RL=20:"RECORD LENGTH’

40 DRLOPEN LF,DN$,RL:’OPEN FILE’

50 :

90 CLS

100 SCPRINT "READ OR WRITE RECORD (R/W)?2";
110 KBGETV WL$,1,"WR":’SELECT W OR R’
120 GOSUB WL$:’AND CALL SUBROUTINE’

130 :

140 SCPRINT:INPUT “MORE? (Y/N)";W$:’CONTINUE?’
150 IF W$="Y" THEN POPIF:GOTOl100:ENDIF
160 DRLCLOSE LF:’NO, CLOSE FILE’

170 END:’END PROGRAM’

180 :

190 :

500 "R":’READ RECORD’

510 SCPRINT:INPUT"RECORD NUMBER";RN
520 DRLRECORD LF,RN,1:’POSITION TO RECORD’
530 DGETV LF,EGS$,RL:’READ RECORD’

540 SCPRINT EG$:’DISPLAY ON THE SCREEN’
550 RETURN

560 :

570 :

600 "W":’WRITE RECORD’

610 SCPRINT:INPUT"RECORD NUMBER: ¥;RN
620 DRLRECORD LF,RN,1:"MOVE TO RECORD’
630 SCPRINT"YOUR INPUT:";

640 KBGETV EGS$,RL:’GET DATA FROM KYBD'
650 PRINT#LF,EG$;:"AND SEND IT’

660 RETURN

87

5. Disk commands BeckerBASIC 64

5.4.4 Opening user and program files

DUSOPEN (098) (c)

DUSOPEN opens a user file (files containing a USR identifier in their directory
listings).

Format: KN$="FILENAME [,LS]":DUSOPEN LF,KN$

LF is the desired logical file number. Legal values for LF can range from 1
to 127.

KN$ contains the 16-character filename, as well as LS.

LS is the optional mode flag. If LS is W, then the file opens for writing; if
LS is R, then the file opens for reading. If you omit the mode flag, the
file opens for reading (R).

Examples:

DUSOPEN 3,"NAM1" opens the user file NAM1 for reading data.

DUSOPEN 5,"NAM2,W" opens user file NAM2 for writing.

DPGOPEN (196) (c)

DPGOPEN opens program files. This lets you load and edit a program byte for
byte.

Format: KN$="FILENAME [,LS]":DPGOPEN LF,KN$

LF is the logical file number. Legal values for LF range from 1 to 127.
KN$ contains the 16-character filename, as well as LS.

LS is the optional mode flag. If LS is W, then the file opens for writing; if

LS is R, then the file opens for reading. If you omit the mode flag, the
file opens for reading (R).

88

Abacus 5. Disk commands

Examples:
DPGOPEN 1,"PRG1" opens the program file PRG1 for reading.
DPGOPEN 7,"PRG2,W" opens the program file PRG2 for writing.

Files opened by DUSOPEN or DPGOPEN may be closed using DCLOSE.
5.5 Direct diskette access

Diskettes store data in blocks of 256 bytes each. A direct access file allows you
to access (read or write) individual blocks of data. This means that you can
easily create your own data structures based upon program, sequential and
relative files. These commands allow simple manipulation of available files, or
even the directory.

CAUTION: Even though direct access gives great flexibility in disk access,
remember that direct access can also turn little errors into big ones! For
example, one badly written data block can destroy an entire sequential file.

If you want to design your own file structures, you should use a newly formatted

diskette which contains no programs, relative or sequential files. Or at the very
least, use a backup copy of the diskette you want to read from or write to.

DDAOPEN (099) (c)

DDAORPEN is designed for opening a direct access file. Before describing the
format of this command, you need some general background about the
organization of a direct access file.

All data read from a disk data block is first stored in buffer memory within the
disk drive’s memory. From there you read the data with the commands DGETV,
DGETM, etc.

By the same token, data written to a data block is stored in this buffer, then
transferred to diskette using a special command.

89

5. Disk commands BeckerBASIC 64

The disk drive has a total of five buffers available, each identified by the
numbers 0 to 4:

NUMBER CORRESPONDING MEMORY RANGE
768-1023
1024-1279
1280-1535
1536-1791
1792-2047

S W NP o

DDAOPEN opens the specified buffer for file access.
Format: DDAOPEN LF [,PN]
LF is the logical file number. Legal values for LF can range from 1 to 127.

PN is the buffer number, chosen from the list above. Buffer selection has
nothing to do with the later transfer of the file, so you can omit the PN
parameter from DDAOPEN if you don’t care which buffer is used.

The number of the buffer selected can be read after using the DDAOPEN
command (e.g., with DGETV LF,P$,1:PN=ASC(P$)). If you give an illegal
number for PN, or the corresponding buffer is being used, the DOS responds
with a NO CHANNEL error.

In most cases, all you need to do is open a direct access file. You can have a
maximum of four of these files open at a time. Watch out for opening different
filetypes at once (SEQ, PRG, etc.). You can have a maximum of two relative
files open at a time. If you overstep the maximum allowable number of files,
you’ll get a TOO MANY FILES ERROR error messages.

Examples:
DDAOPEN 2 opens a direct access file with a logical file number of 2.

DDAOPEN 5,3 sets up a direct access file with a logical file number of 5 in disk
buffer 3.

DDAOPEN 1,0.DDAOPEN 2,2:DDAOPEN 3,0 leads to a NO CHANNEL
ERROR after the third DDAOPEN command, since buffer 0 is already open.

90

Abacus 5. Disk commands

DDAREADBL (101 (c)

DDAREADBL reads the desired track and sector (data block) from diskette into
the direct access file’s buffer.

Format: DDAREADBLLF, TR, SC
LF is the logical file number. Legal values for LF can range from 1 to 127.

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the
values for track and sector in the table below:

TRACK SECTOR
0 -17 00 - 20
18 - 24 00 - 18
25 - 30 00 - 17
31 - 35 00 - 16

All other values or combinations of values result in an ILLEGAL TRACK OR
SECTOR ERROR.

Examples:

DDAREADBL 3,18,0 loads the data block at track 18, sector O (the first
directory block) into the buffer.

DDAREADBL 2,20,20 causes an ILLEGAL TRACK OR SECTOR ERROR,
since track 20 has no sector 20.

DDAREADBL 5,1,7:DDAREADBL 2,35,3 gets the data block in track 1, sector
7 and places it in the buffer assigned to the direct access file with logical file
number 5. Then data from track 35, sector 3 loads into the buffer assigned
logical file number 2.

After the data block loads into the buffer, you can read the data with the resident

commands (DGETV, DGETM, etc.). In addition, you can set a buffer pointer to
a memory location within the buffer, for reading or writing the data.

91

S. Disk commands BeckerBASIC 64

DDAPOINT (100) (c)

DDAPOINT sets the buffer pointer to a memory location within the buffer.

Format: DDAPOINT LF,PS

LF is the logical file number. Legal values for LF can range from 1 to 127.

PS is the desired position at which the pointer should be set. Legal values
for PS can range from O (the first byte of the buffer) to 255 (the last
byte of the buffer).

Examples:

DDAPOINT 3,27 positions the pointer to the 28th byte of memory assigned by
logical file number 3.

DDAPOINT 7,255 puts the pointer on the last byte of the buffer controlled by
logical file number 7.

DDAREADBL 2,18,7:DDAPOINT 2,20:DGETV 2,G$,45 reads bytes 21 to 66
of track 18, sector 7 and places the bytes into the variable G$.

DDAWRITEBL (102) (©

DDAWRITEBL writes the data block in the specified buffer to diskette.
Format: DDAWRITEBL LF, TR, SC
LF is the logical file number. Legal values for LF can range from 1 to 127.

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the
values for track and sector in the table below:

TRACK SECTOR
0-17 00 - 20
18 - 24 00 - 18
25 - 30 00 - 17
31 - 35 00 - 16

92

Abacus 5. Disk commands

All other values or combinations of values result in an ILLEGAL TRACK OR
SECTOR ERROR.

NOTE: To store the current data block, you can send it to diskette with PRINT#.
Examples:

DDAWRITEBL 2,1,0 writes the contents of the buffer assigned logical file
number 2 to the data block starting at track 1, sector 0.

DDAPOINT 5,122:PRINT#5,"DATA";;DDAWRITEBL 5§, 25, 7 sets up the
direct file access to the data buffer assigned logical file number 5, starting at the
123rd byte. Then the buffer contents are saved to track 25, sector 7.

5 ’‘DISK RENAMER CHANGES YOUR DISK NAME THROUGH DIRECT ACCESS’
10 INPUT"NEW DISKETTE NAME:";DN$

20 DN$=LEFT$ (DN$, 16) :'KEEP NAME DOWN TO SIXTEEN CHARACTERS’
30 :

40 DDAOPEN 1:’OPEN DIRECT ACCESS FILE’

50 DDAREADBL 1,18,0:’LOAD FIRST DIRECTORY BLOCK'’

60 DDAPOINT 1,144:'POSITION TO DISK NAME’

70 PRINT#1,DN$;:'WRITE NEW NAME TO BUFFER’

80 DDAWRITEBL 1,18,0:’WRITE DATA BACK TO DIRECTORY BLOCK’
90 DCLOSE 1:’CLOSE FILE’

Normally, you name a diskette once--when you format a diskette. The program
above lets you change the name of your diskette, without any loss of data,
anytime you want. NOTE: Type this program in carefully.

DDABLALLOC 103 [
DDABLFREE (104) (c)

Now that you know the essentials of direct access and data control,
BeckerBASIC has two DOS commands which allocate and free up diskette
memory.

DDABLALLOC allocates data in a specific track and sector on the BAM (Block
Availability Map). DDABLFREE frees memory in a specific track and sector.

Format: DDABLALLOC TR, SC: ... :DDABLFREE TR, SC

93

5. Disk commands BeckerBASIC 64

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the
values for track and sector in the table below:

TRACK SECTOR

0 - 17 00 - 20
18 - 24 00 - 18
25 - 30 00 - 17
31 - 35 00 - 16

All other values or combinations of values result in an ILLEGAL TRACK OR
SECTOR ERROR.

Attempts to re-allocate diskette memory already allocated result in the error
message NO BLOCK. The third and fourth parameters of this error list the next
available data block (the next highest track and sector).

Examples:

DDABLALLOC 12,19 allocates the data block at track 12, sector 19 in the
BAM.

DDABLFREE 2,7 frees up memory in the block at track 2, sector 7.

DDABLALLOC 18,0 causes the error message 65,NO BLOCK,18,10. This
means that the data block at track 18, sector 0 are already allocated with the first
directory entry. The next free block is in track 18, sector 10.

The following command sequence below lets you isolate the track and sector
number of the next available data block from the error message. The error
message is stored in the variable DS$ for later retrieval (e.g., with DSTATUS
DS$):

10 IF VAL(DS$)=65.THEN SP=VAL(MIDS$ (DS$,13,2))
20 SK=VAL (MID$ (DS$,16,2)) :ENDIF
30 ..

If no free data block exists (i.e., there is no next available block), TR and SC are
both set to zero.

94

Abacus 5. Disk commands

5.6 Disk memory access

The 1541 disk drive has its own disk operating system (DOS); which means it
can perform its disk operations without the computer’s support. In addition to
the DOS, which is stored in ROM, there are two kilobytes of RAM allocated for
working memory and buffer memory. The following commands let you read
disk drive memory (both RAM and ROM), write to disk drive RAM, and
execute your own machine language programs from within disk drive RAM.

DMYPEEK (239) ()

DMYPEEK reads individual bytes from disk memory.
Format: VL = DMYPEEK (AD)

AD is the memory address whose contents are placed in the variable VL.
Values for AD can range from 0 to 65535.

Example:

BL=DMYPEEK(762)+256*DMYPEEK (764) assigns the number of free blocks
on the diskette currently in the disk drive to the variable BL.

DMYREADYV (202) ()

DMYREADYV reads up to 255 bytes of a memory segment from disk memory
into a string variable.

Format: DMYREADYV VRS, LE, BA

VR$ is the name of the string variable assigned to the data.

LE,BA are the address of the first memory location to be read and the length of
the data being read, computed from BA. Values for BA range from 0 to
65535; values for LE range from 0 to 255.

Example:

95

5. Disk commands BeckerBASIC 64

DMYREADV K$,16,1936 reads the name of the disk currently in the drive and
places it in the variable K$. Characters following the filename are filled in with
<SHIFT><SPACE>. This can be used to check if the correct diskette is
currently in the drive.

DMYREADM (201) (c)

DMYREADM reads up to 255 bytes of a memory segment selected from disk
memory and places it in a range of memory in the computer.

Format: DMYREADM RA, LE, BA

RA is the address of the computer’s memory at which the data should be
placed. Values for RA range from 0 to 65535.

LE,BA are the address of the first memory location to be read and the length of
the data being read, computed from BA. Values for BA range from 0 to
65535; values for LE range from O to 255.

Example:

DMYREADM 42000,37,725 reads the last error message sent by the disk drive
from address 725 to 761 (error message buffer memory) and places this segment
in the computer’s memory starting at memory location 42000.

DMYPOKE (106) ()

DMYPOKE writes individual values to disk drive RAM.
Format: DMYPOKE BA, WT

BA BA is the address and WT is the value placed into the address. Values

WT for WT range from 0 to 255; values for ba range from 0 to 65535
(NOTE: Not all values for BA are effective, see your C64
Programmer’s Reference Guide, or The Anatomy of the 1541 Disk
Drive from Abacus for memory locations).

96

Abacus §. Disk commands

Example:
DMYPOKE 106,10 changes the number of disk retries before it displays an

error message to 10 accesses. The normal number of tries before an error
message appears is 5.

DMYWRITEV (108) (©

DMYWRITE writes a string up to 34 characters long to the given disk memory
range.

Format: DMYWRITEY FA, SD$

FA is the address at which the data is written in disk memory. Values for
FA range from 0 to 65535.

SD$ s the string to be sent to disk memory. Values for SD$ range from 1 to

34 characters. Strings longer than 34 characters result in a STRING
TOO LONG ERROR.

Example;

DMYWRITE 1024,S$:DMYWRITEV 1024+LEN(S$),D$ places the combined
contents of S$ and D$ to disk buffer 1, starting at memory address 1024.

DMYWRITEM (107 (©

DMYWRITEM writes up to 34 bytes of consecutive computer memory into a
given area of disk memory.

Format: DMYWRITEM FA, RA, LE

FA is the address of disk memory at which the data starts. Values for FA
range from O to 65535.

RA,LE are the starting address of computer memory of the data sent to disk

memory (RA) and the length of the data (LE) starting at RA. Values for
RA range from 0 to 65535. Values for LE range from 1 to 34.

97

5. Disk commands BeckerBASIC 64

Example:

DMYWRITEM 1536,45000,20 places the memory from location 45000 to
location 45019 into disk data buffer 3 (location 1536).

When you want to execute machine language commands stored in disk memory
or on diskette, you can start these from the computer using the following
commands.

DMYEXEC (109) (c)

DMYEXEC runs a machine language program found in disk RAM or ROM
starting at the specified memory address. The machine language program must
be ended with an RTS (Return from Subroutine).

Format: DMYEXEC SA

SA is the starting address of the machine program set for execution. Values
for SA can range from 0 to 65535.

Example:

DMYEXEC 49597 branches to disk memory and deletes the command string
buffer in the disk drive.

DDABLEXEC (105) (©)

DDABLEXEC loads the contents of the given data block into the predetermined
direct access file disk memory (see Section 5.5). The contents are then executed
as a machine language program. Like DMYEXEC, the machine language
program must be concluded with an RTS (Return from Subroutine).

Format: DDABLEXECLF, TR, SC

LF is the logical file number set in DDAOPEN (see Section 5.5). Legal
values for LF can range from 1 to 127.

98

Abacus 5. Disk commands

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the
values in the table below for track and sector:

TRACK SECTOR
0 - 17 00 - 20
18 - 24 00 - 18
25 -30 00 - 17
31 -35 00 - 16

All other values or combinations of values result in an ILLEGAL TRACK OR
SECTOR ERROR.

Example:

DDABLEXEC 3,14,19 loads the machine language program at track 14, sector
9 to the data buffer assigned logical file number 3, and starts the program.

99

Abacus 6. Structured programming

6. Structured programming

Most large BASIC programs are unreadable. That is, their listings are difficult to
read for style or program flow. This chapter discusses the structured
programming commands of BeckerBASIC.

Along with an extended IF command and a special command for multiple-
choice (SELECT), BeckerBASIC offers you three new loop types which allow
more flexible programming than FOR/NEXT: WHILE/DO/ENDDO,
REPEAT/UNTIL and LOOP/LPEXITIF/ENDLOOP.

With the exception of SELECT/ENDSEL, this chapter lists six preset constructs
for simpler nested loop programming. For an introduction to nesting, here’s an
example written in BASIC 2.0.

10 FOR 21=1 TO 10
20 : FOR 22=1 TO 10

30 : FOR 23=1 TO 10
40 : .

50 : ...

60 : NEXT 23

70 : NEXT 22

80 NEXT 21

This routine consists of three nested FOR/NEXT loops. The innermost loop
executes lines 30 to 60. The second nested level runs lines 20 to 70, and the
topmost level from line 10 to 80.

As you can see from the above example, the program becomes much more
readable when you indent each loop level. The colons at the beginning of lines
20 to 70 are necessary so the interpreter ignores the spaces following them.

This chapter introduces new programming techniques and commands in
BeckerBASIC, as well as demonstration programs.

101

6. Structured programming BeckerBASIC 64

6.1 Comments

BeckerBASIC has two extended versions of the BASIC 2.0 REM command.
These versions use the apostrophe (’) and quotation mark (").

You must place commentary between the ’ or ". There must be a colon before or
after the commentary. Also, you cannot mix the two characters as comment
markers (" and’, or’ and ").

The major advantage of these comment markers over REM is the flexibility of
comments: You can place comments between commands, instead of at the end
of a command line, or on a separate line.

Examples:

RIGHT: 100 A=1:B=3:’DISPLAY A’:PRINT A:’DISPLAY B’ :PRINT B:’'READY’

WRONG: 100 A=1:B=3:’DISPLAY A’PRINT A ‘DISPLAY B’ PRINT B
'READY’ :NO COLONS’

WRONG: 100 A=1:B=3:'DISPLAY A :PRINT A 'DISPLAY B’ PRINT B
READY’ :’FIRST COMMENT NOT ENCLOSED’

WRONG: 100 A=1:B=3:"DISPLAY A’:PRINT A ‘DISPLAY B’ PRINT B
"READY’ :’FIRST COMMENT OPENS WITH A QUOTE, CLOSES WITH AN

APOSTROPHE'

102

Abacus 6. Structured programming

6.2 Labels and calculated line numbers

GOTO (001) (c)
GOSUB (002) (c)
RUN (005) (c)
RESTORE (003) (c)
ON (174) (c)

Throughout the BeckerBASIC program disk you’ll find most of the comments
typed in between apostrophes. The quotation mark can be used as a comment
marker, but it is also used for defining labels. The jump commands GOTO,
GOSUB, etc. only function in BASIC 2.0 through the use of constants (e.g.,
GOTO 100, GOSUB 350). Commands like GOTO 2*A+B or GOTO
"OUTPUT" don’t run in BASIC 2.0. The first of these two (GOTO 2*A+B)
handles the branch to a calculated line number. The second (GOTO
"OUTPUT") looks for a label. Both these items are executable in BeckerBASIC
thanks to the GOTO, GOSUB, RUN, RESTORE and ON commands.

Note that RESTORE also sets positions for DATA lines. While the DATA
pointer of BASIC 2.0 moves only to the first DATA statement, BeckerBASIC
lets you position the DATA pointer to any DATA statement, and any section of
a program. This allows the use of calculated line numbers and labels (e.g.,
RESTORE 12+A or RESTORE "BLOCK").

The ON command is an extended version of BASIC 2.0’s ON command (ON
GOTO/ON GOSUB). Constants, calculated line numbers and labels can be
combined here (e.g., ON A GOTO 100, "MARK1",2*CR+7).

Calculated line numbers may use any mathematical expressions. You can even
use GOTO SIN(A) or GOSUB SQR(COS(B)). The only limit is that you stay
within the legal values (from 0 to 63999). If you go beyond these values, the
computer returns an ILLEGAL QUANTITY ERROR (values lower than 0) or a
SYNTAX ERROR (values higher than 63999). Results containing decimal
numbers automatically round off to integers (BeckerBASIC removes the
decimal places).

Any alphanumeric expression can be used as a label (e.g., GOTO
MID$(A$,1,2), GOSUB "MARKIT" or RESTORE A$+BS$.

103

6. Structured programming BeckerBASIC 64

Three conditions are required for labels:

1) The label must be enclosed in quotation marks (").

2) The label must begin a program line.

3) A colon separates the label from the rest of the program line.

Examples:

5 ’LABEL DEMO’

10 A=10*B+7:GOSUB "OUTPUT"

50 PRINT"THIS IS THE MAIN PROGRAM, AND SHOULD APPEAR AFTER THE";
60 PRINT"OUTPUT SUBROUTINE.":PRINT" = = ----- "

70 END

100 "OUTPUT":PRINT"THIS IS THE ";CHR$ (34);"OUTPUT";CHRS (34);

110 PRINT"SUBROUTINE AND SHOULD APPEAR FIRST. A=";A:PRINT:RETURN

5 "RESTORE DEMO’

10 AS$(1)="BLOCK1":A$ (2)="BLOCK2" :A$ (3) ="BLOCK3"
20 INPUT"PLEASE SELECT A BLOCK NUMBER (1-3) AND PRESS <RETURN>";BN
30 RESTORE AS$ (BN) :’MOVE TO DESIRED BLOCK'’

40 :

50 READ DA$

60 PRINT DAS

1000 "BLOCK1":DATA "DOG"

1010 DATA

1100 "BLOCK2":DATA "CAT"

1110 DATA

1200 "BLOCK3":DATA "MOUSE"

1210 DATA

1 ’CALCULATED LINE DEMO’

5 PRINT"MAIN MENU"

10 PRINT"MODULE 1: 1%

20 PRINT'"MODULE 2: 2~

30 :

40 INPUT"PLEASE SELECT 1 OR 2,PRESS <RETURN>:";YC
50 IF YC<1l OR YC>2 THEN END

60 "JUMP TO LINE 1000 (YC=1) OR LINE 2000 (YC=2)’
70 GOTO YC*1000

1000 PRINT"YOU CHOSE OPTION 1."

2000 PRINT"YOU CHOSE OPTION 2."

104

Abacus 6. Structured programming

6.3 Branch structures

IF (110) (©)
THEN (111) (c)
ELSE (112) (c)
ENDIF (113) (©

These control structures are extensions of BASIC 2.0’s IF/THEN.

Format: 10 IF [CONDITION] THEN 'DO THIS’
20 [ELSE]’OTHERWISE, TRY ALTERNATE’
30 ENDIF

If the condition following the IF is fulfilled, the program executes the THEN. If
the condition is unfulfilled at IF, the program looks for the ELSE and executes
the section stated at ELSE. When ELSE is omitted, the program continues after
the ENDIF.

As you can see from the format, the IF/THEN/ELSE/ENDIF can be used over
several program lines.

There are a few points to keep in mind when working with the BeckerBASIC
version of IF/THEN :

1) BeckerBASIC requires the ENDIF (i.e., it must be placed at the end of
every IF sequence). If you leave out ENDIF, the interpreter usually
responds with a CONSTRUCT NOT CLOSED ERROR.

2) A colon must precede the ELSE nad ENDIF instructions, unless one of
these instructions is at the beginning of a program line.

3) There should be no line number immediately after THEN or ELSE in
the same line. If you must do this, the POPIF command must be used.
For example, the BeckerBASIC equivalent of IF A=1 THEN 1000 is:

IF A=1 THEN POPIF:GOTO 1000:ENDIF

105

6. Structured programming BeckerBASIC 64

If the interpreter finds an ELSE of ENDIF without a corresponding IF, the result
is an ELSE/ENDIF WITHOUT IF ERROR. A THEN without an IF returns a
SYNTAX ERROR.

Examples:

IF A=1 THEN B=0:ELSE B=1:ENDIF makes variable B equal to 0 if variable A
equals 1; otherwise, variable B equals one.

IF WT=TZ THEN WB=7:ENDIF exits through ENDIF in either case, since
there is no ELSE.

100 IF W$=MIDS$ (AB$,4,2) THEN SCPRINT W$
110 ELSE W$="":ENDIF

If the condition is fulfilled, then the string W$ appears on the screen, otherwise
the variable W$ becomes a null string.

100 IF AF$="I" THEN

110 GOSUB "INPUT"

120 ELSE GOSUB "OUTPUT"
130 ENDIF

This can improve the readability of a program (note the GOSUB in line 110).

IF/ENDIF constructs can be nested. The maximum nesting depth can
theoretically be 255 levels.

LEVELIF (264) (c)

LEVELIF returns the current nesting depth of IF/THEN commands.

Format: VT=LEVELIF

VT can have values ranging from 0 (no nesting) to 255 (maximum nesting
depth).

106

Abacus 6. Structured programming

POPIF (208) (c)

You can exit a loop level at any time using the POPIF command. POPIF simply
resets the pointer to the next nesting level up. Before or after POPIF, there must
be a loop jump (e.g., a GOTO).

