
For programming applications under GEOS

Abacus
A Data Becker Product

For programming applications under GEOS

A Data Becker Product

Abacus!

Copyright Notice

Abacus Software makes this package available for use on a single computer

only. It is unlawful to copy any portion of this software package onto any

medium for any purpose other than backup. It is unlawful to give away or

resell copies of this package. Any unauthorized distribution of this product

deprives the authors of their deserved royalties. For use on multiple

computers, please contact Abacus Software to make such arrangements.

Warranty

Abacus Software makes no warranties, expressed or implied as to the

fitness of this software package for any particular purpose. In no event will

Abacus Software be liable for consequential damages. Abacus Software

will replace any copy of this software which is unreadable if returned

within 30 days of purchase. Thereafter, there will be a nominal charge for

replacement.

First Printing February 1988

Printed in U.S.A.

Copyright (C) 1988 Data Becker GmbH

MerowingerStr. 30

4000 Dusseldorf, W. Germany

Abacus, Inc.

5370 52nd Street

Grand Rapids, MI 49508

Commodore C64, 1541 are registered trademarks of Commodore Inc.

GEOS, deskTop, geoPaint, geoWrite are registered trademarks of Berkeley

Softworks.

ISBN 1-55755-033-6

Table of Contents

Foreword -*v

1. Introduction 1

1.1 BeckerBASIC structure 1

1.1.1 Starting BeckerBasic 3
1.1.2 The Input-System and Testing-System 5

1.1.3 The Run-Only-System 8

1.1.4 TheCONVERTER .9

1.2 Changing command names 12

1.2.1 Setting up the command table 12

1.2.2 Handling command names and numbers 13

1.2.3 Renaming commands 15
1.2.4 Saving and loading command tables 17

1.3 BASIC 2.0 commands 19
1.4 Adding commands & functions 19

1.5 Miscellaneous 20

2. Program development. . 25

2.1 Utilities -25
2.1.1 Programming commands 25

2.1.2 Function keys .27

2.2 Error handling 29

2.2.3 The TRACE commands 33

3. Input and output 37

3.1 Data input 37

3.1.1 Keyboard input 37

3.1.2 Screen input 43

3.2 Data output 46

3.2.1 Screen output 46

3.2.2 Printer output 48

3.3 Screen management .49

3.4 Cursor control 51

4. Memory access commands 55

4.1 Working with memory ranges 55

4.2 Accessing individual memory locations . . .57

Table of Contents BeckerBASIC 64

4.3 Exchanging memory and variable contents 60

5. Disk commands .63

5.1 Common commands 64

5.2 Changing disk drive addresses 68

5.3 Program mode commands ,69

5.3.1 Saving and verifying programs 70

5.3.2 Loading programs ,74

5.3.3 Overlays 75

5.4 Logical files 77

5.4.1 Logical file commands 78

5.4.2 Sequential file commands 82

5.4.3 Relative file commands 84

5.4.4 Opening user and program files 88

5.5 Direct diskette access 89

5.6 Disk memory access 95

6. Structured programming 101

6.1 Comments 102

6.2 Labels and calculated line numbers 103

6.3 Branch structures 105

6.4 Loop structures 110

6.5 Procedures 114

7. GEOS 129

7.1 Drop-down menus 132

7.1.1 Using the Drop-down Menu Construction Set 134

7.2 Dialogue boxes 135

7.2.1 Using the Dialogue Box Construction Set 136

7.3 Entering and displaying hi-res text 138

8. High-resolution graphics 143

8.1 Initializing graphics 143

8.2 Creating graphics 145
8.3 Loading and saving graphics 151

li

Abacus Table of Contents

9. Sprite commands 153

9.1 Setting up sprites 154

9.2 Positioning and moving sprites 162

9.3 Enabling and disabling sprites 164

9.4 Loading and saving sprite data blocks 165

9.5 Testing for sprite collisions 166

9.6 The BeckerBASIC sprite editor 168

10. Sound commands 173

10.1 Making sounds 173

10.2 Turning voices on and off 176

10.3 Filters 179

10.4 Synchronization and ring modulation 181

Appendix A: Commands and functions listed by number 185

Appendix B: Commands and functions listed alphabetically 203

Appendix C: Error messages 219

Appendix D: Memory map 221

Appendix E: BeckerBASIC in action 223

Appendix F: Distribution of the Run-Only System 227

Appendix G: The DB and DF commands 228

Index 229

in

Foreword BeckerBASIC 64

Foreword

BeckerBASIC is an extension to BASIC 2.0 which is fully compatible with the

GEOS user interface. BeckerBASIC includes programming tools, error handling

commands, hi-res graphics, sound and GEOS support.

Unlike some language extensions, BeckerBASIC supports all aspects of

programming. From programming tools and error handling to graphics and

sound, BeckerBASIC is just what you need for efficient programming.

BeckerBASIC can be summed up in two words: Flexible and practical!

BeckerBASIC even allows you to change the command and function names.

BeckerBASIC is one of the most complicated products ever released for the

C64. The testing process at Data Becker and Abacus was an exhaustive one.

However, it's almost impossible to test any product on every piece of hardware

or software (e.g., disk drive enhancements, operating system extensions,

countless application programs, etc.) available for the C64. This means that

neither the author nor the publishers can be held responsible for support of

programming or application problems (aside from errors within BeckerBASIC

itself, of course).

To give you the complete picture of the program, BeckerBASIC comes with this

thorough, easy to follow manual. I hope that this manual will serve you well.

Best of luck in your work with BeckerBASIC.

Martin Hecht

Stuttgart, West Germany

September 20,1987

IV

Abacus 1. Introduction

1. Introduction

BeckerBASIC consists of three interpreters, contains over 270 new commands,

and runs under GEOS. BeckerBASIC is much more than a normal BASIC

extension, however.

1.1 BeckerBASIC structure

You should learn the many commands and functions before you can program

efficiently in BeckerBASIC. That is where this manual comes in. It's not

absolutely necessary that you read the entire book to learn BeckerBASIC.

BeckerBASIC contains a total of 273 commands, and is made up of three

interpreter systems: The Input-, the Testing- and the Run-Only-Systems.

If you look at the first directory page of your BeckerBASIC distribution diskette

from the GEOS deskTop, you'll see three files named System 1, System 2 and

System 3. These three programs are the three BeckerBASIC interpreters in

VLIR format.

The three interpreters can be accessed directly from the deskTop by double-

clicking the desired icon. You can toggle between the Input- and the Testing-

Systems while a BeckerBASIC program resides in memory without losing the

program.

Application programs written in BeckerBASIC can also be accessed from the

deskTop by double-clicking their icons. The BeckerBASIC Run-Only-System

loads, then the program loads and executes.

The CONVERTER program on the BeckerBASIC distribution diskette lets you

define an icon for your BeckerBASIC programs. Normally, this routine assigns

its own BASIC icons.

All three systems can be accessed at any time from the GEOS deskTop. They

are loaded in from the diskette, then GEOS keeps them in memory.

1. Introduction BeckerBASIC 64

Total loading time is between 10 and 15 seconds. Toggling between the Input-

and Testing-Systems takes nine seconds to load and initialize.

All three systems give you 15,800 bytes of free memory. If you stop to think

that GEOS and BeckerBASIC are in memory at the same time, this is a good

amount of memory. There are ways around memory limitations: BeckerBASIC

has overlay capabilities (loading multiple programs from diskette), and if you

avoid high-res graphics, the unused bitmap starting at location 40960 gives you

about 8K of additional memory.

The Input-System: The Input-System works much like the BASIC 2.0

editor—you type in and edit programs in this interpreter. Not all of

BeckerBASICs commands can be used here. Most of the available commands

are programmer's tools.

All illegal commands produce an ILLEGAL COMMAND ERROR. The

Testing-System is used for trying out your BeckerBASIC programs. You toggle

to the Testing-System by pressing the key combination <CTRL><Commodore>.

The Testing-System: This interpreter lets you test run BeckerBASIC programs.

The Testing-System uses all BeckerBASIC commands, as well as the editing

and programmer's utility commands.

After starting the system, a normal text screen appears with a menu for

controlling the entire operation. This menu is controlled by function keys.

Pressing the <F1> function key starts a BeckerBASIC program already in

memory. After the program executes, the Testing-System returns you to the

menu.

When an error occurs within the program, BeckerBASIC displays the prompt,

"Error in Program! Load Input Interpreter (y/n)?" When you press the <y> key,

BeckerBASIC loads the Input-System and displays the incorrect line number. If

ERRSHOWON is in effect, BeckerBASIC also displays the error in reverse

video. If you press the <n> key, the main menu of the Testing-System reappears.

Pressing <F3> asks for the name of a program you want loaded from diskette

and run. Pressing <F7> or <CTRL><Commodore> returns you to the Input-

System.

Abacus 1. Introduction

BeckerBASIC programs remain in memory when you switch from the Input-

System to the Testing-System and back. <F8> exits BeckerBASIC and returns

you to the deskTop.

The Run-Only-System: This interpreter allows royalty-free distribution of

BeckerBASIC program code without distributing BeckerBASIC itself. There are

no utilities or programming tools in this interpreter (no. Input-System, no

TRACE function, etc.).

When an error occurs, the message "Error in Program! Contact this program's

author" appears on the screen, and BeckerBASIC displays a menu similar to that

displayed from the Testing-System, except you cannot access the Input or

Testing-Systems from the Run-Only system.

CONVERTER program: This program converts BeckerBASIC programs to

GEOS format, for direct access by the Run-Only interpreter and the GEOS

deskTop. By supplying a command at the end of a BeckerBASIC program to

return you to the GEOS deskTop, the program runs as if it's an independent

GEOS application.

The drop-down menus and dialogue boxes require the second hi-res bitmap

starting at memory location 24576. This reduces the amount of available BASIC

memory by eight kilobytes.

1.1.1 Starting BeckerBASIC

You start BeckerBASIC as you would start any GEOS application. Before you

start BeckerBASIC, however, make one or more working copies of the

BeckerBASIC distribution diskette. Use the BACKUP or DISKCOPY program

from the GEOS system diskette to make backup BeckerBASIC diskettes. The

procedure is exactly the same as making a backup of other GEOS applications

(see your GEOS manual for information). When you've finished making backup

copies, put the original diskette in a safe place.

Copy the GEOS deskTop to your backup diskettes. You could also copy over

desk accessories such as the Notepad, but these accessories are inaccessible

from BeckerBASIC.

1. Introduction BeckerBASIC 64

You can now begin your tour through BeckerBASIC. All program sections

mentioned in this chapter are described in detail later on in the book. If you

don't understand what you read here, the later descriptions should clear things

up.

You'll find all BeckerBASIC system files on the first page of the directory on

the GEOS deskTop. Open the BeckerBASIC work diskette by selecting the

open item from the disk menu. The upper row shows icons named System 1,

System 2 and System 3. These are BeckerBASIC's three interpreters. The first

icon is the Input-System, the second icon represents the Testing-System and the

third is the Run-Only system. All these interpreters start when you double-click

the icons.

Look for the BASIC icon named DEMO. This demonstration program is a

BeckerBASIC program, handled as a GEOS application. DEMO displays just a

few of BeckerBASIC's abilities. Start it by double-clicking the icon from the

deskTop.

The CONVERTER program converts your BeckerBASIC application to GEOS

format.

Most of the BeckerBASIC programs on the system diskette have a BASIC icon.

This icon is generated by the CONVERTER. If you want, you can make your

own icon using the CONVERTER.

The last three programs on the first page of the directory are discussed later in

this book. Chapter 9 describes SPRITE-EDIT, while Chapter 7 tells about

DDM.C.S (the Drop-Down Menu Construction Set) and D.C.S (the Dialogue

Box Construction Set). The second directory page lists different BeckerBASIC

utilities and sample programs.

Appendix E takes you through the steps in creating a BeckerBASIC program.

The final program is called ADDRSAMPLE on your BeckerBASIC disk. The

program makes use of drop-down menus, dialogue boxes and many of the added

commands BeckerBASIC gives.

Abacus 1. Introduction

1.1.2 The Input-System and Testing-System

The first two BeckerBASIC interpreters, the Input-System and Testing-System,

work together. You enter and edit your BeckerBASIC programs in the Input-

System, and test the programs using the Testing-System.

BeckerBASIC was broken up into three separate interpreters to save memory on

the C64. The available memory is already low because of GEOS residing in

memory. If the entire BeckerBASIC system was put into memory, there

wouldn't be any room left for program development

BeckerBASIC gives you almost 16,000 bytes of free BASIC memory. This is

more than most non-GEOS BASIC extensions offer. When you consider that

you get both GEOS and BeckerBASIC in memory, 16000 bytes is plenty of

memory.

Each system has a limited number of the 273 BeckerBASIC commands

available.

The Input-System is the first interpreter that needs close examination. Double

click the System 1 icon on the GEOS deskTop. The Input-System loads into the

computer.

At the end of the loading procedure, some graphic garbage prints on part of the

deskTop, the screen turns black, and the starting screen of the Input-System

appears.

You'll find a number of programming utilities in the Input-System, like PDUMP

and PRENUMBER (see Chapter 2 for more information). To save a BASIC

program to diskette, simply type in DSAVEBMname". DLOADBlfname" loads a

BeckerBASIC file from diskette (see Section 5.3 for more information).

In most cases, you must enter the Testing-System to test programs, especially

for GEOS hi-res and sound commands. You can test some programs from the

Input-System mode. Start the program by typing RUN and pressing the

<RETURN> key. To load and start a program with one command, type

DRLOADB'^ame" (see Section 5.3).

NOTE: You cannot run programs using GEOS hi-res commands from within the
Input-System.

1. Introduction BeckerBASIC 64

You can start the Input-System directly from Commodore BASIC 2.0 by typing

LOAD"DBL",8,1 and pressing the <RETURN> key. This gives you about

24,000 bytes of BASIC memory for development, as well as 20,000 bytes of

memory unoccupied by GEOS.

The Input-System works the same whether you run it with or without GEOS,

with one exception: If you run the Input-System from BASIC 2.0, you can't

access the Testing-System or the deskTop.

You can see a complete list of Input-System commands in Appendix A. All

commands and functions marked with an asterisk (*) or number sign (#) can be

used in the Input-System.

If you use commands the interpreter doesn't understand, the computer stops and

displays the ILLEGAL COMMAND ERROR message. When this happens, you

must switch to the Testing-System to test the program.

You can access the Testing-System from the Input-System in two ways. First,

you can save the program to diskette and type in DESKTOP <RETURN> to

return to the GEOS deskTop. When the deskTop finishes loading, double-click

the System 2 icon to load the Testing-System. The other method is to press the

key combination <CTRLxCommodore>. Pressing these two keys loads the

Testing-System in about nine seconds, while retaining the BeckerBASIC

program you were working on in memory.

NOTE: Make sure that a BeckerBASIC work diskette containing both the Input-

and Testing-System is in the drive when you make this switch, and not just a

diskette on which you store your programs. Otherwise, the computer may crash,

and destroy the program in memory.

Along with the current BASIC program, you also have the complete set of

debugging tools (e.g., TRACE, ERRSHOWON and ONERRORGO—see

Section 2.2), as well as all your variables.

A menu screen appears after the loading procedure which lists four options. The

Testing-System has no options for editing BASIC programs.

Abacus 1. Introduction

To start your BASIC program, press the <F1> key to "Start program." Press the

<F3> key to load a program from diskette and run it. You can end program

name input by pressing the <RETURN> key. Pressing <SHIFT><RETURN>

returns you to the menu screen.

The use of drop-down menus, dialogue boxes and hi-res graphics have been

avoided in the operation of these interpreters for a number of reasons. First, they

take up too much memory, and second, function keys are faster. However, if you

really want to make your programming user-friendly, you can add GEOS

commands to your own programs (see Chapters 7 and 8).

If BeckerBASIC programs have errors, the screen displays the message "Error

in program!" and asks, "Load Input-System? (Y/N)". If you press the <n> key

(no), the system returns to the menu screen of the Testing-System. If you press

the <y> key (yes), the computer returns to the Input-System and displays the

error messages.

If you have the extended error display on using the ERRSHOWON command

(see Section 2.2), the incorrect line is listed, and the error appears in reverse

video.

NOTE: As long as ONERRORGO is active (see Section 2.2), the error handling

follows this route only in the Testing-System.

When you toggle back to the Input-System, you have all variables available. For

example, you can now check the values of individual variables or print out

current variable contents with the PDUMP command (see Section 2.1).

You could do a lot of switching back and forth between the Input- and the

Testing-Systems when in the development phases of a program. This takes time,

but it's something like working with a compiled language. For example, when

you work with a Pascal compiler, you have to enter the text in an editor, load the

compiler and try compiling the program. If the compilation fails, you have to

return to editing mode, fix the program and start over. Since BeckerBASIC's

load times are so brief, this waiting time isn't a problem.

The BeckerBASIC system will help you to learn structured programming: After

about the 15th or 20th error message, you'll learn to be much more careful in

your program development.

1. Introduction BeckerBASIC 64

The last two menu options are self-explanatory. <F7> performs the same

function as <CTRL><Commodore>, returning you to the Input-System.

You have a total of three methods of returning to the Input-System. You can

press the <F7> key or the <CTRLxCommodore> key combination. The latter

is useful for going to the Input-System, fixing the program, and returning to the

Testing-System to retry the program. The third method returns you to the

deskTop. Pressing the <F8> key has the same effect as typing DESKTOP in the

Input-System (see Section 1.5). There are a few exceptions to available

commands in the Testing-System. The Appendices list all BeckerBASIC

commands. Those commands unavailable to the Testing-System and the Run-

Only-System are marked with a number sign, and result in an ILLEGAL

COMMAND ERROR.

1.1.3 The Run-Only-System

The entire program development and testing phases are performed in the Input

and Testing-Systems. The Run-Only-System is of interest when you want to

distribute your own BeckerBASIC programs as GEOS applications. The

CONVERTER routine adds icons and info data to BeckerBASIC programs.

Converted programs access the Run-Only-System when you double-click the

icons from the deskTop.

The Run-Only-System contains almost all the same coding as the Testing-

System. The big difference between the two is in error handling. The only error

you get in the Run-Only-System is the message, "Error in program! Contact this

program's author!11 The error then sends you to the menu screen.

The <F1> key starts a BASIC program already in memory. <F3> automatically

loads and runs the program name you request. <F8> returns you to the deskTop.

You cannot call the Input-System from the Run-Only-System. However, you

can set up an error trap with ONERRORGO (see Chapter 2) for eventually

catching errors. You can put a message in listing your address ("Error in

program: Please write me at the following address—...").

When the Run-Only-System finds ERRSHOWON, ERRSHOWOFF,TRON and

TROFF commands in a program, it returns either ILLEGAL COMMAND

ERROR or the "Error in Program" message.

Abacus 1. Introduction

Distribute the Run-Only-System ONLY when you want to distribute your

BeckerBASIC programs to other GEOS users. Distributing copies of the

BeckerBASIC system itself is illegal. The only other ground rule: The Run-

Only-System must be unchanged (leave the Run-Only-System named System

3).

The Run-Only-System should only be copied from the system diskette. Use the

GEOS deskTop to do this. If you can't remember how to copy files, check your

GEOS manual or GEOS Inside and Out from Abacus for instructions.

1.1.4 The CONVERTER

The CONVERTER program is an application written in BeckerBASIC used to

convert your BeckerBASIC programs to GEOS format. Double-click the

CONVERTER icon to start the program.

The CONVERTER program serves two purposes: It converts a BeckerBASIC

program so that you can open it by double-clicking on its icon; and it also

contains an icon editor for creating your own BASIC program icons.

NOTE: When you wish to edit a program already converted with the

CONVERTER, you must run it through the CONVERTER program after

editing in the Input-System. Also, CONVERTER should be used to convert a

completely tested and debugged program only.

Here's what the CONVERTER does:

First, the routine asks for the name of the file to be converted and its filetype.

The CONVERTER can handle both programs and data files (never try to start

data files direct from the deskTop). Be sure that the diskette containing the

program you want converted is in the drive.

If the program has not been converted, the CONVERTER mentions this. The

CONVERTER then asks whether you want this file converted to a

BeckerBASIC program or a data file.

1. Introduction BeckerBASIC 64

The CONVERTER then asks for the data you want placed in the Info screen.

You can select the default values by pressing <RETURN> for each entry (if the

program was converted before), or enter new values. NOTE: The year input

must be two digits (e.g., "88").

The CONVERTER asks "Use standard icon (y/n)?" If you respond with

<y><RETURN> (yes), the program assigns the standard BASIC icon to the

program, identifying the code as a BeckerBASIC program. Data files have

BASIC DATA icons.

If you answer the prompt with <n><RETURN> (no), the CONVERTER

branches to an icon editor, in which you can create your own program icons.

The following functions are available in the icon editor:

<F1> sets a pixel (turns it on)

<F3> unsets a pixel (turns it off)

<F6> clears the icon matrix

<F7> transmits the completed icon

Before saving the data to diskette, a confirmation prompt appears: "Save data

(y/n)?fl If you respond with <n><RETURN> (no), the data clears and the

CONVERTER restarts. If you wish to convert several programs, answer the next

prompt ("Another program?") <y><RETURN> to restart the CONVERTER.

NOTE: You cannot use commas or semicolons when entering your info text.

However, the info text can be edited later from the Info screen on the deskTop.

Converted BeckerBASIC programs run when you double-click their icons from

the deskTop. The Run-Only-System must be on the same diskette as the

converted BeckerBASIC program.

NOTE: You can replace the END statement at the close of a program with the

DESKTOP command. The program then automatically returns to the GEOS

deskTop, making it look as if it's a real GEOS application. (BeckerBASIC

programs only look like GEOS applications; they don't really run the same as

GEOS applications).

10

Abacus 1. Introduction

A good example of BeckerBASIC programming is the DEMO program on the

BeckerBASIC distribution diskette.

The deskTop can be on the same diskette, but it doesn't have to be on the same

diskette. If the deskTop is unavailable, GEOS displays a dialogue box asking for

a diskette containing the deskTop.

Chapter 2 contains detailed information about the individual commands.

Chapters 2, 3,5 and 6 are the minimum reading you should do before you start

working with BeckerBASIC.

One important note when renaming files: GEOS uses a different character

coding from BASIC. The uppercase lettering and the numbers 0 to 9 are

identical to BASIC character codes. However, the lowercase lettering is

different When you rename a BeckerBASIC program from the deskTop, use

uppercase letters only, or else you may not be able to load the file from the

Input-System. The best examples are the BASIC programs stored on the system

diskette. When you display the GEOS deskTop directory, you'll see that all

program names appear in uppercase lettering. However, if you read the directory

(see DIR, Chapter 5), the BeckerBASIC names appear in lowercase lettering.

11

1. Introduction BeckerBASIC 64

1.2 Changing command names

The option of renaming commands may seem unusual to you, but it's more than

just a plaything. It allows you to program efficiently.

With over 250 commands, it's hard to find command names that suit every user.

You can change the command names available to you from the Input-System.

Take the TRANSFER command, for example (Section 4.1). Since this is a

frequently used command, maybe the command name would work better for

you as the abbreviation TR. Or you could change the name to MEMSHIFT, or

even MOVE.

You can rename commands to whatever you want. The format (parameter

layout) and function stay as they are.

The new commands retain compatibility with other BeckerBASIC programs,

since the commands are coded independently of the commands in memory.

You can distribute a program written in your implementation of BeckerBASIC

to another user, and he can use your program with his Run-Only-System.

The entry and output of BASIC lines when editing takes a bit longer than

BASIC 2.0. The large command set in BeckerBASIC causes this drop in speed.

1.2.1 Setting up the command table

BeckerBASIC uses two command tables. The first table contains the original

command names; the second contains the user-defined new names.

OLDCOMTAB (021) (c)

NEWCOMTAB (020) (c)

OLDCOMTAB lets you switch to the original command name table, which is in

effect when BeckerBASIC initializes. During program input, OLDCOMTAB

compares all command names with those stored in the original table, and

interprets the commands.

12

Abacus 1. Introduction

NEWCOMTAB switches to the newly defined command names, whether

you've redefined a new name or not. BeckerBASIC automatically assigns the

original command names to the new command table when NEWCOMTAB is

called. You can assign new command names after calling NEWCOMTAB.

Format NEWCOMTAB:... :OLE>COMTAB

COMTAB (250) (f)

As mentioned above, you can toggle back and forth between the two command

tables, either in direct mode or program mode.

COMTAB determines which command table is currently active.

Format CT = COMTAB

The original table returns a value of 0 to CT; a new command table gives CT a

value of 1.

1.2.2 Handling command names and numbers

PHELP (019) (c)

The PHELP command gives you a general overview of BeckerBASIC

commands. PHELP displays all the commands on the screen, including their

numbers. The display appears in a format of 2 columns, each set containing 20

commands. This takes up seven screen of text, since the numbers must also be

visible.

Format PHELP NO

NO is the number of the output page. Every page contains 40 commands.

Page 1 (NO=1) shows commands 1-40, page 2 (NO=2) commands 41-

80, etc. The seventh and last page (NO=7) lists commands 241-273.

NO can be a number between 1 and 7. The command name output

follows in the format COMMAND NUMBER:COMMAND NAME

(e.g., 1:GOTO, 2:GOSUB, etc.).

13

1. Introduction BeckerBASIC 64

NOTE: When you select the original command table with OLDCOMTAB, the

displayed command names come from this table. However, when the

NEWCOMTAB command is used, the names come from the new table.

COMNUM (231) (f)

You'll frequently want information about a specific command cm* function in

BeckerBASIC.

All BeckerBASIC commands and functions are in numerical order (see

PHELP). COMNUM gives the number of any command.

Format A = COMNUM (BF$)

A contains the number of the command word listed in BF$. Any string

can go into BF$.

COMNUM does essentially the same thing as PHELP: If the original command

table is active, COMNUM compares BF$ with the stored name, then checks the

new table. If BF$ doesn't match the old or new table, then A is assigned the

value 0. A numerical expression for BF$ results in a TYPE MISMATCH

ERROR.

Examples:

A = COMNUM("GOTO") makes A=l.

B$ = "COMNUM":B = COMNUM(B$) makes B=231.

C = COMNUMfXYZ") results in C=0, since the command MXYZM doesn't

exist (unless you've created your own command named XYZ).

For example, you need a description of the HPRINT command. SCPRINT

COMNUM ("HRPRINT") gives a result of 214.

COMNUM is helpful, when used in conjunction with the table in Appendix A,

in figuring out renamed commands.

14

Abacus 1. Introduction

COMNAME (251) (Q

COMNAME does the opposite of COMNUM: A number returns the command

corresponding to the number.

Format: NM$ = COMNAME (BN)

BeckerBASIC assigns the command name for BN to the variable NM$. Like

COMNUM, COMNAME accesses either table through OLDCOMTAB or

NEWCOMTAB.

Examples:

SCPRINT COMNAME (32) returns TRACE.

SCPRINT COMNAME (149) returns SDVOLUME, a sound command.

G$ - MID$(COMNAME(243),3,5) returns: G$="CHECK\

TR$ = COMNAME (400) gives an ILLEGAL QUANTITY ERROR, since no

command exists with the number 400.

1.2.3 Renaming commands

RENCOM (022) (c)

RENCOM allows you to rename any BeckerBASIC command, including

RENCOM itself. There are two ways to do this:

1. RENCOM (BN) = (NN$)

Command number BN receives the new name listed in NN$.

2. RENCOM (ON$) = (NN$)

RENCOM replaces the command name listed in ON$ (OldName) with the new

name contained in NN$. ON$ is immediately compared with the newly defined

command name, which goes to the second command table.

15

1. Introduction BeckerBASIC 64

There are some rules you must remember when assigning new command names:

The new name must have a minimum of two characters, and a maximum of 15

characters. Going beyond these results in a COMMAND NAME ERROR.

BeckerBASIC provides 3000 bytes for newly defined command names, which

assumes an average name length of 10 characters. When the command table

goes past this 3000 byte limit, the result is a COMMAND NAME ERROR.

You cannot use quotation marks ("), apostrophes ('), or Commodore ASCII

codes higher than 127 in your names (see your C64 manual or Programmer's

Reference Guide for ASCII code information). These characters result in a

COMMAND NAME ERROR.

Using a question mark (?), colon (:), semicolon (;), comma (,) space () or a

number from 0 to 9 at the beginning of a command name also results in a

COMMAND NAME ERROR.

A new command name should not contain part of another command name. For

example, say you had two commands named GOTHERE and GOTHERETOO.

When the interpreter encounters GOTHERETOO, it will treat the command as

GOTHERE. That is, it executes GOTHERE, and interprets TOO as a parameter

or another command. This interpretation only occurs if both the GOTHERE and

GOTHERETOO commands are in the command table.

Here's how BeckerBASIC interprets commands. If it recognizes a string as a

command name, then it compares all the names in the command table with the

string. When it finds a command name in the table whose name matches the

string in question, the command executes and the program continues.

If the comparison ends without finding a match, an error occurs. At best, the

interpreter could treat the extension of a command name as a parameter, as in

the GOTHERETOO example described above.

As already mentioned, RENCOM checks the old command name against the

new command table. Here's a little trick which allows you to use the original

command name:

16

Abacus 1. Introduction

OLDCOMTAB:RENCOM(COMNUM(ON$) = (NN$)) changes to the original

command table. COMNUM searches for ON$ in the original table. The intended

command number transfers through RENCOM, and the program continues (1st

command variant).

Examples:

RENCOM ("RENCOM11) = ("COMCHGE") changes RENCOM to COMCHGE.

All you have to do is remember to use COMCHGE for renaming commands,

instead of RENCOM (e.g., COMCHGE (ttGOTO")=(ttGOTHERE")).

RENCOM ("LIST1) = ("jLINLIST") results in a COMMANDNAME ERROR,

since the command LINLIST begins with a semicolon.

RENCOM ("ONERRORGO") = ("WHENOOPSGETLINE") assigns the

command ONERRORGO the name WHENOOPSGETLINE. This command has

the maximum of IS characters.

5'DISPLAY OLD COMMANDS AND ASK FOR NEW NAMES'

10 FOR BN=1 TO 273

20 SCPRINT COMNAME (BN)

30 NN$=M"

40 INPUT "NEW NAME:";NN$

50 IF NN$=nnTHEN NN$=COMNAME(BN):ENDIF

60 RENCOM (BN) = (NN$)

70 NEXT BN

This short routine displays each command name and asks for a new command

name. If you don't want the name changed, press the <RETURN> key.

1.2.4 Saving and loading command tables

DSCOMTAB (023) (c)

DLCOMTAB (024) (c)

DSCOMTAB saves the new command name table to diskette. DLCOMTAB

loads a table into memory which was saved using DSCOMTAB.

Format: DSCOMTAB NA$:... :DLCOMTAB NA$

17

1. Introduction BeckerBASIC 64

NA$ is the name under which the table is or was stored to diskette. This

string can be a maximum of 16 characters in length (a longer name

causes a STRING TOO LONG ERROR).

Example:

DSCOMTAB "NEWTAB" saves a new command table to diskette under the

name NEWTAB. DLCOMTAB "NEWTAB" loads the table into memory.

TABNAME (209) (c)

Another problem exists when you toggle from the Testing- to the Input-System:

Calling the Input-System loads the command name tables and the program code

from diskette.

If you're working with new names, then the corresponding name table must be

reloaded, so that the system recognizes the command names. BeckerBASIC uses

the TABNAME command to convey the name of the table stored on diskette.

Format: TABNAME NM$

NM$ is the name under which the table is stored on diskette. The name can

have a maximum length of 16 characters.

You can also use this command for loading a name table for a program restart.

Just put the necessary commands into a short program and save this under the

name TABINT on your work diskette:

10 DLCOMTAB "NAME":NEWCOMTAB:TABNAME "NAME":END

When you start up the Input-System, type the following in direct mode:

DRLOADB"TABINT"

The program loads and automatically starts, and initializes the command table

NAME (see Section 5.3 for more information).

18

Abacus 1. Introduction

1.3 BASIC 2.0 commands

All normal BASIC 2.0 commands function in all three BeckerBASIC

interpreters. Some of these commands were included in the BeckerBASIC

system (note the command numbers in parentheses): GOTO (001), RUN (005),

IF (110), THEN (111), RESTORE (003), ON (174), LIST (004) and NEW

(177). You can only change the names of these commands. The other BASIC

2.0 commands cannot be renamed for technical reasons.

BASIC 2.0 programs run under BeckerBASIC after you convert them to

BeckerBASIC. List the program lines on the screen under BeckerBASIC and

press the <RETURN> key on each line so the line is accepted. This way, you

can set up the new BeckerBASIC coding in BASIC memory.

1.4 Adding commands & functions

DB (173) (c)
DF (244) (f)

Machine language programmers may add commands and functions to

BeckerBasic. NOTE: This section assumes that you have some knowledge of

machine language. If not, please go on to Section 1.5.

When BeckerBASIC finds a DB or DF, the program branches to memory

address 25500 or 25000, respectively. You can define new commands or

functions in these memory locations. See Appendix G (page 228) for examples

ofDBandDF.

One note about new commands and functions: The command subroutine should

end with RTS, as you would with any machine language program.

The value of the function should be placed into the floating point accumulator 1.

Corresponding routines are available in the C64 operating system. For example,

a 1-byte value normally found in the Y-register can be placed in the floating

point accumulator by JSR $B3A2, or accessed in a routine with JMP $B3A2.

19

1. Introduction BeckerBASIC 64

1.5 Miscellaneous

LIST (004) (c)

The BeckerBASIC LIST command is basically the same as the BASIC 2.0

LIST. The big difference between the original LIST command and the

BeckerBASIC LIST is that the BeckerBASIC LIST can run within a program,

without stopping program execution.

Here is an example of in-program use of LIST:

100 SCPRINT "LINE 200:":LIST 200

200 SCPRINT "NEXT LINE:"LIST 300

300 SCPRINT"END"

The LIST parameters are as follows:

LIST 10 -100 lists program lines from 10 to 100.

LIST 10 - lists the program starting at line 10 to the end.

LIST -100 lists from the start of the program up to and including line 100.

LIST lists the entire program.

NOTE: If you rename the LIST command (e.g., to PROGLIST), and you've

switched to the new command table, don't use the LIST command!! You'll get a

system crash.

Use the new name as soon as you start working with the new command table.

The old table always has LIST on it for your use.

PRLIST (170) (c)

PRLIST has the same purpose as LIST, except that PRLIST sends the output to

a printer.

The printer must have a device address of 4.

20

Abacus 1. Introduction

Examples:

PRLIST 10 - 25 lists lines from 10 to 25.

PRLIST 15:PRLIST 20:PRLIST 100 prints lines 15,20 and 100.

PAUSE (007) (cl

This command inserts a pause in a program, to keep messages on the screen for

a period of time.

Format PAUSE SC

The variable SC equals the number of seconds you want the program to wait

SC=1 delays for about one second. Values for SC range from 0 to 255.

SWAP (071) (cl

The SWAP command swaps variable contents, and lets you avoid creating a

third variable.

Format SWAP V1,V2:... :SWAP V1$,V2$

The contents of variables VI and V2 are exchanged with each other, as are the

contents of variables Vl$ and V2$. Note that both variables should be of the

same type (floating-point/ floating-point, integer/ integer or string/ string).

SWAPping different variable types results in a TYPE MISMATCH ERROR.

Examples:

SWAP A,SD exchanges the contents of A and SD.

SWAP BF$(37),D$(2,3) exchanges the contents of the array elements BF$(37)

andD$(2,3).

SWAP W%,IR causes a TYPE MISMATCH ERROR, since W% is an integer

and IR is a floating-point variable.

21

1. Introduction BeckerBASIC 64

NEW (177) (c)

NEW works the same as the BASIC 2.0 command of the same name: It clears

BASIC memory of all program code and variables. BeckerBASICs NEW clears

stack memory, as well as initializing the stack pointer for the REPEAT,

WHILE, LOOP and PROCEDURE commands (see Chapter 6 for more

information).

RESET (175) (c)

RESET performs a partial reset of your computer. That is, it and BeckerBASIC

return to start-up status. The video chip, as well as all pointers, (variable pointer,

stack pointer, etc.) are reset Also, all error traps such as ONKEYGO,

ONERRORGO, STOPOFF, etc. are cleared.

A BASIC program deleted with this command can be restored with POLD (see

Section 2.1.1). If GEOS is in memory, it is unaffected.

Format: RESET

DESKTOP (008) (c)

DESKTOP returns you to the GEOS deskTop from BeckerBASIC, provided the

deskTop is on the diskette currently in the drive. BeckerBASIC and any

program in memory are erased before die deskTop reloads.

Format DESKTOP

22

Abacus 2. Program development

2. Program development

2.1 Utilities

This section describes the programming utilities available in the Input-System.

If you try using these utilities in any other system, you'll get an ILLEGAL

COMMAND ERROR. The exceptions are PBCEND and GTBCEND, which can

be used in either system.

2.1.1 Programming commands

Here are the commands you'll use most frequently in program development:

PAUTO (009) (c)

This enables automatic line numbering.

Format PAUTO FLJLI

FL is the first line number you want given. Values for FL can range from 0

to 63999.

LI is the increment between line numbers. Values for LI can range from 1

to 255.

Here's how it works: After you type in a command and press the <RETURN>

key, the next line number appears on the next line, followed by the cursor. Now

you enter your program text Press the <RETURN> key again to get a new line

number and new program line. This next line will be LI higher than the earlier

line number (e.g., if LI=10, then the line following 200 would be 210, etc.).

Pressing <SHIFT><RETURN> disables auto line numbering.

Example:

PAUTO 100,5 makes the first program line 100, followed by 105,110, etc.

23

2. Program development BeckerBASIC 64

PRENUMBER (010) (c)

This command renumbers program lines. All branch commands like GOTO and

GOSUB are unchanged, however. The reason is that BeckerBASIC allows you

to jump to labels and calculated line numbers. Changing line numbers is

unnecessary with labels, and calculated line numbers are self-adjusting

(e.g.,GOTO A*2+10).

Why have a RENUMBER command? When you run short of program lines

(e.g., when you want to insert a line between lines 10 and 11), PRENUMBER

can make room between line numbers.

Format: PRENUMBER NL,LI[,[SL][- EL]]

NL is the first new line number of the program or program range being

renumbered. Values for NL can range from 0 to 63999.

LI is the increment between lines (see PAUTO) once they are renumbered.

Values for LI can range from 1 and 255.

If you don't want to renumber the entire program, you can add the additional

parameters to limit the procedure to a selected range of lines.

SL,EL SL is the first line and EL is the last line of the range to be renumbered.

The parameters can be stated in the same way as the LIST command:

SL, SL- or -EL.

Examples:

PRENUMBER 1000,10 numbers the entire program in steps of 10. The first

new line is 1000.

PRENUMBER 100,5,-200 numbers the program from the start to line 200 in

steps of 5. The first new line=100.

PRENUMBER 5000,2,4500-5000 renumbers lines 4500-5000 in increments of

2, starting at line 5000.

24

Abacus 2. Program development

PMERGE (012) (c)

PMERGE allows the merging of BASIC programs on diskette. The line

numbers of the programs make no difference, since PMERGE can merge any

program. The program to be merged sorts with the program in memory line for

line (old lines are deleted if line numbers match).

Format: PMERGE MN$

MN$ is the name of the merged program. PMERGE deletes all variables, so

you may want to use DOVERLAYK and DOVERLAYW (see Section

5.3.3), which do not delete variables.

NOTE: To avoid syntax errors in the program, make sure that no lines in the

program being loaded are overwritten by PMERGE. Merged program lines with

smaller line numbers than the current program will usually result in a program

stopping. PMERGE should only be used in direct mode.

PDEL (013) (c)

PDEL deletes a single line or a series of lines from a program. Like PMERGE,

PDEL deletes all variables:

Format: PDEL [[L1]-[L2]] [[L3]-[L4]]][,...]

L1-L4 are the line numbers or the starting and ending line numbers of the

range(s) to be deleted. To delete several lines or a range, you can use -

to connect ranges and commas to separate each range.

NOTE: If you use this command in program mode, do not delete the program

lines preceding or containing this command.

Examples:

PDEL 10,20,30 deletes program lines 10,20 and 30.

PDEL 10-20,30- deletes program lines from 10 to 20, then lines 30 to the end.

PDEL 10,1000-1040 deletes line 10, as well as lines 1000 to 1040.

25

2. Program development BeckerBASIC 64

POLD (Oil) (cl

POLD restores a BASIC program just deleted with NEW, RESET or PDEL

(variable contents are unrestored).

It's important that you type in this command immediately after typing NEW,

RESET or PDEL. If you type in a new program line, you won't be able to

restore your program. This command works only in direct mode:

Format: POLD

PBCEND (014) (cl

GTBCEND (249) (f)

PBCEND changes the top of memory for BASIC programming. The default

value for this top of memory is around 32575. PBCEND is commonly used in

dialogue box and drop-down menu creation (see Chapter 7). GTBCEND retums

the current top of BASIC memory.

Format: PBCEND EN:... :EN = GTBCEND

EN is the desired or the current top of BASIC memory. EN should be no

higher than 32575.

PMEM (015) (c)

PMEM displays the current BASIC memory layout. After you type in PMEM,

the output appears in the format:

PROGRAM:

VARIABLES:

ARRAYS:

BYTES FREE:

00000

00000

00000

00000

The current values appear instead of these zeroes. All values represent bytes.

26

Abacus 2. Program development

PDUMP (203) (c)

PDUMP list the currently defined variables, their names and current values.

Format:

Example:

AD

F%

GT

W

BN$

PDUMP

123.45

-14562

V$=nTEXTn

-3

"EXAMPLE"

2.1.2 Function keys

You can program function keys to print frequently used commands or strings.

PDFKEY (016) (c)

PDFKEY assigns a text to a function key. This text can be up to ten characters

long.