Format: POPIF

SELECT (122) (©
CASE (123) (c)
OTHER (124) (©)
ENDSEL (125) (c)

SELECT/ENDSEL is basically an extended and easily modified version of the
IF/ENDIF structure.

Format: 10 SELECT AW
20 CASE Wi,
30 CASE W2, W3,
40 ...

50 OTHER ...

60 ENDSEL

AW is the numerical expression used by the SELECT command in line 10.
Values for AW range from 0 to 255. Values beyond this range result in
an ILLEGAL QUANTITY ERROR.

The value in AW determines the CASE command branched to by SELECT.
Individual CASE statements can theoretically contain as many values as you can
fit on one program line (the total number of CASE commands is limitless).

If one of the compared values goes over AW, the program executes the line
following the highest CASE command. If the interpreter finds a new CASE, the
program looks for ENDSEL before it continues on. If no CASE value matches
AW, the command(s) listed following OTHER executes.

ENDSEL must conclude the SELECT area. OTHER is an optional command.

107

6. Structured programming BeckerBASIC 64

NOTE: CASE, OTHER and ENDSEL must be found by the interpreter at the
beginning of a program line. Indentation and leading colons are not allowed.

Examples:

5 INPUT"TYPE A NUMBER - 1,4,7 OR 19";BE
10 SELECT BE

20 CASE 1:BE=BE*2

30 CASE 7:BE=BE-3

40 CASE 19:BE=9/BE

50 CASE 4:BE=BE+21

60 ENDSEL

70 PRINT BE

If BE is equal to 1,7,19 or 4, then the program branches to the appropriate
CASE command’s equation. The program ends with the ENDSEL command
(line 60).

5 A=1:INPUT"NUMBER";CW

10 SELECT A*CW+7

20 CASE 2,4,7,9,117:GOSUB"SUBROUTINEL"

30 CASE 1,18,22:GOSUB"SUBROUTINE2"

40 OTHER GOSUB"SUBROUTINE3"

50 ENDSEL .

60 END

70 "SUBROUTINE1":PRINT"THIS IS SUBROUTINE1l":RETURN
80 "SUBROUTINE2":PRINT"THIS IS SUBROUTINE2":RETURN
90 "SUBROUTINE3":PRINT"THIS IS SUBROUTINE3":RETURN

The result of the equation A*CW+7 moves the program to the different
subroutines. A result of 2,4,7,9 or 117 branches to SUBROUTINE]1. A result of
1,18 or 22 branches to SUBROUTINE2. Any other result branches to
SUBROUTINE3.

5 INPUT"NUMBER";WB
10 SELECT WB

20 CASE 1,3,5:A=1
30 CASE 2,4,6:A=2
40 ENDSEL

50 PRINT"A= ";A

This program can be simulated with an IF/ENDIF construct:

10 IF (WB=1 OR WB=2) OR (WB=5) THEN A=1:ENDIF

108

Abacus

6. Structured programming

20 IF (WB=2 OR WB=4) OR (WB=6) THEN A=2:ENDIF

As you can see, this version is much harder to follow than the CASE/SELECT
version. SELECT may not necessarily be the most useful construct when
working with multiple conditions.

10
20
30
40
50
60
70
80
90

INPUT"NUMBER" ;KN

SELECT KN

CASE
CASE
CASE
CASE
CASE
CASE

1:WT$="SUNDAY"
2 :WT$="MONDAY"
3:WT$="TUESDAY"
4 :WT$="WEDNESDAY"
5:WT$="THURSDAY"
6:WT$="FRIDAY"

100 CASE 7:WT$="SATURDAY"

110 OTHER SCPRINT"BAD NUMBER.
120 ENDSEL

130 SCPRINT" "WTS$

TRY AGAIN."

This routine reads the number you input and puts the weekday into the variable
WTS.

109

6. Structured programming BeckerBASIC 64

6.4 Loop structures

BeckerBASIC offers three loop types in addition to the BASIC 2.0 FOR/NEXT
loop: WHILE/DO/ENDDO, REPEAT/UNTIL and LOOP/LPEXITIF/
ENDLOOP. All three types differ from each other in the time at which
conditions execute. WHILE takes control at the beginning of the loop; REPEAT
waits until the end of the loop. LOOP works at any point in the loop.

WHILE (114) (c)
DO (115) (c)
ENDDO (116) (c)

A WHILE loop performs its task as long as a condition remains true and the
commands within the loop do not change (a FOR/NEXT construction runs only
once in any case).

Format: 10 WHILE ... [CONDITION] DO
20 ...
30 ENDDO

Like IF/THEN, WHILE/DO operates with any condition. As long as this
condition is true, the program commands between DO and ENDDO are
executed.

When the program encounters an ENDDO, it checks the current loop condition
between WHILE and DO. If this is still true, the commands between WHILE
and DO continue execution. On false conditions, the program continues at the
point following ENDDO.

If the WHILE condition is false after the first run, the program continues
immediately after ENDDO.

The DO command must immediately follow the WHILE, similar to IF/THEN.
ENDDO can occur at any point after DO and WHILE. If the interpreter finds a
DO without a WHILE, the result is a SYNTAX ERROR. An ENDDO without a
WHILE causes an ENDDO WITHOUT WHILE ERROR.

110

Abacus 6. Structured programming

WHILE/ENDDO loops can be nested up to 15 levels. Once nesting goes past the
fifteenth level, the interpreter responds with an OUT OF MEMORY ERROR.

Example:

10 INPUT"NUMBER (0-50)";AZ
20 zpP=0

30 WHILE NOT (ZP=AZ) DO

40 SCPRINT 272P:ZP=ZP+1l
50 ENDDO

This routine displays exponents of 2 from 2”0 to 249. The WHILE loop runs
until AZ equals to ZP.

LEVELWHL (266) ()

LEVELWHL returns the current nesting depth of WHILE/ENDDO loops.

Format: VT = LEVELWHL

VT can range from 0 (no WHILE/ENDDO loop structures) to 15
(maximum nesting level).

POPWHL (205) (c)

You can exit any loop level at any time with the POPWHL command. Directly
after POPWHL, GOTO can be used to exit the loop. POPWHL clears the
WHILE stack of the currently stored loop value.

Format: POPWHL
REPEAT (117) (c)
UNTIL (118) (c)

Unlike the WHILE/ENDDO command, the REPEAT/UNTIL loop tests for the
end of the loop. REPEAT/UNTIL always executes at least once.

111

6. Structured programming BeckerBASIC 64

Format: 10 REPEAT ...
20 ...
30 UNTIL [CONDITION]

The program commands found in between REPEAT and UNTIL execute until
the condition following UNTIL is true. As soon as this condition is met, the
program continues after the UNTIL. REPEAT and UNTIL can be placed on
different lines of the program.

If the interpreter finds an UNTIL without a previous REPEAT, the result is an
UNTIL WITHOUT REPEAT ERROR.

REPEAT/UNTIL can be nested in up to 15 levels. Going past 15 levels causes
an OUT OF MEMORY ERROR.

Example:

100 REPEAT

110 : B=0

120 : REPEAT

130 : ¢=0

140 : REPEAT

150 : D=0

160 : REPEAT

170 : E=0

180 : REPEAT
190 : SCPRINT A+B+C+D+E
200 : E=E+1
210 : UNTIL E=1
220 : D=D+1

230 : UNTIL D=2
240 : Cc=C+1

250 : UNTIL E=3

260 : B=B+1

270 : UNTIL B=4

280 A=A+l

290 UNTIL A=5

This program contains five separate REPEAT/UNTIL constructs, and displays
the number of executions on the screen.

112

Abacus 6. Structured programming

LEVELREP (265) (f)

LEVELRERP lists the current REPEAT/UNTIL loop’s nesting level.

Format: VT = LEVELREP

VT can range from 0 (no REPEAT/UNTIL loop) to 15 (maximum number
of loops).

POPREP (204) (c)

You can exit a REPEAT/UNTIL loop at any time using the POPREP command.
Directly after POPREP, GOTO can be used to exit the loop. POPREP clears the
REPEAT stack of the currently stored loop value.

LOOP (119) (c)
LPEXITIF (120) (c)
ENDLOOP (121) (c)

LOOP/ENDLOOP lets you set up common types of loops. The branch can be
designated at any time, which makes LOOP/ENDLOOP extremely flexible, and
useful when no other loop type will do the job.

Format: 10 LOCP ...
20 ...
30 [LPEXITIF ... ‘CONDITION’]
40 ...
50 ENDLOOP

The program data between the LOOP and ENDLOOP executes until the
condition following LPEXITIF is fulfilled.

If LPEXITIF or ENDLOORP is used without a previous LOOP, the result is an
LPEXITIF/ENDLOOP WITHOUT LOOP ERROR.

LOOP/ENDLOOP can be nested up to 15 levels. Going past 15 levels causes an
OUT OF MEMORY ERROR.

113

6. Structured programming BeckerBASIC 64

Example:

10 LOOP

20 INPUT"STRING:";ZK$

30 LPEXITIF ZK$="END"

40 SCPRINT "LENGTH:";LEN (ZKS$)
50 ENDLOOP

60 ...

This example lists the number of characters you type in at the prompt. You

could have done this with an IF/THEN/POPIF/ENDIF sequence, but this
program code performs the same job with a little more elegant style.

LEVELLP (267) (f)

LEVELLP lists the current LOOP/ENDLOOP loop’s nesting level.

Format: VT =LEVELLP

VT can range from 0 (no LOOP/ENDLOOP loop) to 15 (maximum number
of loops).

POPLP (207) ()

POPLP lets you exit a loop at any time. Like the other POP commands, POPLP
takes the stored value from the LOOP stack. Once the loop exits, you must
branch with another command, like GOTO.

6.5 Procedures

The name procedure is taken from the Pascal programming language. A
procedure is nothing more than a special subroutine. Unlike GOSUB/RETURN,
all the variables defined within a procedure are local (i.e., only the procedure
can use these variables). By the same token, procedures cannot access variables
within the main program. Procedures allow you to create individual program
sections that can be used with other programs without a conflict of variables.

114

Abacus 6. Structured programming

Labels are a basic method of getting into a procedure (see Section 6.2).

The limits of extra variable ranges mean more work in some respects. The
procedure may require one or more variable values from the program calling it
(this is almost always the case), so you have to add these variables to the
procedure.

This means that you have to pick and choose which variable the procedure needs
from the main program. As you’ll see from the descriptions below, these
definitions are simpler than they might sound here.

NOTE: Writing procedures can become very complicated, especially when
manipulating or setting stacks and vectors. If your program stops in the middle
of a procedure with an error, before making any program changes, RESET or
NEW the computer, then retrieve the program with POLD (this resets pointers
correctly).

PROCEDURE (126) (c)
PROCEND (127) (c)
CALL (128) (c)

Every procedure definition begins with the PROCEDURE command and ends
with PROCEND. Both commands must appear at the beginning of a program
line.

The name of the procedure follows the PROCEDURE command. You can give
it any name you wish. The only stipulations are that you place the procedure
name in quotation marks, and that the procedure name occupies less than a
program line in length.

The variables follow the name, each separated by commas and all variables
placed in parentheses.

Next comes the procedure itself -- the commands you want executed by the
procedure.

The procedure concludes with the PROCEND command. Like PROCEDURE,
this must start at the beginning of a program line.

115

6. Structured programming BeckerBASIC 64

A typical procedure looks like this:

100 PROCEDURE. .. (HEADER)

110 ...

120 ... (PROCEDURE COMMANDS)
130 ...

140 PROCEND (END MARKER)

When the interpreter finds a PROCEDURE command within a running program,
those program lines execute up until the PROCEND command.

Procedures can be inserted at any point within a program (except between
control structures). A PROCEND without a preceding PROCEDURE causes a
PROCEND WITHOUT PROCEDURE ERROR.

Procedures are called using the CALL command. If a procedure doesn’t exist,
the computer responds with an UNDEFINED PROCEDURE ERROR.

Format: CALL "NAME", (VAR_LIST)
"NAME" can be any string. It is the name of the procedure you want
called.

VAR_LIST is the set of variables you want used. A variable list is
necessary when variables must be used by both the main
program and the procedure. i.e. (a$,b$,x;z2$,q)

Variables within the PROCEDURE list can be broken into two categories,
separated by semicolons. The contents of the variables to the left of the
semicolon are received from the CALL. The variables to the right contain the
values to be returned.

In CALL’s list the values to the left of the semicolon are the values to be passed
to the procedure; the right hand variables will contain the values to return.

100 PROCEDURE "TEST", (RW,CL,LE;EGS)
110 CRSET ZE, SP:CRON:KBGETV EG$, LE :CROFF
120 PROCEND

This procedure takes an input LE characters long from column CL and row RW,
and places it in the variable EG$. A CALL for this procedure can look like this:

116

Abacus 6. Structured programming

CALL "TEST", (10,2,17;W$)

A string 17 characters long is taken from column 2, row 10. This is placed in the
variable W$ in the main program.

The common format looks something like this:

10 CALL "...", (Wl,W2%,W3$,...;A1,A2%,A3%,...)
100 PROCEDURE "...", (B1,B2%,B3$,...;T1,T2%,T3$,...)

NOTE: The variables set for access by CALL must be defined BEFORE the first
procedure call. Even if you just assign values of zero, that will work fine.

The number of variables or number of values is limited to the maximum length
of the program line. The result of missing parameters can be inconvenient at
best. In any case, the semicolon must remain in PROCEDURE, even if the
variables themselves are missing. e.g., PROCEDURE "ABC",(A,B;),
PROCEDURE "CBA",(;D,E), or PROCEDURE "BAC",(;).

It is also important that variables and values shared by CALL and
PROCEDURE be in the same order and be the same type (e.g., don’t try passing
a string variable to a number). Errors of this type result in a PROCEDURE-
PARAMETER ERROR.

There are some things about variable arrays and array elements to keep in mind.
These explanations are for parameter passing to a procedure only, not for the
return to the main program:

1) Individual array elements can be treated like normal variables:

100 CALL "NAME", (A(10),B$(3,7),...)

500 PROCEDURE "NAME", (BC,GS$,...)

2) Larger numbers of arrays present problems. Here the first and last
element of the desired array range, separated by a minus sign (-), must
be given. If, for example, you want elements 7 through 19 of the array
FT passed, then the code would look like this:

CALL "NAME", (FT(7)-FT(19),...)

The example below gives all 28 elements of the string array AG$:

117

6. Structured programming BeckerBASIC 64

CALL "NAME", (AG$ (0) -AGS(27),...)

NOTE: An array passed to a procedure must be defined before passing to the
procedure using the DIM statement. If you don’t do this, the program may crash.

The corresponding variable array in the procedure must be predefined in the
procedure header according to the last array element (again, using DIM). The
procedures for the above two examples might look something like this:

PROCEDURE "NAME", (DA(12),...)

PROCEDURE "NAME", (SR$(27),...)
A little trick makes variable dimensioning feasible:
PROCEDURE "NAME", (DM, FL% (DM), ...)

This assigns the integer array FL% a size of variable DM. When the procedure
is called by the command CALL "NAME",(9,DW%(0)-DW%(9),...), FL% is
assigned ten elements and is filled with the elements of the array DW%(..).

Naturally, you can assign the array larger dimensions than needed; the rest of
the'array fills with null elements.

BeckerBASIC uses only two controlling factors in array passing, type control
and length control. Type control requires only that you make sure that arrays are
of the same type when setting them up for passing. In other words, putting real
into integer and vice versa is illegal. This results in a PROCEDURE-
PARAMETER ERROR.

The length control simply compares the array lengths, making sure that the one
has sufficient room to take on the other. Dimension control is impossible. One
thing you can do here is convert multidimensional arrays to smaller dimensions,
and vice versa.

Example:

10 CALL "NAME", (W(0,0)-W(3,3),...)

100 PROCEDURE "NAME", (FA(15),...)

118

Abacus 6. Structured programming

The two-dimensional array W(..,..) transfers its contents into the single-
dimensional array FA(...). You can also do the reverse:

10 CALL "NAME", (FA(15),...)

100 PROCEDURE "NAME", (W(3,3),...)
The one-dimensional array FA(..) transfers to the two-dimensional array W(_..).

The first line of the note about passing arrays also applies to passing arrays from
procedure to the main program. The procedure return to the main program is
almost the same, with one exception: All arrays and simple variables returned
must be predefined before the passing takes place. After CALL and the
semicolon you give the first element of the array whose values you want passed
(default is element 0). See the example below.

The example at the end of this chapter, WINPROC, is a complete demonstration
of structured programming using procedures. Below are two shorter examples of
procedures:

10 DIM TC$(15),2N%(25) :AK=0
20...
100 CALL "NAME", (12*4+CG,3,TC$(9)-TC$(11);AK,ZN%(6))

500 PROCEDURE "NAME", (AN, HV,AMS$ (HV) ;2%,D%(3)-D%(17))

NOTE: The term 12*4+CG had to be predefined before CALL (e.g., with
CG=0). The string array AMS$ is dimensioned with a size of HV. The variable
returned is given to the real variable AK by the integer variable Z%. This is
handled as a simple variable. The element of the integer array D% must be
converted into an integer array (ZN%; this fills in the seventh element).

Remember: The variable AK and the array ZN% must be defined / dimensioned
before the procedure call (see program line 10 above):

10 DV(2,0)=7:DV(1,2)=138

100 CALL"NAME", (DV(0,0)-DV(2,2);)
110 ...

120 PROCEDURE "NAME", (MB(8);)

This example converts the two-dimensional array DV to the one-dimensional
array MB. MB(2) contains the value 7, MB(7) the value 138.

119

6. Structured programming BeckerBASIC 64

Remember: The semicolon in the variable list must be given, even if no values
appear to the right of the semicolon.

Procedures can be nested like loops. Nesting means in this case that a procedure
can be called from within another procedure during execution of that procedure.
This is particularly interesting when you want to create a self-calling, or
recursive procedure.

You can have a maximum nesting level of 15. If you go past this level, the
computer responds with an OUT OF MEMORY ERROR.

NOTE: On every procedure call, a new area of variable memory must be set
aside, so nesting procedures can make great demands on the memory. Keep this
in mind when writing recursive procedures. If, for example, you have defined
three real variables within a procedure, and you plan on making procedures self-
calling down to the seventh level, necessary variable memory for three variables
is 147 bytes.

LEVELPROC (268) ()

LEVELPROC returns the current nesting depth of procedures:

Format: VT = LEVELPROC

vT can range from 0 (no procedure nesting) to 15 (maximum nesting
level).

POPPROC (206) (c)

POPPROC lets you exit a procedure before it’s done executing. POPPROC
clears the variable range of the procedure in BASIC memory and retains the last
called procedure from the procedure stack. A jump command lets you go to any
point in the program.

Format: POPPROC

The formats of the following three commands are the same as those in Section
5.3.3 (Overlays). Procedures can also be loaded, saved, etc. without loss of data.

120

Abacus 6. Structured programming

DSAVEPROC (129) (©

DSAVEPROC saves a procedure to diskette under the assigned name.

Format: DSAVEPROC NA$

NA$ is the name of the procedure to be saved. This string can be a maximum
length of 16 characters (the disk drive cannot handle longer names).

Although you can save procedures with DSAVEL (see Section 5.3.1),
DSAVEPROC is easier to use.

Example:
DSAVEPROC "TEST" saves the procedure TEST to diskette.

DLOADPROC (130) (c)

DLOADPROC loads a saved procedure into memory without destroying any
data. The difference between this command and DOVERLAY (Section 5.3.3) is
that the procedure is attached to the program, rather than interspersed with the
running program.

All procedures containing the same line numbers as the running program can be
easily loaded into the running program. Once it happens, you cannot edit the
two programs in memory; but you can remove the procedure with the
DELPROC command.

DLOADPROC loads like any normal program or program section.

Format: DLOADPROC NA$

NA$ is the name of the procedure to be loaded. This name can be a
maximum length of 16 characters.

Example:

DLOADPROC"OUTPUT" loads the procedure OUTPUT into memory and
appends the procedure to the currently running program.

121

6. Structured programming BeckerBASIC 64

DELPROC (131) (c)

DELPROC deletes a procedure found within a program, without loss of
variables.

Format; DELPROC NA$

NA$ is the name of the procedure you wish deleted. To delete individual
program sections instead, use the PDEL (with variable loss; see Section
2.1.1) or LDEL (no variable loss; see Section 5.3.3).

Example:

DELPROC "OUTPUT" deletes the OUTPUT procedure from the running
program.

If you want to use a procedure in an extreme case during editing, use the
following:

DLOADPROC "NAME":CALL "NAME" (...)DELPROC "NAME"

Now to demonstrate procedures, here is a practical example: Window design for
the Commodore 64.

Windows are normally rectangular screen areas into which information is
displayed or data is entered. One particular problem with windows is the
temporary storage of screen information. In addition, different window
parameters such as window size, position, etc. must be retained. Variables work
well for this, except that when you leave a procedure, the variables are lost.

The solution to this problem lies in the memory range from 40960 to 48960
(free RAM).

The maximum number of simultaneously active windows is five. You can
change this parameter, like all other aspects of the program. The individual open
windows can overlap each other.

However, the nesting principle holds true here, i.e., before you can deactivate a

window part way down the nesting levels, the last active window(s) must be
closed as well.

122

Abacus 6. Structured programming

The program at the end of this section is on your distribution diskette under the
name WINPROC. It contains a total of five procedures:

WINOPEN Buffer storage of a window area
WINDEL Clear a window

WINPRINT Data output in a window
WININPUT Data input in a window
WINCLOSE Store a window area

NOTE: The window routines must be initialized at the beginning of a program
with POKE 45535,0.

The first step to creating a window is calling the WINOPEN procedure
(program lines 1070-1280). WINOPEN stores the necessary screen area in the
back of RAM memory. You must assign the starting position (upper left hand
corner of the window) and the horizontal and vertical orientation of the window.
The sequence for this orientation is starting line (1-25), starting column (1-40),
line length (1-40), column length (1-25).

If you no longer need the window, you can close the window you opened with
the WINCLOSE procedure (program lines 1320-1490).

The WINDEL procedure (program lines 1530-1610) prepares the screen area for
data input by clearing the area. WININPUT (program lines 1760-2100) lets you
enter any data into the window. The cursor can be moved anywhere in the
window with the cursor keys. The other key functions (colors, for example) are
also accessible, WININPUT treats the window area as a miniature "screen."

Pressing the <RETURNS> key places the window contents in a one-dimensional
string array (one element per window line), and exits the procedure. To exit the
procedure and have the procedure ignore the data, press <SHIFT><RETURN>.

Remember: The input array must be dimensioned in the main program BEFORE
the procedure executes.

123

6. Structured programming BeckerBASIC 64

The WINPRINT procedure (program lines 1650-1720) writes the data in a one-
dimensional string array (one array per window line) to a window. The
parameters applying to WINDEL, WININPUT and WINPRINT also apply to
WINOPEN.

You now have a general background of window techniques. There are other
procedures in this program, though. You can, for example, remove the border
from a window, or move different windows around the screen.

WININPUT can be extended to perform other functions. For example, you
could make it scroll up or down, or include a special <cursor home>.

WARNING: These procedures contain no check for parameters. Adding this
kind of error checking should pose little problem for you, if you want it.

10 ’'WINPROC’

100 ’‘DELETE THESE LINES AFTER APPENDING TO ANOTHER PROGRAM’
110 :

115 CLS:LETTERON:CRCOL 1

120 SCPRINT AT 3,1;"THIS PROGRAM CANNOT START ON ITS OWN!"
130 SCPRINT AT 6,1;"IT IS INTENDED TO BE INTEGRATED"

140 SCPRINT AT 7,1;"WITH OTHER PROGRAMS YOU"

150 SCPRINT AT 8,1;"HAVE WRITTEN."

160 SCPRINT AT 17,6;"PLEASE PRESS A KEY."

165 WAITKEYA:END

170 :

180 :

190 :

1000 ’'WINDOW PROCEDURE’

1010 ’ (C) 1987 BY MARTIN HECHT’

1020 :

1030 ’SAVED TO DISKETTE UNDER THE NAME WINPROC’

1040
1050
1060 :
1070 PROCEDURE "WINOPEN", (WZ,WS,ZL,SL;)

1080 :

1090 WA=TEEK (45535) :' CURRENT NUMBER OF WINDOWS'’

1100 IF WA=5 THEN SCPRINT "TOO MANY WINDOWS!":POPIF :PROCEND
1110 ELSE WA=WA+1:POKE 45535,WA

1120 ENDIF

1130 :

1140 ’'SCREEN MEMORY BUFFER’

1150 IF WA=1 THEN BA=45505

1160 ELSE BA=DEEK (45535-WA*2+2)

124

Abacus 6. Structured programming

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

ENDIF

BD=PEEK (648) *256

FOR AZ=WZ TO WZ+SL-1

ZW=BD+ (AZ-1) *40 : TRANSFER ZW+WS-1, ZW+WS+ZL-2,BA- (ZL~-1) :BA=BA-ZL
NEXT AZ

'PARAMETER STORAGE’

DOKE 45535-WA*2,BA:’STARTING ADDRESS OF SCREEN BUFFER MEMORY’
POKE 45525-WA,WZ:POKE 45520-WA,WS:’WINDOW STARTING POSITION’
POKE 45515-WA,SL:POKE 45510-WA,2L:’COLUMN /LINE LENGTHS’

PROCEND

PROCEDURE "WINCLOSE", (;)

WA=TEEK (45535) :* CURRENT NUMBER OF WINDOWS’
IF WA=0 THEN POPIF :PROCEND:ENDIF

.