Format- PDFKEY (NR) = (TX$)

NR is the number of the function key to be pressed. This number

corresponds to the keyboard layout of the Commodore 64. NR can be a

value from 1 to 8. Values above or below this range result in an

ILLEGAL QUANTITY ERROR.

TX$ contains a text used by the function key. Strings longer than 10

characters produce a STRING TOO LONG ERROR. Commands can

be abbreviated to three or four characters, so this is not a big

disadvantage.

NOTE: To set up a function key so that it does nothing, you must include

CHR$(0). You can do this either with PDFKEY(NR) = (CHR$(0)) or PDFKEY

(NR)=C).

27

2. Program development BeckerBASIC 64

PKEY (017) (c)

PKEY lists the current function key setup on the screen.

Format PKEY

Here's a typical display:

PI:

F2:

F3:

F4:

F5:

F6:

F7:

F8:

RUN

PMEM

PDUMP

LIST

POLD

TRON

TROFF

COLORS

PFKEYON (179) (c)

PFKEYOFF (180) (cl

PFKEYON turns the function key setup on, and PFKEYOFF turns the setup off.

Before you use PFKEYOFF for the first time, the function key setup must

already be turned on with PFKEYON. Each function key contains CHR$(0)

when turned off (see the NOTE under the entry for PDFKEY above).

Function key assignments are active in direct mode only. Program mode can use

function keys also, without turning off the setup with PFKEYOFF.

NOTE: To execute a command assigned to a function key without pressing the

<RETURN> key, add a CHR$(13) to the end of the assignment for that function

key. For example, assign this command to the <F1> key:

PDFKEY (1) = ("RUN"+CHR$(13))

Now when you want to run a BASIC program in memory, just press the <F1>

key.

When you have the ability to turn the function key layout on or off, is a question

of keyboard priority. Since interrupts control the keyboard reading system, the

function key layout set by PDFKEY has highest priority.

28

Abacus 2. Program development

The function key layout turned on by PFKEYON has higher priority than all

other function key settings. Other setups are assigned CHR$(0), so they cannot

execute.

2.2 Error handling

This section describes the commands available in both the Input-System and the

Testing-System for testing programs and handling errors. The TRACE

command is one of these, and can help you understand the workings of a very

complex program.

The BeckerBASIC error handling system operates on three levels: The lowest

level corresponds to the standard BASIC 2.0 error display; when an error

occurs, BASIC displays a message on the screen.

ERRSHOWON (030) (cl
ERRSHOWOFF (031) (c)

The second level of error handling displays the incorrect syntax in reverse

video. You can turn on this second level of error handling with ERRSHOWON

and off with ERRSHOWOFF.

NOTE: Remember three points about the ERRSHOWON command:

1) You cannot have ONERRORGO (see Section 2.2.2) and

ERRSHOWON on at the same time.

2) If the incorrect line appears in the last two lines of the screen, the

reverse video display may appear in the wrong area.

3) If you scroll the incorrect line up when listing, the reverse video

display may appear in the correct column, but a line or two too low. If

the error is at the end of a program line, it may be impossible to display

the bad area in reverse video.

29

2. Program development BeckerBASIC 64

These last two items can be bypassed if you remember the following rule: If an

incorrect line isn't in reverse video, then look at the end of the line for the

incorrect command.

ONERRORGO (025) (c)

ONERROROFF (026) (c)

The third and most user-friendly level is the ONERRORGO command. It is the

only error tool which can be used in the Run-Only-System. This lets you branch

to a program line, and assign a variaable for holding the error message, as well as

the incorrect line's number.

Format: ONERRORGO LN, FN, FT$, FZ

LN is the line number to which the program should branch on an error.

FN is the variable containing the error number. See Appendix B for a list

of all error messages.

FT$ is the string variable in which the error text is stored. Error texts are

similar to texts normally displayed on the screen (e.g., SYNTAX

ERROR, ILLEGAL QUANTITY ERROR, etc.).

FZ is the variable containing the line number of the incorrect line. An error

in direct mode assigns FZ a value of 0.

ONERRORGO can be placed anywhere within a program, but you can also

define it in direct mode as well. Also, any number of ONERRORGO commands

can exist in a program.

When an error occurs, BeckerBASIC displays the last command executed. Like

ERRSHOWON, ONERRORGO has an off switch - ONERROROFF (026).

RESUMECUR (027) (cl

RESUMECUR continues program execution after error handling at the current

command.

30

Abacus 2. Program development

Format RESUMECUR

RESUMENEXT (028) (c)

RESUMENEXT continues program execution from the command following the

command that caused the error.

Format RESUMENEXT

RESUME (029) (ci

RESUME continues program execution at any point in the program.

Format RESUME LN:...: RESUME LN$

LN is the line to which the program should jump; LN$ is the label of the

LN$ line to which the program should jump. When the third RESUME

command is used without having first run into an error, and without a

program jump (e.g., ONERRORGO), the system displays a RESUME

WITHOUT ONERRORGO ERROR. The RESUME command can

only be used for ending an error handling routine. If you compare

ONERRORGO with GOSUB, then RESUME is comparable to the

RETURN statement.

NOTE: When you encounter an error in direct mode, do not use the RESUME

command.

Error handling with ONERRORGO is complicated, but easy to work with once

you learn its essentials.

When you use only one error handling routine within a program, then the

ONERRORGO command should be at the beginning of the program. This traps

all errors within a program. First you must supply the line number to which the

error should branch, followed by the variable names for the error number, error

text and incorrect line.

31

2. Program development BeckerBASIC 64

Examples:

ONERRORGO 1000,A,B$,C places the error number in A, the error text in B$

and the error line in C. The program branches to line 1000 when the error

occurs.

PZ=3700:ONERRORGO PZ+ER,ER,ER$,EL puts the error number in ER, the

error text in ER$ and the error line in EL. The program branches to line

3700+ER, set according to the error number in ER.

Errors can be easily identified by their error numbers, as you saw from ER in the

last example. The given error text (ER$ in the last example) can be used to

display user information on the screen.

In most cases, the error handling ends with a program break, since it hardly

makes sense to continue a program that has errors. Then why is there a

RESUME command? This command can be very useful in many cases. Take

RESUMECUR, for example. If a program using disk access finds that either the

disk drive is turned off or that there is no diskette in the drive, you usually get a

DEVICE NOT PRESENT ERROR. ONERROR and RESUMECUR solve these

problems:

5 'DEMO OF ONERRORGO'

10 ONERRORGO 1010,A,B$,C

100 DLOADM "PRG"

1000 'ERROR HANDLING'

1005 'DEVICE NOT PRESENT ERROR'

1010 IF NOT(A=5) THEN POPIF:GOTO 1500:ENDIF

1020 :

1030 SCPRINT;"»TURN DISK DRIVE ON«" :SCPRINT

1040 SCPRINT"»INSERT A DISK, AND«" :SCPRINT"»PRESS A KEY«M

1050 :

1060 KEYDEL:WAITKEYA:'WAIT FOR A KEYPRESS'

1070 :

1080 RESUMECUR:'GO TO INCORRECT LINE'

1090 '...'

1100 '...'

1110 '...'

1500 'OTHER ERRORS HERE'

32

Abacus 2. Program development

Line 10 establishes the ONERRORGO parameters. If the LOAD command in

line 100 finds that the disk drive is off, then it branches to the error handling

routine at line 1000. Line 1010 checks to see if it is actually a DEVICE NOT

PRESENT ERROR. If so, line 1030 tells you to turn the disk drive on, insert a

diskette and press a key to execute the command (see Section 3.1.1 for more

information on KEYDEL and WAITKEYA).

Finally, RESUMECUR executes the normal LOAD command. ONERRORGO

and the RESUME command offer interesting and elegant programming options.

2.2.3 The TRACE commands

TRACE displays the program line number currently executing. This is useful for

testing program flow and getting a better understanding of program structure.

Of particular interest is single-step mode, which lets you single-step through a

program (command by command). Pressing a key (the <CTRL> key in

BeckerBASIC) moves the program from one command to the next Single-step

mode is the best method of seeing what a program does and when.

BeckerBASIC's TRACE command does still more.

The program being edited can be displayed in any area of the screen. The

beginning of the next command to be executed appears in reverse video. The

<F1> and <F3> keys turn the screen display on or off during program execution.

The biggest disadvantage of the TRACE commands in program mode is setting

up the TRACE parameters and switching on the TRACE mode with a command.

If you exit a program in normal mode, you must first turn off all TRACE

commands. You have to start the TRACE mode from the beginning of the

program.

BeckerBASIC gets around this disadvantage by splitting the mode into three

commands.

33

2. Program development BeckerBASIC 64

TRACE (032) to

TRACE assigns the necessary parameters to trace mode. You can use as many

TRACE commands as you wish within a program. TRACE should be the last

command in that mode.

Format TRACE LN, VW, AF

LN is the screen line number at which the program line to be traced should

appear. Values for LN range from 1 (topmost line) to 25 (bottom line).

The bottom two lines (lines 24 and 25) do the same as in

ERRSHOWON: If the current line scrolls up during output, the reverse

video could end up one or two lines too low. Therefore, try to stay

away from the last two screen lines.

VW is the value assigned to the delay loop. This loop sets the time delay

between commands. Values for VW can range from 0 to 255. The

longest possible delay occurs when VW=1; the shortest possible delay

results when VW=255. VW=0 turns on single-step mode.

AF determines whether or not the program line in process should be

displayed on the screen or not. If AF=0, output is suppressed. If AF=1,

the current line set in LN appears on the screen. If you want to turn on

the screen output only in selected places, set AF to 0 and input the

desired line in LN. <F1> and <F3> turns the output on and off.

As mentioned above, pressing the <CTRL> key executes the next command in

single-step mode. This also applies to direct mode (when you start a program

with RUN, you must press the <CTRL> key as well as the <RETURN> key).

The remaining functions of all the TRACE modes work in both direct mode and

program mode. NOTE: The current command display is unavailable in direct

mode.

34

Abacus 2. Program development

When reading program lines on the screen, the TRACE routines use the

available command name tables. These tables are in the hi-res graphic bitmap

memory (see Appendix C). When you use hi-res graphics in a program, these

tables are overwritten. Therefore, you should switch into hi-res graphics for

program output after you turn off TRACE (setting AF to zero), and leave the

TRACE mode off. Otherwise, you could get a system error. Besides that, to use

program line output, you should first load the Input-System into the computer,

then toggle over to the Testing-System, so that the name tables load over from

the Input-System.

TRON (006) (c)

TRON turns TRACE on. All commands following this (up to the last TRACE

command) run under a time delay.

Format: TRON

TROFF (167) (c)

TROFF turns TRACE off, returning the computer to normal mode.

Format TROFF

Both the TRON and TROFF commands can be used within a program as many

times as you wish. TROFF has no effect in normal mode.

Examples:

TRACE 5,10 0,1 sets screen line 5 as the output line. A delay value of 100 is

given. This display follows immediately after the TRON command (AF=1).

ZE=1:EM=O:TRACE ZEJEM,0 makes the topmost line the display Une. EM=0
turns on single-step mode. The 0 suppresses the output

35

Abacus 3. Input and Output

3. Input and output

The most important areas of programming are the lines of communication

between user and computer, and computer and peripherals. This chapter is

devoted to input and output, paying particular attention to screen and cursor

control.

3.1 Data input

3.1.1 Keyboard input

The most important input device is the keyboard. BeckerBASIC has numerous

commands for making keyboard input easier and more comfortable.

KEYREPEATON (033) (c)

KEYREPEATON switches on the keyboard repeat function. Note that the cursor

is turned on with the repeat function.

Format- KEYREPEATON

The speed at which the key repeats is adjusted by the CRFREQ command (see

Section 3.4 for more information).

KEYREPEATOFF (034)

KEYREPEATOFF turns the keyboard repeat function off.

Format KEYREPEATOFF

37

3. Input and Output BeckerBASIC 64

STOPOFF (036) (cl
STOPON (035) (c)

The keyboard of the C64 has one key that can be a nuisance, the <STOP> key.

If a user presses this key at the wrong time (e.g., during diskette access), serious

problems could result. BeckerBASIC offers the STOPOFF and STOPON

commands.

STOPOFF disables the <STOP> key. A running program cannot be stopped by

pressing the <STOP> key.

Format: STOPOFF

STOPON has the opposite effect of STOPOFF: The <STOP> key is enabled - a

running program can now be stopped by pressing the <STOP> key.

Format: STOPON

The next command extends BASIC'S ability to read the keyboard.

KEYDEL (176) (c)

The C64 has a keyboard buffer into which up to 10 characters (keypresses) are

stored. The computer reads the keypresses from this buffer. Since the keypresses

register through an interrupt, the buffer may already be full after every keypress.

The buffer may read a previous keypress instead of the input you want it to read,

resulting in an error. The keyboard buffer can be deleted with the KEYDEL

command.

Format KEYDEL

WAITKEYA (037) (cl

WATTKEYA waits for any keypress. The keyboard buffer is deleted before

reading, so KEYDEL is unnecessary in this case. This command can be used in

connection with GET.

38

Abacus 3. Input and Output

Example:

10 PRINT"PLEASE PRESS THE <A> KEY."

20 WAITKEYA:'WAIT FOR A KEYPRESS'

30 :

40 GET EG$:'READ KEYPRESS'

50 :

60 'IF IT IS NOT <A>, WAIT UNTIL IT IS'

70 IF NOT(EG$="A") THEN POPIF:GOTO 20:ENDIF

WAITKEYS (038) (ci

WAITKEYS waits for a specific keypress, assigned with the ASCII code of the

desired key (see your C64 manual for ASCII codes).

Format WAITKEYS TE

TE is the ASCII code of the desired key. Values for TE can range from 0

to 255. WAITKEY 65 waits for the <A> key.

KGETV (039) (c)

This command is similar to the BASIC 2.0 GET command: It reads data from

the keyboard. However, it is much more flexible than GET.

Format: KGETV VR$JLE [,K$]

VR$ is a string variable which recieves the input

LE sets the input length. Values for LE can range from 1 to 255.

K$ limits the amount of input allowed. All keys you want included must be

in K$. For example, if you want only the numbers from 0 to 9 read as

legal input, K$ would equal "0123456789'1. The K$ parameters are

optional; if parameters are included, they must be enclosed in quotation

marks.

KGETV reads data only as a string. Input can be changed to numeric input using

the BASIC 2.0 VAL command.

39

3. Input and Output BeckerBASIC 64

Examples:

10 SCPRINT "ENTER A NUMBER BETWEEN 1 AND 5."

20 KGETV EG$,1,»12345":'READ NUMBER

30 EG = VAL(EG$):'CONVERT TO NUMBER

40 SCPRINT EG11 IS THE NUMBER YOU SELECTED."

10 ZL$ = "+-0123456789":'LEGAL CHARACTERS'

20 'READ 4-DIGIT NUMBER WITH LEADING CHAR'

30 KGETV EG$,5,ZL$:A = VAL(EG$):PRINT A

10 SCPRINT "MENU":'DISPLAY MENU'

20 SCPRINT "MODULE A: A"

30 SCPRINT "MODULE B: B"

40 SCPRINT "YOUR CHOICE (A OR B)?"

50 KGETV MN$,1,"AB":'MODULE CHARACTERS'

60 GOTO MN$:'JUMP TO DESIRED MODULE'

70 "A":SCPRINT"MODULE A":END

80 "B":SCPRINT"MODULE B":END

KBGETV (040) (c)

KBGETV is similar in format to the KGETV command. However, this

command displays the character at the current cursor position, which can be

useful for longer inputs.

Format: KBGETV VR$,LE [,K$]

See KGETV above for these parameters.

Example:

10 CRSET 5,1:'SET CURSOR'

20 PRINT "YOUR INPUT:";

30 CRON:'CURSOR ON"

40 KBGETV D$,10:'10-CHARACTER INPUT"

50 CROFF:'CURSOR OFF'

As you can see in the example, the input goes where the cursor is assigned (see

Section 3.4 for more information on cursor commands).

Cursor control is used here for controlling the reading of the string during input.

If you'dprefer to avoid this command, there are alternatives in Section 3.1.2.

40

Abacus 3. Input and Output

KGETV and KBGETV are intended for shorter input. However, there are other

commands in this chapter which can handle input on an entire screen page.

The next two commands can read the <SHIFT>, <CTRL>, <Commodore> keys

and others.

STTEST (232) (f)

STTEST checks for input from one of these alternate keys.

Format: WT = STTEST

WT can also test for the <SHIFT>, <Commodore> and <CTRL> keys. WT can

be assigned the following values to show one or more of these keys pressed:

0 NONE OF THESE THREE KEYS

1 <SHIFT> KEY

2 <COMMODORE> KEY

3 <SHIFT> AND <COMMODORE> KEYS

4 <CTRL> KEY

5 <SHIFT> AND <CTRL> KEYS

6 <COMMODORE> AND <CTRL> KEYS

7 <SHIFT>, <CTRL> AND <COMMODORE> KEYS

Example:

IF STTEST=5 THEN POPIF:GOTO 1000:ENDIF branches to 1000 if the

<SHIFT> and <CTRL> keys are pressed during the current keyboard reading.

WAITST (178) (c)

WAITST waits for one or more alternate keys to be pressed, then immediately

continues on with the next command in the program.

Format: WAITST GT

GT determines which key or key combination to expect. The list of values

is the same as for STTEST (i.e., GT=1 means the <SHIFT> key, etc.).

Values for GT range from 0 to 7. Any numbers outside this range result

in an ILLEGAL QUANTITY ERROR.

41

3. Input and Output BeckerBASIC 64

Example:

WATTST 3:SCPRINT "SHIFT+COMMODORE" waits until the <SHIFT> and

<Commodore> keys are pressed simultaneously.

When these comands are used in conjunction with the ONKEYGO command

(see below), a whole new set of programming possibilities opens. You can even

jump to a predetermined program routine while editing a program in direct

mode.

ONKEYGO (041) (c)

The ONKEYGO command allows you to interrupt a program with a keypress,

branch to a subroutine and continue the main program at the point at which the

ONKEYGO occurred.

Format: ONKEYGO CR,LN

CR contains the ASCII code of the key pressed. Values for CR

theoretically range from 0 to 255.

LN is the line to which the program should jump on this keypress. Values

for LN range from 0 to 63999. Numbers outside of this range result in

an ILLEGAL QUANTITY ERROR.

You can have as many ONKEYGO commands in a program as you wish,

however only the last ONKEYGO command is active. NOTE: Multiple

definitions are not allowed (e.g., branching to line 1000 when the <A> key is

pressed, line 2000 when the key is pressed, etc.).

Examples:

ONKEYGO 65,5000 branches to line 5000 when the user presses the <A> key.

ONKEYGO ASC("A"),5000 performs the same function. When you don't know

the ASCII code for a character, you can use the ASC function.

ONKEYGO 137,61000 branches to line 61000 when the user presses the <F2>

key.

42

Abacus 3. Input and Output

RETKEY (042) (c)

RETKEY acts as the close of a subroutine branched to by ONKEYGO.

Format: RETKEY

If a program encounters a RETKEY without having first executed an

ONKEYGO, the result is a RETKEY WITHOUT ONKEYGO ERROR.

To get a better grasp of what happens, here are descriptions of what occurs after

ONKEYGO:

Direct mode: Direct mode branches direct to the given program line and runs the

program code to the next RETKEY command. After RETKEY, the computer

returns to direct mode.

Program mode: The program executes to the end of the current line, the next

line number is stored in a buffer. The program then branches to the line number

specified in the ONKEYGO command. When RETKEY is encountered the line

number in the buffer is used to return to the main program, and executes the

next command in the main program.

ONKEYOFF (166) (ci

There are two options for cancelling an ONKEYGO definition: Either you set a

new definition, or you invoke ONKEYOFF.

Format: ONKEYOFF

The ONKEYGO command should be turned off at the end of a program with

ONKEYOFF. The reason is that the ONKEYGO may accidentally branch to a

program line when in direct mode.

3.1.2 Screen input

The screen is not an input device, and doesn't directly provide data input. Still,

"screen input" describes the process of displaying keyboard input on the screen,

and BeckerBASIC has numerous commands for this type of programming.

43

3. Input and Output BeckerBASIC 64

To write data easily on the screen, there are many commands. One small

example is the WINPROC procedure at the end of Chapter 6. With this program,

you can define input windows of any size and type on the text screen, store

screen contents in a buffer and restore these contents on the screen.

As long as the data only shows on the screen, it is not very useful.

BeckerBASIC has two commands to transfer screen data into computer memory

or a string variable.

SGETV (043) (c)

SGETV converts screen data into a string variable.

Format SGETV VR$, LE, RO, CO

VR$ is the name of the string variable to which the data is assigned.

LE gives the number of characters to be read, based on RO and CO's

screen position. Values for LE can range from 1 to 255.

RO are the row (RO) and column (CO) of the screen position from which

CO the data is read. After command execution, the cursor returns to the

home position of the screen. Values for RO range from 1 to 25, while

values for CO range from 1 to 40.

Examples:

SGETV EG$,10,17,5 puts 10 characters from row 17, column 5 into the variable

EG$.

CRHOMEiSCPRINT'HELLO^SGETV T$,5,l,l puts the text HELLO into T$.

CRHOME places the cursor in the home position of the screen (see Section 3.4).

SGETM (044) (cl

SGETM reads screen data and stores it in a preassigned area of memory.

Format: SGETM SA, LE, RO, CO

44

Abacus 3. Input and Output

SA gives the starting address of the memory range into which the data is

stored. Values for SA can range from 0 to 65535.

LE gives the length of the data being read, based upon RO and CO as the

starting point. Values for LE range from 1 to 255.

RO are the row (RO) and column (CO) of the screen position from which

CO the data is read. After command execution, the cursor returns to the

home position of the screen. Values for RO range from 1 to 25, while

values for CO range from 1 to 40.

Unlike the TRANSFER command described in Chapter 4, SGETM prepares the

memory for storage and processes the data into a variable, which it converts

from BSC (true ASCII) to Commodore ASCII code.

There are two good places to store data:

The hi-res bitmap (40960 to 48960) gives you 8000 bytes. Naturally, you can

only use this range if you aren't using hi-res graphics.

Smaller quantities of data can be stored in the cassette buffer from memory

locations 828 to 1023.

Both areas of memory have the advantage that they lie outside of BASIC

memory, and thus won't disturb that memory.

Examples:

SGETM 41000,22,3,7 reads 22 characters from row 3, column 7 and puts these

characters into memory starting at memory location 41000.

SGETM 828,50, l,10:MGETV EG$,10,828 reads 50 characters starting at row 1,

column 10, and stores the characters starting at memory location 828. The

MGETV (see Section 4.3) places the first ten characters into the variable EG$.

45

3. Input and Output BeckerBASIC 64

3.2 Data output

3.2.1 Screen output

To make all screen output easier, BeckerBASIC includes the commands

SCPRINTandAT.

SCPRINT (047) (c)

SCPRINT is much the same as the BASIC 2.0 PRINT statement. You can

position the text when you add AT to SCPRINT (see below).

A! (048) (c)

AT puts the cursor at a specified screen position. This command can be used

only in connection with the SCPRINT command.

Format: SCPRINT [AT RCCOjfEXPRESSION"

RO RO is the row position and CO is the column position at which the text

CO appears. Values for RO range from 1 to 25, while values for CO range

from 1 to 40. The EXPRESSION follows CO, separated by a

semicolon. The expression between quotation marks appears at the

cursor position marked by RO and CO. You can omit the expression

between quotation marks just to position the cursor without text The

semicolon cannot be omitted.

Remember that the AT must immediately follow SCPRINT. Syntax like

SCPRINT "TEXT ",AT is not allowed. Another consideration in SCPRINT is

the status of the BeckerBASIC RVS flags (see RVSON and RVSOFF below).

You may find it easier to set cursor positioning with the CRSET command (see

Section 3.4).

46

Abacus 3. Input and Output

RVSON (049) (ci
RVSOFF (050) (cl

A disadvantage to the PRINT command in BASIC 2.0 is the fact that the

computer changes reverse video to normal video when the end of a PRINT

statement is reached.

If you wish to display longer PRINT statements in reverse video, you must end

each PRINT statement with a semicolon. This makes it much more difficult to

plan screen format. BeckerBASIC solves this problem with the RVSON and

RVSOFF commands.

RVSON turns reverse video on. All output in a SCPRINT command appears in

reverse video. RVSOFF turns the text back to normal mode.

Example:

10 RVSON:'REVERSE MODE ON'

20 SCPRINT AT 1,1;"HERE"

30 SCPRINT AT 2,5;"IS"

40 SCPRINT AT 3,7;"AN"

50 SCPRINT AT 4,9;"EXAMPLE"

60 RVSOFF:'REVERSE MODE OFF'

LETTERON (133) (ci
LETTEROFF (134) (c)

LETTERON turns on lowercase lettering, while LETTEROFF returns the

system to uppercase lettering. You can switch balck and forth between modes

in direct mode by pressing <SHIFT><Commodore>. LETTERON and

LETTEROFF were intended for use in program mode.

LOCKON (135) (c)

LOCKOFF (136) (c)

LOCKON disables the uppercase/lowercase toggling. LOCKOFF enables the

toggling. LOCKON is useful when you want to keep the user from switching

between character sets.

47

3. Input and Output BeckerBASIC 64

3.2.2 Printer output

BeckerBASIC provides two easy methods for printing data.

PRPRINT (171) (c)

PRPRINT sends any alphanumeric data to the printer, much like the SCPRINT

command. The rules for PRPRINT are identical to those used in SCPRINT and

the BASIC 2.0 PRINT statement

Format: PRPRINT "EXPRESSION"

PRCOM (172) (c)

PRCOM sends individual printer codes to the printer. This is especially useful

for sending control codes such as bold, expanded print, etc.

When used within a program line, PRCOM can have as many control codes as

you like, as long as each code is separated from the next by a comma. PRCOM

is the same as the BASIC 2.0 sequence:

OPEN 14,4:PRINT#14, CHR$(C1):CLOSE14

Format: PRCOM C1[,C2,C3...]

C1,C2 is the code normally sent in the form of a CHR$(..) code. PRCOM can

handle individual printable characters. The ASCII code must be

concluded by a <RETURN> (ASCII code 13). PRCOM ASC("A"),13

sends an A.

NOTE: All BeckerBASIC printer commands correspond to the BASIC 2.0

sequence:

OPEN 14,4:PRINT#14,...:CLOSE14

Never use any other file commands with a logical file number of 14! This

number was assigned to the printer since it's an unusual logical number.

48

Abacus 3. Input and Output

3.3 Screen management

This section includes commands for clearing and changing the screen, as well as

loading and saving areas of the screen.

PCOLORS (018) (c)

PCOLORS states the list of colors available to the user, and their respective

color numbers.

When you have trouble remembering the correct color and number, just enter

PCOLORS and press the <RETURN> key to display the following table:

0

1

2

3

4

5

6

7

black

white

red

turquoise

purple

green

blue

yellow

8

9

10

11

12

13

14

15

orange

brown

lt.red

greyl

grey 2

k.green

ltblue

grey 3

BORDER (051) (c)

CLBORDER (246) (f)

BORDER changes the screen border color. CLBORDER reads the current

border color.

Format: BORDER FN:... :FN = CLBORDER

FN is the color code corresponding to the output from PCOLORS. Values

for FN can range from 0 to 15.

Values for BORDER can theoretically range from 0 to 255, although once you

pass 15, the color numbers just repeat (16=0,17=1, etc.).

49

3. Input and Output BeckerBASIC 64

GROUND (052) (c)

CLGROUND (245) ffl

GROUND changes the screen background color. CLGROUND reads the current

background.

Format: GROUNDFN:... :FN = CLGROUND

FN represents the background color. Values for FN can range from 0 to 15.

Values for GROUND can theoretically range from 0 to 255, although once you

pass 15, the color numbers repeat (16=0,17=1, etc.).

CLS (053) (c)

CLS clears the text screen, and corresponds to the BASIC 2.0 statement PRINT

CHR$(147). The cursor moves to the home position after the screen clears. To

move the cursor to the home position without clearing the screen, use the

CRHOME command (see Section 3.4).

Format CLS

SCRON (054) (c)

SCROFF (055) (c)

These commands turn the screen on (SCRON) and off (SCROFF) through

software. These don't literally turn the screen power on or off; they blank out

the screen.

Format: SCRON:... :SCROFF

This is useful for quickly blanking and retrieving screen masks.

50

Abacus 3. Input and Output

SCRDSAVE (056) (c)

SCRDLOAD (057) (c)

SCRDSAVE stores the current screen to diskette. SCRDLOAD loads a stored

screen file.

Format SCRDSAVE NA$:... :SCRDLOAD NA$

NA$ is the name under which the screen is stored. This name can have a

maximum of 16 characters.

SCRDLOAD loads direct into the current screen and overwrites the old screen.

SCRDSAVE is used to save a screen mask setup for later recall.

3.4 Cursor control

CRHOME (058) (ci

CRHOME moves the cursor to its home position (the upper left corner of the

screen).

Format CRHOME

CRSET

CRPOSL

CRPOSC

(059)

(233)

(234)

(c)

(f)
(f)

CRSET sets the cursor at any location on the screen. CRPOSL (line) and

CRPOSC (column) read the current cursor position.

Format: CRSET RO,CO:... :RO = CRPOSL:... :CO = CRPOSC

RO RO is the current row position and CO is the current column position

CO returned by CRPOSL and CRPOSC. Values far RO range from 1 to 25,

while values for CO range from 1 to 40.

51

3. Input and Output BeckerBASIC 64

CRCOL (060) (c)

CLCURSOR (247) ffl

CRCOL changes the cursor color and the text color. CLCURSOR reads the

current cursor color.

Format: CRCOL FN:... :FN = CLCURSOR

FN is the color code corresponding to the output from PCOLORS. Values

for FN can theoretically range from 0 to 255, although once you pass

15, the color numbers repeat (16=0,17=1, etc.).

CRON (061) (c)

CROFF (168) (c)

CRON turns on the cursor at the current cursor position. This is useful when you

want the user to make an important input. CROFF turns the cursor off again.

Format CRON:... :CROFF

CRREPEATON (062) (c)

CRREPEATOFF (063) (c)

CRREPEATON turns on the cursor repeat function, i.e., the repeated movement

of the cursor as you hold down one of the cursor keys (this function is built into

the operating system). This command acts much the same as the

KEYREPEATON command (see Section 3.1.1). CRREPEATOFF turns off

cursor and keyboard repeat

Format CRREPEATON:... :CRREPEATOFF

CRFREO (064) (c)

CRFREQ changes the cursor and keyboard reading frequency. That is, it

changes the speed at which the cursor movement and keyboard output occur

(faster or slower).

52

Abacus 3. Input and Output

Format CRFREQNR

NR is the rate at which the system reads the cursor and keyboard. Values

for NR range from 0 to 255. It is best to use values between 25 and

125. Smaller numbers cause faster movement, while larger values slow

the movement

Another effect can be put to good use with BASIC programs that depend on

time: The slower the cursor movement (i.e., the larger the NR value), the faster a

BASIC program executes, in cases ofNR values larger than 125.

53

Abacus 4. Memory access

4. Memory access commands

This chapter describes the most important memory commands. The most vital

commands are MYFILL, which fills a memory range with the user's choice of

characters; and TRANSFER, which moves any area of memory to another area

of memory (e.g., the character generator in ROM). See how the original memory

range, the destination and end range can overlap in Section 4.3, using the

VGETM, MGETV and VARADR commands.

4.1 Working with memory ranges

The following four commands are intended specifically for handling memory,

from a large range of memory down to a single memory location.

TRANSFER (065) (el

TRANSFER moves a designated memory range to a free area of memory. The

memory range to be moved can be in ROM as well as RAM. The destination

range can only be in RAM, since you can't write to ROM.

Format: TRANSFER BA, BE, NA [,KN]

BA BA is the first memory location of the range. BE is the ending location

BE of the range. Values for BA and BE can range from 0 to 65535.

NA contains the starting address of the destination range to which the

memory range is transferred. Values for NA can range from 0 to

65535.

KN states the type of memory to which BA and BE are being moved.

KN=1 is the character generator; KN=3 is RAM, and KN=5 is the

ROM. The default value for KN is 3 (RAM).

Examples:

55

4. Memory access BeckerBASIC 64

TRANSFER 1024,1062,1025 transfers the contents of the topmost screen line

one location to the right.

TRANSFER 1025,2023,1024 moves the entire screen one character to the left.

TRANSFER 1024,2023,42000 puts the current screen contents at memory

location 42000.

TRANSFER 42000,42999,1024 wipes out the screen.

TRANSFER 48000,48100,48000,5 moves the ROM from 48000 to 48100, and

transfers it to the RAM below it

10 AD = 1024+40*(ZE-1) + (SP-1)

20 TRANSFER AD,AD+(LE-1),ZL

This short program takes the contents or the screen at row ZE, column SP and a

length of LE, and puts it at destination range ZL.

MYFILL (067) (c)

MYFILL fills the specified memory range with a given value or character.

Format: MYFILL BA, BE, WT

BA BA gives the first memory location to be filled, BE is the last memory

BE location to be filled and WT the fill value. Values for WT can range

WT from 0 to 255.

Examples:

MYFILL 1024,1103,32 clears the topmost screen lines.

MYFILL 55296,55495,1 colors the first five screen lines white.

10 CLS:SCPRINT AT 14,5;"MYFILL DEMO"

20 PAUSE 2

30 FOR WT=0 TO 255

40 MYFILL 1024,2023,WT:PAUSE .75

50 NEXT WT

56

Abacus 4. Memory access

This program displays each character on the screen, 1000 characters at a time.

BSCASCW (070) (c)

ASCBSCW (069) (c)

When you set data into RAM from the screen (e.g., with TRANSFER), a

problem can occur: Screen memory data is in BSC format (Berkeley Softworks

Code - true ASCII), while the strings must be in Commodore ASCII format for

editing.

BSCASCW converts these strings from BSC to ASCII format. When you need

to transfer string data to a memory range on screen, you need to convert it from

ASCII to BSC format The ASCBSCW performs this conversion.

Format BSCASCW BA, BE:... :ASCBSCW BA, BE

BA BA give the starting address and BE the ending address of the memory

BE range to be converted.

Examples:

BSCASCW 41000,41500 converts the RAM area from 41000 to 41500 from

BSC code to ASCII code.

ASCBSCW 47000,48000 converts the RAM area from 47000 to 48000 from

ASCII to BSC code.

CRHOME:SCPRINT "PICT'^BSCASCW 1024,1027 converts the text "PICT"

(visible on the screen) from BSC to ASCII code.

4.2 Accessing individual memory locations

In addition to the BASIC 2.0 POKE and PEEK commands, BeckerBASIC offers

the following memory access commands.

57

4. Memory access BeckerBASIC 64

DOKE (066) (cl

DOKE places a value in two consecutive memory locations, unlike POKE,

which accesses just one memory location. The value is divided into low

byte/high byte format.

Format: DOKE AD,WT

AD is the starting memory location. Values for AD can range from 0 to

65535.

WT is the value inserted into memory locations AD and AD+1. Values for

WT can range from 0 to 65535. DOKE can be assigned parameters for

machine language programs.

Examples:

DOKE 48000,35000 puts the value 35000 into memory locations 48000 and

48001. After execution, memory location 48000 contains 184 and 48001

contains 136.

DOKE 828,VR(10) puts the contents of the array element VR(10) into locations

828 and 829.

DEEK (235) (c)

DEEK reads the contents of two consecutive memory locations and gives the

total value as a variable. The first memory location is read as the low byte, while

the second location is read as the high byte.

Format: VR = DEEK (AD)

AD is the starting address of the two memory locations read. Values for AD

range from 0 to 65535.

Examples:

58

Abacus 4. Memory access

WT = DEEK(50000) gives the contents of locations 50000 and 50001 in WT. If

location 50000 contains 10 and location 50001 contains 120, then WT returns

the value 30730.

SCPRINT DEEK(43) displays the start of BASIC pointer on the screen.

TEEK (236) (f)

Like PEEK, TEEK reads individual memory contents. In addition, it determines

whether the character generated is in ROM or RAM.

Format VR = TEEK (AD [,KN])

AD is the desired memory address. Values for AD can range from 0 to

65535.

KN states the type of memory accessed. KN=1 is the character generator;

KN=3 is RAM, and KN=5 is the ROM. The default value for KN is 3

(RAM).

Examples:

W = TEEK (56325,1) reads the contents of memory location 56325 in the

character generator.

W = TEEK (56325) reads RAM location 56325 (from the CIA register).

59

4. Memory access ReckerBASIC 64

4.3 Exchanging memory and variable contents

The memory range from 40969 to 48960 is hi-res memory, an ideal area for

storing data of all kinds (provided you aren't using the hi-res memory for

anything else). These three commands are designed for storing different data.

VGETM (181) (c)

VGETM puts the contents of a specific string variable or alphanumeric

expression into RAM memory.

Format VGETMBA,VR$

BA is the first memory location at which the string data is placed. Values

for BA range from 0 to 65535.

VR$ is the given string expression.

Examples:

VGETM 830,"TEXT" puts the string "TEXT* starting at memory location 830.

T$=MEXAMPLE":VGETM 42000,"AN "+T$ stores the string "AN EXAMPLE"

starting at location 42000.

MGETV (068) fc)

MGETV reads the conttents of a memory range into any string variable.

Format: MGETV VR$, LE, BA

VR$ is the name of the string variable into which the memory contents are

loaded.

LE,BA LE is the length of the memory range, BA is the first memory location

to be placed in the string variable.

60

Abacus 4. Memory access

Examples:

MGETV T$,10,890 reads the contents of locations 890 to 899 into variable T$.

10 TRANSFER 1024,1028,41500:BSCASCW 41500,41504

20 MGETV EG$,5,41500

TRANSFER takes the first five characters of the screen starting at memory

location 41500, converts the result from BSC to ASCII code, and puts the result

into the variable EG$.

NOTE: When you move data directly from the screen to RAM (e.g., with

TRANSFER), you should convert the memory area from BSC code into ASCII

code using the BSCASCW command (see Section 4.2).

VARADR (237) (£1

VARADR conveys the starting address of a variable into BASIC variable

memory.

Format: VI = VARADR (VR):...:V2 = VARADR (VR$)

VR is the starting address of the variable.

VR$ is the name of the variable.

Aside from easy memory access, there are very few uses for VARADR. One

possibility of this function lies in the buffer storage of larger variable arrays, or

sections of variable arrays. You can compute the first and last array elements

and then move the array with TRANSFER (see Section 4.1).

Examples:

A = VARADR(ZT) computes the address of variable ZT and stores it in A.

5 DIM A%(55)

10 W1=VARADR(A%(1)):W2=VARADR(A%(52)):'CONVEY ADDRESS

20 W2=W2+1:'ENDADR.+1, AN INTEGER MADE UP OF TWO BYTES'

30 TRANSFER Wl,W2,43000:'TRANSFER CONTENTS'

61

4. Memory access BeckerBASIC 64

This short program transfers the contents of the array elements A%(l)-A%(52)

to memory starting at 43000.

The following program lets you put the values in any integer array:

10 W1=VARADR(A%(1)):'TRANSMIT STARTING ADDRESS'

20 'STORE VALUE IN INTEGER ARRAY'

30 TRANSFER 43000,43103,Wl:'2 BYTES PER VARIABLE * 52'

62

Abacus 5. Disk commands

5. Disk commands

The 1541 disk drive is an extremely versatile storage device. It performs simple

loading and saving, as well as allowing user-created data access.

The most interesting capabilities of the 1541 can only be achieved by complex

programming. And even the simplest tasks, such as deleting a file, involves a bit

of program code.

BeckerBASIC has many commands to make your diskette programming easier.

For example, deleting a file in BASIC 2.0 required the command OPEN

15,8,15,"S:NAME":CLOSE15. In BeckerBASIC, all you do is type in

DSCRATCH"NAME".

Please bear the following rules in mind when using BeckerBASIC diskette

commands:

Never use BeckerBASIC diskette commands together with BASIC 2.0 diskette

commands, since conflicts with secondary addresses could occur.

Syntax of command parameters is most important at the disk drive level. This is

vital when you're uncertain about sending commands on the disk channel (see

DSTATUS, Section 5.1).

Three diskette commands can cause trouble when used in conjunction with

GEOS disk management:

1) The DSENDCOM "V" command validates a diskette (organizes space).

Never use this command on a GEOS diskette, since it could destroy

important program information (e.g., the info block) and actual

program data.

2) DHEADER formats a diskette. Use this command in GEOS with

caution, since DHEADER creates a diskette in normal DOS format.

You can correct this by converting the formatted diskette to GEOS

format from the deskTop.

63

5. Disk commands BeckerBASIC 64

3) DRENAME (rename a disk file) should not be used in conjunction

with completed BeckerBASIC programs, since a program run through

the CONVERTER program could be destroyed when you try to change

the directory entry (name) of the program. If you must rename a

completed BeckerBASIC program, do it from the GEOS deskTop with

the rename menu option.

5.1 Common commands

Here are the diskette commands which you'll use most often.

DIR (072) (c)

DER displays a diskette directory on the screen without disturbing the program

in memory.

Format: DIR [SL$]

If you type in DIR without any parameters, the entire directory appears. Pressing

the <STOP> key halts the directory display.

SL$ selects certain parts of the directory for display. DIR "$*=P" displays

program files (PRG) only; DIR "$*=S" displays sequential files (SEQ);

DIR "$*=R" displays relative files (REL); and DIR t!$*=U" displays

user files (USR).

Along with filetypes, you can use the wildcards * and ? for selecting individual

filenames.

The asterisk (*) replaces all characters following it. "$FD*M selects all files

starting with the characters FD. "SDIR*" gives all files starting with DIR (e.g.,

DIRECTORY, DIRTY, etc.).

64

Abacus 5. Disk commands

The question mark (?) can represent any character in a filename. DIR

t!$AD??CF" lists all six-character filenames starting with AD and ending with

CF. The two characters in between can be any letter or number. DIR

"$???TT?FP?r selects all ten-character files containing T as the fourth and fifth

characters, F as the seventh character, P as the eighth character and 1 as the

tenth character.