'GET PARAMETERS’

BA=DEEK (45535-WA*2) : ' BUFFER STARTING ADDRESS’

W2=TEEK (45525-WA) :WS=TEEK (45520~WA) : ' WINDOW STARTING POS.’
SL=TEEK (45515-WA) :2L=TEEK (45510-WA) :COLUMN / LINE LENGTH’
"RESTORE SCREEN AREA’

BD=PEEK (648) *256 : BA=BA+SL*ZL

FOR AZ=WZ TO WZ+SL-1

TRANSFER BA-(2L-1),BA,BD+(AZ-1) *40+WS-1:BA=BA-2L

NEXT AZ

WA=WA-1:POKE 45535,WA:’'NUMBER OF OPEN WINDOWS’
PROCEND

PROCEDURE "WINDEL", (WZ,WS, 2L, SL;)

B

CLEAR SCREEN AREA’

BD=PEEK (648) *256

FOR AZ=WZ TO WZ+SL-1

ZW=BD+ (AZ-1) *40:MYFILL ZW+WS-1, ZW+WS+2L-2,32
NEXT AZ

PROCEND

125

6. Structured programming BeckerBASIC 64

1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

PROCEDURE "WINPRINT", (WZ, WS, 2L, SL, AG$ (SL-1) ;)

‘DISPLAY DATA IN WINDOW’

FOR AZ=0 TO SL-1

CRSET WZ+AZ,WS:SCPRINT AGS$ (AZ)
NEXT AZ

PROCEND

PROCEDURE "WININPUT", (WZ,WS, 2L, SL;EGS$ (0) -EG$ (SL-1))
KEYREPEATON

ZE=WZ :SP=WS:’'CURSOR IN WINDOW STARTING POS.’
LOOP

CRSET ZE, SP:CRON:WAITKEYA:GET TDS$:CROFF

SELECT ASC(TD$) :’CURRENT INPUT’

CASE 29:’CURSOR RIGHT’

"CR":IF NOT (SP=WS+2L-1) THEN SP=SP+l

ELSE IF NOT(ZE=WZ+SL-1) THEN SP=WS:ZE=ZE+1:ENDIF
ENDIF

CASE 157:’CURSOR LEFT’

IF NOT(SP=WS) THEN SP=SP-1

ELSE IF NOT (ZE=WZ) THEN SP=WS+ZL-1:ZE=ZE-1:ENDIF
ENDIF

CASE 17:'CURSOR DOWN’

IF NOT (ZE=WZ+SL-1) THEN ZE=ZE+1:ENDIF

CASE 145:’'CURSOR UP’

IF NOT(ZE=WZ) THEN ZE=ZE-1:ENDIF

CASE 13:’ACCEPT DATA’

GOTO "WUEB"™

CASE 141:’CANCEL’

GOTO "WEND"

OTHER SCPRINT TD$;:GOTO "CR"

ENDSEL

ENDLOOP

"WUEB" :’ ACCEPT DATA'

DIM EG$(SL-1)

FOR AZ=0 TO SL-1

SGETV EG$ (AZ),2L,WZ+AZ,WS
NEXT AZ

"WEND" :POPLP
PROCEND

126

Abacus 6. Structured programming

Here is a practical application of this program (delete lines 100-160 from
WINPROC and add these lines). WZ/WS = starting line/starting column of
window; ZL/SL = line/column length:

100
110
120
130
140
150

POKE 45535,0:’DO NOT FORGET TO INCLUDE THIS’
WZ=5:WS=5:2L=10:SL=10:DIM W$ (SL-1)

CALL "WINOPEN", (W2,WS,2L,SL;)

CALL "WINDEL", (W2,WS, 2L, SL;)

CALL "WININPUT", (WZ,WS,ZL,SL;W$(0))

CALL "WINCLOSE", (;)

By changing the parameters in line 110, you can make your window any size,
and enter any data in your window.

127

Abacus 7. GEOS

7. GEOS

GEOS operates in hi-res mode on the Commodore 64. The bitmap for GEOS
lies between memory locations 40960 and 48960. This memory range uses the
hi-res commands discussed in Chapter 8.

GEOS and hi-res commands can be used together. Both programming areas
have some similarities, but these two subjects require two separate chapters.
This chapter describes the creation of dialogue boxes and drop-down menus.

There is one thing you should remember when working with GEOS from
BeckerBASIC: All tables and strings sent to GEOS must end with 0 (CHR$(0)).
Not doing this can lead to a system error. Also note that the commands and
functions listed in this chapter are not accessible in the Input System. You will
have to switch to the Testing System with <CTRL><Commodore> to test your
program.

Since GEOS uses a different text coding from BASIC, you must convert any
text from Commodore ASCII to GEOS ASCII with the ASCGEOSW command
(see Section 7.3). By the same token, any text transferred from GEOS to
BeckerBASIC must be converted by the GEOSASCW command.

Not everything can be produced by the GEOS commands, even though it might
seem as if you can program some things at first glance. This can occur because
of memory layout, or for other technical reasons.

The ability or inability to program is connected with the differences between
BASIC program structures (especially BeckerBASIC) and GEOS program
structures. For example, it’s technically impossible to edit icons from geoPaint.
This is because the icon control runs in "multitasking” mode, and the mouse
pointer must be freely movable during the entire program run, so the two items
interfere. You might be able to jump to another program using a keypress in
ONKEYGO (see Chapter 3).

With the help of a few programming tricks, you can simulate such important
GEOS functions as drop-down menus and dialogue boxes from BASIC. In both
cases, command control is given to GEOS then returned to BeckerBASIC.

129

7. GEOS BeckerBASIC 64

Drop-down menus and dialogue boxes present another problem. These both
need the second hi-res bitmap range starting at memory location 24576. This
area of memory needs to be protected. Use the PBCEND command to do this.
This reduces the available BASIC memory by almost eight kilobytes.

Both dialogue boxes and drop-down menus are best used with programs that
load other programs through overlay commands from diskette (see Section 5.3).

GEOSON (211) (c)
GEOSOFF (212) (c)

GEOSON switches on high-resolution graphics. It is identical to the HRON
function (see Chapter 8). GEOSOFF (identical to HROFF) turns off hi-res
graphics, and returns program control to the normal text screen.

Format: GEOSON: ... :GEOSOFF

IMPORTANT: Before you use any GEOS commands, you must call the
GEOSON (or HRON) command. Otherwise, the result will be a system error.
Hi-res graphic drawing is impossible without these commands (the picture is
drawn first, then the graphic screen switches on).

The same rule applies to going from hi-res mode to the normal text screen. If
you want a text screen command (e.g., SCPRINT), you must switch off the hi-
res screen with GEOSOFF (or HROFF). Again, failure to do this leads to a
system crash.

Remember these rules, you’ll save yourself a lot of time, trouble and system
€ITorS.

HRDEL _(220) (c)

Once hi-res graphics are active, you’ll want to clear the graphic bitmap. The
HRDEL command performs this function.

Format: HRDEL

130

Abacus 7. GEOS

HRGDCOL (218) (c)
HRPTCOL (219) (c)
HRGTCOL (272) ()

These three commands handle colors in the hi-res bitmap. HRGDCOL sets the
background color, HRPTCOL sets the point color and HRGTCOL returns the
current hi-res colors.

Format: HRGDCOL F1: ... :HRPTCOL F2 ... :FB = HRGTCOL (CD)

F1 is the color code you wish assigned to the unset points of the graphic.
Values for F2 range from 0 to 15 (see the PCOLOR command, Section
3.3).

F2 is the color code you wish assigned to the set points of the graphic.
Values for F2 range from 0 to 15 (see the PCOLOR command, Section
3.3).

CD sets the color status you want. CD=0 returns the current point color;
CD=1 returns the current background color.

The border color can be changed with the BORDER command (see Section 3.3).

Here is a demonstration of hi-res graphic initialization:

100 GEOSON:’GRAPHICS ON’

110 HRDEL:’CLEAR BITMAP’

120 HRGDCOL .1:’BACKGROUND COLOR’

130 HRPTCOL 2:’POINT COLOR’

135 HRPLOT 160,100:HRPLOT 161, 100:HRPLOT 162,100
140 WAITKEYA:GEOSOFF

Remember that HRON can be used instead of GEOSON to produce the same
result. See Chapter 8 for more commands in hi-res mode.

131

7. GEOS BeckerBASIC 64

7.1 Drop-down menus

GEOS puts its drop-down menu data into a table in memory. BeckerBASIC uses
this table. This code table can be created using the BeckerBASIC Drop-down
Menu Construction Set.

The Drop-down Menu Construction Set is an application program written in
BeckerBASIC. This program lets you set up your data in the correct form, and
place it at the correct location in the menu table. Once you have all your data in
place, the Construction Set displays a sample of your drop-down menu with all
the parameters you defined.

GEOS text appears in the menu in proportional type, so initially you may not get
the menu spacing correct. If you make a mistake, tell the program N when it
asks if you want the menu saved.

The program then allows you to correct your data. When you finish editing your
data, the drop-down menu sample appears on the screen again. You can repeat
this procedure as often as you wish. When the menu is finished, and your
parameters are entered, the table is saved to disk under any name you wish for
later recall. The commands you require for recall are DLOADM (load a menu
table from diskette, see Chapter 5) and PDMENU described below.

PDMENU (210) (c)

PDMENU activates (displays) a drop-down menu and allows access using the
mouse pointer. The only additional parameter needed is an address.

Format: PDMENU AD

AD is the starting address of the code table +95. If the table address starts
at location 24000, AD must contain the value 24095. The menu then
appears on the screen for easy selection. As soon as you click a menu
option, the option blinks and the menu closes (the hi-res screen restores
the area where the menu had been).

132

Abacus 7. GEOS

A sub-menu will appear below this menu item (a set of selections connected
with the menu item) for further selection. When you click on an item from a
sub-menu, both the sub-menu and the menu disappear, and the program
continues.

MENUCODE (271) (N

This function returns the code of the menu or sub-menu item you clicked.
Format: MC = MENUCODE (CD)

CD returns the number of either the clicked main menu item or the number
of the corresponding sub-menu item. Values for CD range from 0 to
10. CD=0 gives you the number of the clicked menu item in MC.
CD-=1 returns the number of the sub-menu item.

The program can react to this data. Here is how the data reacts to menus, using
the ON-GOSUB command:

100 ON MENUCODE (0) GOSUB 1000,2000,3000
1000 ON MENUCODE (1) GOSUB 1100,1200
2000 ON MENUCODE (1) GOSUB 2100,2200

3000 ON MENUCODE (1) GOSUB 3100,3200 ..

Line 100 reads the menu. If you click the first menu item, the program branches
to line 1000, where it checks for the sub-menu item selected. If you select the
second menu item, the program jumps to line 2000, where the sub-menu item
routine branches, and so on.

NOTE: If no sub-menu exists below a menu item, MENUCODE(0) returns the
value 0. If this occurs, MENUCODE(1) becomes the clicked menu item.

133

7. GEOS BeckerBASIC 64

7.1.1 Using the Drop-down Menu Construction Set

This program is on the distribution diskette under the name DDM.C.S, and can
be opened by double-clicking its icon from the deskTop. After the program
starts, it asks you where you want the data table placed.

Shorter menus can be easily stored in the cassette buffer (memory locations 828-
1023). Longer menus should be placed in the memory range starting at memory
location 24000 (directly under the second hi-res bitmap).

The next data requested is that of the main menu. First, you must determine the
number of menu items (1-10), then decide whether the menu should be
displayed horizontally or vertically. Next, the construction set needs the hi-res
position of the menu. Finally, the text for each item is requested.

Once you’ve entered this data, the program asks whether or not you wish to
create sub-menus. If so, you must enter the data for every menu requested.
When all data is ready, press any key to see your drop-down menu on the
screen.

Click on a menu item to end the display. The construction set asks if you like
the menu. If so, you must enter the name under which you want the code table
stored on diskette. If you answer the question with N, the program doesn’t save
the data to diskette, but reserves it in memory for the moment.

When the program ends, after the data table is stored on diskette, the screen
displays a message on how to load and start your drop-down menu.

Try entering this data into the construction set program. Enter each value at the
prompt and press the <RETURN> key (don’t type in the commas):

24200,5,0,80,60,218,73,GEOS,FILE, VIEW, DISK, SPECIAL,
N,Y,5,1,109,73,154,144,0PEN, DUPLICATE, RENAME, INFO, PRINT,
N,Y,6,1,158,73,200,158, OPEN,CLOSE, RENAME, COPY, VALIDATE, FORMAT, N

This creates a familiar menu, the GEOS deskTop menu. To keep it simple, you
are asked above to enter the data for the second and fourth sub-menus only. If
you save this table to diskettee under the name PDMEX, you’d retrieve it in a
program as follows:

10 PBCEND 24199:’LIMIT MEMORY’

134

Abacus 7. GEOS

20 DLOADM "PDMEX"
30 PDMENU 24200+95

7.2 Dialogue boxes

Creating dialogue boxes is as easy as making drop-down menus. BeckerBASIC
features the Dialogue Box Construction Set, and two commands for dialogue
box access.

DIALOGBOX (213) (c)
DIALCODE (270) {4]

DIALOGBOX activates (displays) a dialogue box. DIALCODE reads the button
clicked within the dialogue box (YES, NO, etc.). Text input is also allowed in
dialogue boxes.

Format: DIALOGBOX AD [,EG]: ... :CD = DIALCODE

AD is the memory address of the dialogue box’s code table. As a rule, this
table is small enough to be stored in the cassette buffer (memory
locations 828 to 1023).

EG is the memory location at which the dialogue box text input is stored.

In most cases, dialogue boxes need some sort of button to allow the user to exit.
When you define several buttons (e.g., YES and NO), DIALCODE reads the
button the user clicked. This code corresponds to the code assigned to the
button:

OK button

CANCEL button

YES button

NO button

OPEN button

DISK button

4 Click anywhere on the screen

O\ WA WWN e

135

7. GEOS BeckerBASIC 64

Code 14 reads a click anywhere on the screen. This is functional only when
installed from the Dialogue Box Construction Set. You might want to add
information about Code 14 in the GEOS INFO screen.

7.2.1 Using the Dialogue Box Construction Set

The Dialogue Box Construction Set is on your distribution diskette under the
name D.C.S. Double-click this program’s icon from the deskTop.

The program first asks for the desired starting address of the code table. The
cassette buffer area starting at location 828 is ideal for this purpose. Next, the
program asks whether you want the standard dialogue box. The standard box is
the one you see for file operations (e.g., rename). If you don’t want the
standard box, you’ll need to supply the coordinates of the upper left and lower
right corners of the dialogue box. The next parameter requested is the desired
fill pattern for the box shadow. A fill pattern of O casts no shadow.

After this general data, parameters get more detailed. The order of the parameter
codes isn’t as crucial here as with the Drop-down Menu Construction Set, but
you can’t just throw these codes in at random. Furthermore, you must enter
these codes as individual input routines.

The upper area of the screen displays a table of the available codes. For
example, if you want an OK button, you type a 1 and press the <RETURN> key.
The program then asks the position at which you want the button placed from
the left (X-coordinate) and top (Y-coordinate) of the dialogue box.

After entering this input, you can assign the next code or codes All these codes
are placed in the table as you go along.

Text output within the dialogue box is made possible through code 11. Again,
the program asks for the spacing from the left and top of the dialogue box. The
final request is for the text you want.

Code 13 enables data input. Here the program asks for the starting position of

the input line from the left and top of the dialogue box. Then you are asked for
the maximum length of the input.

136

Abacus 7.GEOS

NOTE: When a dialogue box asks for input, the DIALOGBOX command must
contain the address at which the data should be placed (e.g., DIALOGBOX
850,828: The computer puts the data at memory location 828). From this
location you must use the GEOSASCW command to convert text to ASCII text
format (see Section 7.3). Finally, the data must move to a string variable using
MGETYV (see Chapter 4).

The Construction Set always puts the data at memory location 828. Text input
requires a table starting address higher than 828.

Code 33 displays the numbers of your input so far.

Select code 0 to end the input procedure. Now press a key to see your dialogue
box. When you’re done looking at it, click on a button to exit. NOTE: If you
haven’t put in any buttons before looking at this test display, you can’t get out of
the display. Power down and start over.

The program then asks if the dialogue box looks okay. Type y or n and press the
<RETURN?> key. Select y if you want to save the data; the program asks for the
name under which you want the table saved. Select n to start over.

This program has the disadvantage that you can’t edit one code at a time. That
is, you have to start over if you want to change the dialogue box parameters.

Here’s a practical example of using this Construction Set: Enter the first value at
the first prompt, press the <RETURN> key, then enter the rest of the values in
the same manner (don’t type in the commas):

828,w~,10,10,270,90,1,1,1,20,2,10,10,3,19,10,4,1,55,5,10,55,6,19,55,
11,8,35,PLEASE CLICK ON A BUTTON-ANY BUTTON.,0

Tell the program you want to see this dialogue box, and watch the result that
appears: A box with six buttons and a line of text appears. Save this to diskette
under the name DBEX and exit the Construction Set. Then type in, save and run
this program to put your new dialogue box to use:

10 PBCEND 24575:’LIMIT MEMORY’
-20 DLOADM"DBEX"
30 DIALOGBOX 828

DIALCODE reads the clicked button.

137

7.GEOS BeckerBASIC 64

7.3 Entering and displaying hi-res text

BeckerBASIC has four commands for text input and output in hi-res mode.
HRPRINT displays text; HRGET is the high-resolution equivalent of INPUT;
ASCGEOSW and GEOSASCW convert ASCII text into GEOS format and
GEOS text into ASCII format respectively.

HRPRINT (214) (c)

HRPRINT writes text to a specific position on the hi-res graphic screen. You
can use different typestyles (e.g., italics or bold) with this text.

Format: HRPRINT X,Y,TX$

XY are the X-coordinate and the Y-coordinate of the hi-res pixel where the
text begins. Values for X range from 0 to 319. Values for Y range from
0to 199.

TX$ is the string containing text to be displayed. The text in TX$ can be up
to 255 bytes long, and must end with a null (CHR$(0)).

Text output appears in proportional type. If the text contains uppercase
characters (i.e., characters created by holding down the <SHIFT> key while
pressing letter keys), you must convert the text using the ASCGEOSW
command before using the text in HRPRINT. No conversion is necessary when
using only lowercase lettering, since these letters appear as uppercase lettering
in GEOS.

You have the following control characters available:

CHR$(08) deletes the last character displayed.

CHR$(09) moves the text cursor one character to the right.

CHR$(10) moves the text cursor one character down.

CHR$(11) moves the text cursor to the home position (X-

coordinate=0,Y -coordinate=0).

138

Abacus

7. GEOS

CHR$(12)
CHR$(13)

CHR$(14)

CHR$(15)

CHR$(18)

CHR$(19)

CHR$(24)

CHR$(25)

CHR$(26)

CHR$(27)

moves the text cursor one character up.

moves the text cursor to the start of the next line of text
following a carriage return.

enables underlining mode. All characters following are
underlined.

disables underlining mode.

enables reverse mode. All characters following appear in
reverse video.

disables reverse mode.

enables bold mode. All characters following appear in bold
style.

enables italic mode. All characters following appear in italic
(cursive) style.

enables outline mode. All characters following appear in
outlined style.

disables all typestyles (italics, bold, etc.).

The different typestyles can be used in combination (e.g., bold italic text). Not
all combinations give good-looking results.

Examples:

HRPRINT 150,100,CHR$(25)+"OUTPUT"+CHR$(0) displays the word
OUTPUT in the center of the screen in italic text.

10 GEOSON
15 HRDEL

20 T$=CHR$ (10) :HRPRINT 20,20, "G"+T$+"E"+TS$+"O"+T$+"S"+CHRS (0)

30 WAITKEYA
40 GEOSOFF

The above program displays the word GEOS one letter under the next.

139

7. GEOS BeckerBASIC 64

10 GEOSON

12 HRDEL

14 HRGDCOL 15

15 HRPTCOL 0

20 TX$=CHRS$ (14) +CHRS (26) +"AN EXAMPLE"+CHRS$ (27) +CHRS$ (0)
25 HRPRINT 10,90, TX$

30 WAITKEYA

40 GEOSOFF

The text AN EXAMPLE appears in outlined, underlined text. CHR$(27)
disables the typestyles in line 20.

ASCGEOSW | (216) ©
GEOSASCW (215) (c)

GEOS uses a different ASCII from Commodore BASIC. This means that every
text you use must be converted to GEOS ASCII using the ASCGEOSW
command.

GEOSASCW has the opposite effect. Data must be converted from GEOS
format to normal BASIC format.

Format: ASCGEOSW AD,AE: ... :GEOSASCW AD,AE

AD is the starting address of the memory range whose contents must be
converted to another format. Values for AD can theoretically range
from 0 to 65535.

AE is the ending address of the memory range whose contents must be
converted to another format. Values for AE can theoretically range
from 0 to 65535.

Text contained within a string can be handled directly with both commands.
You can use the following routine for this:

10 W=VARADR (TX$) :WL=PEEK (W+1) :WH=PEEK (W+2)

20 AD=WL+256*WH:AE=AD+PEEK (W) -1
30 ASCGEOSW AD, AE

140

Abacus 7. GEOS

VARADR conveys the address of the variable TX$. The current memory
position of the contents of TX$ goes into AD and the ending address of TX$
goes into AE.

HRGET (217) (c)

HRGET reads data input in hi-res mode. A vertical blinking "text cursor”
appears.

Format: HRGET X,Y,GT$

XY are the X-coordinate and the Y-coordinate of the upper left corner at
which the text should be read. Values for X range from 0 to 319.
Values for Y range from 0 to 199.

GT$ s the variable for the text input. GT$ must fulfill two conditions: The
input length for GT$ must be defined beforehand, and the string must
end with a null (CHR$(0)). For example, GT$="....."+CHR$(0) sets an
allowable input length of five characters. You can use spaces or other
characters instead of periods; these just set the input length. If you
prefer other characters, the text in GT$ must be converted to GEOS
text format by ASCGEOSW.

When you define GT$ as described above, the text cursor appears in the hi-res
graphic at the end of the reading position. To move it to the left, you must press
one of the cursor keys (all the cursor keys move the cursor left). Characters
erase to the left of the cursor as you move the cursor left. To make the cursor
appear at the beginning of the reading position, define GT$ as follows:
GT$=CHR$(0)+"....."

Press the <RETURN> key to end the hi-res input. The text entered is in GEOS
text format in GT$. The text must be converted to normal BASIC text format
with GEOSASCW, and the CHR$(0) end marker removed (this can be done
with GT$=LEFT$(GT$,LEN(GT$)-1)).

Examples:

10 GEOSON
12 HRDEL
15 GT$=" "+CHRS$ (0)

141

7. GEOS BeckerBASIC 64

20 HRGET 100,50,GT$

30 VGETM 828,GT$:GEOSASCW 828, 828+LEN (GTS$)
40 MGETV GT$,LEN(GT$)-1,828

50 WAITKEYA

60 GEOSOFF

Line 10 defines GT$ to ten characters and gets input from the hi-res position
100/50. VGETM puts the text at memory location 828, where GEOSASCW
converts the text to ASCII format. MGETV gets data from the variable GT$,
and removes the end marker (CHR$(0)).

10 AB$="EXAMPLE"+CHRS$ (0)

20 HRGET 200,50,AB$

30 VGETM 828, ABS :GEOSASCW 828, 828+LEN (ABS)
40 MGETV ABS$,LEN (AB$)-1,828

The major difference between this and the other example is that the text
EXAMPLE is the given text.

142

|

Abacus 8. High-resolution graphics

8. High-resolution graphics

High-resolution, or hi-res, graphics are definitely among the C64’s finest
features. The major disadvantage to the commands supporting these graphics is
that they consume lots of memory. BeckerBASIC only contains the most
important commands and functions supporting high-resolution graphics.

These commands are designed for efficient programming. Besides that, many
commands can be simulated using a combination of hi-res instructions. Since
BeckerBASIC commands optimize time wherever possible, speed is almost
never a problem.

BeckerBASIC supports many GEOS specialties. For example, you can draw a
filled rectangle with HRBOX, using one of the 45 GEOS fill patterns and 256
different combinations of line patterns. If you prefer, HRSTRING allows you to
combine drawing commands into one string for fast execution.

You may want to review the descriptions of GEOS commands (see Chapter 7)
before reading this chapter. You’ll find a number of commands there that deal
with data input and output while using GEOS’s hi-res screen.

NOTE: that the commands and functions listed in this chapter are not accessible
in the Input System. You wil have to switch to the Testmg System with
<CTRL>+<SHIFT> to test your program.

8.1 Initializing graphics

BeckerBASIC uses the first bitmap of GEOS for hi-res mode. This bitmap lies
in memory locations 40960 to 48960. GEOS commands and hi-res commands

can be used in parallel. Bitmap I lies outside of BASIC memory, so the two
won’t interfere with each other.

143 (

8. High-resolution graphics BeckerBASIC 64

HRON (137) (c)
HROFF (138) (c)
HRGTON (269) ()

HRON enables the hi-res graphic screen, and is identical to the GEOSON
command in Chapter 7. HROFF disables the hi-res graphic screen.

HRGTON tells the user which mode is currently active. If HRGTON returns 0,
the text screen is on; if HRGTON equals 1, hi-res mode is on.

Format: HRON: ... :HROFF: ... :CD = HRGTON

NOTE: Before you use a hi-res command, you must use a HRON command
first. Failure to do so leads to a system crash, since you can’t do hi-res pictures
without hi-res mode. The same goes for the opposite direction: you can’t use a
standard text screen command without turning hi-res mode off with HROFF.
Remember these rules whenever you work with hi-res graphics.

HRDEL (220) (c)
HRDEL clears the hi-res screen.

Format: HRDEL

HRGDCOL (218) (c)
HRPTCOL (219) (o
HRGTCOL (272) (f)

HRGDCOL sets the background color of the hi-res screen. HRPTCOL sets the
current point color of the hi-res graphic. HRGTCOL returns the current hi-res
colors.

Format: HRGDCOL F1: ... :HRPTCOL F2: ... :FB = HRGTCOL (CD)

F1 is the color code of the unset pixels. Values for F1 can range from 0 to
15.

F2 is the color code of the set pixels. Values for F2 can range from 0 to 15.

144

Abacus 8. High-resolution graphics

FB is the current color read. CD=0 returns the current foreground pixel
color; CD=1 returns the current background color.

You can use these commands in combination:

100 HRON:’GRAPHIC ON’

110 HRDEL:’CLEAR BITMAP’

120 HRGDCOL 1:’BACKGROUND COLOR’

130 HRPTCOL 2:’POINT COLOR’

135 HRPLOT 160,100:HRPLOT 161,100:HRPLOT 162,100
140 WAITKEYA:HROFF

8.2 Creating graphics

Commodore 64 hi-res graphics take up a total of 64,000 individual pixels, in a
screen resolution of 320 pixels in the X-coordinate (horizontal) direction by 200
pixels in the Y-coordinate (vertical) direction. You can specify a pixel by stating
its X-coordinate (0-319) and Y-coordinate (0-199). The coordinate system starts
at the upper left corner of the screen.

HRPLOT (229) (©)
HRTESTP 273) (f)

HRPLOT lets you access any one of the 64,000 pixels. HRTESTP tells whether
the pixel is set or unset.

Format: HRPLOT XK, YK [,ZM]: ... :CD = HRTESTP (XK, YK)

XK are the X- and Y-coordinates of the desired pixel. Values for XK range

YK from 0 to 319. Values for YK range from 0 to 199. Values outside
these ranges result in an ILLEGAL QUANTITY ERROR.

™ states whether the pixel is set (ZM=0) or unset (ZM=1). The default
value for ZM is 0.

CDh is the pixel status. If CD equals 1, the‘pixel is set; otherwise the value
forCDis 0.

145

8. High-resolution graphics BeckerBASIC 64

Examples:

HRPLOT 150,100:FL = HRTESTP(150,100) places a pixel in the middle of the
screen. The variable FL contains the value 1.

HRPLOT 0,0:HRPLOT 319,0,1:HRPLOT 319,199,1:HRPLOT 0,199 sets the
two left corner pixels and unsets the two right corner pixels.

HRLINE (224) (c)

HRLINE draws a line between two poiﬁts on the hi-res screen.
Format: HRLINE X1, Y1, X2, Y2 [,ZM]

X1,Y1 are the coordinates of the first point in the line. Values for X1 range
from O to 319; values for Y1 range from 0 to 199.

X2,Y2 are the coordinates of the last point of the line. Values for x2 range
from 0 to 319. Values for Y2 range from O to 199. Values outside these
ranges result in an ILLEGAL QUANTITY ERROR.

™ indicates the character mode. A value of 1 for ZM means the pixel is
unset; a set pixel has a value of 0. The default value is 0.

Example:
HRLINE 0,0,319,199:HRLINE 319,0,0,199 draws a diagonal line on the screen.

HRHLINE (225) (c)
HRVLINE _(226) (©

HRHLINE draws horizontal lines on the hi-res screen. HRVLINE draws vertical
lines. These commands execute much faster than HRLINE. You can draw lines
in up to 256 patterns with both commands.

Format: HRHLINE X1,Y1,X2,Y2,ZM: ...:
HRVLINE X1,Y1,X2,Y2,ZM

146

Abacus 8. High-resolution graphics

X1,Y1 are the coordinates of the leftmost (HRHLINE) or topmost
(HRVLINE) pixel of the line. Values for X1 range from 0 to 319.
Values for y1 range from 0 to 199.

X2,Y2 are the coordinates of the rightmost (HRHLINE) or bottom
(HRVLINE) pixel of the line. Values for X2 range from 0 to 319.
Values for Y2 range from 0 to 199.

™ is the drawing mode. Values for ZM can range from 0 to 255. You can
figure out your line pattern by converting the number into an 8-bit
binary number. For example, ZM=170 would be 10101010 in binary
notation. Every set bit of the pattern corresponds to a 1, and every unset
bit is a 0. 170 gives a dotted line as a pattern.

Examples:
HRHLINE 10,10,300,10,255 draws a solid horizontal line.

HRVLINE 130,25,130,180,0 deletes any vertical line that might have been in
the same position.

HRHLINE 50,100,150,100,102:HRVLINE 100,50,100,150,102 draws a dotted
cross. 102 decimal equals 0110110 in binary notation.

HRFRAME | (228) (©)

HRFRAME draws a rectangular frame of any size on the screen. This command
uses the same drawing patterns as HRHLINE and HRVLINE.

Format: HRFRAME X1,Y1,X2,Y2,ZM

X1,Y1 are the coordinates of the upper left corner of the frame. Values for X1
range from O to 319. Values for Y1 range from 0 to 199.

X2,Y2 are the coordinates of the lower right corner of the frame. Values for
X2 range from 0 to 319. Values for Y2 range from 0 to 199.

147

8. High-resolution graphics BeckerBASIC 64

NOTE: The sequence of these X- and Y-coordinates is very important.
If you give them in the wrong sequence (e.g., giving the lower right
corner first), the drawing routine runs into trouble computing the
frame.

™ is the drawing mode. Values for ZM can range from 0 to 255. You can
figure out your frame pattern by converting the number into an 8-bit
binary number. For example, ZM=170 would be 10101010 in binary
notation. Every set bit of the pattern corresponds to a 1, and every unset
bit corresponds to a 0.

Example:

HRFRAME 0,0,319,199,170 draws a dotted frame.

HRBOX (227) (¢

HRBOX draws a filled rectangle of any size. You have 45 fill patterns available.

Format:

X1,Y1

X2,Y2

HRBOX X1,Y1,X2,Y2,FM

are the coordinates of the upper left comer of the box.Values for X1
range from 0 to 319. Values for Y1 range from 0 to 199,

are the coordinates of the lower right corner of the box.Values for X2
range from 0 to 319. Values for Y2 range from 0 to 199,

NOTE: The order of these X- and Y-coordinates is very important. If
you give them in the wrong sequence (e.g., giving the lower right
corner first), the drawing routine runs into trouble computing the box.

is the fill pattern. Values for FM can theoretically range from 0 to 255,
but the useful values are up to 44. FM=1 produces a completely filled
box, while FM=0 deletes the box area.

Try this routine to see the available patterns:

100 HRON
110 FOR FM=0 TO 44
120 HRBOX 0,0,319,199,FM:HRPRINT 10,100, "PATTERN #"+CHRS$ (0)

148

Abacus 8. High-resolution graphics

122 Q$=STR$ (FM)

123 HRPRINT 90,100,Q$+CHRS$ (0)

125 HRPRINT 10,140, "PRESS A KEY FOR NEXT PATTERN"+CHR$ (0) :WAITKEYA
130 NEXT FM

140 HROFF

Press a key to see each fill pattern.
Example:
HRBOX 20,15,100,130,10:HRBOX 50,55,170,140,23 displays two overlapping

boxes with two different fill patterns.

HRINV (221) (c)

HRINV inverts the hi-res graphic display, i.e., set pixels become unset and unset
pixels become set.

Format: HRINV

HRSTRING (230) (c)

HRSTRING lets you place a series of commands into a single string. This
speeds up execution time and saves memory. '

Format: HRSTRING KM$+CHR$(0)
KM$ is the string containing the codes required for the hi-res commands.
KMS$ can be up to 255 bytes in length. The codes for KM$ are as

follows:

01 sets the intended graphic cursor at a certain point, using the coordinate
set X1low/Xhigh/Y.

02 draws a line between any two points. The coordinates of both ends of

the line are set using the coordinate set X1low/Xhigh/Y (the first
pixel of the line is set by code 01).

149

8. High-resolution graphics BeckerBASIC 64

03

05

07

08

8

draws a filled rectangle. The upper left coordinates of the rectangle are
set by code 01. The lower left coordinates are set after code 03 using
the coordinate set X1ow/Xhigh/Y.

Assigns a particular area pattern to a drawn filled rectangle. The pattern
code (0-44) directly follows 05 (see HRBOX) .

draws a rectangular frame. The coordinates of the upper left corner are
set by code 01, while the coordinates of the lower right corner directly
follow 07 using the coordinate set X1ow/Xhigh/Y.

places the graphic cursor to the right by the coordinates stated in the
form Low/High.

moves the graphic cursor a single byte number down.

is the end marker of the string. Failure to end an HRSTRING code
string with this causes a system error.

Here are two examples to demonstrate the practicality of using HRSTRING:

10
20
30
40
50
60
70
80
90

HRON

HRDEL

’GRAPHIC CURSOR AT 10/10’

T1$=CHR$ (1) +CHR$ (10) +CHR$ (0) +CHR$ (10)
'DRAW A LINE FROM 10/10 TO 280/180’
T2$=CHRS$ (2) +CHRS (24) +CHRS$ (1) +CHRS (180)
HRSTRING T1$+T2$+CHRS$ (0)

WAITKEYA

HROFF

This program draws a line from coordinates 10,10 to coordinates 280,180. Press

a key to end the program.

90 HRON

95 HRDEL

100 ’SET GRAPHIC CURSOR TO 25/40°

110 T1$=CHRS (1) +CHRS (25) +CHRS (0) +CHRS$ (40)

120 ‘SET DRAWING PATTERN 17’

130 T2$=CHR$ (05) +CHRS$ (17)

140 'DRAW BOX, 2ND COORDINATE 100/100‘

150 T3$=CHR$ (03) +CHRS (100) +CHR$ (00) +CHRS$ (100)
155 WAITKEYA

150

Abacus 8. High-resolution graphics

160 T4$=CHR$ (1) +CHR$ (40) +CHR$ (0) +CHRS (70)

170 *MOVE GRAPHIC CURSOR DOWN AND RIGHT’

180 ’SET DRAWING PATTERN 9’

190 T5$=CHR$ (05) +CHR$ (09)

200 'DRAW BOX, 2ND COORDINATE 120/145’

210 T6$=CHRS$ (03) +CHRS$ (120) +CHR$ (00) +CHRS (145)
220 HRSTRING T1$+T2$+T3$+T4$+T5$+T6$+CHRS (0)
230 WAITKEYA

240 HROFF

This program produces two overlapping rectangles with different fill patterns.

As already mentioned, HRSTRING saves time since the commands are read as
machine language instead of interpreted BASIC.

When you have a number of these graphic strings in a program, it may help if
you place these in a sequential or relative file. The DGETV command lets you
easily read this data into the computer (see Chapter 5 for more on DGETV).

83 Loading and saving graphics

Loading and saving hi-res graphics can be done with DLOADM and DSAVEM
(see Section 5.3). These commands LET you load or save parts of graphic
screens. The next two commands access entire graphic screens.

HRDLOAD (222) (c)
HRDSAVE (223) (©

HRDLOAD loads a hi-res screen from diskette. HRDSAVE saves a hi-res
screen to diskette.

Format: HRDSAVE NAS: ... :HRDLOAD NA$

NAS$ is the name assigned to the screen being saved or loaded. This name
can be up to 16 characters long.

Examples:

HRDSAVE "HIRES" saves the hi-res bitmap under the name HIRES.

151

8. High-resolution graphics BeckerBASIC 64

HRDLOAD "HIRDAT" loads the graphic file HIRDAT into graphic memory.

NOTE: BeckerBASIC saves hi-res graphics so that they load into memory byte-
for-byte, without formatting or compression. Remember this when loading
BeckerBASIC graphics into other graphic programs, or when loading other
graphics into BeckerBASIC.

152

Abacus 9. Sprite commands

9. Sprite commands

The Commodore 64 allows up to eight sprites on the screen at once. The main
purpose of freely movable graphic objects is in game programming, although
sprites can be used effectively in other applications. For example, you can use
sprites to create a title screen, just as in the DEMO program on your
BeckerBASIC distribution diskette.

BeckerBASIC supports sprite development and movement through easy to use
commands, in addition to the BASIC 2.0 POKE and DATA instructions.

Now for some fundamental information about sprites. Like normal characters
which are defined in groups of pixels, sprites are also made up of pixels. Sprites
have horizontal resolutions of 24 pixels and vertical resolutions of 21 pixels.

A pixel is set (on) or unset (off) according to the bytes setting up the sprite
matrix. Every 24-pixel line takes up three bytes, while the 21 columns use up 63
bytes. You have a total of 63 values to control to make up the sprite’s shape.

The best method of drawing a sprite design is with a sprite editor. This lets you
see the sprite magnified, so you can control its shape easily. You’ll find a sprite
editor at the end of this chapter in Section 9.6. Once you design the sprite, the
data must be fed into memory. You can put this data in most areas of memory.

There are two things to remember when workilig_ with sprites:

1) The starting address of the memory range must be divisible by 64
without a remainder.

2) The memory segment must be in the same 16K memory block as the
screen. This means that you shouldn’t place the data in active BASIC
memory or any other area used heavily by the computer and the
program.

MBDESIGN (Section 9.1) puts sprite data into memory - as long as this sprite
data exists in a string. It’s fairly easy to convert sprite data to a string; it saves
memory and you can actually store this data in integer arrays or variables. The
sprite editor at the end of the chapter converts data into strings, so they can be
easily read by MBDESIGN.

153

9. Sprite commands BeckerBASIC 64

You must state the location in memory you want the sprite data. This is done
with the command MBBLOCK. This allows you to quickly switch between two
blocks of sprite data.

9.1 Setting up sprites

MBDESIGN (139) (c)
MBDATA (248) (H

MBDESIGN places a string containing sprite data into memory as a 64-byte
memory segment. MBDATA does the opposite: It reads data in memory into a
string variable.

Format: MBDESIGN BL, DAS: ... :SD$ = MBDATA (BL)

BL is the number of the desired memory block. You compute this block of
memory with the formula BL = STARTING_ADDRESS/64. Values
for BL range from 0 to 1023. Naturally, not all of these block numbers
are useful; avoid active BASIC memory and zeropage memory.

DAS$ s the 63-byte string expression containing the sprite data.

You must make sure that the sprite data is in the same 16K memory range for
the sprite design as the active screen memory. That is, if you put the sprite -

- design data in the first memory segment, the active screen should be in the first
memory segment. The following table lists practical values for BL (the
corresponding starting memory addresses are in parentheses):

MEMORY SEGMENT I MEMORY SEGMENT II
(0-16383) (32768-49151)
13 (832) - 15 (960) 552 (35328) - 559 (35776)

As you can see, available screen memory is very small. The normal text screen
starting at 1024 has enough room for three sprites at a time. Memory segment II
(hi-res) is a little bigger; here you can fit eight sprite matrices.

154

Abacus 9. Sprite commands

NOTE: Sprite blocks 552 and 553 already have the data for the GEOS mouse
pointer and the GEOS text cursor. Don’t change these when you use GEOS
commands that requires these two sprites. You can change the appearance of
these sprites, however.

The sprite editor in Section 9.6 places the data into the variable MT$. This data
can immediately be used with MBDESIGN BL, MT$. The matrix can be read
into memory with MT$=MBDATA(BL). Both commands work in conjunction
with the sprite editor. For example, if you include a GOSUB
"MATDEF/S":MBDESIGN 13,MT$ in a program containing the sprite editor,
MTS$ defines a sprite matrix and places it in memory block 13.

MT$=MBDATA(15):GOSUB "MATDAR/S" reads MT$ from memory block
15 and places the result on the screen. Once the sprite data is read, you can
move and manipulate the sprite with a number of commands.

MBCLR (182) ()
MBCLR clears a sprite data block.
Format: MBCLR BL

BL is the number of the data block. Values for this block can range from 0
to 1023 (see MBDESIGN above).

Example:

MBCLR 13 clears block 13 (memory addresses 832-895).

MBINV (140) (c)

MBINY inverts the data block of a sprite matrix.

Format: MBINV BL

BL is the number of the data block. Values for this block can range from 0
to 1023 (see MBDESIGN above).

155

9. Sprite commands BeckerBASIC 64

Example:
MBINV 558 inverts data block 558. The inversion "exchanges" the background
color and the foreground color.

MBMOVE ’ (183) (c)
MBCHANGE (184) (©)

MBMOVE and MBCHANGE allows the copying (MBMOVE) or exchange
(MBCHANGE) of a sprite block.

Format: MBMOVE B1,B2: ... :MBCHANGE B1,B2

B1,B2 are blocks of memory. Values for B1 and B2 can range from 0 to 1023
(see also MBDESIGN).

MBMOVE copies the data block B1 into block B2, MBCHANGE swaps the
contents of block B1 and block B2.

Examples:
MBMOVE 13,14 copies the contents of data block 13 into block 14.

MBCHANGE 13,14 exchanges the contents of data blocks 13 and 14.

MBAND (185) (c)
MBOR (186) (¢)
MBEOR (187) (c)

These three commands allow you to compare sprite data blocks with each other.
Format: MBAND B1,B2: ... :MBOR B1,B2: ... MBEOR B1,B2

B1,B2 areblocks of memory. Values for B1 and B2 can range from 0 to 1023
(see also MBDESIGN).

156

Abacus 9. Sprite commands

Data blocks B1 and B2 are compared with each other using a logical AND
(MBAND), logical OR (MBOR) or logical EXCLUSIVE OR (MBEOR). The
result of this comparison appears in B1.

Examples:

MBAND 554,13 compares blocks 554 and 13 for logical AND. The result is in
data block 554.

MBOR 555,556:MBEOR 555,557 compares block 555 and 556 for logical OR,
then compares block 555 with block 557 for an EXCLUSIVE OR.

Logical comparisons let you manipulate data blocks quickly to achieve some
interesting effects. Try these out with a few sprite matrices.

MBBLOCK (141) (c)
MBGTBLK (254) (]

MBBLOCK arranges all eight sprites into one data block. MBGTBLK reads the
current assignments for the individual sprites.

Format: MBBLOCK SC,NR,BL: ... :BL = MBGTBLK (SC,NR)
SC is the number of the desired screen used by MBBLOCK. When you
want the sprite on the normal text screen, SC should have a value of 1.

A value of 35 displays the sprite on the hi-res screen.

NR is the sprite number used by MBBLOCK. Values for NR range from 1
to 8.

BL is the data block number containing the sprite data. See MBDESIGN
for further information on BL.

Examples:

MBBLOCK 1,5,13 assigns sprite 5 to data block 13. The corresponding data
pointer moves to normal screen memory (starting at location 1024).

157

9. Sprite commands BeckerBASIC 64

MBBLOCK 35,2,556:SCPRINT MBGTBLK (35,2) assigns sprite 2 to data
block 556. The 35 sends the sprite to active hi-res memory. The SCPRINT
following the MBBLOCK returns 556.

The next six commands control sprite color.

MBMODE (188) (c)
MBGTMOD (257) (H)

Sprites have two modes: The single-color and multicolor modes. Multicolor
mode offers you a total of three colors for your sprites.

Sprite matrices interpret their setups by bits. The three bit combinations are 10,
01 and 11, and when a sprite is assigned multicolor mode, these combinations
have their own colors (the combination 00 equals the background color).
MBMODE lets you set the color mode for each spnte MBGTMOD returns the
current color mode for every sprite.

Format: MBMODE NR,NM: ... :NM = MBGTMOD (NR)
NR is the desired sprite’s number. Values for NR rangé from 1 to 8.

NM is the color mode for the desired sprite. If NM=0, the spriteA is in single-
color mode; NM=1 means that the sprite is in multicolor mode.

Example:
MBMODE 5,1:MBMODE 8,0:A=MBGTMOD(S) assigns sprite 5 multicolor

mode and sprite 8 single-color mode. The variable A contains a 1.

MBSETCOL (143) (c)
MBGTCOL (256) 4]

MBSETCOL sets the desired color of a sprite. MBGTCOL reads the current
color code for individual sprites.

Format: MBSETCOL NR,FB: ... :FB = MBGTCOL (NR)

158

Abacus 9. Sprite commands

NR is the number of the sprite. Values for NR range from 1 to 8.

FB is the color code assigned/read. Values for FB range from O to 15 (see
PCOLORS, Chapter 3).

Example:
MBSETCOL 4,9:MBSETCOL 7,0:SCPRINT MBGTCOL (4) turns sprite 4
brown and sprite 7 black. The SCPRINT command displays 9.

MBEXCOL (142) (c)
MBGTEXCL (255) ()

MBEXCOL sets the additional colors for the bit combinations 01 and 11 in
multicolor mode. MBGTEXCL reads the current additional colors.

Format: MBEXCOL F1,F2: ... :FN = MBGTEXCL (ZN)

F1 is the color code for bit combination 01. Values for F1 range from O to
15 (see PCOLORS, Chapter 3).

F2 is the color code for bit combination 11. Values for F2 range from 0 to
15 (see PCOLORS, Chapter 3).

FN,ZN set the color code (FN) according to the value in ZN. If ZN=1, FN is
the code for the first additional color. If ZN=2, FN is the code for the
second additional color.

Example:

MBEXCOL 3,7:CF=MBGTEXCL(2) assigns the color cyan to bit combination
01, and the color yellow to bit combination 11. The number 7 is assigned to FC
(color code for the second additional color).

When two or more sprites appear at the same place on the screen, these sprites

must be assigned priorities. Priority states which sprite passes in front of another
when two or more overlap.

159

9. Sprite commands BeckerBASIC 64

Also, it must be established whether a sprite can pass in front of or behind the
other sprite. The first case (sprite/sprite priority) states that sprites with higher
numbers pass in front of sprites with lower numbers. Therefore, if sprites 2 and
7 cross, sprite 2 passes behind sprite 7.

You cannot directly alter these priorities, but you can change them indirectly
using MBBLOCK to switch sprite matrices. This automatically swaps priority.

MBPRIOR (169) (c)
MBGTPR (258) 4]

The MBPRIOR command can determine overlaps between sprite and
background on a hi-res screen. MBGTPR reads the value set by MBPRIOR.

Format: MBPRIOR NR,PR: ... :PR = MBGTPR (NR)

NR is the number of the desired sprite. Values for NR can range from 1 to
8.

PR determines the sprite’s priority. If PR is equal to 0, the sprite has higher
priority than the background. If PR equals 1, then the sprite travels
behind the background if the two objects cross.

Example:
MBPRIOR 2,1:MBPRIOR 8,0:T=MBGTPR(2) forces sprite 2 to travel behind

the background, while sprite 8 has a higher pnonty than the background.
Variable T has the value 1 assigned to it.

MBXSIZE (189) (c)
MBYSIZE (190 (c)

Sprites can be expanded horizontally with MBXSIZE or vertically with
MBYSIZE.

Format: MBXSIZE NR,MD: ... :MBYSIZE NR,MD

NR is the number of the sprite. Values for NR range from 1 to 8.

160

Abacus 9. Sprite commands

MD is the control for sprite size. If MD=0, then the sprite appears in normal
size. When MD-=1, the sprite’s size doubles. MBXSIZE expands the
sprite horizontally; MBY SIZE expands the sprite vertically.

Example:
MBXSIZE 6,0:MBYSIZE 6,1 sets sprite 6 to normal size horizontally and
expands it vertically.

MBGTXSZ (259) (M
MBGTYSZ (260) 1]

MBGTXSZ returns the horizontal sprite size code, MBGTYSZ returns the
vertical sprite size code.

Format: XD = MBGTXSZ (NR): ... :YD = MBGTYSZ (NR)
NR is the number of the desired sprite. Values for NR range from 1 to 8.

XD XD and YD are the size codes. When XD equals 0, the horizontal size
YD is normal. When YD equals 0, the vertical size is normal. If either size
is expanded, YD or XD return values of 1.

Example:

10 SELECT MBGTYSZ(3)

20 CASE 0:MBYSIZE 3,1:'DOUBLE SIZE’
30 CASE 1:MBYSIZE 3,0:’NORMAL SIZE’
40 ENDSEL

This routine sets the size of sprite 3 according to selection (see Chapter 6 for
information on the SELECT/ENDSEL commands).

161

9. Sprite commands BeckerBASIC 64

9.2 Positioning and moving sprites

Like normal screen displays, sprites operate on a coordinate system which lets
you put a sprite anywhere on the screen. The sprite coordinate system is so
accurate that you can put sprites literally anywhere on the visible screen. This
means that you can place a sprite so it’s only partially visible (off one edge of
the border).