The asterisk and question mark can be used together. For example, DIR

"$C?T*" reads all files starting with C and containing a T as its third character

(e.g., COT, CAT, CITIES, etc.).

The wildcards can also be used in conjunction with the filetype selection. DIR

"$OUT*=S" selects all sequential files beginning with OUT.

DSENDCOM (074) (c)

DSENDCOM sends any commands to the disk drive. It is the equivalent of the

BASIC 2.0 OPEN 1,8,15, ftCOMMANDft:CLOSEl.

Format: DSENDCOM KN$

KN$ contains the disk command. DSENDCOM "S:NAMEM deletes the file

NAME. KN$ is a string up to 40 characters in length. Longer strings

result in a STRING TOO LONG ERROR.

You'll find other commands in this section that are more convenient to use than

DSENDCOM.

DSTATUS (073) (c)

DSTATUS reads the disk error channel.

Format DSTATUS [FM$]

FM$ is the name of the string variable in which the error message should be

placed. If you omit FM$, then the message appears on the screen at the

current cursor position. The message appears in the format:

65

5. Disk commands BeckerBASIC 64

ERROR_NUMBER, ERROR_TEXT, TRACK, SECTOR

ERROR NUMBER lists the number on which ERRORJTEXT is based. You

can isolate ERRORJSTUMBER from the message with FN=VAL(FM$).

TRACK and SECTOR indicate the specific data block at which the error

occurred. See your 1541 owner's manual for a complete list of error messages.

If the disk status is okay, then the result is 00,OK,00,00. The obvious signal for

a disk error is the flashing status light on the disk drive. When that occurs, read

the error channel to find out the problem.

DSCRATCH (079) (c)

DSCRATCH deletes files from diskette.

Format: KN$="NAME1[,NAME2,...]":DSCRATCH KN$

KN$ contains the name of the file to be deleted. Additional files can be

added to KN$, each separated by commas. The string within KN$ can

be a maximum of 38 characters. The wildcards * and ? can be used

here, just as in theDIR command. For example, DSCRATCH "N7M*"

deletes all files containing N as the first character and M as the third

character.

DRENAME (078) (c)

DRENAME renames files stored on diskette.

Format: KN$="NEWNAME=OLD NAME":DRENAME KN$

KN$ contains the new and current filenames. These filenames can be up to

16 characters long.

Example:

DRENAME lfCOMPUTATION=TEST.FILEtf renames the file TEST.FILE to

COMPUTATION.

66

Abacus 5. Disk commands

DHEADER (075) (c)

Before using a new diskette, it must be formatted. The BeckerBASIC formatting

command is DHEADER.

Format: KN$="DISKNAME [,ID]":DHEADER KN$

KN$ contains the diskette name and the identification characters (ID). If you

omit ID, an already formatted diskette can be cleared and renamed. A

new, unformatted disk must have an ID assigned to it the first time you

format it. The formatting process takes about 80 seconds.

NOTE: Formatting an already formatted diskette destroys all the data currently

on that diskette.

Examples:

DHEADER ffTEST,TT formats a new diskette and assigns it the name TEST

and the id TT.

DHEADER "DATA" deletes the directory of an already formatted diskette and

names the diskette DATA.

DINIT (076) (c)

DINIT loads the BAM (Block Availability Map) into disk memory. The BAM

shows how data is organized on diskette. Normally the BAM automatically

loads into disk drive memory when you change a diskette.

There are occasions when the disk drive can confuse two diskettes. This happens

when the id characters are the same when you switch from one diskette to

another. If this happens, the disk drive assumes that the newly inserted diskette

is the same diskette as the old one.

When this happens, and you know that the diskette ids are the same, you can

initialize the diskette (load the BAM) with the DINIT command.

Format: DINIT

67

5. Disk commands BeckerBASIC 64

PRESET (077) (c)

DRESET sets the disk drive into the power-up state, something like resetting the

computer, without the disadvantages.

Format: DRESET

5.2 Changing disk drive addresses

The default address of the disk drive is 8. If you work with two disk drives (the

C64 allows up to 5 disk drives), the addresses must be different from one

another.

The following three commands allow address changes and multiple disk drive

operation.

DADRCHANGE (194) (c)

DADRCHANGE allows the change of a disk drive's device number through

software (see your 1541 manual for hardware address changes):

Format: DADRCHANGE DN

DN is the new disk drive device number. Values for DN can range from 4

to 15. Other values result in an ILLEGAL QUANTITY ERROR.

The disk drive not planned for an address change must be switched off.

DKDEVNB (195) (c)

DDEVADR (253) (c)

DKDEVNB determines which disk drive should be assigned the following

commands. DEDEVNB is followed by the address of the desired device.

DDEVADR gives the address of the disk drive.

Format DKDEVNB DN:... :DN = DDEVADR

68

Abacus 5. Disk commands

DN is the new disk drive device number. Values for DN can range from 4

to 15. Other values result in an ILLEGAL QUANTITY ERROR.

Example:

This example is in two parts. Type the first program in and save it with

DSAVEB"TEST on drive 8. Do not RUN this program.

25 'TYPE THIS PROGRAM IN FIRST AND SAVE IT AS "TEST"'

30 DKDEVNB 9

40 DSAVEB "TEST"

50 SCPRINT DDEVADR

Clear your memory with NEW, then type in the next program listing. After you

save it, RUN it.

5 'TYPE IN, SAVE AND RUN THIS PROGRAM.'

10 DADRCHANGE 9:WAITKEYA

20 DLOADB"TEST"

Turn off the disk drive you want kept as device 8. Line 10 changes the device

number of the currently switched on disk drive to 9. Turn on the other drive

(device 8) and press a key (WAITKEYA waits for a keypress). Line 20 loads the

program "TEST1 into memory, overwriting the first program. The program now

in memory saves itself as "TEST1 to device number 9 and the SCPRINT

command displays the current device number (9).

NOTE: You only need to change disk drive addresses once with the extra drive

turned off. From then on, you can change addresses within the program while

the power is on.

DKDEVNB 8:DADRCHANGE 11 changes disk drive 8 to device 11.

5.3 Program mode commands

The commands described in this section work best with BASIC and machine

language programs. The first topic is the saving and loading of programs,

including machine language. Screen memory, hi-res bitmaps and other data have

their own commands for dealing with data.

69

5. Disk commands BeckerBASIC 64

NOTE: As already explained in Chapter 1, some commands can also access

ROM under RAM. This category includes loading and saving machine language

programs.

Disk files can be handled by their filetypes (see Section 5.4.4 below).

5.3.1 Saving and verifying programs

DSAVEB (082) (c)

DCSAVEB (084) fc)

DSAVEB saves a BASIC program from memory to diskette. DCSAVEB deletes

a program of the same name from diskette, then saves the program in memory to

diskette under that name.

Format: DSAVEB PR$... :DCSAVEB PR$

PR$ is the name under which the program is saved. PR$ can be a maximum

of 16 characters in length.

DCSAVEB is the equivalent of BASIC 2.0's SAVE"@:NAME". This command

has two advantages: First, DCSAVEB deletes and replaces programs with up to

16 characters in the filename (SAVEll@:NAMEft allows only 14 characters).

Second, DCSAVEB avoids most file errors or data loss.

Examples:

DSAVEB "UTILITY" saves the BASIC program in memory to diskette under

the name UTILITY.

DCSAVEB "UTILITY" deletes a file named UTILITY from diskette and saves

the program currently in memory to diskette under the name UTILITY.

70

Abacus 5. Disk commands

DSAVEL (197) (c)

DCSAVEL (198) (c)

DSAVEL and DCSAVEL let you save selected program lines to diskette.

DCSAVEL deletes the program of the same name from diskette, then saves the

program lines in memory to diskette under that name.

Format DSAVEL PR$ [,[EL]-[LL]]:... :DCSAVEL PR$ [,[EL]-[LL]]

PR$ is the name under which the BASIC program is saved. PR$ can be up

to 16 characters in length.

EL is the first program line to be saved.

LL is the last program line to be saved.

Examples:

DSAVEL "NAME1", 10-30 saves program lines 10 to 30 as the file NAME1.

DCSAVEL !!NAME2tf,125 deletes the old file NAME2 from the diskette and

saves line 125 to diskette as NAME2.

DSAVEL "NAME3V10:DSAVEL "NAME4",25- saves the program from the

beginning to line 10 to diskette as NAME3. Then lines 25 to the end of the

program are saved to diskette as the file NAME4.

NOTE: If you attempt to DSAVEL a line number larger than the highest

program number, BeckerBASIC returns an ILLEGAL QUANTITY ERROR.

For example, take a program that has lines numbered 10,12,17,20,21 and 49:

DSAVEL"NAME",10-30 saves lines 10 to 21 correctly, but no line 30 exists.

DSAVEL"NAMEft,-60 causes an error, since the number 60 is larger than the

maximum line number (49).

71

5. Disk commands BeckerBASIC 64

DSAVEM (083) (c)

DCSAVEM (085) (ci

DSAVEM and DCSAVEM save machine language programs and all kinds of

data to diskette. DCSAVEM deletes a machine language program of the same

name from diskette, then saves the program currently in memory to diskette

under that name.

Format: DSAVEM PR$, BA, BE:... :DCSAVEM PR$, BA, BE

PR$ is the filename under which the program in memory is saved. PR$ can

be up to 16 characters long.

BA BA is the starting and BE the ending memory locations of the program.

BE Values for these two addresses can range from 0 to 65535.

Examples:

DSAVEM "FILEllf,41000,42000 saves the RAM area between locations 41000

and 42000 as the file FILE1.

DCSAVEM "MPl",828,850 deletes the file already on diskette under the name

MP1, and saves the memory range from location 828 to location 850 under the

same name.

DSAVEM"SCREEN",1024,2023 saves the current screen contents to diskette

under the name SCREEN. For better screen saving and loading commands, see

SCRDSAVE and SCRDLOAD (Section 3.3).

DVERIFYB (086) (c)

DVERIFYB compares the BASIC program currently in memory with a program

stored on diskette. If both programs are identical, the computer responds with

OK, otherwise the result is a VERIFY ERROR.

Format: DVERIFYB PR$

PR$ is the name of the program on diskette that you want compared to the

program in memory.

72

Abacus 5. Disk commands

Example:

DSAVEB"NAME":DVERIFYB"NAME" saves the program in memory to

diskette as NAME, then compares the program in memory with the program

NAME on diskette.

DVERIFYM (087) (c)

DVERIFYAM (199) (c)

DVERIFYM compares a machine language program or other data file on

diskette with an equivalent program in memory. The starting address of the

program in memory is taken as the starting address of the program on diskette.

DVERIFYAM compares a machine language or other program on diskette with

a program in memory. The starting address of the program in memory can be

assigned.

Both commands result in either OK (both programs are identical) or VERIFY

ERROR.

Format DVERIFYM PR$:... :DVERIFYAM PR$,BA

PR$ is the name of the program to be compared with the program currently

in memory.

BA is the starting memory address at which the machine language program

begins in memory.

Examples:

DSAVEM"NAME",48000,48020:DVERIFYM "NAME" saves the memory

range from 48000 to 48020 to diskette as NAME, then compares the program on

diskette with the code in memory.

DSAVEM "NAME",830,950:DVERIFYAM "NAME",47500 saves the memory

range from 830 to 950, and compares it with the memory range starting at

address 47500.

73

5. Disk commands BeckerBASIC 64

5.3.2 Loading programs

DLOADB (088) (c)

DRLOADB (091) (c)

DLOADB and DRLOADB loads a BASIC program from diskette into memory.

DRLOADB automatically starts the program after loading it, so you don't have

to type RUN.

Format: DLOADB PR$:... DRLOADB PR$

PR$ is the name of the file to be loaded from diskette. PR$ can be up to 16

characters in length.

DLOADM (089) (c)

DLOADAM (090) (c)

DLOADM and DLOADAM load machine language programs or other data

files. DLOADM loads the program at the memory address at which it was

saved. DLOADAM lets you load the program at any address. Neither command

affects the BASIC pointer. The OUT OF MEMORY ERROR you could get by

loading machine language in BASIC 2.0 (LOAD "NAME"^,!) doesn't occur

with DLOADM and DLOADAM.

Format: DLOADM PR$:... :DLOADAM PR$,BA

PR$ is the name of the file to be loaded from diskette. PR$ can be a

maximum of 16 characters long.

BA gives the load address of the program. Values for BA range from 0 to

65535.

Examples:

DLOADM"NAMEr loads the program NAME1 into memory.

DLOADAM "NAME2",42000 loads the program NAME2 into memory starting

at address 42000.

74

Abacus 5. Disk commands

5.3.3 Overlays

When you write larger programs, it may be necessary to break the program up

into smaller programs and load the sections as the program executes. The

biggest problem here is retaining variable contents, since BASIC normally

destroys variables when a new program loads. Overlay commands solve this

problem!

DOVERLAYK (092) (c)

DOVERLAYK loads a specified BASIC program into memory at the start of

BASIC. All variables from the previous BASIC program are retained. When the

new BASIC program finishes loading, it executes immediately. The previous

program is deleted from memory when the new program loads.

Format: DOVERLAYK PR$

PR$ is the name of the program to be loaded. PR$ can be a maximum of 16

characters in length.

DOVERLAYW (093) (c)

DOVERLAYW lets you load line numbers into a program already in memory.

Identical line numbers in memory are deleted.

DOVERLAYW has a similar function to the PMERGE command (Section

2.1.1). The exception: DOVERLAYW keeps the variables in the original

program intact.

What applies to PMERGE also applies to DOVERLAYW: When you use this

command within a program, the program being loaded in cannot have line

numbers smaller than or equal to the number of the current BASIC line (in

which the DOVERLAYW command stands). In such a case, the program may

stop with a SYNTAX ERROR message.

Format DOVERLAYW PR$

75

5. Disk commands BeckerBASIC 64

PR$ is the name of the program you want loaded. This name is a string up to

16 characters long. NOTE: Strings normally written in the form

VR$="TEXTM must be written as VR$=MTEXTtt+"tt so that the string is

handled correctly in the loading process. The added +lllfensures that the

string is copied into the top of string memory. You can also perform

this in DATA statements: READ VR$: VR$=VR$+V$+" ".

Example:

• First program in memory (PI)

10 M$(l) = "HERE'S n:'lST PART OF MSG'

20 DOVERLAYW "P2":'LOAD IN 2ND PROGRAM NAMED P2'

30 M$(3) = "EXAMPLE OF "+"":'3RD PART OF MESSAGE'

40 :

50 FOR 1=1 TO 4:SCPRINT M$(I):NEXT I:'DISPLAY MESSAGE'

• Program loaded by PI (P2)

25 M$(2) = "AN ":'2ND PART OF MESSAGE'

35 M$(4) = "DOVERLAYW.":'4TH PART OF MESSAGE'

Running PI results in this message on the screen:

HERE'S

AN

EXAMPLE OF

DOVERLAYW.

List the program when it's done running. It will look like this:

10 M$(l) = "HERE'S ":'1ST PART OF MSG'

20 DOVERLAYW "P2":'LOAD IN 2ND PROGRAM NAMED P2'

25 M$(2) = "AN ":'2ND PART OF MESSAGE'

30 M$(3) = "EXAMPLE OF "+"":'3RD PART OF MESSAGE'

35 M$(4) = "DOVERLAYW.":'4TH PART OF MESSAGE'

40 :

50 FOR 1=1 TO 4:SCPRINT M$(I):NEXT Ir'DISPLAY MESSAGE'

NOTE: When you can't arrange the program so that line numbers don't conflict,

then you should use the DLOADPROC command (see Chapter 6). This sets up

procedures independent of programs whose line numbers will not conflict with

the main program.

76

Abacus 5. Disk commands

LDEL (132) (c)

LDEL has a similar function to the PDEL command (Chapter 2). It deletes

individual lines or sets of lines from a program. Unlike PDEL, variable contents

remain intact.

Format: LDEL Zl [, Z2-Z3,...]

Zl is the line to be deleted.

Z2,Z3 is the optional set of lines to be deleted.

You can put as many parameters into LDEL as you can fit into a program line.

Example:

10 ...

20 LDEL 50,72-79,100

30 ...

The LDEL in line 20 deletes program lines 50,72 to 79 and 100.

5.4 Logical files

The logical file is an efficient way to handle data of all kinds on diskette. Every

logical file has a name under which it is stored on diskette. Every logical file has

a logical file number. This number easily lets you see whether the file is set for

reading or writing.

This section lists the essential commands needed for logical file access. They

follow the same principles as stated earlier.

77

5. Disk commands BeckerBASIC 64

5.4.1 Logical file commands

Logical file access consists of three basic actions:

• Open the file

• Read /write the file

• Close the file

When you open a file, the filename and logical file number state the necessary

parameters. BeckerBASIC's DGETV and DGETM replace the BASIC 2.0

commands GET* and INPUT# for reading file data. Writing data is performed

by the BASIC 2.0 PRINT# command. All read and write errors are signalled

according to the logical file number.

DCLOSE closes the file and ends the access. If you wish to re-access the file, it

must again be opened by the DOPEN command.

NOTE: You must use the DCLOSE command to close the file; you can't just

leave the file open. Also, remember to use the proper secondary addresses when

closing and opening files with DCLOSE and DOPEN.

The disk drive system allows a maximum of three open files at one time. If you

open a fourth file, a TOO MANY FILES ERROR results. You should also keep

in mind that one relative file is equal to two normal files. If you have a relative

file open, you can only have one sequential file open as well.

DOPEN (080) (c)

DOPEN opens a file of any type for reading or writing. All filetypes have their

own special open commands (more on this below).

Format: KN$="FILENAME,FILETYPE,MFtf:DOPEN LF,KN$

LF is the logical file number of the file. Values for LF can range from 1 to

127 (you can theoretically use values higher than 127, but it doesn't

usually make sense for disk access). The logical file number identifies

the file, and has nothing to with the type of file access itself.

78

Abacus 5. Disk commands

KN$ contains the filename. Filenames can be a maximum of 16 characters.

It is separated from the mode flag (MF) by a comma.

There are four filetypes available:

S sequential (SEQ)

P program file (PRG)

U user file (USR)

R relative file (REL)

MF is the mode flag, which states whether the file is open for reading or

writing. You have a choice of two letters for MF:

R Read data

W Write data

One exception exists when opening a relative file with DOPEN: You omit the

mode flag and replace it with the record length in character code form. Another

peculiarity stands in opening sequential files: Using A for MF lets you append

an existing sequential file to an open file.

Examples:

DOPEN 1,"EX1,S,W" opens EX1 as a sequential file for writing.

DOPEN 2,"EX2,P,R" opens program file EX2 for reading.

DOPEN 4,"EX4,L"+CHR$(82) opens EX4 as a relative file with a record length

of 82 characters. You can perform both read and write access on this file.

DOPEN 5,"EX5,S,A" opens sequential file EX5 for appending data to the file

previously opened by DOPEN.

79

5. Disk commands BeckerBASIC 64

FILENUM (252) (f)

FILENUM lists the number of files currently open. Checking this occasionally

helps you avoid having more than three files open at a time.

After opening the desired file with the DOPEN command, you can write or read

any data in the file, depending upon which mode is active when the file opens.

The next two commands are used for reading data.

DGETV (045) (c)

DGETV reads data from any disk file and puts this data into a string variable.

Format: DGETV LF, VR$, LE

LF is the logical file number.

VR$ is the name of the string variable into which the data goes.

LE is the number of characters that should be read from the file. Values for

LE can range from 1 to 255.

DGETV has the advantage over BASIC 2.0' s INPUT# in that it can handle up to

255 characters at a time.

Examples:

DGETV 7,EG$,23 reads 23 characters from logical file 7, and places these

characters into string variable EG$.

FOR 1=1 TO 3:DGETV 2,A$(I),12:NEXT I reads 12 bytes three times from

logical file 2 and inserts the contents into variable array A$(l), A$(2) and

A$(3).

DGETM (046) (c)

DGETM reads data from any disk file, and places this data in any area of

memory.

80

Abacus 5. Disk commands

Format: DGETM LF, SA, LE

LF is the logical file number of the corresponding file.

SA is the address of the first memory location of the data read. Values for

SA range from 0 to 65535.

LE sets the number of bytes to be read from the file. Values for LE range

from 1 to 255.

The use of DGETM instead of DGETV is useful when the data must be

transferred directly to the screen, and variable contents must stay free (see

Chapter 4 for memory access commands).

Examples:

DGETM 2,42000,52 reads 52 characters from logical file 2, and places the data

in the computer starting at memory location 42000.

110 DGETM 5,48000,120:'READ DATA'

120 MGETV A$,50, 48000:

130 MGETV B$,20,48050:

140 MGETV C$,50,48070:

line 110 reads the data and places it in memory starting at address 48000. Lines

120 to 140 put the data in memory location 48000 and place it in string variables

A$, B$ and C$.

EOF (238) (f)

EOF helps you determine the end of the current disk file.

Format: FL = EOF

When the end of file is reached, FL = -1 (logical true); otherwise FL is equal to

0 (logical false).