The coordinate system originates at the upper left corner of the screen. The X-
coordinate (horizontal position) has 512 possible values (0-512); the Y-
coordinate (vertical position) has 256 possible values (0-255). The visible screen
area for sprites lies between coordinates 24/50 (upper left corner), 344/50 (upper
right corner), 344/250 (lower right corner) and 24/250 (lower left corner).

MBSETPOS (144) (c)

MBSETPOS places a sprite at any X- and Y-coordinate on the screen.

Format: MBSETPOS NR,XK,YK

NR is the number of the desired sprite. Values for NR range from 1 to 8.

XK is the horizontal coordinate at which the upper left comer of the sprite
should appear - whether that comner is visible or not. Values for XK
range from O to 511.

YK is the vertical coordinate at which the upper left corner of the sprite
should appear - whether that corner is visible or not. Values for YK
range from 0 to 255.

Examples:

MBSETPOS 3,150,180 places sprite 3 at the approximate center of the screen.

MBSETPOS 1,400,20 positions sprite 1 to the right of the visible screen.

162

Abacus 9. Sprite commands

MBRXPOS (240) ()
MBRYPOS (241) (f)

These two functions establish the current sprite’s coordinates. MBRXPOS
returns the horizontal position; MBRYPOS returns the vertical position.

Format: XK = MBRXPOS (NR): ... :YK = MBRYPOS (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.
XK is the X-coordinate of the sprite. Values for XK range from O to 511.
YK is the Y-coordinate of the sprite. Values for YK range from 0 to 255.
Examples:

A=MBRXPOS(2):B=MBRYPOS(7) list the current horizontal position of sprite
2 in A and the current vertical position of sprite 7 in B.

MBSETPOS 5 MBRXPOS(4), MBRYPOS(4) places sprite number 5 at the same
position as sprite 4 so the two sprites are layered.

The MBSETPOS command moves sprites. Movement is nothing more than a
more or less continuous replacement of a sprite using the MBSETPOS
command. For example, if you wanted to move sprite 1 horizontally across the
screen, you’d use a command sequence something like this:

10 FOR X=0 TO 511 STEP SP:’MAKE SP A VALUE FROM 1 TO 5’
20 MBSETCOL 1,1:MBON 1:’SEE 9.3 FOR MBON'

30 MBSETPOS 1,X,100

40 NEXT X

This short program moves a very primitive sprite across the screen. The step
value SP sets the speed of the sprite movement. A value of 1 results in a fairly
slow movement, while a value of 5 moves the sprite very quickly across the
screen.

You can fine-tune the speed using a blank FOR/NEXT loop (e.g., FOR I=1 TO

25:NEXT I). See Chapter 6 for information about loop construction, particularly
FOR/NEXT loops.

163

9. Sprite commands BeckerBASIC 64

A combination of MBSETPOS and loops will be enough for most users, since
this command is very flexible when compared to the normal C64 sprite
commands.

Take a look at the sprite demonstration program, stored on your distribution
diskette under the name SPRITEDEMO. When you load and run this short game
program, use the <Cursor up> and <Cursor down> keys to move the paddle up
and down the screen. The object of the game is to catch the ball with the paddle.
Your score appears on the upper left corner of the screen. Press the <RETURN>
key to end the game at any time.

9.3 Enabling and disabling sprites

MBON (145) (c)
MBGTON ‘ (261) (]

The MBON command turns the corresponding sprite on. The MBGTON
command tells whether a sprite is on or off.

Format: MBON NR: ... :MD = MBGTON (NR)
NR is the number of the desired sprite. Values for NR range from 1 to 8.

MD is the status number of the desired sprite. If MD=1, the sprite is visible
on the screen. If MD=0), the sprite is inactive.

Example:
MBON 3:MBON 7:WA=MBGTON(3) enables sprites 3 and 7 and returns the
status of sprite 3 (WA=1).

MBOFF (146) (c)
MBALLOFF (147) (c)

The MBOFF command turns the comresponding sprite off. MBALLOFF
removes all active sprites from the screen.

164

Abacus 9. Sprite commands

Format: MBOFF NR: ... :MBALLOFF

NR is the number of the desired sprite. Values for NR range from 1 to 8.
Example:

MBON 2:MBON 8:MBON 5: ... :MBOFF 8: ... :MBALLOFF turns on sprites 2,

5 and 8 on the screen. MBOFF 8 turns sprite 8 off, then MBALLOFF removes
the rest of the sprites.

94 Loading and saving sprite data blocks

MBDSAVE (191) (©
MBDLOAD (192) (©)

MBDSAVE saves the indicated 64-byte block to diskette. MBDLOAD loads
sprite data into any given sprite block in memory.

Format: MBDSAVE NAS$,BL: ... :MBDLOAD NAS$,BL

NA$ s the filename under which the data is loaded/saved. This filename can
be up to 16 characters long.

BL is the corresponding data block number (see also MBBLOCK).

NOTE: When you save or load several data blocks at once, use the DSAVEM or
DLOADM commands (see Section 5.3) since these commands can handle any
memory size.

Example:

MBDSAVE "SPRBL",13 saves data block 13 to diskette under the name
SPRBL.

MBDLOAD "SPRBL",553 loads this same sprite data into memory block 553.

165

9. Sprite commands BeckerBASIC 64

9.5 Testing for collisions

The following functions operate in conjunction with the commands used for
checking sprite priority. Collisions occur in the visible screen area between
sprites. These collisions set the appropriate sprite matrix bits to 1.

NOTE: The VIC collision register is designed so that reading the register clears
the register. The functions below store the codes in variable memory for later
reading.

This is the reason you can’t do multiple readings of MBCHECKS or
MBCHECKG on multiple sprite collision; all eight sprites use one register for
checking sprite/sprite or sprite/background collision. Use the functions
MBCHECKALLS and MBCHECKALLG for multiple reading.

MBCHECKS (242) {i]

This command reads whether a sprite collides with another.

Format: MD = MBCHECKS (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.
MD lists the number of the crashed sprite. Otherwise this value is 0.
Example:

A=MBCHECKS(7) tells whether sprite 7 collided with one of the other seven

sprites. If so, A=1; otherwise A=0.

MBCHECKALLS (263) 0]

If you want to convey a collision between sprites, use the MBCHECKALLS
function.

Format: MD = MBCHECKALLS

166

Abacus 9. Sprite commands

- All eight sprites return values according to the following table:

Sprite number: 1 2 3 4 5 6 7 8
Value: 1 2 4 8 16 32 64 128

The total value of MD is the sum of the individual values. If, for example,
sprites 2, 3 and 5 collide, MD returns 22.

Examples:
MD=9 means that sprites 1 and 4 collided.
MD=212 means that sprites 3,5,7 and 8 collided.

MD-=0 means that no collision occurred since the last reading,.

MBCHECKG (243) 1]

This command looks for a collision between a certain sprite and a screen
character or hi-res graphic.

Format: MD = MBCHECKG (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.
MD defaults to 0 if no collision occurs. Collisions change this value to 1.
Example:

HG=MBCHECKG(2) tells whether sprite 2 has collided with a background

character. If so, HG becomes equal to 1; otherwise HG remains at 0.

MBCHECKALLG | (262) (f)

Similar to sprite/sprite collision reading, except that all sprites are checked for
background collision.

Format: MD = MBCHECKALLG

167

9. Sprite commands BeckerBASIC 64

All eight sprites return values according to the following table:

Sprite number: 1 2 3 4 5 6 7 8
Value: 1 2 4 8§ 16 32 64 128

The total value of MD is the sum of the individual values. If, for example,
sprites 2, 3 and 5 collide, MD retums 22.

Examples:
MD-=32 means that sprite 6 has hit either a character or part of a hi-res graphic.

MD-=26 signals that sprites 2, 4 and 5 have collided with the background.

MBDELCOLL (193) (e

This command clears both VIC registers for sprite/sprite and sprite/background
collisions. Use this command at the beginning of a program so false readings
left from previous programs are not encountered.

Format: MBDELCOLL

9.6 The BeckerBASIC sprite editor routine

The program listed here is included on your BeckerBASIC distribution diskette
under the name SPRITE-EDIT. It allows you to create sprites on the screen. The
resulting values are computed in the editor and stored in the string variable
MTS$, so you can read them with MBDESIGN.

To start the editor you need the instruction GOTO "MATDEF/S". You can now
use your cursor keys to move around an enlarged 21 x 24 matrix. Press the <F1>
key to set a pixel; press the <F3> key to erase a pixel. Press <F7> to accept the
completed matrix, or <F8> rejects the matrix. Accepted sprites load into the
variable MTS$.

168

Abacus 9. Sprite commands

After you define the sprite matrix, the editor allows you to load stored sprite
matrices into memory for editing, or clear the matrix to use new sprites. Load
the matrix into MT$ (using MBDATA, for example) and call the editor with
GOTO "MATDAR/S".

You can change the position of the editor’s matrix area by changing the value of
the variable SW. This variable always contains the upper left corner of the
editor.

To move the editor to the center of the screen, for example, you need to set SW
to PEEK (648)*256+88 (see lines 1080,1250 and 1580).

When you call the editor as a subroutine ~ (e.g., GOSUB "MATDEF/S" or
GOSUB "MATDAR/S"), you must change the END in line 1690 to RETURN.

The branches in the editor use labels, so you can change line numbers (with
PRENUMBER, see Section 2.1.1) for merging. The structured design of the
routine allows easy addition of new functions (e.g., mirroring the matrix).

100 ’AFTER MERGING TO ANOTHER PROGRAM, DELETE THESE LINES’
110 :

115 CLS:LETTERON:CRCOL 1

120 SCPRINT AT 3,1;"THIS PROGRAM CANNOT START ON ITS OWN!"
130 SCPRINT AT 6,1;"IT IS INTENDED TO BE INTEGRATED"

140 SCPRINT AT 7,1;"WITH OTHER PROGRAMS YOU"

150 SCPRINT AT 8,1;"HAVE WRITTEN."

160 SCPRINT AT 17, 6;"PLEASE PRESS A KEY."

165 WAITKEYA:END

170 :

180 :

190 :

1000 ’SPRITE-EDITOR’

1010 ’ (C) 1986 BY MARTIN HECHT’

1020 :

1030 ’SAVED ON DISKETTE UNDER THE NAME SPRITE-EDIT’

1040 :

1050 :

1060 "MATDAR/S":’DISPLAY MATRIX’

1070

1080 CLS:SW=PEEK (648) *256:' HOME POSITION=START OF MATRIX’
1090 FOR 21=0 TO 60 STEP3

1100 : FOR Z2=0 TO 2

1110 : AW=ASC (MID$ (MT$,21+22+1,1))

1120 : FOR 23=0 TO 7

169

9. Sprite commands BeckerBASIC 64

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310

: AW=AW/2

: IF AW=INT (AW) THEN PW=46:ELSE PW=160:ENDIF
: POKE SW+21/3*40+22*8+7-23,PW:AW=INT (AW)

: NEXT Z3

: NEXT 22

NEXT 21

GOTO "MATDEFINP/S":’MATRIX INPUT CONTROL'

"MATDEF/S":’DEFINE MATRIX'

'DRAW PATTERN ARRAY’
CLS:SW=PEEK (648) *256

FOR 21=0 TO 20

: HV=SW+Z21*40:MYFILL HV,HV+23,46
NEXT 21

"MATDEFINP/S":’ INPUT CONTROL’
H=SW-PEEK (648) *256 :P2=INT (H/40) +1:PS=H- (P2~

1) *40+1:" STARTPOSITION’

1320
1330
1340
1350
1360
1370
1375
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

ZE=PZ:SP=PS:’'CURSOR IN STARTPOSITION’
"MATINPUT/S" :CRSET ZE, SP:CRON:WAITKEYA:GET EG$:CROFF
SELECT ASC(EGS$) :' CURRENT INPUT’

CASE 29:’CURSOR RIGHT’

"CR":IF NOT (SP=PS+23) THEN SP=SP+1

ELSE IF NOT(ZE=PZ+20) THEN SP=PS:ZE=ZE+1:ENDIF
ENDIF

CASE 157:'CURSOR LEFT’

IF NOT(SP=PS) THEN SP=SP-1

ELSE IF NOT(ZE=PZ) THEN SP=PS+23:ZE=ZE-1:ENDIF
ENDIF

CASE 17:’CURSOR DOWN’

IF NOT(ZE=PZ2+20) THEN ZE=2E+1:ENDIF

CASE 145:’CURSOR UP’

IF NOT(ZE=PZ) THEN ZE=ZE-1:ENDIF

CASE 133:'F1=SET PIXEL’

POKE PEEK (648) *256+40* (2E-1) +SP-1,160:GOTO "CR"
CASE 134:'F3=DELETE PIXEL’

POKE PEEK (648)*256+40* (2E-1) +SP-1,46:GOTO "CR"
CASE 136:’F7=ACCEPT MATRIX’

GOTO "UEBERNAHME/S"

CASE 140:’F8=CANCEL’

GOTO "ENDE"

ENDSEL

GOTO "MATINPUT/S"

"UEBERNAHME/S" :’ ACCEPT MATRIX’

SW=PEEK (648) *256 : AW=0 :MT$=""

170

Abacus 9. Sprite commands

1590 FOR 21=0 TO 60 STEP3

1600 : FOR 22=0 TO 2

1610 : FOR 23=0 TO 7

1620 : PW=PEEK (SW+21/3*40+22*8+23)

1630 : IF PW=160 THEN AW=AW+2"(7-Z3) :ENDIF
1640 : NEXT 23

1650 : MT$=MT$+CHRS (AW) : AW=0

1660 : NEXT 22

1670 NEXT Z1

1680 :

1690 "ENDE":END:’IF SUBROUTINE, THEN REPLACE WITH RETURN’

171

Abacus 10. Sound commands

10. Sound commands

You don’t have to be a musician to use BeckerBASIC sound commands. Along
with sound effects, the SID chip can perform anything from a simple keyboard
beep up to complete synthesized sounds. Sound is for everyone, and
BeckerBASIC has special commands that let anyone create sounds or program
musical pieces. BeckerBASIC sound commands regulate the SID chip without
lots of POKE commands.

In many cases, you’ll only need a few commands to program sound effects. You
can take the programs on the next few pages and re-use them in other programs
as procedures (see Chapter 6).

Each section of this chapter examines a different aspect of the sound chip.
Section 10.1 takes you through the basics of making single notes. Section 10.2
shows you how to turn notes on and off. The last two sections demonstrate
synchronization, filters and ring modulation.

NOTE: that the commands and functions listed in this chapter are not accessible
in the Input System. You wil have to switch to the Testing System with
<CTRL><Commodore> to test your program.

10.1 Making sounds

The C64 sound chip (the SID chip) has a total of three tone generators, which
produce three voices.

SDCLEAR (148) (4]

The SDCLEAR command initializes (resets) the sound chip. This command can
be used at the beginning or end of a program to reset all sound registers to their
normal states.

Format: SDCLEAR

173

10. Sound commands BeckerBASIC 64

SDVOLUME (149) (©

The SDVOLUME command sets the volume for all three voices.
Format: SDVOLUME VL
VL is the volume level. Values for VL range from 0 to 15.

NOTE: You’ll use 15 as a volume level most of the time.

SDFREQUENCY ' (150) (©

This command sets the frequency of a voice in Hertz.
Format: SDFREQUENCY VC,FR
VC - is the number of the desired voice. Values for VC range from 1 to 3.

Numbers outside this range result in an ILLEGAL QUANTITY
ERROR.

FR is the frequency of the note. Values for FR range from 0 to 3848. You

can include decimals after a decimal point for fine tuning of up to 1/17
Hertz).

Example:

SDFREQUENCY 1,1497.2:SDFREQUENCY 3,2850 sets voice 1 to 1497.2 Hz
and voice 3 to 2850 Hz.

SDNOTE (151) (c)

When you find it impractical to use the SDFREQUENCY command, especially
when you’re programming musical compositions, SDNOTE offers a more
comfortable method of note input.

Format: SDNOTE VC,NT$

vC is the number of the desired voice. Values for VC range from 1 to 3.

174

Abacus 10. Sound commands

NT$ contains the characters indicating the note you want played, as well as
the desired octave. This sequence reads NOTEOCTAVE. NOTE names
use normal letter names from A to G. Values for OCTAVE range from
0 to 7. The SDNOTE command translates the note and octave into the
equivalent frequency.

10 RESTORE:SDCLEAR:SDVOLUME 15

15 NR=1:’VOICE’

20 SDWAVEON NR, 1:SDENVELOPE NR,0,0,15,0:SDVOICEON NR
25 LOOP

30 READ NT$:LPEXITIF NTS$="DONE"

35 SDNOTE NR,NT$:FOR I=1 TO 200:NEXT I

40 ENDLOOP

45 SDVOICEOFF NR:END

50 :

100 DATA cO,C#0,DO0,D#0,E0,F0,F#0,G0,G#0,A0,A#0,B0
110 DATA C1,C#1,D1,D#1,E1,F1,F#1,G1l,G#1,Al,A#1,B1
120 DATA C2,C#2,D2,D#2,E2,F2,F$2,G2,G#2,A2,A#2,B2
130 DATA C3,C#3,D3,D#3,E3,F3,F#3,G3,G#3,A3,A#3,B3
140 DATA C4,C#4,D4,D#4,E4,F4,F#4,G4,G#4,A74,A#4,B4
150 DATA C5,C#5,D5,D#5,E5,F5,F#5,G5,G#5,A5,A#5,B5
160 DATA c6,C#6,D6,D#6,E6,F6,F#6,G6,G#6,A6,A#6,B6
170 DATA Cc7,C$7,D7,D#7,E7,F7,F$7,G7,G#7,A7,A#7
180 DATA DONE

This program plays the complete SID range on voice 1, and contains a complete
list of the notes and octaves accessible to the SID chip (look at the DATA
statements). Please note that the scale stops at the top A#, since that is the
highest note of the SID chip’s range. '

SDWAVEON : (153) (c)
SDWAVEOFF (154) (c)

These commands control the waveform creation for individual voices.
SDWAVEON turns the appropriate waveform or waveforms on (you can -
activate several waveforms at once with SDWAVEON). The SDWAVEOFF
command turns a waveform off.

Format: SDWAVEON VC, WF [,PW]: ... :SDWAVEOFF VC,WF

vC is the desired SID chip voice. Values for VC range from 1 to 3.

175

10. Sound commands BeckerBASIC 64

WF is the identifier for the desired waveform. You have four waveforms

available:

1 triangle
2 sawtooth
3 pulse

4 noise

PW is an additional parameter which controls the width of the pulse wave
(WF=3) as a percentage. Values for PW can range from 0 to 100, with
provisions for decimal places. This parameter has no effect an any
other waveform.

Examples:

SDWAVEON 2,1 assigns a triangle wave to voice 2.

SDWAVEON 1,2:SDWAVEON 1,3,40 assigns a sawtooth wave and pulse
wave to voice 1; the pulse wave receives a level of 40 percent.

SDWAVEON 3,4: ... :SDWAVEOFF 3,4:SDWAVEON 3,1 assigns a noise

wave to voice 3, then changes that voice to a triangle wave.

10.2 Turning voices on and off

SDENVELOPE (152) (©)

This command gives you the power to create a software envelope which controls
the attack (start), decay (dying out), sustain (hold) and release (end) of a note.

Format: SDENVELOPE VC,A,D,S,R
vC is the desired voice number. Values for VC range from 1 to 3.

A controls the attack (starting) phase of a note. Values for A range from 0
to 15 (maximum volume).

176

Abacus 10. Sound commands

D controls the decay phase of a note, when the sound dies out. Values for
D range from O to 15.
S controls the sustain phase of a note (when a note is held). Values for S

range from O to 15. S determines its parameter based upon the attack
phase maximum of 15, instead of basing itself on time. If, for example,
S=15, the volume reaches its maximum during the attack phase. A
value of 0 for S means that the tone holds until the decay phase begins.
The increments from S are linear. That is, if S=7, the volume drops to
about half the value of the attack phase.

R controls the release (ending) phase of a note. Values for R range from 0
to 15.

The table below contains the individual values for time (sc=seconds,
ms=milliseconds) and parameters:

Parameter value Attack (a) Decay (d) / Release (r)
0 2 ms 6 ms
1 8 ms 24 ms
2 16 ms 48 ms
3 24 ms 72 ms
4 36 ms 114 ms
5 56 ms 168 ms
6 68 ms ’ 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms

10 500 ms 1.5 sc
11 800 ms 2.4 sc
12 1 sc 3 sc
13 3 sc 9 sc
14 5 sc 15 sc
15 8 sc 24 sc

See the descriptions of SDVOICEON and SDVOICEOFF for practical examples
of SDENVELOPE.

177

10. Sound commands BeckerBASIC 64

SDVOICEON (155) (©
SDVOICEOFF (156) (c)

These commands let you enable or disable any one of the voices at any time.
Format; SDVOICEON VC.: ... :SDVOICEOFF VC

vC is the number of the desired voice. Values for VC can range from 1 to
3. The desired voice is audible only if parameters such as volume,
waveform, etc. are set before turning the voice on. The frequency of a
tone can be changed while the voice is on.

When you set up an envelope with the SDENVELOPE command (see above),
SDVOICEON uses that envelope for its sound parameters. The attack executes,
then the decay and sustain phases run. The release phase actually holds the tone
until the SDVOICEOFF command disables the voice. As long as the voice is on,
the tone continues (see below for a concrete example). You can use PAUSE to
sustain notes for certain periods of time (see Chapter 3). SDVOICEON
2:PAUSE4:SDVOICEOFF 2 turns on voice 2 for exactly 4 seconds. You can
fine-tune this timing by using a FOR/NEXT loop instead (e.g., FOR I=1 TO
100:NEXT I).

Examples:

The example below sounds a standard signal tone that you might use for audible
errors, etc.

1000 NR=1:’VOICE’

1005 SDCLEAR:’ INITIALIZATION’ :SDVOLUME 15:’VOL’
1010 SDFREQUENCY NR,500:’500 HERTZ FREQUENCY’
1015 SDWAVEON NR, 1:’TRIANGLE WAVE'

1020 SDENVELOPE NR, 0,0,15,0:’ENVELOPE’

1025 SDVOICEON NR:’VOICE ON’ :PAUSE 3

1030 SDVOICEOFF NR:’VOICE OFF’

1035 END

This example uses the noise waveform.

1100 NR=1:’VOICE’

1105 SDCLEAR:’INITIALIZATION’ :SDVOLUME 15:’VOL’
1110 SDFREQUENCY NR,3250:’3250 HERTZ FREQUENCY’
1115 SDWAVEON NR,4:’NOISE WAVE’

178

Abacus 10. Sound commands

1120 SDENVELOPE NR,0,9,0,0:’ENVELOPE’
1125 SDVOICEON NR:’VOICE ON’:PAUSE 1
1130 SDVOICEOFF NR:’VOICE OFF’

1135 END

This program demonstrates two different sounds: a flute and an oboe.

1200 'FLUTE’

1203 CLS:SCPRINT AT 7,17;"FLUTE *

1205 NR=1:'VOICE’

1210 SDCLEAR:’INITIALIZATION’ :SDVOLUME 15:’VOL’
1215 SDFREQUENCY NR, 600:’600 HERTZ FREQUENCY’
1220 SDWAVEON NR,1:’ TRIANGLE WAVE’

1225 SDENVELOPE NR, 8,5,15,8:’ENVELOPE’

1226 SCPRINT AT 10,10;"PLEASE PRESS A KEY."
1230 SDVOICEON NR:’VOICE ON’:WAITKEYA:’'WAIT FOR KEYPRESS'
1235 SDVOICEOFF NR:’VOICE OFF'

1300 ’OBOE’

1303 CLS:SCPRINT AT 7,17;"OBOE "

1305 NR=1:’VOICE’

- 1310 SDCLEAR:’ INITIALIZATION’ :SDVOLUME 15:’VOL'

1315 SDFREQUENCY NR, 450:’450 HERTZ FREQUENCY’

1320 SDWAVEON NR,3,6.11:’PULSE WAVE, WIDTH 6.11%'

1325 SDENVELOPE NR, 4,9,15,8:’ENVELOPE’

1326 SCPRINT AT 10, 7;"PLEASE PRESS A KEY TO END."

1330 SDVOICEON NR:’VOICE ON’:WAITKEYA:’WAIT FOR KEYPRESS'
1335 SDVOICEOFF NR:’VOICE OFF’

1340 END

10.3 Filters

The sound chip can alter voice qualities using a filter. This filter is like the tone
control on your stereo system. One common filter affects all three voices, but
you can state which voices are filtered and which voices come through
"straight."

SDFILTER (157) (c)

This command sets up the filter parameters. The numbers below set the
operating mode and resonance of the filter.

Format: SDFILTER FQ,FA,RS

179

10. Sound commands BeckerBASIC 64

FQ is the top, cutoff or middle frequency, setting the frequency at which
the voice should be filtered. Values for FQ range from 30 to 11800, and
represent Hertz (cycles per second). Values outside this range result in
an [LLEGAL QUANTITY ERROR.

FA sets the filter operating mode. FA=1 sets up a high-pass filter, affecting
only the frequencies above the frequency FQ. FA=2 sets up a low-pass
filter, which affects frequencies below the frequency FQ. FA=3
activates a bandpass filter, which affects frequencies in the area of FQ.
FA=4 enables parallel switching of high-pass and low-pass filters,
called a notch filter.