81

5. Disk commands BeckerBASIC 64

Example:

110 Z=0:REPEAT:DGETM 3,42000+Z,1:Z=Z+1:UNTIL EOF

This short routine reads the data from logical file 3 until it reaches the end of the

file. The file goes into memory starting at memory address 42000 (more on the

REPEAT/UNTIL construct in Chapter 6).

DCLOSE (081) (c)

DCLOSE closes a logical file, signalling the computer and disk drive that the

file access is finished.

Format: DCLOSE LF

LF is the logical file number of the file accessed.

Example:

10 OPEN 6,"DATA,S,R":'OPEN SEQ. FILE FOR READING'

20 DGETV 6,E$,21:'READ DATA'

30 DCLOSE 6:'CLOSE FILE'

This routine reads the data from a sequential file and places it in E$.

5.4.2 Sequential file commands

The following three commands simplify sequential file access.

DSQOPEN (094) (cl

DSQOPEN is designed for opening sequential files. The simplest form uses the

logical file number and the corresponding filename.

Format: KN$=MFILENAME [,LS]":DSQOPEN LF,KN$

82

Abacus 5. Disk commands

LF is the desired logical file number. Legal values for LF range from 1 to

127.

KN$ is the filename. KN$ is a string containing up to 16 characters.

LS is the mode flag. This flag can be one of 4 characters:

• R read data

W write data

A append data to existing file

• M open a file not previously closed by DCLOSE (merge)

Omitting the mode flag defaults the file to read status (R).

Two mode flags are new: A and M.

A If you try writing to an existing sequential file with new data using the

W mode flag, the error message FILE EXISTS results. You can add to

this file by opening it with the mode flag A. All data sent through

PRINT* is appended to the existing file.

M As already mentioned, every logical file must be closed with DCLOSE

after a session. If you forget to close a file, the next time you try to read

it, you'll get a WRITE FILE OPEN eiTor. One possibility for opening a

saved file is with the M mode flag. Once the file is open, read the entire

file, write the data into a new file (remember to close it) and delete the

old file with DSCRATCH.

Examples:

DSQOPEN 5,"DATA" opens the sequential file DATA for reading. The logical

file number is 5.

DSQOPEN 12,"DAT2,W" opens the sequential file DAT2 for writing.

DSQOPEN 1,"DATF,M" opens the improperly closed sequential file DATF for

reading.

83

5. Disk commands BeckerBASIC 64

NOTE: Close sequential files with DCLOSE.

DSOCONCAT (095) (c)

DSQCONCAT allows multiple sequential files to be added to a new file

(maximum 4 files).

Format KN$="NF=F1J2,...M:DSQCONCAT KN$

Fl,... are the names of sequential files added to the new file.

NF is the name of the new file.

KN$ is the string containing the data about NF, Fl, etc. This string can be up

to 38 characters in length.

Examples:

If you want to add a file to an existing file, you can do the following:

10 DSQCONCAT MZW=F1,F2"

20 DSCRATCH"F1"

30 DRENAME "Fl=ZW"

This program appends file F2 to file Fl.

DSQCONCAT "DATG=DATlJ)AT2JDAT3,DAT4lt combines files DAT1

through DAT4 into the new file DATG. DAT1 through DAT4 remain as

separate files, as well as the combined file DATG.

5.4.3 Relative file commands

With the help of these three commands, you can easily handle relative files.

DRLOPEN (096) (cl

DRLOPEN is for opening relative files for writing or reading. There is no

differentiation between reading and writing with relative files.

84

Abacus 5. Disk commands

Format: DRLOPEN LF, FN$, RL

LF is the desired logical file number (1-127).

FN$ is the desired or already existing filename (maximum of 16 characters).

RL is the record length. Relative files are divided into records, and all

records have the same length. This parameter must be given on every

file opening, regardless of whether the file is new or existing. Values

for RL can range between 1 and 254 bytes.
*

NOTE: Once you set a record length on initially opening a file, the record length

cannot be changed. Trying to re-open a file using a different record length

results in a RECORD NOTPRESENT ERROR.

When the input is sent with PRINT#1 and concluded with <RETURN> (e.g.,

PRINT#1,A$), you must allow 1 byte for the CHR$(13) (<RETURN> key)

within each record. A 5O-byte record can only contain 49 characters plus

<RETURN>.

Thanks to the special BeckerBASIC reading commands, the record length

doesn't include the <RETURN> key. This is something like adding a semicolon

to the end of the PRINT* command (e.g., PRINT#1, A$;).

Examples:

DRLOPEN 2,tlDATAM,70 opens a relative file named DATA with a record

length of 70 bytes and a logical file number of 2.

DRLOPEN 7,tfLAYOUr,254 opens a relative file named LAYOUT with the

maximum record length of 254 bytes.

DRLCLOSE (200) (c)

DRLCLOSE is the close command for relative files.

Format DRLCLOSE LF

LF is the logical file number used with DRLOPEN.

85

5. Disk commands BeckerBASIC 64

Example:

DRLCLOSE 7 closes the relative file assigned logical file number 7. One

similarity between DCLOSE and DRLCLOSE: When a disk error occurs during

the time a file is open, you must close the corresponding file.

DRLRECORD (097) (ci

All data records in a relative file are accessed by record numbers, with values

from 1 to 65535. T6 access a record (i.e., read from it or write to it), you must

set the computer to the record's position.

Format DRLRECORD LF, RN, RP

LF is the logical file number of the file currently being accessed.

RN is the record number you want Values for RN can range from 1 to

65535.

RP allows you to move to a position within the record. Legal values for

this can range from 1 (first byte of the record) to 254 (last byte of the

record).

There are two things to keep in mind about positioning:

1) When writing a record, RP must start out set to 1. Data records are sent

from that point in one group through the PRINT* command. When a

position is found that is larger than the last data record of the

corresponding file, the result is a RECORD NOT PRESENT ERROR.

However, the next write access to the record with PRINT* executes

correctly. The message RECORD NOT PRESENT signals that you

have gone past the previous end of the file.

2) A write access to a record fills all data records with lower numbers that

haven't been written to yet with CHR$(255). For example, you define a

new relative file with DRLOPEN 7,"DATA",50. Using DRLRECORD

3,70,l:PRINT#3,RD$ writes to record 70. Records 1 to 69 are written

with CHR$(255), and can be written to later on.

86

Abacus 5. Disk commands

To avoid unnecessary waiting time during file access, if you know the length of

the file, you can move to the last record position and fill in the entire file with

CHR$(255). For instance, a program to fill in a relative file containing 200

records and record length of 72 bytes can look like this:

5 'THIS PROGRAM WRITES DATA TO THE 200TH RECORD OF A REL FILE'

10 DRLOPEN 1,"DATA",72:'OPEN FILE'

20 DRLRECORD 1,200,1:'POSITION TO 200TH RECORD'

30 PRINT#1,CHR$(255):'WRITE RECORD'

40 DRLCLOSE 1:'CLOSE FILE'

Now for a complete example of relative file handling using the simple file

handling commands included in BeckerBASIC:

5 'RELFILE MGR.BECKERBAS'

10 LF=1:'LOGICAL FILE NUMBER'

20 DN$="DATA":'FILENAME'

30 RL=20:'RECORD LENGTH'

40 DRLOPEN LF,DN$,RL:'OPEN FILE'

50 :

90 CLS

100 SCPRINT "READ OR WRITE 'RECORD (R/W)?";

110 KBGETV WL$,1,"WR":'SELECT W OR R'

120 GOSUB WL$:'AND CALL SUBROUTINE'

130 :

140 SCPRINT:INPUT "MORE? (Y/N)";W$:'CONTINUE?'

150 IF W$="Y" THEN POPIF:GOTO100:ENDIF

160 DRLCLOSE LF:'NO, CLOSE FILE'

170 END:'END PROGRAM'

180 :

190 :

500 "R":'READ RECORD'

510 SCPRINT:INPUT"RECORD NUMBER";RN

520 DRLRECORD LF,RN,1:'POSITION TO RECORD'

530 DGETV LF,EG$,RL:'READ RECORD'

540 SCPRINT EG$:'DISPLAY ON THE SCREEN'

550 RETURN

560 :

570 :

600 "W":'WRITE RECORD'

610 SCPRINT:INPUT"RECORD NUMBER: ";RN

620 DRLRECORD LF,RN,1:'MOVE TO RECORD'

630 SCPRINT"YOUR INPUT:";

640 KBGETV EG$,RL:'GET DATA FROM KYBD'

650 PRINT#LF,EG$;:'AND SEND IT'

660 RETURN

87

5. Disk commands BeckerBASIC 64

5.4.4 Opening user and program files

DUSOPEN (098) (c)

DUSOPEN opens a user file (files containing a USR identifier in their directory

listings).

Format: KN$="FILENAME [,LS]tf:DUSOPEN LF,KN$

LF is the desired logical file number. Legal values for LF can range from 1

to 127.

KN$ contains the 16-character filename, as well as LS.

LS is the optional mode flag. If LS is W, then the file opens for writing; if

LS is R, then the file opens for reading. If you omit the mode flag, the

file opens for reading (R).

Examples:

DUSOPEN 3,-NAMl" opens the user file NAM1 for reading data.

DUSOPEN 5,"NAM2,W" opens user file NAM2 for writing.

DPGOPEN (196) (c)

DPGOPEN opens program files. This lets you load and edit a program byte for

byte.

Format: KN$="FILENAME [,LS]t!:DPGOPEN LF,KN$

LF is the logical file number. Legal values for LF range from 1 to 127.

KN$ contains the 16-character filename, as well as LS.

LS is the optional mode flag. If LS is W, then the file opens for writing; if

LS is R, then the file opens for reading. If you omit the mode flag, the

file opens for reading (R).

88

Abacus 5. Disk commands

Examples:

DPGOPEN 1,"PRG1" opens the program file PRG1 for reading.

DPGOPEN 7,"PRG2,W" opens the program file PRG2 for writing.

Files opened by DUSOPEN or DPGOPEN may be closed using DCLOSE.

5.5 Direct diskette access

Diskettes store data in blocks of 256 bytes each. A direct access file allows you

to access (read or write) individual blocks of data. This means that you can

easily create your own data structures based upon program, sequential and

relative files. These commands allow simple manipulation of available files, or

even the directory.

CAUTION: Even though direct access gives great flexibility in disk access,

remember that direct access can also turn little errors into big ones! For

example, one badly written data block can destroy an entire sequential file.

If you want to design your own file structures, you should use a newly formatted

diskette which contains no programs, relative or sequential files. Or at the very

least, use a backup copy of die diskette you want to read from or write to.

DDAOPEN (099) (cl

DDAOPEN is designed for opening a direct access file. Before describing the

format of this command, you need some general background about the

organization of a direct access file.

All data read from a disk data block is first stored in buffer memory within the

disk drive's memory. From there you read the data with the commands DGETV,

DGETM, etc.

By the same token, data written to a data block is stored in this buffer, then

transferred to diskette using a special command.

89

5. Disk commands BeckerBASIC 64

The disk drive has a total of five buffers available, each identified by the

numbers 0 to 4:

NUMBER

0

1

2

3

4

CORRESPONDING MEMORY RANGE

768-1023

1024-1279

1280-1535

1536-1791

1792-2047

DDAOPEN opens the specified buffer for file access.

Format: DDAOPEN LF [,PN]

LF is the logical file number. Legal values for LF can range from 1 to 127.

PN is the buffer number, chosen from the list above. Buffer selection has

nothing to do with the later transfer of the file, so you can omit the PN

parameter fromDDAOPEN if you don't care which buffer is used.

The number of the buffer selected can be read after using the DDAOPEN

command (e.g., with DGETV LF,P$,1:PN=ASC(P$)). If you give an illegal

number for PN, or the corresponding buffer is being used, the DOS responds

with a NO CHANNEL error.

In most cases, all you need to do is open a direct access file. You can have a

maximum of four of these files open at a time. Watch out for opening different

filetypes at once (SEQ, PRG, etc.). You can have a maximum of two relative

files open at a time. If you overstep the maximum allowable number of files,

you'll get a TOO MANY FILES ERROR error messages.

Examples:

DDAOPEN 2 opens a direct access file with a logical file number of 2.

DDAOPEN 5,3 sets up a direct access file with a logical file number of 5 in disk

buffer 3.

DDAOPEN 1,0:DDAOPEN 2,2:DDAOPEN 3,0 leads to a NO CHANNEL

ERROR after the third DDAOPEN command, since buffer 0 is already open.

90

Abacus 5. Disk commands

DDAREADBL (101) (ci

DDAREADBL reads the desired track and sector (data block) from diskette into

the direct access file's buffer.

Format: DDAREADBL LF, TR, SC

LF is the logical file number. Legal values for LF can range from 1 to 127.

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the

values for track and sector in the table below:

TRACK

0 -

18 -

25 -

31 -

17

24

30

35

SECTOR

00

00

00

00

- 20

- 18

- 17

- 16

All other values or combinations of values result in an ILLEGAL TRACK OR

SECTOR ERROR.

Examples:

DDAREADBL 3,18,0 loads the data block at track 18, sector 0 (the first

directory block) into the buffer.

DDAREADBL 2,20,20 causes an ILLEGAL TRACK OR SECTOR ERROR,

since track 20 has no sector 20.

DDAREADBL 5,1,7:DDAREADBL 2,35,3 gets the data block in track 1, sector

7 and places it in the buffer assigned to the direct access file with logical file

number 5. Then data from track 35, sector 3 loads into the buffer assigned

logical file number 2.

After the data block loads into the buffer, you can read the data with the resident

commands (DGETV, DGETM, etc.). In addition, you can set a buffer pointer to

a memory location within the buffer, for reading or writing the data.

91

5. Disk commands BeckerBASIC 64

DDAPOINT (100) (c)

DDAPOINT sets the buffer pointer to a memory location within the buffer.

Format: DDAPOINT LF,PS

LF is the logical file number. Legal values for LF can range from 1 to 127.

PS is the desired position at which the pointer should be set Legal values

for PS can range from 0 (the first byte of the buffer) to 255 (the last

byte of the buffer).

Examples:

DDAPOINT 3,27 positions the pointer to the 28th byte of memory assigned by

logical file number 3.

DDAPOINT 7,255 puts the pointer on the last byte of the buffer controlled by

logical file number 7.

DDAREADBL 2,18,7:DDAPOINT 2,20:DGETV 2,G$,45 reads bytes 21 to 66

of track 18, sector 7 and places the bytes into the variable G$.

DDAWRITEBL (102) (c)

DDAWRITEBL writes the data block in the specified buffer to diskette.

Format DDAWRITEBL LF, TR, SC

LF is the logical file number. Legal values for LF can range from 1 to 127.

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the

values for track and sector in the table below:

TRACK

0 -

18 -

25 -

31 -

17

24

30

35

SECTOR

00 -

00 -

00 -

00 -

- 20

- 18

- 17

- 16

92

Abacus 5. Disk commands

All other values or combinations of values result in an ILLEGAL TRACK OR

SECTOR ERROR.

NOTE: To store the current data block, you can send it to diskette with PRINT*.

Examples:

DDAWRTTEBL 2,1,0 writes the contents of the buffer assigned logical file

number 2 to the data block starting at track 1, sector 0.

DDAPOINT 5,122:PRINT#5,ftDATAlt;:DDAWRITEBL 5, 25, 7 sets up the

direct file access to the data buffer assigned logical file number 5, starting at the

123rd byte. Then the buffer contents are saved to track 25, sector 7.

5 'DISK RENAMER CHANGES YOUR DISK NAME THROUGH DIRECT ACCESS'

10 INPUT"NEW DISKETTE NAME:";DN$

20 DN$=LEFT$(DN$,16):'KEEP NAME DOWN TO SIXTEEN CHARACTERS'

30 :

40 DDAOPEN 1:'OPEN DIRECT ACCESS FILE'

50 DDAREADBL 1,18,0:'LOAD FIRST DIRECTORY BLOCK'

60 DDAPOINT 1,144:'POSITION TO DISK NAME'

70 PRINT#1,DN$;:'WRITE NEW NAME TO BUFFER'

80 DDAWRITEBL 1,18,0:'WRITE DATA BACK TO DIRECTORY BLOCK'

90 DCLOSE 1:'CLOSE FILE'

Normally, you name a diskette once-when you format a diskette. The program

above lets you change the name of your diskette, without any loss of data,

anytime you want. NOTE: Type this program in carefully.

DDABLALLOC (103) (c)

DDABLFREE (104) (c)

Now that you know the essentials of direct access and data control,

BeckerBASIC has two DOS commands which allocate and free up diskette

memory.

DDABLALLOC allocates data in a specific track and sector on the BAM (Block

Availability Map). DDABLFREE frees memory in a specific track and sector.

Format DDABLALLOC TR, SC:... :DDABLFREE TR, SC

93

5. Disk commands BeckerBASIC 64

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the

values for track and sector in the table below:

TRACK

0 -

18 -

25 -

31 -

17

24

30

35

SECTOR

00 -

00 -

00 -

00 -

- 20

- 18

- 17

- 16

All other values or combinations of values result in an ILLEGAL TRACK OR

SECTOR ERROR.

Attempts to re-allocate diskette memory already allocated result in the error

message NO BLOCK. The third and fourth parameters of this error list the next

available data block (the next highest track and sector).

Examples:

DDABLALLOC 12,19 allocates the data block at track 12, sector 19 in the

BAM.

DDABLFREE 2,7 frees up memory in the block at track 2, sector 7.

DDABLALLOC 18,0 causes the error message 65,NO BLOCK,18,10. This

means that the data block at track 18, sector 0 are already allocated with the first

directory entry. The next free block is in track 18, sector 10.

The following command sequence below lets you isolate the track and sector

number of the next available data block from the error message. The error

message is stored in the variable DS$ for later retrieval (e.g., with DSTATUS

DS$):

10 IF VAL(DS$)=65 THEN SP=VAL(MID$(DS$, 13, 2))

20 SK=VAL(MID$(DS$,16,2)):ENDIF

30 ...

If no free data block exists (i.e., there is no next available block), TR and SC are

both set to zero.

94

Abacus 5. Disk commands

5.6 Disk memory access

The 1541 disk drive has its own disk operating system (DOS); which means it

can perform its disk operations without the computer's support. In addition to

the DOS, which is stored in ROM, there are two kilobytes ofRAM allocated for

working memory and buffer memory. The following commands let you read

disk drive memory (both RAM and ROM), write to disk drive RAM, and

execute your own machine language programs from within disk drive RAM.

DMYPEEK (239) (£1

DMYPEEK reads individual bytes from disk memory.

Format: VL - DMYPEEK (AD)

AD is the memory address whose contents are placed in the variable VL.

Values for AD can range from 0 to 65535.

Example:

BL=DMYPEEK(762)+256*DMYPEEK(764) assigns the number of free blocks

on the diskette currently in the disk drive to the variable BL.

DMYREADV (202) (f)

DMYREADV reads up to 255 bytes of a memory segment from disk memory

into a string variable.

Format DMYREADV VR$, LE, BA

VR$ is the name of the string variable assigned to the data.

LE,BA are the address of the first memory location to be read and the length of

the data being read, computed from BA. Values for BA range from 0 to

65535; values for LE range from 0 to 255.

Example:

95

5. Disk commands BeckerBASIC 64

DMYREADV K$,16,1936 reads the name of the disk currently in the drive and

places it in the variable K$. Characters following the filename are filled in with

<SHIFT><SPACE>. This can be used to check if the correct diskette is

currently in the drive.

DMYREADM (201) (c)

DMYREADM reads up to 255 bytes of a memory segment selected from disk

memory and places it in a range of memory in the computer.

Format: DMYREADM RA, LE, BA

RA is the address of the computer's memory at which the data should be

placed. Values for RA range from 0 to 65535.

LE,BA are the address of the first memory location to be read and the length of

the data being read, computed from BA. Values for BA range from 0 to

65535; values for LE range from 0 to 255.

Example:

DMYREADM 42000,37,725 reads the last error message sent by the disk drive

from address 725 to 761 (error message buffer memory) and places this segment

in the computer's memory starting at memory location 42000.

DMYPOKE (106) (c)

DMYPOKE writes individual values to disk drive RAM.

Format DMYPOKE BA, WT

BA BA is the address and WT is the value placed into the address. Values

WT for WT range from 0 to 255; values for ba range from 0 to 65535

(NOTE: Not all values for BA are effective, see your C64

Programmer's Reference Guide, or The Anatomy of the 1541 Disk

Drive from Abacus for memory locations).

96

Abacus 5. Disk commands

Example:

DMYPOKE 106,10 changes the number of disk retries before it displays an

error message to 10 accesses. The normal number of tries before an error

message appears is 5.

DMYWRITEV (108) (c)

DMYWRITE writes a string up to 34 characters long to the given disk memory

range.

Format: DMYWRITEV FA, SD$

FA is the address at which the data is written in disk memory. Values for

FA range from 0 to 65535.

SD$ is the string to be sent to disk memory. Values for SD$ range from 1 to

34 characters. Strings longer than 34 characters result in a STRING

TOO LONG ERROR.

Example:

DMYWRITE 1024,S$:DMYWRITEV 1024+LEN(S$),D$ places the combined

contents of S$ and D$ to disk buffer 1, starting at memory address 1024.

DMYWRITEM (107) (c)

DMYWRITEM writes up to 34 bytes of consecutive computer memory into a

given area of disk memory.

Format: DMYWRITEM FA, RA, LE

FA is the address of disk memory at which the data starts. Values for FA

range from 0 to 65535.

RAJJB are the starting address of computer memory of the data sent to disk

memory (RA) and the length of the data (LE) starting at RA. Values for

RA range from 0 to 65535. Values for LE range from 1 to 34.

97

5. Disk commands BeckerBASIC 64

Example:

DMYWRITEM 1536,45000,20 places the memory from location 45000 to

location 45019 into disk data buffer 3 (location 1536).

When you want to execute machine language commands stored in disk memory

or on diskette, you can start these from the computer using the following

commands.

DMYEXEC (109) (c)

DMYEXEC runs a machine language program found in disk RAM or ROM

starting at the specified memory address. The machine language program must

be ended with an RTS (Return from Subroutine).

Format DMYEXEC SA

SA is the starting address of the machine program set for execution. Values

for SA can range from 0 to 65535.

Example:

DMYEXEC 49597 branches to disk memory and deletes the command string

buffer in the disk drive.

DDABLEXEC (105) (cl

DDABLEXEC loads the contents of the given data block into the predetermined

direct access file disk memory (see Section 5.5). The contents are then executed

as a machine language program. Like DMYEXEC, the machine language

program must be concluded with an RTS (Return from Subroutine).

Format: DDABLEXEC LF, TR, SC

LF is the logical file number set in DDAOPEN (see Section 5.5). Legal

values for LF can range from 1 to 127.

98

Abacus 5. Disk commands

TR,SC are the track (TR) and sector (SC) of the desired data block. Use the

values in the table below for track and sector

TRACK

0-17

18 - 24

25 -30

31 -35

SECTOR

00 -

00 -

00 -

00 -

- 20

- 18

- 17

- 16

All other values or combinations of values result in an ILLEGAL TRACK OR

SECTOR ERROR.

Example:

DDABLEXEC 3,14,19 loads the machine language program at track 14, sector

9 to the data buffer assigned logical file number 3, and starts the program.

99

Abacus 6. Structured programming

6. Structured programming

Most large BASIC programs are unreadable. That is, their listings are difficult to

read for style or program flow. This chapter discusses the structured

programming commands of BeckerBASIC.

Along with an extended IF command and a special command for multiple-

choice (SELECT), BeckerBASIC offers you three new loop types which allow

more flexible programming than FOR/NEXT: WHILE/DO/ENDDO,

REPEAT/UNTIL and LOOP/LPEXTTIF/ENDLOOP.

With the exception of SELECT/ENDSEL, this chapter lists six preset constructs

for simpler nested loop programming. For an introduction to nesting, here's an

example written in BASIC 2.0.

10 FOR Zl=l

20

30

40

50

60

70

FOR Z2

FOR

; ...

; ...

: NEXT

TO 10

=1 TO 10

Z3=l TO 10

Z3

: NEXT Z2

80 NEXT Zl

This routine consists of three nested FOR/NEXT loops. The innermost loop

executes lines 30 to 60. The second nested level runs lines 20 to 70, and the

topmost level from line 10 to 80.

As you can see from the above example, the program becomes much more

readable when you indent each loop level. The colons at the beginning of lines

20 to 70 are necessary so the interpreter ignores the spaces following them.

This chapter introduces new programming techniques and commands in

BeckerBASIC, as well as demonstration programs.

101

6. Structured programming BeckerBASIC 64

6.1 Comments

BeckerBASIC has two extended versions of the BASIC 2.0 REM command.

These versions use the apostrophe (') and quotation mark (").

You must place commentary between the' or". There must be a colon before or

after the commentary. Also, you cannot mix the two characters as comment

markers (" and', or' and").

The major advantage of these comment markers over REM is the flexibility of

comments: You can place comments between commands, instead of at the end

of a command line, or on a separate line.

Examples:

RIGHT: 100 A=1:B=3:'DISPLAY A':PRINT A:'DISPLAY B':PRINT B:'READYf

WRONG: 100 A=1:B=3:'DISPLAY A'PRINT A 'DISPLAY B' PRINT B

'READY':'NO COLONS'

WRONG: 100 A=1:B=3:'DISPLAY A :PRINT A 'DISPLAY B' PRINT B

'READY':'FIRST COMMENT NOT ENCLOSED'

WRONG: 100 A=1:B=3:"DISPLAY A':PRINT A 'DISPLAY B' PRINT B

'READY':'FIRST COMMENT OPENS WITH A QUOTE, CLOSES WITH AN

APOSTROPHE'

102

Abacus 6. Structured programming

62 Labels and calculated line numbers

GOTO

GOSUB

RUN

RESTORE

ON

(001)

(002)

(005)

(003)

(174)

(c)

(c)
(c)

(c)
(c)

Throughout the BeckerBASIC program disk you'll find most of the comments

typed in between apostrophes. The quotation mark can be used as a comment

marker, but it is also used for defining labels. The jump commands GOTO,

GOSUB, etc. only function in BASIC 2.0 through the use of constants (e.g.,

GOTO 100, GOSUB 350). Commands like GOTO 2*A+B or GOTO

"OUTPUT1 don't run in BASIC 2.0. The first of these two (GOTO 2*A+B)

handles the branch to a calculated line number. The second (GOTO

"OUTPUT") looks for a label. Both these items are executable in BeckerBASIC

thanks to the GOTO, GOSUB, RUN, RESTORE and ON commands.

Note that RESTORE also sets positions for DATA lines. While the DATA

pointer of BASIC 2.0 moves only to the first DATA statement, BeckerBASIC

lets you position the DATA pointer to any DATA statement, and any section of

a program. This allows the use of calculated line numbers and labels (e.g.,

RESTORE 12+A or RESTORE "BLOCK").

The ON command is an extended version of BASIC 2.0's ON command (ON

GOTO/ON GOSUB). Constants, calculated line numbers and labels can be

combined here (e.g., ON A GOTO 100, "MARKl",2*CR+7).

Calculated line numbers may use any mathematical expressions. You can even

use GOTO SIN(A) or GOSUB SQR(COS(B)). The only limit is that you stay

within the legal values (from 0 to 63999). If you go beyond these values, the

computer returns an ILLEGAL QUANTITY ERROR (values lower than 0) or a

SYNTAX ERROR (values higher than 63999). Results containing decimal

numbers automatically round off to integers (BeckerBASIC removes the

decimal places).

Any alphanumeric expression can be used as a label (e.g., GOTO

MID$(A$,1,2), GOSUB "MARKIT" or RESTORE A$+B$.

103

6. Structured programming BeckerBASIC 64

Three conditions are required for labels:

1) The label must be enclosed in quotation marks (").

2) The label must begin a program line.

3) A colon separates the label from the rest of the program line.

Examples:

5 'LABEL DEMO'

10 A=10*B+7:GOSUB "OUTPUT"

50 PRINT"THIS IS THE MAIN PROGRAM, AND SHOULD APPEAR AFTER THE";

60 PRINT"OUTPUT SUBROUTINE.":PRINT" "

70 END

100 "OUTPUT":PRINT"THIS IS THE ";CHR$(34);"OUTPUT";CHR$(34);

110 PRINT"SUBROUTINE AND SHOULD APPEAR FIRST. A=";A:PRINT:RETURN

5 'RESTORE DEMO'

10 A$(1)="BLOCK1":A$(2)="BLOCK2":A$(3)="BLOCK3"

20 INPUT"PLEASE SELECT A BLOCK NUMBER (1-3) AND PRESS <RETURN>";BN

30 RESTORE A$(BN):'MOVE TO DESIRED BLOCK'

40 :

50 READ DA$

60 PRINT DA$

1000 "BLOCK1":DATA "DOG"

1010 DATA

1100 "BLOCK2":DATA "CAT"

1110 DATA

1200 "BLOCK3":DATA "MOUSE"

1210 DATA

1 'CALCULATED LINE DEMO'

5 PRINT"MAIN MENU"

10 PRINT"MODULE 1: 1"

20 PRINT "MODULE 2: 2"

30 :

40 INPUT"PLEASE SELECT 1 OR 2,PRESS <RETURN>:";YC

50 IF YC<1 OR YC>2 THEN END

60 'JUMP TO LINE 1000 (YC=1) OR LINE 2000 (YC=2)'

70 GOTO YC*1000

1000 PRINT"YOU CHOSE OPTION 1."

2000 PRINT"YOU CHOSE OPTION 2."

104

Abacus 6. Structured programming

6.3 Branch structures

IF

THEN

ELSE

ENDIF

(110)

(111)

(112)

(113)

(c)

(c)
(c)

(c)

These control structures are extensions of BASIC 2.0's IF/THEN.

Format: 10 IF [CONDITION] THEN 'DO THIS'

20 [ELSE]'OTHERWISE, TRY ALTERNATE'

30 ENDIF

If the condition following the IF is fulfilled, the program executes the THEN. If

the condition is unfulfilled at IF, the program looks for the ELSE and executes

the section stated at ELSE. When ELSE is omitted, the program continues after

the ENDIF.

As you can see from the format, the IF/THEN/ELSE/ENDIF can be used over

several program lines.

There are a few points to keep in mind when working with the BeckerBASIC

version of IF/THEN:

1) BeckerBASIC requires the ENDIF (i.e., it must be placed at the end of

every IF sequence). If you leave out ENDIF, the interpreter usually

responds with a CONSTRUCT NOT CLOSED ERROR.

2) A colon must precede the ELSE nad ENDIF instructions, unless one of

these instructions is at the beginning of a program line.

3) There should be no line number immediately after THEN or ELSE in

the same line. If you must do this, the POPIF command must be used.

For example, the BeckerBASIC equivalent of IF A=l THEN 1000 is:

IF A=l THEN POPIF:GOTO 1000:ENDIF

105

6. Structured programming BeckerBASIC 64

If the interpreter finds an ELSE ofENDIF without a corresponding IF, the result

is an ELSE/ENDIF WITHOUT IF ERROR. A THEN without an IF returns a

SYNTAX ERROR.

Examples:

IF A=l THEN B=0:ELSE B=1:ENDIF makes variable B equal to 0 if variable A

equals 1; otherwise, variable B equals one.

IF WT=TZ THEN WB=7:ENDIF exits through ENDIF in either case, since

there is no ELSE.

100 IF W$=MID$(AB$,4,2) THEN SCPRINT W$

110 ELSE W$=M":ENDIF

If the condition is fulfilled, then the string W$ appears on the screen, otherwise

the variable W$ becomes a null string.

100 IF AF$="I" THEN

110 GOSUB "INPUT"

120 ELSE GOSUB "OUTPUT"

130 ENDIF

This can improve the readability of a program (note the GOSUB in line 110).

IF/ENDIF constructs can be nested. The maximum nesting depth can

theoretically be 255 levels.

LEVELIF (264) (c)

LEVELIF returns the current nesting depth of IF/THEN commands.

Format: VT=LEVELIF

VT can have values ranging from 0 (no nesting) to 255 (maximum nesting

depth).

106

Abacus 6. Structured programming

POPIF (208) (c)

You can exit a loop level at any time using the POPIF command. POPIF simply

resets the pointer to the next nesting level up. Before or after POPIF, there must

be a loop jump (e.g., a GOTO).

Format: POPIF

SELECT

CASE

OTHER

ENDSEL

(122)

(123)

(124)

(125)

(c)
(c)
(c)

fc)

SELECT/ENDSEL is basically an extended and easily modified version of the

IF/ENDIF structure.

Format: 10 SELECT AW

20 CASE Wl, ...:

30 CASE W2, W3, ...:

40 ...

50 OTHER ...

60 ENDSEL

AW is the numerical expression used by the SELECT command in line 10.

Values for AW range from 0 to 255. Values beyond this range result in

an ILLEGAL QUANTITY ERROR.

The value in AW determines the CASE command branched to by SELECT.

Individual CASE statements can theoretically contain as many values as you can

fit on one program line (the total number of CASE commands is limitless).

If one of the compared values goes over AW, the program executes the line

following the highest CASE command. If the interpreter finds a new CASE, the

program looks for ENDSEL before it continues on. If no CASE value matches

AW, the command(s) listed following OTHER executes.

ENDSEL must conclude the SELECT area. OTHER is an optional command.

107

6. Structured programming BeckerBASIC 64

NOTE: CASE, OTHER and ENDSEL must be found by the interpreter at the

beginning of a program line. Indentation and leading colons are not allowed.

Examples:

5 INPUT"TYPE A NUMBER - 1,4,7 OR 19";BE

10 SELECT BE

20 CASE 1:BE=BE*2

30 CASE 7:BE=BE-3

40 CASE 19:BE=9/BE

50 CASE 4:BE=BE+21

60 ENDSEL

70 PRINT BE

If BE is equal to 1,7,19 or 4, then the program branches to the appropriate

CASE command's equation. The program ends with the ENDSEL command

(line 60).

5 A=1:INPUT"NUMBER";CW

10 SELECT A*CW+7

20 CASE 2,4,7/9,117:GOSUB"SUBROUTINEl"

30 CASE 1,18,22:GOSUB"SUBROUTINE2"

40 OTHER GOSUB"SUBROUTINE3"

50 ENDSEL

60 END

70 "SUBROUTINE1":PRINT"THIS IS SUBROUTINE!":RETURN

80 "SUBROUTINE2":PRINT"THIS IS SUBROUTINE2":RETURN

90 "SUBROUTINE3":PRINT"THIS IS SUBROUTINE3":RETURN

The result of the equation A*CW+7 moves the program to the different

subroutines. A result of 2,4,7,9 or 117 branches to SUBROUTINE1. A result of

1,18 or 22 branches to SUBROUTINES Any other result branches to

SUBROUTINE3.

5 INPUT"NUMBER";WB

10 SELECT WB

20 CASE 1,3,5:A=1

30 CASE 2,4,6:A=2

40 ENDSEL

50 PRINT"A= ";A

This program can be simulated with an IF/ENDIF construct

10 IF (WB=1 OR WB=2) OR (WB=5) THEN A=1:ENDIF

108

Abacus 6. Structured programming

20 IF (WB=2 OR WB=4) OR (WB=6) THEN A=2:ENDIF

As you can see, this version is much harder to follow than the CASE/SELECT

version. SELECT may not necessarily be the most useful construct when

working with multiple conditions.

10 INPUT"NUMBER";KN

20 :

30 SELECT KN

40 CASE 1:WT$="SUNDAY"

50 CASE 2:WT$="MONDAY"

60 CASE 3:WT$="TUESDAY"

70 CASE 4:WT$="WEDNESDAY"

80 CASE 5:WT$="THURSDAY"

90 CASE 6:WT$="FRIDAY"

100 CASE 7:WT$="SATURDAY"

110 OTHER SCPRINT"BAD NUMBER. TRY AGAIN.11

120 ENDSEL

130 SCPRINT" "WT$

This routine reads the number you input and puts the weekday into the variable

WT$.

109

6. Structured programming BeckerBASIC 64

6.4 Loop structures

BeckerBASIC offers three loop types in addition to the BASIC 2.0 FOR/NEXT

loop: WHILE/DO/ENDDO, REPEAT/UNTIL and LOOP/LPEXITIF/

ENDLOOP. All three types differ from each other in the time at which

conditions execute. WHILE takes control at the beginning of the loop; REPEAT

waits until the end of the loop. LOOP works at any point in the loop.

WHILE

DO

ENDDO

(114)

(115)

(116)

(c)
(c)
(c)

A WHILE loop performs its task as long as a condition remains true and the

commands within the loop do not change (a FOR/NEXT construction runs only

once in any case).

Format: 10 WHILE ... [CONDITION] DO

20 ...

30 ENDDO

Like IF/THEN, WHILE/DO operates with any condition. As long as this

condition is true, the program commands between DO and ENDDO are

executed.

When the program encounters an ENDDO, it checks the current loop condition

between WHILE and DO. If this is still true, the commands between WHILE

and DO continue execution. On false conditions, the program continues at the

point following ENDDO.

If the WHILE condition is false after the first run, the program continues

immediately after ENDDO.

The DO command must immediately follow the WHILE, similar to IF/THEN.

ENDDO can occur at any point after DO and WHILE. If the interpreter finds a

DO without a WHILE, the result is a SYNTAX ERROR. An ENDDO without a

WHILE causes an ENDDO WITHOUT WHILE ERROR.

110

Abacus 6. Structured programming

WHILE/ENDDO loops can be nested up to 15 levels. Once nesting goes past the

fifteenth level, the interpreter responds with an OUT OF MEMORY ERROR.

Example:

10 INPUT"NUMBER (0-50)";AZ

20 ZP=0

30 WHILE NOT(ZP=AZ) DO

40 SCPRINT 2AZP:ZP=ZP+1

50 ENDDO

This routine displays exponents of 2 from 2*0 to 2M9. The WHILE loop runs

until AZ equals to ZP.

LEVELWHL (266) (f)

LEVELWHL returns the current nesting depth of WHILE/ENDDO loops.

Format: VT = LEVELWHL

VT can range from 0 (no WHILE/ENDDO loop structures) to 15

(maximum nesting level).

POPWHL (205) (c)

You can exit any loop level at any time with the POPWHL command. Directly

after POPWHL, GOTO can be used to exit the loop. POPWHL clears the

WHILE stack of the currently stored loop value.

Format: POPWHL

REPEAT (117) (c)

UNTIL (118) (ci

Unlike the WHILE/ENDDO command, the REPEAT/UNTIL loop tests for the

end of the loop. REPEAT/UNTIL always executes at least once.

Ill

6. Structured programming BeckerBASIC 64

Format: 10 REPEAT . . .

20 ...

30 UNTIL [CONDITION]

The program commands found in between REPEAT and UNTIL execute until

the condition following UNTIL is true. As soon as this condition is met, the

program continues after the UNTIL. REPEAT and UNTIL can be placed on

different lines of the program.

If the interpreter finds an UNTIL without a previous REPEAT, the result is an

UNTIL WITHOUT REPEAT ERROR.

REPEAT/UNTIL can be nested in up to 15 levels. Going past 15 levels causes

an OUT OF MEMORY ERROR.

Example:

100 REPEAT

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

. B=0

REPEAT

: C=0

: REPEAT

: D=0

: REPEAT

: E=0

: REPEAT

: SCPRINT A+B+C+D+E

: E=E+1

: UNTIL E=l

: D=D+1

: UNTIL D=2

: C=C+1

: UNTIL E=3

: B=B+1

: UNTIL B=4

280 A=A+1

290 UNTIL A=5

This program contains five separate REPEAT/UNTIL constructs, and displays

thft niimhp.r of p.Ypr.iitinnQ nn thp. crrranthe number of executions on the screen.

112

Abacus 6. Structured programming

LEVELREP (265) (f)

LEVELREP lists the current REPEAT/UNTIL loop's nesting level.

Format: VT = LEVELREP

VT can range from 0 (no REPEAT/UNTIL loop) to 15 (maximum number

of loops).

POPREP (204) (c)

You can exit a REPEAT/UNTIL loop at any time using the POPREP command.

Directly after POPREP, GOTO can be used to exit the loop. POPREP clears the

REPEAT stack of the currently stored loop value.

LOOP

LPEXITIF

ENDLOOP

(119)

(120)

(121)

(c)

(c)

(c)

LOOP/ENDLOOP lets you set up common types of loops. The branch can be

designated at any time, which makes LOOP/ENDLOOP extremely flexible, and

useful when no other loop type will do the job.

Format: 10 LOOP .. .

20 ...

30 [LPEXITIF ... 'CONDITION']

40 ...

50 ENDLOOP

The program data between the LOOP and ENDLOOP executes until the

condition following LPEXITIF is fulfilled.

If LPEXITIF or ENDLOOP is used without a previous LOOP, the result is an

LPEXITIF/ENDLOOP WITHOUT LOOP ERROR.

LOOP/ENDLOOP can be nested up to 15 levels. Going past 15 levels causes an

OUT OF MEMORY ERROR.

113

6. Structured programming BeckerBASIC 64

Example:

10 LOOP

20 INPUT"STRING:n;ZK$

30 LPEXITIF ZK$="ENDn

40 SCPRINT "LENGTH:H;LEN(ZK$)

50 ENDLOOP

60 ...

This example lists the number of characters you type in at the prompt. You

could have done this with an IF/THEN/POPIF/ENDIF sequence, but this

program code performs the same job with a little more elegant style.

LEVELLP (267) (f)

LEVELLP lists the current LOOP/ENDLOOP loop's nesting level.

Format VT = LEVELLP

VT can range from 0 (no LOOP/ENDLOOP loop) to 15 (maximum number

of loops).

POPLP (207) (c)

POPLP lets you exit a loop at any time. Like the other POP commands, POPLP

takes the stored value from the LOOP stack. Once the loop exits, you must

branch with another command, like GOTO.