RS sets the resonance of the filter. Values for RS range from 0 to 15. This
parameter adds richness to the frequencies in the area of FQ. RS=0
causes minimal resonance, while RS=15 results in maximum

resonance.
SDVCFTON (158) (c)
SDVCFTOFF (159) (c)

These commands set a specific voice for filtering.
Format: SDVCFTON VC.: ... :SDVCFTOFF VC

vC is the number of the tone generator. Values for VC can range from 1 to
4 (1). Voice 4 represents the audio input.

SDVCFTON 5ssigns a voice to the filter. SDVCFTOFF removes a voice from
filtering (SDVCFTOFF is the default).

Like all other SID parameters, you can turn filtering on or off at any time.
Examples:

This example creates an explosion.

2000 NR=1:’VOICE’

2005 SDCLEAR:’ INITIALIZATION’ :SDVOLUME 15:’VOL’
2010 SDFREQUENCY NR,500:’500 HERTZ FREQUENCY’
2015 SDWAVEON NR,4:’NOISE WAVE’

180

Abacus 10. Sound commands

2020 SDENVELOPE NR,0,11,3,12:’ENVELOPE’

2025 ’SET FILTER TO HIGHPASS, 500 HERTZ FREQUENCY, 12 RESONANCE’
2030 SDFILTER 1,500,12:SDVCFTON NR:’ASSIGN VOICE TO FILTER'

2035 SDVOICEON NR:PAUSE2

2040 SDVOICEOFF NR:SDVCFTOFF NR

2045 END

The program below imitates a banjo.

2100 NR=1:’VOICE’

2105 SDCLEAR:’ INITIALIZATION’ :SDVOLUME 15:’VOL’

2110 SDFREQUENCY NR,450:’450 HERTZ FREQUENCY’

2115 SDWAVEON NR,2:’SAWTOOTH WAVE'

2120 SDENVELOPE NR,0,9,0,0:’ENVELOPE’

2125 'FILTER:NOTCH, 2000 HZ FREQUENCY, RESONANCE 15’
2130 SDFILTER 4,2000,15:SDVCFTON NR:’VOICE INTO FILTER’
2135 SDVOICEON NR:PAUSE 1

2140 SDVOICEOFF NR:SDVCFTOFF NR

2145 END

10.4 Synchronization and ring modulation

SDSYNCHRON (160) (c)
SDSYNCHROFF (161) (©

These commands allow synchronization between one voice and another.
Format: SDSYNCHRON VC: ... :SDSYNCHROFF VC

vC is the number of the voice set for synchronization. The voice used for
synchronizing VC is hardware-set. VC=1 means that voice 1 is
synchronized with voice 3; VC=2 synchronizes voice 1 with voice 2;
and VC=3 synchronizes voice 2 with voice 3.

SDSYNCHRON activates syncrhonization; SDSYNCHROFF tumns it off at any
time. You can have multiple synchronization. Example:

SDSYNCHRON 1:SDSYNCHRON 2 synchronizes both voice 1 and voice 2.

181

10. Sound commands BeckerBASIC 64

SDRINGMODON (162) ()
SDRINGMODOFF (163) (c)

These commands control ring modulation between two voices.
Format: SDRINGMODON VC: ... :SDRINGMODOFF VC

vC is the number of the voice to be combined with a second voice for ring
modulation. VC=1 creates ring modulation between voices 1 and 3;
VC=2 creates ring modulation between voices 2 and 1; VC=3 creates
ring modulation between voices 3 and 2.

SDRINGMODON turns modulation on; SDRINGMODOFF turns it off.
Multiple ring modulation can also be produced.

Example:

SDRINGMODON 1:SDRINGMODON 3 puts all three voices in ring
modulation mode. The first command creates modulation between voices 1 and
3; the second produces modulation between voices 3 and 2.

NOTE: Waveforms must be set to triangle wave before you can get an audible
ring modulation.

SDVOICE30OFF (164) (c)
SDVOICE3ON (163) (©)

Synchronized or ring modulated voices are normally audible. If you use voice 3,
you can make it "inaudible" with SDVOICE3OFF. (Because of hardware
design, this option exists only for the third voice).

Format: SDVOICE3OFF: ... :SDVOICE30ON
When SDVOICE3OFF is used in concert with a synchronization, or ring

modulation, only voice 1 is audible. SDVOICE3ON restores the normal status
(audible third voice).

182

Abacus 10. Sound commands

Examples:

Both examples make siren noises using BeckerBASIC SID chip commands in
different ways.

3000 ’SYNCHRONIZATION’

3005 N1=1:N2=3:’VOICES’

3010 SDCLEAR:SDVOLUME 15

3015 SDENVELOPE N1,0,0,15,0:’ENVELOPE’

3020 SDWAVEON N1,3,40:’PULSE WAVE’ :SDSYNCHRON N1
3025 SDWAVEON N2,2:’SAWTOOTH WAVE’ :SDVOICE3OFF
3030 SDFREQUENCY N2,150:’150 HZ FREQUENCY’
3035 SDVOICEON N1:SDVOICEON N2

3040 FOR I=100 TO 2000 STEP 3

3045 SDFREQUENCY N1,I

3050 NEXT I

3055 SDCLEAR:END

3100 ’'RING MODULATION’

3105 N1=1:N2=3:’VOICES’

3110 SDCLEAR:SDVOLUME 15

3115 SDENVELOPE N1,0,0,15,0:SDENVELOPE N2,0,0,15,0
3120 SDWAVEON N1,1:SDWAVEON N2, 3, 40:SDRINGMODON N1
3125 SDVOICEON N1:SDVOICEON N2

3130 ’MOVE FREQ’

3135 FOR I=1 TO 2000 STEP 100

3140 FOR X=1 TO 2000 STEP 50

3145 SDFREQUENCY N2,X

3150 NEXT X

3155 SDFREQUENCY N1, I

3160 NEXT I

3165 SDCLEAR:END

183

Abacus Appendix A

Appendix A: Commands and functions listed by number

The following is a complete list of BeckerBASIC commands and functions. You
can find command and function numbers by using the COMNUM command
(see Chapter 1).

This book allows space after the original name for your own defined command
names. This table is intended to help you quickly find information about
BeckerBASIC commands.

The far right column of the table is the page reference for each command or
function. When you want to find a command, the procedure is as follows: Find
the command number on the screen using COMNUM, then look up the
command number in the table.

For example, SCPRINT COMNUM("TRACE") returns a value of 32. Look in
the table for the page number of command number 32. Other references may
appear in this handbook under the main reference.

NOTE: Command or function numbers preceded by an asterisk (*) are available
in all three interpreters - Input, Testing and Run-Only. A number sign (#)
denotes a command or function available only from the Input-System. If no
character precedes the command number, the command/function can be
accessed only be the Testing and Run-Only-Systems, and not by the Input-
System. '

185

Appendix A BeckerBASIC 64

Commands

Number Original name New name Page
* 001 GOTO 103
* 002 GOSUB 103
* 003 RESTORE 103
004 LIST 20
* 005 RUN 103
* 006 TRON 35
* 007 PAUSE 21
* 008 DESKTOP 22
009 PAUTO 23
010 PRENUMBER 24
011 POLD 26
012 PMERGE 25
013 PDEL 25
* 014 PBCEND 26
015 PMEM 26
016 PDFKEY 27
017 PKEY 28
018 PCOLORS 49

186

Abacus

Appendix A

Number

#

#

#

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

Original name

PHELP
NEWCOMTAB
OLDCOMTAB
RENCOM
DSCOMTAB
DLCOMTAB
ONERRORGO
ONERROROFF
RESUMECUR
RESUMENEXT
RESUME
ERRSHOWON
ERRSHOWOFF
TRACE
KEYREPEATON
KEYREPEATOFE
STOPON
STOPOF

WAITKEYA

187

New name Page

13

12

12

15

17

17

30

30

30

31

31

29

29

34

37

37

38

38

38

Appendix A BeckerBASIC 64

Number Original name New name Page
* 038 WAITKEYS 39
* 039 KGETV 39
* 040 KBGETV 40
* 041 ONKEYGO 42
* 042 RETKEY 43
* 043 SGETV 44
* 044 SGETM 44
* 045 DGETV 80
* 046 DGETM 80
* 047 SCPRINT 46
* 048 AT 46
* 049 RVSON 47
* 050 RVSOFF 47
* 051 BORDER 49
* 052 GROUND 50
* 053 CLS 50
* 054 SCRON 50
* 055 SCROFF 50
* 056 SCRDSAVE 51

188

Abacus

Appendix A

Number

*

*

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

Original name

SCRDLOAD
CRHOME
CRSET
CRCOL

CRON
CRREPEATON
CRREPEATOFF
CRFREQ
TRANSFER
DOKE
MYFILL
MGETV
ASCBSCW
BSCASCW
SWAP

DIR

DSTATUS
DSENDCOM

DHEADER

189

New name Page

51

51

51

52

52

52

52

52

55

58

56

57

57

21

65

65

67

Appendix A BeckerBASIC 64

Number Original name Page
* 076 DINIT 67
* 077 DRESET 68
* 078 DRENAME 66
* 079 DSCRATCH 66
* 080 DOPEN 78
* 081 DCLOSE 82
* 082 : DSAVEB 70
* 083 DSAVEM 72
* 084 DCSAVEB 70
* 085 DCSAVEM 72
* 086 DVERIFYB 72
* 087 DVERIFYM 73
* 088 DLOADB 74
* 089 DLOADM 74
* 09 DLOADAM 74
* 091 DRLOADB 74
* 092 DOVERLAYK 75
* 093 DOVERLAYW 75
* 094 DSQOPEN 82

190

Abacus

Appendix A

Number

*

*

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Original name

DSQCONCAT
DRLOPEN
DRLRECORD
DUSOPEN
DDAOPEN -
DDAPOINT
DDAREADBL
DDAWRITEBL
DDABLALLOC
DDABLFREE
DDABLEXEC
DMYPOKE

DMYWRITEM

" DMYWRITEV

DMYEXEC

IF

THEN

ELSE

ENDIF

191

New name Page

84

84

86

88

89

92

91

92

93

93

98

96

97

98

105

105

105

105

Appendix A BeckerBASIC 64
Number Original name Page
* 114 WHILE 110
* 115 DO 110
* 116 ENDDO 110
* 117 REPEAT 111
* 118 UNTIL 111
* 119 LOOP 113
* 120 LPEXITIF 113
* 121 ENDLOOP 113
* 122 SELECT 107
* 123 CASE 107
* 124 OTHER 107
* 125 ENDSEL 107
* 126 PROCEDURE 115
* 127 PROCEND 115
* 128 CALL 115
* 129 DSAVEPROC 121
* 130 DLOADPROC 121
* 131 DELPROC 122
* 132 LDEL 77

192

Abacus

Appendix A

Number
* 133
* 134
* 135
* 136

137

138
* 139
* 140
* 141
* 142

* 143

* 144

* 145

* 146

* 147

148

149

150

151

Original name
LETTERON
LETTEROFF
LOCKON
LOCKOFF
HRON
HROFF
MBDESIGN
MBINV
MBBLOCK
MBEXCOL
MBSETCOL
MBSETPOS
MBON
MBOFF
MBALLOFF
SDCLEAR
SDVOLUME
SDFREQUENCY

SDNOTE

193

New name Page

47

47

47

47

144

144

154

155

157

159

158

162

164

164

164

173

174

174

174

Appendix A BeckerBASIC 64
Number Original name New name Page
152 SDENVELOPE 176
153 SDWAVEON 175
154 SDWAVEOFF 175
155 SDVOICEON 178
156 SDVOICEOFF 178
157 SDFILTER 179
158 SDVCFTON 180
159 SDVCFTOFF 180
160 SDSYNCHRON 181
161 SDSYNCHROFF 181
162 SDRINGMODON 182
163 SDRINGMODOFF 182
164 SDVOICE3ON 182
165 SDVOICE3OFF 182
* 166 ONKEYOFF 43
* 167 TROFF 35
* 168 CROFF 52
* 169 MBPRIOR 160
* 170 PRLIST 20

194

Abacus

Appendix A

Number

*

*

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

Original name New name

PRPRINT

PRCOM

DB

ON

RESET

WAITST

PFKEYON

PFKEYOFF

VGETM

MBCLR

MBMOVE

MBCHANGE

MBAND

MBOR

MBEOR

MBMODE

MBXSIZE

195

Page
48
48
19

103
22
38
22
41
28

28

155
156
156
156
156
156
158

160

Appendix A BeckerBASIC 64

Number Original name New name Page
* 190 MBYSIZE 160
* 191 MBDSAVE 165
* 192 MBDLOAD 165
* 193 MBDELCOLL 168
* 194 DADRCHANGE 68
* 195 DKDEVNB 68
* 196 DPGOPEN 88
* 197 DSAVEL 71
* 198 DCSAVEL ' 71
* 199 DVERIFYAM 73
* 200 DRLCLOSE ' 85
* 201 DMYREADM 96
* 202 DMYREADV ' 95
* 203 PDUMP ‘ 27
* 204 POPREP ' 113
* 205 POPWHL 111
* 206 POPPROC 120
* 207 POPLP 114
* 208 POPIF 107

196

Abacus

Appendix A

Number

#

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Original name

TABNAME
PDMENU
GEOSON
GEOSOFF
DIALOGBOX
HRPRINT
GEOSASCW
ASCGEOSW
HRGET
HRGDCOL
HRPTCOL
HRDEL
HRINV
HRDLOAD
HRDSAVE

HRLINE

HRVLINE

HRBOX

197

New name Page

18

132

130

130

135

138

140

140

141

144

144

144

149

151

151

146

146

146

148

Appendix A BeckerBASIC 64

Number Original name New name Page
228 HRFRAME 147
229 HRPLOT 145
230 HRSTRING 149

198

Abacus

Appendix A

Functions

Number Original name

231 COMNUM

* 232 STTEST

* 233 CRPOSL

* 234 CRPOSC

* 235 DEEK

* 236 TEEK

* 237 VARADR

* 238 EOF

* 239 DMYPEEK
* 240 MBRXPOS

* 241 MBRYPOS

* 242 MBCHECKS
* 243 MBCHECKG
* 244 DF

* 245 CLGROUND
* 246 CLBORDER
* 247 CLCURSOR
* 248 MBDATA

New name Page

14

41

51

51

58

59

61

81

95

163

163

166

167

19

50

49

52

154

199

Appendix A BeckerBASIC 64

Number Original name New name Page
* 249 GTBCEND 26
250 COMTAB 13
* 251 COMNAME 15
* 252 FILENUM 80
* 253 DDEVADR 68
* 254 MBGTBLK 157
* 255 MBGTEXCL 159
* 256 MBGTCOL 158
* 257 MBGTMOD 158
* 258 MBGTPR 160
* 259 MBGTXSZ 161
* 260 MBGTYSZ 161
* 261 MBGTON 164
* 262 MBCHECKALLG 167
* 263 MBCHECKALLS 166
* 264 LEVELIF 106
* 265 LEVELREP 113
* 266 LEVELWHL 1
* 267 LEVELLP 114

200

Abacus

Appendix A

Number

*

268
269
270
271
272

273

Original name
LEVELPROC
HRGTON
DIALCODE
MENUCODE
HRGTCOL

HRTESTP

201

New name Page

120

143

135

133

131

145

Abacus Appendix B

Appendix B: Commands and functions listed alphabetically

The following table lists the commands and functions alphabetically. The
command or function name is followed by its number. C and F indicate whether
if it a command or function. The last number on the line is the page number
where the command or function is located.

Name Number Type Page
ASCBSCW (069) © 57
ASCGEOSW (216) ©) 140
AT (048) © 46
BORDER (051) ©) 49
BSCASCW (070) ©) 57
CALL (128) ©) 115
CASE (123) ©) | 107
CLBORDER (246) F) 49
CLCURSOR (247) F) 52
CLGROUND (245) » F 50
CLS (053) ©) 50
COMNUM (231) ® 14
COMNAME (251) (3] 15
COMTAB (250) F 13

} 203

204

Appendix B BeckerBASIC 64
Name Number Type Page
CRCOL (060) © 52
CRFREQ (064) © 52
CRHOME (058) (©) 51
CROFF (168) ©) 52
CRON (061) © 52
CRPOSC (234) 13) 51
CRPOSL (233) 1) 51
CRREPEATOFF (063) (©) 52
CRREPEATON (062) ©) 52
CRSET (059) (©) 51
DB (173) (©) 19
DADRCHANGE (194) ©) 68
DCLOSE (081) © 82
DCSAVEB (084) © | 70
DCSAVEL (198) (©) 71

'DCSAVEM (085) ©) 72
DDABLALLOC (103) ©) 93
DDABLEXEC (105) (©) 98
DDABLFREE (104) ©) 93

Abacus

Appendix B

Name

DDAOPEN

DDAPOINT

DDAREADBL

DDAWRITEBL

DDEVADR

DEEK

DELPROC

DESKTOP

DF

DGETM

DGETV

DHEADER

DIALCODE

DIALOGBOX

DINIT

DIR

DKDEVNB

DLCOMTAB

DLOADAM

Number Type ' Page
(099) ©) 89
(100) © 92
(101) ©) 91
(102) © 92
(253) ® 68
(235) ®) 58
(131) © 122
(008) © 22
(244) ® 19
(046) ©) 80
(045) © . 80
(075) © 67
(270) [13) 135
(13) ©) 135
(076) ©) 67
072) ©) 64
(195) (©) 68
(024) ® 17
(090) ©) 74

205

Appendix B BeckerBASIC 64
Name Number Type Page
DLOADB (088) (©) 74
DLOADM (089) (©) 74
DLOADPROC (130) (©) 121
DMYEXEC (109) © 8
DMYPEEK (239) ® 95
DMYPOKE (106) (©) 96
DMYREADM (201) ©) 96
DMYREADV (202) (©) 95
DMYWRITEM (107) ©) 97
DMYWRITEV (108) (©) 97
DO (115) ©) 110
DOKE (066) ©) 58
DOPEN (080) © 78
DOVERLAYK (092) © 75
DOVERLAYW (093) © 75
DPGOPEN (196) ©) 88
DRENAME (078) © 66
DRESET 077) (©) 68
DRLCLOSE (200) © 85

206

'I

Abacus Appendix B
Name Number Type Page
DRLOADB (091) ©) 74
DRLOPEN (096) ©) 84
DRLRECORD (097) (©) 86
DSAVEB (082) © 70
DSAVEL (197 (®) 71
DSAVEM (083) ©) 72
DSAVEPROC (129) ©) 121
DSCOMTAB (023) ©) 17
DSCRATCH ©79) ©) 66
DSENDCOM (074) ©) 65
DSQCONCAT (095) ©) 84
DSQOPEN (094) - (©). - 82
DSTATUS (073) © 65
DUSOPEN (098) ©) 88
DVERIFY AM (199) © - . 73
DVERIFYB (086) (©) 72
DVERIFYM (087) ©) | 73
ELSE (112) ©) | 105
ENDDO (116) ©) 110

207

Appendix B BeckerBASIC 64

Name Number Type Page
ENDIF (113) ©) 105
ENDLOOP (121) © 113
ENDSEL (125) ©) 107
EOF (238) ® 81
ERRSHOWOFF (031) © 29
ERRSHOWON (030) (©) 29
FILENUM (252) F) 80
GEOSASCW (215) © 140
GEOSOFF (212) ©) 130
GEOSON (211) ©) 130
GOSUB (002) (©) 103
GOTO (001) (©) 103
GROUND (052) ©) 50
GTBCEND (249) ® 26
HRBOX 27 ©) 148
HRDEL (220) ©) 144
HRDLOAD (222) ©) 151
HRDSAVE (223) (©) 151
HRFRAME (228) © 147

208

Abacus Appendix B
Name Number Type Page
HRGDCOL (218) ©) 144
HRGET (217) ©) 141
HRGTCOL 272) ® 131
HRGTON (269) ® 143
HRHLINE (225) (©) 146
HRINV (221 ©) 149
HRLINE (224) © 146
HROFF (138) © 144
HRON (137 ©) © 144
HRPLOT (229) ©) ©145
HRPRINT (214) ©) | 138
HRPTCOL (219) ©) 144
HRSTRING (230) (©) 149
HRTESTP (273) ® 145
HRVLINE (226) ©) ' 146
IF (110) © 105
KBGETV (040) © 40
KEYDEL (176) © 38
KEYREPEATOFF (034) ©) 37

209

Appendix B BeckerBASIC 64
Name Number Type Page
KEYREPEATON (033) ©) 37
KGETV (039) © 39
LDEL (132) ©) 77
LETTEROFF (134) © 47
LETTERON (133) ©) 47
LEVELIF (264) ® 106
LEVELLP (267) (F) 114
LEVELPROC (268) ® 120
LEVELREP (265) ® 113
LEVELWHL (266) ® 111
LIST (004) © 20
LOCKOFF (136) ©) 47
LOCKON (135) © 47
LOOP (119) © 113
LPEXITIF (120) © 113
MBALLOFF (147) © 164
MBAND (185) © 156
MBBLOCK (141) (©) 157
MBCHANGE (184) ©) 156

210

Abacus

Appendix B

Name

MBCHECKALLG

MBCHECKALLS

MBCHECKG

MBCHECKS

MBCLR

MBDATA

MBDELCOLL

MBDESIGN
MBDLOAD
MBDSAVE
MBEOR
MBEXCOL
MBGTBLK
MBGTCOL
MBGTEXCL
MBGTMOD
MBGTON
MBGTPR

MBGTXSZ

Number
(262)
(263)
(243)
(242)
(182)
(248)
(193)
(139)
(192)
(191)
(187)
(142)
(254)
(256)
(255)
(257)
(261)
(258)

(259)

211

Type Page
F) 167
F) 166
F) 167
® 166
© 155
F) 154
© 168
©) 154
©) 165
© 165
© 156
© ' 159
® 157
® 158
®) 159
F) 158
®) 164
® 160
) 161

Appendix B BeckerBASIC 64
Name Number Type Page
MBGTYSZ (260) F) 161
MBINV (140) ©) 155
MBMODE (188) ©) 158
MBMOVE (183) © 156
MBOFF (146) ©) 164
MBON (145) ©) 164
MBOR (186) ©) 156
MBPRIOR (169) ©) 160
MBRXPOS (240) F) 163
MBRYPOS (241) ® 163
MBSETCOL (143) ©) : 158
MBSETPOS (144) © 162
MBXSIZE (189) © 160
MBYSIZE (190) ©) 160
MENUCODE @71) 13) 133
MGETV (068) © 60
MYFILL (067) ©) 56
NEW a77) © 2
NEWCOMTAB (020) © 12

Abacus

Appendix B

Name
OLDCOMTAB
ON
ONERRORGO
ONERROROFF
ONKEYGO
ONKEYOFF
OTHER
PAUSE
PAUTO
PBCEND
PCOLORS
PDEL
PDFKEY
PDMENU
PDUMP
PFKEYOFF
PFKEYON
PHELP

PKEY

Number
(021)
(174)
(025)
(026)
(041)
(166)
(124)
(007)
(009)
(014)
(018)
(013)
(016)
(210)
(203)
(180)
(179)
(019)

017)

213

Type

©
©
©
©
©
©
©
©
©
©
©
©

©

©

©

©
©
©
©

Page

12
103
30
30
2
43
107
21
23
26

49

27
132
27
30
28
13

Appendix B BeckerBASIC 64
Name Number Type Page
PMEM (015) © 26
PMERGE (012) ©) 25
POLD (011) © 26
POPIF (208) ©) 107
POPLP (207) ©) 114
POPPROC (206) © 120
POPREP (204) © 113
POPWHL (205) (©) 111
PRCOM (172) © 48
PRLIST (170) © 20
PRENUMBER (010) (©) 24
PROCEDURE (126) | ©) 115
PROCEND (127) ©) 115
PRPRINT (1711) (©) 48
REPEAT a7 © 111
RENCOM (022) ©) 15
RESET (175) © 22
RESTORE (003) © 103
RESUME (029) ©) 31

214

Abacus

Appendix B

Name
RESUMECUR
RESUMENEXT
RETKEY

RUN

RVSOFF

RVSON
SCPRINT
SCRDLOAD
SCRDSAVE
SCROFF

SCRON
SDCLEAR
SDENVELOPE
SDFILTER
SDFREQUENCY
SDNOTE
SDRINGMODOFF
SDRINGMODON

SDSYNCHROFF

Number Type Page
(027) © 30
(028) ©) 31
(042) (©) 43
(005) ©) 103
(050) © 47
(049) ©) 47
(047) ©) 46
(057) (©) 51
(056) © 51
(055) (©) - 50
(054) (©) 50
(148) © I V<
(152) © 176
(157) © 179
(150) ©) 174
(151) (©) 174
(163) © 182
(162) © 182
(161) ©) 181

215

Appendix B BeckerBASIC 64
Name Number Type Page
SDSYNCHRON (160) © 181
SDVCFTON (158) ©) 180
SDVCTOFF (159) © 180
SDVOICE3OFF (164) © 182
SDVOICE30N (163) © 182
SDVOICEOFF (156) © 178
SDVOICEON (155) © 178
SDVOLUME (149) © 174
SDWAVEOFF (154) © 175
SDWAVEON (153) © 175
SELECT (122) © 107
SGETM (044) ©) 4
SGETV (043) ©) 44
STOPOFF (036) ©) 38
STOPON (035) (©) 38
STTEST @32)) 41
SWAP (071) © 21
TABNAME (209) © 18
TEEK (236)) 59

216

Abacus Appendix B

Name Number Type Page
THEN (111) © 105
TRACE (032) ©) 34
TRANSFER (065) ©) 55
TROFF (167) (©) 35
TRON (006) ©) 35
UNTIL (118) © 111
VARADR (237) ® 61
VGETM (181) ©) 60
WAITKEYA (037) (©) 38
WAITKEYS (038) © 39
WAITST (178) (©) 41
WHILE (114) © - 110

217

Abacus Appendix C

Appendix C: Error messages

This table contains the complete set of BeckerBASIC error messages. The error
messages coincide with the ONERRORGO command (see Section 2.2).

ERROR NUMBER ERROR_TEXT
01 TOO MANY FILES
02 FILE OPEN
03 FILE NOT OPEN
04 FILE NOT FOUND
05 DEVICE NOT PRESENT
06 NOT INPUT FILE
07 NOT OUTPUT FILE
08 MISSING FILENAME
09 ILLEGAL DEVICE NUMBER
10 NEXT WITHOUT FOR
11 SYNTAX
12 RETURN WITHOUT GOSUB
13 OUT OF DATA
14 ILLEGAL QUANTITY
15 OVERFLOW
16 OUT OF MEMORY
17 UNDEF'’D STATEMENT
18 BAD SUBSCRIPT
19 REDIM’D ARRAY
20 DIVISION BY ZERO
21 ILLEGAL DIRECT
22 TYPE MISMATCH
23 STRING TOO LONG
24 FILE DATA
25 FORMULA TOO COMPLEX
26 CAN’T CONTINUE
27 UNDEF’D FUNCTION
28 VERIFY
29 LOAD
30 BREAK
31 REMARK
32 COMMAND TOO LONG

219

Appendix C

BeckerBASIC 64

ERROR NUMBER
33
34
35
36
37
38
39
40
41
42

43
44
45

ERROR TEXT

COMMAND TOO SHORT
PROCEND WITHOUT PROCEDURE
UNDEFINED PROCEDURE
PROCEDURE-PARAMETER
CONSTRUCT NOT CLOSED
ENDDO WITHOUT WHILE
UNTIL WITHOUT REPEAT
LPEXITIF/ENDLOOP WITHOUT LOOP
LABEL

CASE/OTHER/ENDSEL WITHOUT
SELECT

RETKEY WITHOUT ONKEYGO
RESUME WITHOUT ONERRORGO
ILLEGAL COMMAND

220

Abacus Appendix D

Appendix D: Memory map

The following table is an overview of the BeckerBASIC and GEOS memory
layout. As you have already seen, memory is divided into sections.

This memory map will help you when you want to make your own changes to
BeckerBASIC or GEOS. In conjunction with this, you should refer to the
BeckerBASIC memory access commands (see Chapter 4). This allows access to
ROM lying in RAM, where the gross majority of GEOS routines lie.

You can find a C64 operating system memory map, as well as the BASIC
interpreter layout, in your C64 Programmer’s Reference Guide and Anatomy of
the C64 from Abacus.

Memory range Layout
2-68 This range is used by BeckerBASIC, BASIC

2.0 and GEOS. You'’ll find buffer memory
for the other values starting around address

32576.
251-254 Miscellaneous memory.
1024-2047 Text screen memory.
2048-6799 BeckerBASIC program code. The Input-,
Testing- and Run-Only-Systems reside here.
16800-32575 Approx. 15,800 bytes of BASIC memory.
(24576-32575) Hi-res bitmap II. Dialogue boxes and drop-

down menu routines need this second
bitmap. Using these features reduces your
available memory by around 8K.

32576-32767 Important Becke rBAS IC routines and zero

page buffer memory. Do not use this
memory.

221

Appendix D

BeckerBASIC 64

32768-40959

40960-48959

(40960-43959)

(43960-45800)

(47104-48103)

48960-65535

GEOS program and data memory. Hi-res
color memory for bitmap I stays in 35840-
36839.

Hi-res bitmap I. Hi-res graphics appear here
for both GEOS and BeckerBASIC. When
you avoid using the hi-res graphics in either
the Testing-Systen or Run-Only-System,
you have 8K more BASIC memory
available. The Input-System uses this area
for the BeckerBASIC command table (the
Input-System cannot use hi-res graphics).

Command name table I (user-assigned
names).

Command name table II (original names).
This area serves as buffer memory for the
GEOS routines that normally lie in text
screen color memory from 55296 to 56295
(for switched off hi-res graphics).

GEOS program and data memory.

222

Abacus Appendix E

Appendix E: BeckerBASIC in action

The following is a program designed as an example for demonstrating
BeckerBASIC in action. It is on the BeckerBASIC disk under the name
ADDRSAMPLE.

Let’s assume that you want to save a list of names on your disk. For our sample
program we’ll need a drop-down menu.

Let’s run the DDM.C.S program on the disk. First it will want to know where
the table needed by the menu will be stored in memory. Enter 24200. Next it
will ask for how many item will appear on the menu bar. Enter 2. Now, will it
be a horizontal menu or vertical? Enter 0 for horizontal. Next enter 0 then 0 for
the upper left corner of the menu. Enter 79 and 13 for the lower right corner.

When creating menus, it is best to enter height in multiples of 14, starting with
0. such as 0,13,27,41 and so on.

Now you need to enter the text to appear on the menu. Enter FILE. And enter
DATA.

Next, we’ll create the sub-menus. It now asks if a sub-menu should be created
for FILE. Answer Y. Now enter 2 for the number of items. Enter 1 for vertical
menu. Enter 0, 13, 59, and 41 as the location coordinates. Now enter the text
for items on the sub-menu. Type CREATE/LOAD and QUIT. To create the
second sub-menu, enter the following text at the appropriate prompts: Y (for yes,
you want a sub-menu for data), 2 (number of items), 1 (vertical), 20, 13, 64,
41 (coordinates), ENTER, READ (names of the sub-menus). -

Once you have created your menu, the program will wait for a keypress then
display it. Click on a sub-menu item to continue. After you click, it will ask if
the menu is acceptable. If you answer Y, it will ask for a name to save it under.
If you answer N, you will be able to go through and reenter your data. Answer Y
now to save the menu. Enter the name ADDRMENU.

You have now just created the table for your menu. To use it in our program, we
will load it into memory with DLOADM" ADDRMENU".

223

Appendix E BeckerBASIC 64

Now let’s create a dialogue box. Load and run D.C. S off the BeckerBASIC
disk. Now enter 828 for the address where the table will be loaded into
memory. Enter N so you can create your own size of dialogue box. Enter the
coordinates 60 and 50 for the upper-left corner. Now enter 260 and 150 for
the lower-right corner. Next enter 0 for no shadow.

To add a button to the dialogue box, enter the number for the desired button. For
our example we only want the CANCEL button so enter 2. Now the program
wants to know how far over the button should be placed. Enter the number in
bytes (divide actual pixels by 8, i.e., you want the button over 16 pixels so you
would enter 2). Enter 2 now. Enter 70 for the number of pixels down from the
top. You have just added a CANCEL button to the dialogue box.

To add text, enter 11. Do this now. Next enter the coordinates of were the text
should be placed. Enter 16 and 14. Enter the text Please enter
filename. at the prompt. Now add an input prompt so the use can enter text
using the dialogue box. Type 13 for an input prompt. Enter the coordinates of
the prompt as 16 and 35. Next enter the number of characters that will be
allowed to be entered. Type 14.

Our dialogue box is now complete. You can enter 33 to see if the data for the
buttons was entered correctly. Enter 0 and the dialogue box will be displayed.
Before you display a dialogue box, make sure you added a button or you will
not be able to return from the dialogue box. Click on the button to exit. If
everything is okay, then enter Y to save the table. Enter ADDRDIAL as the name
of the table.

With both the drop-down menu and the dialogue box tables saved, we are ready
to enter our program. This program has a little of nearly everything. The
following explains the program ADDRSAMPLE (on the BeckerBASIC disk)
section by section. It will show some of BeckerBASIC’s highlights in action,

The first section is labeled "SETUP". The first line sets up the error routine used
for editing and debugging the program as it was written. When an error is
encountered, it does the following: jumps to the line number after the
ONERRORGO statement, places the error number in EN, places the error text in
ENS, and places in EL the line number where the error occurred.

224

Abacus Appendix E

The next line sets the end of memory for your BeckerBASIC program. Since we
want to protect our menu starting at location 24200, we set the end of BASIC to
24199. CLR resets variables and pointers.

GEOS is turned on next. The program sets up the arrays for the screen text and
the address data. Then it loads the menu and dialogue tables into memory. Next
it defines the strings that are to be placed on the screen. Finally it jumps to the
routine that creates the screen.

The section labeled "MENU" first displays the drop-down menu. Then it defines
where it should jump to when a menu item is selected. The labels that it jumps
to correspond to the names of the items on the menu.

"DRAWSCREEN" first clears the screen. It then draws a box filled with the
background pattern. Now it draws a smaller black box. Next it draws a black
box for a shadow, then a white box overlapping the black box. A frame is then
added.

The next three lines draws a wide, narrow box that will be used to display
information.

The last group of lines prints the screen title in bold, italic and reversed type and
the field descriptions in bold type.

"CREATE/LOAD" uses a dialogue box to enter the name of the data file. First it
assigns N§$ the default filename. Then N$ is stored into memory at 880. Next it’s
converted from ASCII to GEOS text. The dialogue box is called with the
following line and the text inputted is to be placed at memory location 880.
Since we placed the contents of N$ there, it will be displayed at the input
prompt. The next line checks to see if the CANCEL button was selected. If it
was the program flow returns to "MENU". The entered text is converted from
GEOS back to ASCIL N8 is filled with the contents of 880 through 893. The
REPEAT UNTIL loop looks for the end of the text in N$ so the extra characters
can be stripped out. If the first character in N$ is CHR$(0) then there is no text
and it returns back to "MENU". Next N$ is stripped of the extra characters. A
sequential file is then created under the name N$. The program then checks to
see if a file under that name exists. If it does exist than it is checked to see if
data can be appended to it. If it cannot append data then an error occurs and is
displayed in the info box we created on the screen. Before it jumps back to the
"MENU" loop, a flag is set to indicate that a file exists to be used.

225

Appendix E BeckerBASIC 64

The "ENTER" routine permits data to be added to the sequential file. First it
checks to see of a file has been cleared. If it was not cleared, it prints "NO
FILE" in the info box. If it has, it continues and opens the file. The HRBOX
command clears what data might be on the screen. The FOR-NEXT loop sets
the entry variables to blanks and allows up to 15 characters to be entered. The
next FOR-NEXT loop allows the user to enter the data and does the necessary
conversions. Also it strips the entries of any extra text. Next it asks if the entry
was okay. If it was not, then it allows you to make corrections on the text
already entered. Once the text entered is satisfactory, the program then saves the
data to disk. It then asks you if you want to enter more data.

The next section is "READ". This routine checks to see if the file has been
okayed then opens the file. Next it INPUTS the data in the D$ array and displays
each record until the EOF.

"INFOBOX" is used to display information on the screen. It then waits for a
single keypress and stores what key was pressed in AN$. It then clears the box.

"ERRORS’ uses the "INFOBOX" routine to display any errors that might occur.
Once the program is thoroughly debugged, you may want to take this section out
along with the ONERRORGO command.

"QUIT" turns GEOSOFF and ENDs the program.

If you want to RUN this program from the GEOS deskTop, first replace the
END statement in the last line with DESKTOP. When you QUIT the program, it
will return to the deskTop.

The next thing you will need to do is to run the CONVERTER program. This
program converts your program so that it is accessible from the deskTop. You
can add a creation date and design your own icon. More information on the
CONVERTER program is in Section 1.1.4.

226

Abacus Appendix F

Appendix F: Distribution of the Run-Only System
Abacus grants to you a royalty-free right to copy and distribute the "Run-Only
System" of BeckerBASIC provided that you:

(a) distribute the "Run-Only System" ONLY in conjunction with your
own software program created using BeckerBASIC

(b) leave the Run-Only System unchanged and named "SYSTEM 3"
upon the disk

227

Appendix G BeckerBASIC 64

Appendix G: Examples of DB and DF

Section 1.4 (page 19) described the DB and DF commands which allow the
machine language programmer to add a command or function to BeckerBASIC.
Here are two BeckerBASIC programs demonstrating each of these function
from BASIC.

DB:

10 POKE 25500,169:POKE 25501, 65:POKE 25502,32:POKE 25503,210
20 POKE 25504,255:POKE 25505, 96

30 :'OTHER PROGRAM CODE AS NEEDED’

40 DB

The above sequence, which prints the A character on the screen when the DB in
line 40 executes, is the equivalent of the macine language program:

LDA #%41
JSR $FFD2
RTS

DF:

10 POKE 25000,160:POKE 25001, 1:POKE 25002, 76:POKE 25003,162
20 POKE 25004,179

30 :'OTHER PROGRAM CODE AS NEEDED’

40 SCPRINT DF

The above program, which returns a value of 1 when the SCPRINT DF executes
in line 40, is the equivalent of the machine language program:

LDY #8$01
JMP $B3A2

228

Abacus Index
activate drop-down menu 132
ASCBSCW 57
ASCGEOSW 129, 140
ASCII 129
AT 46
auto line numbering 23
background color 50
BAM (Block Availability Map) 67
BASIC 2.0 commands 19
BASIC extension 1
BASIC icon 4
BeckerBASIC
distribution 9
exit 3
interpreters 1
program errors 2
starting 3
structure 1
system files 4
bold 139
BORDER 49
border color 49
branch structures 105
BSCASCW 57
buttons 135
calculated line numbers 103
CALL 115
CASE 107
CLBORDER 49
CLCURSOR 52
clear text screen 50
clear VIC registers 168
clearing hi-res screen 144
clearing hi-res screen (HRDEL) 130
CLGROUND 50
CLS 50
colors 49

229

Index BeckerBASIC 64
command table 12
loading 17
saving 17
commands 1,5
comments 102
Commodore key 41
COMNAME 15
COMNUM 14
COMTAB 13
CONVERTER 1
CONVERTER program 4
copy sprite block 156
CRCOL 52
CRFREQ 52
CRHOME 51
CROFF 52
CRON 52
CRPOSC 51
CRPOSL 51
CRREPEATOFF 52
CRREPEATON 52
CRSET 51
CTRL key 41
CTRL/Commodore keys 2
cursor
color 52
control 51
position 51
DADRCHANGE 68
DATA 153
data input 37
data output 46
DB 19
DCLOSE 78, 82
DCSAVEB 70
DCSAVEL 71
DCSAVEM 72
DDABLALLOC 93
DDABLEXEC 98

230

Abacus

Index

DDABLFREE

DDAOPEN

DDAPOINT

DDAREADBL

DDAWRITEBL

DDEVADR

DEEK

delete files

DELPROC

DEMO program

deskTop

DF

DGETM

DGETV

DHEADER

DIALCODE

DIALOGBOX

Dialogue Box Construction Set
operation

dialogue boxes

DINIT

DIR

direct diskette access

disabling hi-res screen

disabling sprites

disabling voices

disk
addresses
commands
memory access
operating system (DOS)
status (DSTATUS)

directory

DKDEVNB

DLCOMTAB

DLOADAM

DLOADB

DLOADM

DLOADPROC

DMYEXEC

93

89

92

91

92

68

58

66
122
4,11
1,6,22
19

78, 80
78, 80
63, 67
135
135

4

136
3,129, 135
67

64

89
144
164
176

68
63
95
95
65
64
68
17
74
5,74
74, 151
121
98

231

Index

BeckerBASIC 64

DMYPEEK
DMYPOKE
DMYREADM
DMYREADV
DMYWRITEM
DMYWRITEV
DO
DOKE
DOPEN
DOVERLAYK
DOVERLAYW
DPGOPEN
drawing in hi-res
filled rectangle
frame
horizontal line
line
vertical line
DRENAME
DRESET
DRLCLOSE
DRLOADB
DRLOPEN
DRLRECORD
Drop-Down Menu Construction Set
operation
drop-down menus
DSAVEB
DSAVEL
DSAVEM
DSAVEPROC
DSCOMTAB
DSCRATCH
DSENDCOM
DSQCONCAT
DSQOPEN
DSTATUS
DUSOPEN
DVERIFY AM

232

95
96
96
95
97
97
101, 110
58
78
75
75
88

148
147
146
146
146
64, 66
68

85
5,74
84

86
4,132
134
3,129, 132
5,70
71
72, 151
121
17

66
63, 65
84

82
63, 65
88

73

Abacus Index
DVERIFYB 72
DVERIFYM 73
editing 2
ELSE 105
enabling hi-res screen 144
enabling voices 176
ENDDO 101, 110
ENDIF 105
ENDLOOP 101, 113
ENDSEL 101, 107
EOF 81
Error
display 2,29
handling 2,29
messages 6,7,8,16,90
ERRSHOWOFF 8,29
ERRSHOWON 2,6,7,8,29
executing machine language programs 98
FILENUM 80
Fill memory range 56
Filters 179
FOR 101
format diskette 63
format diskettes 67
function keys
assignment 27
layout 27
functions 1
GEOS iv, 129
commands 129
format 4
specialties 129
GEOSASCW 129, 140
GEOSOFF 130
GEOSON 130
GET# 78
GOSUB 103

233

Index BeckerBASIC 64
GOTO 19, 103
GROUND 50
GTBCEND 26
hi-res 5
background color 131, 144
commands 5, 129
graphic control 130
graphic string 149
graphics 7, 143
input 141
mode 129
plot 145
point color 131, 144
screen clear 130
text display 138
text entry 138
HRBOX 148
HRDEL 130, 144
HRDLOAD 151
HRDSAVE 151
HRFRAME 147
HRGDCOL 131, 144
HRGET 138, 141
HRGTCOL 131, 144
HRGTON 144
HRHLINE 146
HRINV 149
HRLINE 146
HROFF 130, 144
HRON 130, 144
HRPLOT 145
HRPRINT 138
HRPTCOL 131, 144
HRSTRING 149
HRTESTP 145
HRVLINE 146
icon editor 10
icons 1

234

Abacus Index
IF 19, 101, 105
initializing graphics 143
INPUT 138
INPUT# 78
Input-System 1
loading 6
interpreters 5
invert hi-res graphic display 149
invert sprite data block 155
italics 139
KBGETV 40
keyboard input 37
KEYDEL 38
KEYREPEATOFF 37
KEYREPEATON 37
KGETV 39
labels 103
language extensions iv
LDEL 77
LETTEROFF 47
LETTERON 47
LEVELIF 106
LEVELLP 114
LEVELPROC 120
LEVELREP 113
LEVELWHL 111
LIST 19,20
loading
command tables 17
hi-res graphics 151
programs 5
LOCKOFF 47
LOCKON 47
logical files 77
LOOP 101, 113
loop structures 110
LOOP/LPEXITIF/ENDLOQOP 101
LPEXITIF 101,113

235

Index

BeckerBASIC 64

MBALLOFF
MBAND
MBBLOCK
MBCHANGE

MBCHECKALLG
MBCHECKALLS

MBCHECKG
MBCHECKS
MBCLR
MBDATA
MBDELCOLL
MBDESIGN
MBDLOAD
MBDSAVE
MBEOR
MBEXCOL
MBGTBLK
MBGTCOL
MBGTEXCL
MBGTMOD
MBGTON
MBGTPR
MBGTXSZ
MBGTYSZ
MBINV
MBMODE
MBMOVE
MBOFF
MBON
MBOR
MBPRIOR
MBRXPOS
MBRYPOS
MBSETCOL
MBSETPOS
MBXSIZE
MBYSIZE
memory
access
exchange

164
156
154, 157
156
167
166
167
166
155
154
168
153, 154
165
165
156
159
157
158
159
158
164
160
161
161
155
158
156
164
164
156
160
163
163
158
162
160
160

55,57
60

236

Abacus Index
memory
fill 56
reading contents 60
transfer 55
MENUCODE 133
MGETV 55, 60
multicolor bit combinations 159
MYFILL 55, 56
nested loops 101
NEW 19,22
NEWCOMTAB 12
NEXT 101
OLDCOMTAB 12
ON 19, 103
ONERRORGO 6,7, 8,30
ONERROROFF 30
ONKEYGO 42
ONKEYOFF 43
opening
direct access files 89
files 78
program files 88
user files 88
OTHER 107
outlined text 139
PAUSE 21
PAUTO 23
PBCEND 26
PCOLORS 49
PDEL 25
PDFKEY 27
PDMENU 132
PDUMP 5,27
PFKEYOFF 28
PFKEYON 28
PHELP 13
Piracy 9

237

Index BeckerBASIC 64
PKEY 28
PMEM 26
PMERGE 25
POKE 153
POLD 26
POPIF 107
POPLP 114
POPPROC 120
POPREP 113
POPWHL 111
PRCOM 48
PRENUMBER 5,24
PRINT# 78
printer codes 48
printer output 48
PRLIST 20
PROCEDURE 115
procedures 114
PROCEND 115
program distribution 3
program files 64
programmer’s tools 2
proportional type 132,138
PRPRINT 48
RAM 60
reading
disk bytes 95
memory 58
sprite data 154
track and sector 91
relative file commands 84
relative files 64
REM 102
renaming disk files 64, 66
renaming commands 12, 16
RENCOM 15
REPEAT 101, 111
REPEAT/UNTIL 101
RESET 22

238

Abacus Index
reset disk drive 68
RESTORE 19, 103
RESUME 31
RESUMECUR 30
RESUMENEXT 31
RETKEY 43
return menu code 133
reverse 139
ring modulation 181
RUN 5,19,103
Run-Only-System 1
running programs 57
RVSOFF 47
RVSON 47
saving

command tables 17

hi-res graphics 151

programs 5,70
SAVE with replace 70
SCPRINT 46
SCRDLOAD 51
SCRDSAVE 51
screen input 43
screen output 46
SCROFF 50
SCRON 50
SDCLEAR 173
SDENVELOPE 176
SDFILTER 179
SDFREQUENCY 174
SDNOTE 174
SDRINGMODOFF 182
SDRINGMODON 182
SDSYNCHROFF 181
SDSYNCHRON 181
SDVCFTOFF 180
SDVCFTON 180
SDVOICE30FF 182
SDVOICE30ON 182

239

Index

BeckerBASIC 64
SDVOICEOFF } 178
SDVOICEON 178
SDVOLUME 174
SDWAVEOFF 175
SDWAVEON 175
SELECT 101, 107
SELECT/ENDSEL 101
sending disk commands 65
sequential file commands 82
sequential files 64
SGETM 44
SGETV 44
SHIFT key 41
software envelope 176
sound commands 5,173
sound generation 173
SPRITE-EDIT program 4,168
sprite 153

collisions 166
commands 153
coordinates 162
data block comparison 156
disabling 164
editor 153, 168
enabling 164
expansion 160
loading data blocks 165
moving 162
positioning 162
priority 160
saving data blocks 165
swapping blocks 156
STOP key 38
STOPOFF 38
STOPON 38
structured programming 101
STTEST 41
sub-menus 134
SWAP 21
swap sprite block 156

240

Abacus Index
Synchronization 181
TABNAME 18
TEEK 59
Testing-System 1
function keys 2
menu 2
text color 52
text conversion 140
THEN 19, 105
TRACE 6,29, 34
TRANSFER 55
TROFF 8,35
TRON 8,35
typestyles
bold 139
italics 139
outline 139
reversed 139
underlining 139
UNTIL 101, 111
user files 64
validate 63
VARADR 55, 61
variable address 61
verifying programs 70
VGETM 55, 60
VLIR files 1
voices
disabling 176
enabling 176
WAITKEYA 38
WAITKEYS 39
WAITST 41
WHILE 101, 110
WHILE/DO/ENDDO 101
wildcards 64

241

Index BeckerBASIC 64
WINPROC program 122
writing
disk bytes to RAM 96
disk memory 97
sprite data 154
string to disk memory 97

242

SpeedTerm

Terminal Software
for both the C-128 and C-64

As a group, Commodore owners are one of the largest
users of online communication services, such as
CompuServ, The Source, Delphi and GEnie. SpeedTerm
was designed to handle the communication needs of this
rapidly growing base of Commodore owners who access
these services. Both programs are packaged together, so
it's easy for you to order and stock SpeedTerm.

SpeedTerm sets a high standard in economical
telecomputing software—this package offers more power
per dollar than any other terminal program for the '64
and '128. SpeedTerm is a completely command-driven
program that is easy to leamn and use, yet provides great
power and flexibility.

Even though SpeedTerm is simple in design, it packs
numerous features that aren't found in others terminal

Selected Abacus il Products for Commodore computers

r(:c.~mpu$¢arve
The Source
GEnie
LDaw Jones

)

packages. For instance, it supports both Xmodem and

Punter file transfer.protocols so that large files can be |-*.
uploaded and downloaded without error. In addition to | ¥

these popular file transfer protocols, SpeedTerm includes |
partial DEC VT52 terminal emulation. In addition to the
standard options found in other terminal programs,

manages a large 45K.capture buffer and permits user |:

defined function keys. SpeedTerm understands more than
30 powerful commands.

SpeedTerm is compatible with most of the inexpensive .

modems for the C-64 and C-128, and if properly
interfaced, will
RS-232 modems. SpeedTerm's versatile capture buffer |

which can be used to both send and receive ASCII text |

files, or to record an online session.

The complete SpéedTerm package includes a 70 page |
manual with easy to understand tutorial.

function with all Hayes® compatible |

+ Includes 70-page manual with easy 0 umderstand :

.. tutorial -

Modems:
« Commodore 1600, 1650, 1660
* Hayes and Hayes-contpatibles

Suggested retail price:

Program disk contains
both '64 and '128 versions

$39.95

Hardware requirements:
SpeedTerm-64

« Commodore 64

* 1541/MSD or 1571 disk drive
* 40-column monitor

SpeedTerm-128

» Commodore 128

* 1541/MSD or 1571 disk drive
« 40- or 80-column monitor

Abacus Inc.

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

Commodore 64, Commodore 128, 1541, 1571, 1525 and 1526 are

Selected Abacusllifiiif Products
PowerPlan-64

Spreadsheet and Graphics package

r Commodore computers

for the C-64
"PowerPlan is one of the best programs ever written for
the Commodore 64, giving Lotus 1-2-3% a run for the i
money... It was a pleasure to work with this amazing e
product. I strongly recommend PowerPlan to anyone | - ol
interseted in using spreadsheet programs for business." g
—AlWillen | | whew
Commodore Magazine

Ever since VisiCalc and Lotus 1-2-3 stormed the
personal computer market, the computer has become an
important financial planning tool. By using an
electronic ledger, you can perform hundreds of
calculations and "what-if" analyses quickly and easily,
and reduce reams of data into meaningful information.

\

Fl
i
\\\\\
AN

RSSSSSSS
l

I
\\\\\\\\\\\\\\\\!: EE:

| -
NN\

PowerPlan-64 offers the '64 user a software tool that
combines spreadsheet operations with a powerful built-
in graphics.program to display data in graphs as well as
numbers. PowerPlan-64 can handle up to 255 rows by
63 columns—a total of 16,065 individually protected
cells. This outstanding package includes all major math
functions, manually controllable calculation mode, and
built-in disk commands. The integrated graphics [= A
program, PowerGraph, has eight different windows | PowerPlan-64 Features:
—you can select bar charts, curve graphs, point charts,
pie charts, or min-max charts in two or three directions.

*Menus make PowerPlan-64 easy to leam
o) . sLarge capucity spreadsheét s e user's
“ PowerPlan-64's menus make it easy to use for the first- | " analysis n S

time spreadsheet ufer. All of PowerPlan-64's selections |
are clearly displayed on the screen for the user to choose
from. In addition, online HELP screens are available at
the touch of a key. :

tepad documents user's

ives access to

PowerPlan-64's complete 200-page handbook has a plain- | operations
speaking tutorial that gently introduces the user to

spreadsheets. . items R = i :

*Draws pi¢, béf, 3D bar, line and area charts
Hardware requirements: automatically (8 chait types) :

" sMultiple windows emphasize th > ana

Commodore 64 — - e
1541 disk drive (or MSD, disk drive) Printers: .

PowerPlan-64 works with the following printers:
Printer optional *Commodore 1525, 1526

*Epson MX, FX, Homewriter 10 and compatibles
(Star Gemini SG-10, 10x, 10C, 15x, Panasonic
KXP 1080)
Self-running demo available *MPS 801, 802

e Abacus Inc.
Suggested retail price: 5370 52nd Street SE

X i Grand Rapids, Ml 49508
C-64 version Phone (616) 698-0330

Cormmodore 64, Comtmodore 128, 1541, 1571, 1525 and 1526 g L.

Selected Abacustffffifi Products for Commodore computers

BASIC

Complete BASIC compilers
and development systems IMake your BASIC programs
for the C-64 or C-128 '

"The package is easy to use and the manual well-written. 5

It should take only a few minutes to create code from Hela X

scraich, assuming the BASIC source code already Conven th,em to h'gh speed
exists.... In Y. BASIC enhances the performance machine language

of programs written in BASIC. It provides a good . i .
introduction to those programmers who intend to go on :
to use larger machines and other high-level langiuages. I
enjoyed using it.”

—Shlomo Ginsberg
C dore Micr

L 4

BASIC 64 and BASIC 128 are complete development
systems that compile standard Commodore BASIC
programs into either superfast machine code or very ’
compact speedcode. In fact, the user can mix the two in BASIC Advanced Development Package
:pu;in;g a single (:ompilau'on.f BASIC-64 and BASIC-128 CODE-GENERRTOR ’ p—CODE
up BASIC programs from 5 to 35 times faster. B i o
BASIC lets the user compile a series of programs using
the overlay features, and even allows the use of many of
the language extensions found in Simon's Basic, Video
Basic, Victree or BASIC 4.0.

65536
7557
ON

QMo nwy

BASIC-64 and BASIC-128 compile to either ultra-fast
8510 machine code, very compact p-code, or a
combination of both. There are two separate
optimization levels. The user chooses the level suited to
his specific needs. BASIC-128 has faster and higher-
precision math functions. It uses integer and formula
optimizing techniques and is completely compatible
with Commodore BASIC 2.0/7.0.

FER G
wononou

The 80-page programmer’s guide explains the compiler's
simple operation. For more in-depth use. it also covers
the extensive pil and directives, flexible
memory usage, program overlay techmques, optimi-
zation considerations and programming tips and hints so
the user can understand every feature of this quality BASIC-64:

product. Commodore 64 with 1541 or 1571 disk drive

BASIC-128 was crafted in West Germany by one of the BASIC-128:

most successful author and compiler writers in Europe, 'l ith 1541 or 1571 disk dris
Thomas Helbig. Our BASIC-64 and BASIC-128 gﬁ’wm'"““ﬁ :fss‘?::'oxufm :mf;)d“ ve
packages are the tools users need to make their BASIC
programs run lightning fast, and protect their programs
from unwanted listing or alteration.

Hardware requirements:

Printer optional

3 icee Abacus Inc.
Suggested retail price: 5370 ond Sirest SE

C-64 version - Grand Rapids, Ml 49508
C-128 version A Phone (616) 698-0330

Cadpak

Computer-Aided Design package
for the C-64 or C-128

Cadpak isa superb tool for computer aided design and
g for the dore 64 and 128—it's been our
bestselling softwam package for the last year and a half.

Selected Abacustifffilli Products for Commodore computers

Enhanced and 1351 Mouse Versions!

It offers Commodore users a simple, versatile
for producing high quality computer-aided designs and
drawings without requiring any programming
knowledge. Cadpak was designed to be simple enough
for the novice, yet incorporate the design functions and
printout capabilities of a truly professional CAD
system. Its simplicity, accuracy and speed make Cadpak
a standout.

Cadpak can be used with either the keyboard, an optional
lightpen or optional mouse to draw directly on the
screen and create and edit pictures, drawings, layouts and
renderings. The feature that sets Cadpak apart from its
competition is its exclusive dimensioning feature, which
allows of designs to most popular

with Cadpak's exclusive AccuPoint cursor positioning.

Cadpak menu options make it easy to use for

screens, you can draw lines, boxes, circles, ellipses; fill
with solid colors or patterns; draw frechand; copy
sections of the screen. The user can zoom in to do
detailed design on a small section of the screen. Cadpak's

furniture, electronic circuitry, machinery, etc. as intricate
needs on the Commodore C-64, 64C and C-128.
Cadpak-64 has two screens with 320 x 200 resolution.
and the second screen resolution of 320 x 200.

Cadpak 64:

Commodore 64

1541 disk drive (or MSD disk drive).

Cadpak 128:
Commodore 128

1571/1541 disk drive (or MSD disk drive)

1351 Mouse version now available!

Suggested retail price:

$39.95
$59.95

C-64 version
C-128 version Mouse version luty 87)

Exclusive Dimensioning feature assures

improved object éditor lets the user define and save |

as the screen resolution permits. Perfect for all design |

Cadpak-128 has a first screen resolution of 640 x 360 Lt

dot-matrix- printers (listed below). Choose from the | Gadnak |
menu option$ and draw on the screen at an exact location |:

exact scaled output of de5|gns

Printers:

« Commodore 1525, 1526
Hardware requirements: (Lightpen and mouse optional) . Ccomrex CR-220

Epson MX, FX, Homewriter 10 and compatibles

(Star Gemini SG-10, 10x, 10C, 15x, Panasonic KXP
1080)

MPS 801, 802, 803, 1000

Okidata Microline

Okimate-10 b/w and color.

Prowriter 8510A, 8510SC color

Seikoska 1000 « Siemens PT88/89

Abacus Inc.

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

Selected Abacustfilfiilli Produ

COBOL

for the C-64 or the C-128

COBOL is the most widely used commercial
programming language in use today. The COBOL-64
and COBOL-128 packages let users leam the COBOL
language using their Cc dore 64 or Commodore 128
home computer. The COBOL language uses English-
like sentences. This makes it an easy to learn language.
And since COBOL-64 and COBOL-128 are designed
Mtheasyofusemnnnd,lt'spetfectfmmebegmnet
Since the COBOL language is common to many
different computers, every aspect of COBOL learned on
the '64 and '128 is valid for larger system versions.

Our COBOL software includes a syntax checking editor,
a piler, an interp and symbolic debugging aids.
So you'll be able to write and test your COBOL
programs very quickly.

COBOL-128 is more than a conversion of our popular
COBOL-64. It takes advantage of the new '128 features.
COBOL-128 works with either a 40- or 80-column
momtor In addition, because of the increase memory of

the '128, COBOL-128 runs much faster than the C-64

version.

Hardware requirements:

COBOL-64:
Commodore’ 64 with 1541 or 1571 disk drive

COBOL-128:
Commodore 128 with 1541 or 1571 disk drive
(supports 40- or 80-column monitor)

Works with most popular dot-matrix printers (optional).

Suggested retail price:

C-64 version
C-128 version

r Commodore computers

001000 GELECT DATAI ASSIGN TO DIBK-1581 DRIVE-8
001100 FILE STATUS 18 FILE-BT.
001200 DAfa DIVISION.
001300 FILE sscm:m
001400 FD DATA!
001500 an RECORDG ARE OMIT
001600 VALUE OF FILE-ID 1S 'so-narm-
001700 01 DATA-RECORD.
001600 02 NAME-FIELD PIC X(20).
001900 02 ADDR-FIELD PIC X(20).
002000 01 DATA-RECORD-2.
002100 02 NAME-FIELD-EXIT PIC X(4).
oozzoo 02 FILLER PIC X(36).

2300 WORKING-GTORAGE BECTION.
oozooo 77 WRITE-FLAS PIC X VALUE "N*.
002300 RVB-ON VALUE CHR 18 PIC X.

00 VlBlDlo
003000 START: .
003100 DISPLAY CLEAR:
003200 OUTPUT 1
003300 IF FILE~ST 18 NOT EQUAL TO
003400 00" D ISPLAY “OPEN ERROR"
003500 BT0P RUN.

003600 PERFORM BET-DATA-LODP THRU LOSP-EXIT,
003700 END-IT.

003800 CLOSE DATA

003900 1F fll.E-Sl‘ NOT EQUAL TD "00"
0040c0 DIGPLAY "CLOSE ERROR™.
204100 STOP RUN.

Abacus Inc.

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

Selected Abacuslfilfiii Product

Super C

C language development package
for the C-64 or C-128

"The Super C Compiler provides an ideal introduction to

a very functional version of the C language...it is the

best starter C package (for the Commodore 64) and the
price is right”

—Walt Lounsberry

C dore Micr

P 3
The C language is one of the most popular in use
today—it's an excellent development tool, produces fast
6510 machine language code and is very easy to
transport from one computer to another. To maintain
Cs portability, our Super C development packages
support the Kemighan & Ritchie C standard (except for
bit-fields), making them very complete.

Super C's powerful full-screen editor lets the user create
source files up to 41K in length (larger on C-128).
Super C's editor includes Search and Replace functions
and features horizontal and vertical scrolling on a 40-
column monitor. Thg C-128 version supports 40- or 80-
column monitors.

The fast compiler (maximum of 53K object code) creates
files which the linker turns into a ready-to-run machine
language program. Super C's linker combines up to
seven separately compiled modules into one executable
program.

The I/O library includes many of the standard functions,
including printf and fprintf, with libraries for
math functions and graphics. The runtime library may
be called from machine language or included as a BASIC
lookalike program.

 fast graplncs libraries
s High-speed RAM dlsk suppon.,"

Suggested retail price:
C-64 version
C-128 version

$59.95
$59.95

s for Commodore computers

3 char buffer{41];
4
5 main()
6 {
7 putc(CLR, STDIO) ;
8 BASICset (charrami) ;
9 while()
10 {
11 do{
12 gets(buffer, 40,STDIO) ;
13 putc (CR, STDIO) ;
14
15 }while (stremp (buffer, "read\n");
16
17 puts ("\nnames:", STDIO) ;
18 gets(buffer, 40,STDIO) ;
19 putc(CR, STDIO) ;
20 readset (buffer, charrami) ;
Hardware requirements:
Super C 64:

:, Commodore 64 with 1541 or 1571 disk drive

Super C 128:
Commodore 128 with 1541 or 1571 disk drive
(supports 40- or 80-column monitor)

:| Printer optional.

Abacus Inc.

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

~ e e ecem

Super Pascal

Pascal language development package
for the C-64 or C-128

Super Pascal is a complete program development system
for the Commodore 64 or Commodore 128. Super
Pascal is so capable that hundreds of schools are using it
to teach Pascal programming to their students. But
Pascal is more than just a leaming language. Super
Pascal features language extensions for serious system
level programming.

Super Pascal implements the full Jensen & Wirth
compiler plus extensions for graphics. The package
consists of an easy-to-use, very complete source file
editor; an online assembler for optionally coding in
machine language; and a super-fast compiler to turn the
source file into executable code and a high-speed DOS
for speeding up disk access to the 1541/1571.

Other Super Pascal package features include a high-
precision 11-digit arithmetic; a very fast compiler;
overlays; automatic loading of editor and source
program; ‘exact error messages and localization during
compilation; complete statistics reporting; free runtime
package, and much more.

Super Pascal 128 contains all the features found in our
popular C-64 version while taking advantage of the C-
128's 40/80 column modes; it's high-resolution graphics
package runs in 80 columns and makes some truly
remarkable artwork possible.

Another "extra” qf Super Pascal 128 is its RAM disk,
which allows for ultrafast loading/compiling, and
supports 1571 Burst mode.

Selected Abacusilifi Products for Commodore computers

Suggested retail price:

C-64 version
C-128 version

GET_NUM (FROM) ;

IF NOT EOLN THEN GET_SECND('-') ELSE
TIL:=FROM

END

END
END;

PROCEDURE GET_TITLE (FOR_GET:BOOLEAN) ;
BEGIN
TEST_SYNTAX
IF INPUTA='*' THEN
BEGIN
IF NO_DEF THEN STOP (TITLE_ND);
IF FOR_GET THEN TEST_FOR_SAVE
END
ELSE
BEGIN
IF NOT (INPUT* IN LETTER) THEN
STOP (ILL TITLE);
READ (TITLE);
IF FOR_GET THEN TEST_FOR_SAVE:
NOT_DEF : =FALSE; COMMON" : =TITLE
END
END;

Hardware requirements:
Super Pascal-64:
Commodore 64 with 1541 or 1571 disk drive

Super Pascal-128:
Commodore 128 with 1541 or 1571 disk drive
(supports 40- or 80-column monitor)

Printer optional

Abacus Inc.

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

GEQS INFO

Another Abacus BeS GEOS Inside and Out
If you use GEOS then our new book, GEOS Inside and Out, has the info you need.

A detailed introduction Is lald out for the novice-beginning with how to load the
GEOS operating system...how to create a backup...how to alter the preference
manager...how to format disks... mgooWdtawgooPaimlndemll usagooP Int
for deslgnlng fioor plans or 9]

and are | to enfl the i

The advanced user will find more detalled lntormaﬂon on GEOS's intemals and
useful tricks and tips. Add a and BASIC
listing...complete listing of our FileMaster utifity (converts your programs to GEOS
format with an Icon editor) with a line by line explanation...create a single-step
simulator for observing memory and the various system registers...learn about
windows and how to use them to your GEOS file

If you're just getting started with GEOS or getting to the point of wanting to add your
own applications, then GEOS Inside and Out will help you on your way. $19.85

ing 59
C"""GEOS Tricks & Tips
C g the tradition by our famous C-64 reference library, GEOS
Tﬂm&n”baeolboﬂmoihelpﬁnMMquestymemusesGEOSwnh
melrwnmodom It's easy to understand without talking down to the reader, and
d in the of the routh Includes a font editor to create up to 64
point text and a machine language monitor. A perfect companion volume to GEOS
Inside and Out. Avafiable Second Quarter. $10.95

‘GEOS, geoWrite, gooPaint are tradenames of Berkeley Softworks.

To receive your copy of GEOS Inside and
Out and/or GEOS Tricks & Tips, call now
for the name of the dealer or bookstore near

ng
Amoxeard Add $4.00 per order for shipping
and handling. Foreign orders add $10.00 per
book. Call or writa today for your free catalog.
Dealer inquites welcome—2000 nationwide.

Order both today!

a I MMQ‘

5370 52nd Street SE
Grand Rapids, Ml 49508
Phone (616) 698-0330

Justafew of our books...

_|

34 ¥4

TRICRS e §§a§ 351

STES GRAMICS FOOR e Si ES“

H\hIHl FOKR 11t hga -

COMMODORI 38 8 g&

8533 82

b33 "§

2651 Ba0

fafs of

£ 5

ewemes 30 L

iqion: sivanead grapies. o PE and_advancsd graphics. S GOE g

:«. au% Loam the “naide” :»an’""&? i & 62’3 §§

fing and moro. $180s fio% curvos: Wm §-§§§ 25

= AL

5858 53¢
So
3ES
(Dvol
EEE
DL~
Soayr

INTERNALS PEEXS & POKES 2]

e»«'&’ reference. Intomnal D%z’oa:n of &“mnmlng 8 g g
Covens diive functions. Explains leb ‘m gg 2
tutly cmag:srgg Funy-oommum s?’?g Ecgo. pelmu“m m(.')n.

BeckerBASIC for GEOS

Now

Toad

PRSI R AT

-

oy e/
LT E G O A

BE

g Becke/BASIC i a BASIC pr arning fgstern con
interpietess and owe 08 commands and functions,

1 Togethes with the conboard BASIC 2.8, you have oer

4 1ds available!

;.3 Quer the nexr few seresns, youll. iead a :h

,'3 susten. As this progiars continues,

;z Becker/BASIC': practical aspects,

cul ALI=T =10
yod'll leain about sore o
as well az itz features

Introducing BeckerBASIC. If you already
know BASIC, you can now write your own
GEOS applications in BASIC, easily.

BeckerBASIC gives you the power of
over 270 new commands and functions.

Over 20 commands to make

your programming easier. For example,

—TRACE, RENUMBER, DUMP, DIR, etc.

Packed with over 50 commands for easy
disk access. Load and save blocks of
memory or selected lines of your program.
You can even PEEK and POKE into your
disk drive's memory.

10 commands can be used for easier
cursor control. Turn the cursor on and off.
Set how quickly it flashes. Position it at any
location on the screen.

20 commands are available for all your

For credit card orders call 1-800-451-4319
Michigan residents call 1-616-698-0330

Call today or mail the coupon for your free catalog covering
our complete line of software and books for the Commodore
64 and 128. Or ask for the location of the dealer nearest
you. You can order direct by phone using your VISA,
American Express or MasterCard or detatch and mail your
completed coupon. Dealer inquiries welcome—over 2400

nationwide.
fEilidessed

Abacus T

5370 52nd Street SE
Grand rapids, Ml 49508
Telex 709-101 « FAX 616/698-0325

GEOS is a rademark of Berkeley Softworks.

Commodore is a radem ark of Commodore Bectonics Lid.

you can write BASIC applications to work with GEOS

LR MR RO e A

BeckesBASIC 64

Italics: SoodeSenwt £F -
PeckarDASIE 34
Backa@®nlill ¢

SEEEn T SF

Reverse widao:

Cutline style:

Underlining

and rnixed:

A SR

i it
= offer maany spacial fim

chkarBASIC

hires programming needs. Creat boxes, plot
points, and draw lines.

18 additignal commands are dedicated to
creating sound. Set ring modulation, change
the filter, alter the waveform and set the
envelope.

Over 35 commands let you create and
animate sprites with ease. Load and save
sprites directly. Alter their size, change their
positions and check for collisions. Use the
sprite editor to create sprites and icons.

Use the Pulldown Menu Construction Set
and Dialog Box Construction Set to aid in
the creation of you own applications

Royalty-free distribution of your
BeckerBASIC applications.

Now anyone can create applications in
BASIC to run with GEOS. Only $49.95

For technical support call 1-616-698-0330

I 100 Commodore doae doss cany Abacusprcucts, ten e

f your Commodore dealer doesn't carry Abacus products, then have
him order them for you. Or you can order direct using the following
order blank or by calling—1-800-451-4318
Qty, Produdt

BeckerBASIC for the Commodore 64

Price
$40.95

In USA add $4.00 for S & H per order, Foreign add $12.00 per ltem.
Michigan residents include 4% sales tax

Total amount enclosed (US funds)

Payment: ()MasterCard () VISA
()Money Order () Check

Card No,

Address,

Sreeleer
Do Ao@o o(X

$25,000 in prizes

for the best GEOS applications using
BeckerBASIC

PRIZE LIST

1st Prize $1000 CASH (1 winner)

2nd Prize Choice of Abacus books and
software (2 awards) $500 value

3rd Prize Choice of Abacus books and
software (2 awards) $400 value

4th Prize Choice of Abacus books and
software (2 awards) $300 value

5th Prize Our complete C-64 Library set-$227
value (100 awards)

To enter:

Return this entry form and your 51/4" diskette.the BeckerBASIC
Entries must be received by midnight, August
31,1988, to be eligible. To win, you must comply with the
competition rules. (Over)

Mail entry and this form to:
Abacus BeckerBASIC contest
YYTTTIIILIY)

5370 52nd Street AbaCll [
Grand Rapids, M| 49508 S

(T

CONTEST RULES

® Write your entries using BeckerBASIC to run under GEOS.Entries must be submitted
on a diskette.

® You can submit multiple entries provided that all entries fit on a single diskette.

® Entries must be accompanied by the official entry form you'll find Inside the
BeckerBASIC package. Xerox or reproductions of the entry form are not acceplable.

® Your entry Is recelved by Abacus no later than August 31, 1988.
® We'll announce the winning entries by October 31, 1988.

® Entry forms must be completed in full to be valid. No responsibility Is d for
late, lost or misdirected mail.

® This competition is open to registered owners of the BeckerBASIC software program.
All prizes will be awarded. Prizes are non-transferable and not redeemable for cash. No
substitution of prizes are permitted. Prizes to consist of (1) first prize of: $1000 CASH,
(2) 2nd prize of: $500 value Abacus books and software, (2) 3rd prize of: $400 value
Abacus books and software, (2) 4th prize of: $300 value Abacus books and software, (100)
Sth prize of: Our complete C-64 Library Set-$227 value.

® Winners will be notified by mail, and must claim their prize within 30 days or an
alternate winner will be selected. Prizes won by a minor will be awarded Lo the winner's
parent or legal guardian. For a list of the winners, send a stamped, self-addressed
envelope Lo Abacus Sollware.

® All federal, state, provincial, and local taxes will be the responsibllity of the prize
winner. Winners may be required to execute an afTidavit of eligibllity and release.

® The competition is open to all registered owners of BeckerBASIC software program
from within the U.S. and Canada, except employees and thelr familles of Abacus Software
Inc. or their afMiliates, subsidiaries, or agents. Void where prohibited by law.

® Selection of winners will be conducted by Abacus whose decislon will be final. No
correspondence will be entered into, and all entries become the property of Abacus
Software.

® Entrants grant Abacus Soltware, without limitation the right to use their names,
likeness, and competition entry for any advertising and/promotion purpose.or marketing

ENTRY FORM

Registration#____ Program name:
Name
Address
City _____ State Zip

FOLD HERE— AND TAPE

Register this software and be eligible
to win additional software free
in our monthly drawing.

Return this card to register your purchase and to
receive free technical support for this product. You
may also order a non-copy protected backup of
this program.

Monthly drawing winner will be notified by mail.

Good Luck!
REGISTRATION CARD b~
e /09
Regisrationt 4 40 (L Ay oreryame Product ID
Name
Address
City State Zip
Purchase Information:
Dealer
Address

Return this registration card to obtain a non-copy protected backup of the above
program for a handling charge of $10.00. A check, money order, or credit
card number must accompany this request. Purchase orders are not acceptable,

Non-copy protected backup?
[0 No, donotsenda non-copy protected backup, but register my purchase.
] Yes, send a non-copy protected backup. $10.00 payment is enclosed.

Credit card#
Expiration Date / /

80S6% IN ‘spidey pueln
as 19811S puzgs 0/€S

Abacusliiii

Software You Can Count On

Abacus/iii

5370 52nd Street SE » Grand Rapids, M| 49508

0

ISBN 1-55755-033-k