6.5 Procedures

The name procedure is taken from the Pascal programming language. A

procedure is nothing more than a special subroutine. Unlike GOSUB/RETURN,

all the variables defined within a procedure are local (i.e., only the procedure

can use these variables). By the same token, procedures cannot access variables

within the main program. Procedures allow you to create individual program

sections that can be used with other programs without a conflict of variables.

114

Abacus 6. Structured programming

Labels are a basic method of getting into a procedure (see Section 6.2).

The limits of extra variable ranges mean more work in some respects. The

procedure may require one or more variable values from the program calling it

(this is almost always the case), so you have to add these variables to the

procedure.

This means that you have to pick and choose which variable the procedure needs

from the main program. As you'll see from the descriptions below, these

definitions are simpler than they might sound here.

NOTE: Writing procedures can become very complicated, especially when

manipulating or setting stacks and vectors. If your program stops in the middle

of a procedure with an error, before making any program changes, RESET or

NEW the computer, then retrieve the program with POLD (this resets pointers

correctly).

PROCEDURE

PROCEND

CALL

(126)

(127)

(128)

(c)

(c)
(c)

Every procedure definition begins with the PROCEDURE command and ends

with PROCEND. Both commands must appear at the beginning of a program

line.

The name of the procedure follows the PROCEDURE command. You can give

it any name you wish. The only stipulations are that you place the procedure

name in quotation marks, and that the procedure name occupies less than a

program line in length.

The variables follow the name, each separated by commas and all variables

placed in parentheses.

Next comes the procedure itself - the commands you want executed by the

procedure.

The procedure concludes with the PROCEND command. Like PROCEDURE,

this must start at the beginning of a program line.

115

6. Structured programming BeckerBASIC 64

A typical procedure looks like this:

100 PROCEDURE...(HEADER)

110 ...

120 ... (PROCEDURE COMMANDS)

130 ...

140 PROCEND (END MARKER)

When the interpreter finds a PROCEDURE command within a running program,

those program lines execute up until the PROCEND command.

Procedures can be inserted at any point within a program (except between

control structures). A PROCEND without a preceding PROCEDURE causes a

PROCEND WITHOUT PROCEDURE ERROR.

Procedures are called using the CALL command. If a procedure doesn't exist,

the computer responds with an UNDEFINED PROCEDURE ERROR.

Format: CALL "NAME", (VARJJST)

"NAME" can be any string. It is the name of the procedure you want

called.

VARJJST is the set of variables you want used. A variable list is

necessary when variables must be used by both the main

program and the procedure. i.e. (a$,b$,x;z$,q)

Variables within the PROCEDURE list can be broken into two categories,

separated by semicolons. The contents of the variables to the left of the

semicolon are received from the CALL. The variables to the right contain the

values to be returned.

In CALL'S list the values to the left of the semicolon are the values to be passed

to the procedure; the right hand variables will contain the values to return.

100 PROCEDURE "TEST",(RW,CL,LE;EG$)

110 CRSET ZE,SP:CRON:KBGETV EG$,LE:CROFF

120 PROCEND

This procedure takes an input LE characters long from column CL and row RW,

and places it in the variable EG$. A CALL for this procedure can look like this:

116

Abacus 6. Structured programming

CALL "TEST",(10,2,17;W$)

A string 17 characters long is taken from column 2, row 10. This is placed in the

variable W$ in the main program.

The common format looks something like this:

10 CALL "...", (W1,W2%,W3$, ...;A1,A2%,A3%,...)

100 PROCEDURE "...", (Bl,B2%,B3$, ... ;T1,T2%,T3$, ...)

NOTE: The variables set for access by CALL must be defined BEFORE the first

procedure call. Even if you just assign values of zero, that will work fine.

The number of variables or number of values is limited to the maximum length

of the program line. The result of missing parameters can be inconvenient at

best In any case, the semicolon must remain in PROCEDURE, even if the

variables themselves are missing, e.g., PROCEDURE !tABC",(A,B;),

PROCEDURE "CBA",(;D,E), or PROCEDURE tfBAC!l,(;).

It is also important that variables and values shared by CALL and

PROCEDURE be in the same order and be the same type (e.g., don't try passing

a string variable to a number). Errors of this type result in a PROCEDURE-

PARAMETER ERROR.

There are some things about variable arrays and array elements to keep in mind.

These explanations are for parameter passing to a procedure only, not for the

return to the main program:

1) Individual array elements can be treated like normal variables:

100 CALL "NAME", (A(10),B$(3,7) ,...)

500 PROCEDURE "NAME",(BC,G$,...)

2) Larger numbers of arrays present problems. Here the first and last

element of the desired array range, separated by a minus sign (-), must

be given. If, for example, you want elements 7 through 19 of the array

FT passed, then the code would look like this:

CALL "NAME",(FT(7)-FT(19),...)

The example below gives all 28 elements of the string array AG$:

117

6. Structured programming BeckerBASIC 64

CALL "NAME",(AG$(0)-AG$(27),...)

NOTE: An array passed to a procedure must be defined before passing to the

procedure using the DIM statement If you don't do this, the program may crash.

The corresponding variable array in the procedure must be predefined in the

procedure header according to the last array element (again, using DIM). The

procedures for the above two examples might look something like this:

PROCEDURE "NAME",(DA(12),..■)

PROCEDURE "NAME",(SR$(27),...)

A little trick makes variable dimensioning feasible:

PROCEDURE "NAME",(DM,FL%(DM),...)

This assigns the integer array FL% a size of variable DM. When the procedure

is called by the command CALL "NAME",(9,DW%(0)-DW%(9),...), FL% is

assigned ten elements and is filled with the elements of the array DW%(..).

Naturally, you can assign the array larger dimensions than needed; the rest of

the'array fills with null elements.

BeckerBASIC uses only two controlling factors in array passing, type control

and length control. Type control requires only that you make sure that arrays are

of the same type when setting them up for passing. In other words, putting real

into integer and vice versa is illegal. This results in a PROCEDURE-

PARAMETER ERROR.

The length control simply compares the array lengths, making sure that the one

has sufficient room to take on the other. Dimension control is impossible. One

thing you can do here is convert multidimensional arrays to smaller dimensions,

and vice versa.

Example:

10 CALL "NAME", (W(0,0)-W(3,3) , ...)

100 PROCEDURE "NAME",(FA(15),...)

118

Abacus 6. Structured programming

The two-dimensional array W(..,..) transfers its contents into the single-

dimensional array FA(...). You can also do the reverse:

10 CALL "NAME",(FA(15),...)

100 PROCEDURE "NAME", (W(3,3) , ...)

The one-dimensional array FA(..) transfers to the two-dimensional array W(..).

The first line of the note about passing arrays also applies to passing arrays from

procedure to the main program. The procedure return to the main program is

almost the same, with one exception: All arrays and simple variables returned

must be predefined before the passing takes place. After CALL and the

semicolon you give the first element of the array whose values you want passed

(default is element 0). See the example below.

The example at the end of this chapter, WINPROC, is a complete demonstration

of structured programming using procedures. Below are two shorter examples of

procedures:

10 DIM TC$(15),ZN%(25):AK=0

20...

100 CALL "NAME",(12*4+CG,3,TC$(9)-TC$(11);AK,ZN%(6))

500 PROCEDURE "NAME", (AN,HV,AM$(HV);Z%,D%(3)-D%(17))

NOTE: The term 12*4+CG had to be predefined before CALL (e.g., with

CG=0). The string array AM$ is dimensioned with a size of HV. The variable

returned is given to the real variable AK by the integer variable Z%. This is

handled as a simple variable. The element of the integer array D% must be

converted into an integer array (ZN%; this fills in the seventh element).

Remember: The variable AK and the array ZN% must be defined / dimensioned

before the procedure call (see program line 10 above):

10 DV(2,0)=7:DV(l,2)=138

100 CALL"NAME",(DV(0,0)-DV(2,2);)

110 ...

120 PROCEDURE "NAME",(MB(8);)

This example converts the two-dimensional array DV to the one-dimensional

array MB. MB(2) contains the value 7, MB(7) the value 138.

119

6. Structured programming BeckerBASIC 64

Remember: The semicolon in the variable list must be given, even if no values

appear to the right of the semicolon.

Procedures can be nested like loops. Nesting means in this case that a procedure

can be called from within another procedure during execution of that procedure.

This is particularly interesting when you want to create a self-calling, or

recursive procedure.

You can have a maximum nesting level of 15. If you go past this level, the

computer responds with an OUT OF MEMORY ERROR.

NOTE: On every procedure call, a new area of variable memory must be set

aside, so nesting procedures can make great demands on the memory. Keep this

in mind when writing recursive procedures. If, for example, you have defined

three real variables within a procedure, and you plan on making procedures self-

calling down to the seventh level, necessary variable memory for three variables

is 147 bytes.

LEVELPROC (268) (f)

LEVELPROC returns the current nesting depth of procedures:

Format: VT = LEVELPROC

VT can range from 0 (no procedure nesting) to 15 (maximum nesting

level).

POPPROC (206) (c)

POPPROC lets you exit a procedure before it's done executing. POPPROC

clears the variable range of the procedure in BASIC memory and retains the last

called procedure from the procedure stack. Ajump command lets you go to any

point in the program.

Format: POPPROC

The formats of the following three commands are the same as those in Section

5.3.3 (Overlays). Procedures can also be loaded, saved, etc. without loss of data.

120

Abacus 6. Structured programming

DSAVEPROC (129) (cl

DSAVEPROC saves a procedure to diskette under the assigned name.

Format DSAVEPROC NA$

NA$ is the name of the procedure to be saved. This string can be a maximum

length of 16 characters (the disk drive cannot handle longer names).

Although you can save procedures with DSAVEL (see Section 5.3.1),

DSAVEPROC is easier to use.

Example:

DSAVEPROC "TEST" saves the procedure TEST to diskette.

DLOADPROC (130) (cl

DLOADPROC loads a saved procedure into memory without destroying any

data. The difference between this command andDOVERLAY (Section 5.3.3) is

that the procedure is attached to the program, rather than interspersed with the

running program.

All procedures containing the same line numbers as the running program can be

easily loaded into the running program. Once it happens, you cannot edit the

two programs in memory; but you can remove the procedure with the

DELPROC command.

DLOADPROC loads like any normal program or program section.

Format DLOADPROC NA$

NA$ is the name of the procedure to be loaded. This name can be a

maximum length of 16 characters.

Example:

DLOADPROC!tOUTPUT" loads the procedure OUTPUT into memory and

appends the procedure to the currently running program.

121

6. Structured programming BeckerBASIC 64

DELPROC (131) (c)

DELPROC deletes a procedure found within a program, without loss of

variables.

Format DELPROC NA$

NA$ is the name of the procedure you wish deleted. To delete individual

program sections instead, use the PDEL (with variable loss; see Section

2.1.1) or LDEL (no variable loss; see Section 5.3.3).

Example:

DELPROC "OUTPUT1 deletes the OUTPUT procedure from the running

program.

If you want to use a procedure in an extreme case during editing, use the

following:

DLOADPROC lfNAME":CALL "NAME",(...)DELPROC "NAME"

Now to demonstrate procedures, here is a practical example: Window design for

the Commodore 64.

Windows are normally rectangular screen areas into which information is

displayed or data is entered. One particular problem with windows is the

temporary storage of screen information. In addition, different window

parameters such as window size, position, etc. must be retained. Variables work

well for this, except that when you leave a procedure, the variables are lost

The solution to this problem lies in the memory range from 40960 to 48960

(free RAM).

The maximum number of simultaneously active windows is five. You can

change this parameter, like all other aspects of the program. The individual open

windows can overlap each other.

However, the nesting principle holds true here, i.e., before you can deactivate a

window part way down the nesting levels, the last active window(s) must be

closed as well.

122

Abacus 6. Structured programming

The program at the end of this section is on your distribution diskette under the

name WINPROC. It contains a total of five procedures:

WINOPEN Buffer storage of a window area

WINDEL Clear a window

WINPRINT Data output in a window

WININPUT Data input in a window

WINCLOSE Store a window area

NOTE: The window routines must be initialized at the beginning of a program

with POKE 45535,0.

The first step to creating a window is calling the WINOPEN procedure

(program lines 1070-1280). WINOPEN stores the necessary screen area in the

back of RAM memory. You must assign the starting position (upper left hand

corner of the window) and the horizontal and vertical orientation of the window.

The sequence for this orientation is starting line (1-25), starting column (1-40),

line length (1-40), column length (1-25).

If you no longer need the window, you can close the window you opened with

the WINCLOSE procedure (program lines 1320-1490).

The WINDEL procedure (program lines 1530-1610) prepares the screen area for

data input by clearing the area. WININPUT (program lines 1760-2100) lets you

enter any data into the window. The cursor can be moved anywhere in the

window with the cursor keys. The other key functions (colors, for example) are

also accessible. WININPUT treats the window area as a miniature "screen."

Pressing the <RETURN> key places the window contents in a one-dimensional

string array (one element per window line), and exits the procedure. To exit the

procedure and have the procedure ignore the data, press <SHIFT><RETURN>.

Remember: The input array must be dimensioned in the main program BEFORE

the procedure executes.

123

6. Structured programming BeckerBASIC 64

The WINPRINT procedure (program lines 1650-1720) writes the data in a one-

dimensional string array (one array per window line) to a window. The

parameters applying to WINDEL, WININPUT and WINPRINT also apply to

WINOPEN.

You now have a general background of window techniques. There are other

procedures in this program, though. You can, for example, remove the border

from a window, or move different windows around the screen.

WININPUT can be extended to perform other functions. For example, you

could make it scroll up or down, or include a special <cursor home>.

WARNING: These procedures contain no check for parameters. Adding this

kind of error checking should pose little problem for you, if you want it.

10 'WINPROC

100 'DELETE THESE LINES AFTER APPENDING TO ANOTHER PROGRAM'

110 :

115 CLS:LETTERON:CRCOL 1

120 SCPRINT AT 3,1;"THIS PROGRAM CANNOT START ON ITS OWN!"

130 SCPRINT AT 6,1;"IT IS INTENDED TO BE INTEGRATED"

140 SCPRINT AT 7,1;"WITH OTHER PROGRAMS YOU"

150 SCPRINT AT 8,1;"HAVE WRITTEN."

160 SCPRINT AT 17,6;"PLEASE PRESS A KEY."

165 WAITKEYA:END

170 :

180 :

190 :

1000 'WINDOW PROCEDURE'

1010 '(C) 1987 BY MARTIN HECHT'

1020 :

1030 'SAVED TO DISKETTE UNDER THE NAME WINPROC

1040 :

1050 :

1060 :

1070 PROCEDURE "WINOPEN",(WZ,WS,ZL,SL;)

1080 :

1090 WA=TEEK(45535):'CURRENT NUMBER OF WINDOWS'

1100 IF WA=5 THEN SCPRINT "TOO MANY WINDOWS!":POPIF:PROCEND

1110 ELSE WA=WA+1:POKE 45535,WA

1120 ENDIF

1130 :

1140 'SCREEN MEMORY BUFFER'

1150 IF WA=1 THEN BA=45505

1160 ELSE BA=DEEK(45535-WA*2+2)

124

Abacus 6. Structured programming

1170 ENDIF

1180 BD=PEEK(648)*256

1190 FOR AZ=WZ TO WZ+SL-1

1200 ZW=BD+(AZ-l)*40:TRANSFER ZW+WS-1,ZW+WS+ZL-2,BA-(ZL-1):BA=BA-ZL

1210 NEXT AZ

1220 :

1230 'PARAMETER STORAGE'

1240 DOKE 45535-WA*2,BA:'STARTING ADDRESS OF SCREEN BUFFER MEMORY'

1250 POKE 45525-WA,WZ:POKE 45520-WA,WS:'WINDOW STARTING POSITION'

1260 POKE 45515-WA,SL:POKE 45510-WA,ZL:'COLUMN /LINE LENGTHS'

1270 :

1280 PROCEND

1290 :

1300 :

1310 :

1320 PROCEDURE "WINCLOSE", (;)

1330 :

1340 WA=TEEK(45535):'CURRENT NUMBER OF WINDOWS'

1350 IF WA=0 THEN POPIF:PROCEND:ENDIF

1360 :

1370 'GET PARAMETERS'

1380 BA=DEEK(45535-WA*2):'BUFFER STARTING ADDRESS'

1390 WZ=TEEK(45525-WA):WS=TEEK(45520-WA):'WINDOW STARTING POS.'

1400 SL=TEEK(45515-WA):ZL=TEEK(45510-WA):'COLUMN / LINE LENGTH'

1410 :

1420 'RESTORE SCREEN AREA'

1430 BD=PEEK(648)*256:BA=BA+SL*ZL

1440 FOR AZ=WZ TO WZ+SL-1

1450 TRANSFER BA-(ZL-1),BA,BD+(AZ-1)*40+WS-l:BA=BA-ZL

1460 NEXT AZ

1470 :

1480 WA=WA-1:POKE 45535,WA:'NUMBER OF OPEN WINDOWS'

1490 PROCEND

1500 :

1510 :

1520 :

1530 PROCEDURE "WINDEL",(WZ,WS,ZL,SL;)

1540 :

1550 'CLEAR SCREEN AREA'

1560 BD=PEEK(648)*256

1570 FOR AZ=WZ TO WZ+SL-1

1580 ZW=BD+(AZ-l)*40:MYFILL ZW+WS-1,ZW+WS+ZL-2, 32

1590 NEXT AZ

1600 :

1610 PROCEND

1620 :

1630 :

1640 :

125

6. Structured programming BeckerBASIC 64

1650 PROCEDURE "WINPRINT",(WZ,WS,ZL,SL,AG$(SL-1);)

1660 :

1670 'DISPLAY DATA IN WINDOW

1680 FOR AZ=0 TO SL-l

1690 CRSET WZ+AZ,WS:SCPRINT AG$(AZ)

1700 NEXT AZ

1710 :

1720 PROCEND

1730 :

1740 :

1750 :

1760 PROCEDURE "WININPUT",(WZ,WS,ZL,SL;EG$(0)-EG$(SL-1))

1770 :

1780 KEYREPEATON

1790 ZE=WZ:SP=WS:'CURSOR IN WINDOW STARTING POS.'

1800 LOOP

1810 CRSET ZE,SP:CRON:WAITKEYA:GET TD$:CROFF

1820 SELECT ASC(TD$):'CURRENT INPUT'

1830 CASE 29:'CURSOR RIGHT'

1840 nCRn:IF NOT(SP=WS+ZL-1) THEN SP=SP+1

1850 ELSE IF NOT(ZE=WZ+SL-1) THEN SP=WS:ZE=ZE+1:ENDIF

1860 ENDIF

1870 CASE 157:'CURSOR LEFT'

1880 IF NOT(SP=WS) THEN SP=SP-1

1890 ELSE IF NOT(ZE=WZ) THEN SP=WS+ZL-1:ZE=ZE-1:ENDIF

1900 ENDIF

1910 CASE 17:'CURSOR DOWN'

1920 IF NOT(ZE=WZ+SL-1) THEN ZE=ZE+1:ENDIF

1930 CASE 145:'CURSOR UP'

1940 IF NOT(ZE=WZ) THEN ZE=ZE-1:ENDIF

1950 CASE 13:'ACCEPT DATA'

1960 GOTO "WUEB"

1970 CASE 141-.'CANCEL'

1980 GOTO "WEND"

1990 OTHER SCPRINT TD$;:GOTO "CR"

2000 ENDSEL

2010 ENDLOOP

2020 :

2030 "WUEB":'ACCEPT DATA'

2040 DIM EG$(SL-1)

2050 FOR AZ=0 TO SL-1

2060 SGETV EG$(AZ),ZL,WZ+AZ,WS

2070 NEXT AZ

2080 :

2090 "WEND":POPLP

2100 PROCEND

126

Abacus 6. Structured programming

Here is a practical application of this program (delete lines 100-160 from

WINPROC and add these lines). WZ/WS = starting line/starting column of

window; ZL/SL = line/column length:

100 POKE 45535,0:'DO NOT FORGET TO INCLUDE THIS'

110 WZ=5:WS=5:ZL=10:SL=10:DIM W$(SL-1)

120 CALL "WINOPEN",(WZ, WS, ZL, SL;)

130 CALL "WINDEL",(WZ,WS,ZL,SL;)

140 CALL "WININPUT",(WZ,WS,ZL,SL;W$(0))

150 CALL "WINCLOSE",(;)

By changing the parameters in line 110, you can make your window any size,

and enter any data in your window.

127

Abacus 7. GEOS

7. GEOS

GEOS operates in hi-res mode on the Commodore 64. The bitmap for GEOS

lies between memory locations 40960 and 48960. This memory range uses the

hi-res commands discussed in Chapter 8.

GEOS and hi-res commands can be used together. Both programming areas

have some similarities, but these two subjects require two separate chapters.

This chapter describes the creation of dialogue boxes and drop-down menus.

There is one thing you should remember when working with GEOS from

BeckerBASIC: All tables and strings sent to GEOS must end with 0 (CHR$(0)).

Not doing this can lead to a system error. Also note that the commands and

functions listed in this chapter are not accessible in the Input System. You will

have to switch to the Testing System with <CTRLxCommodore> to test your

program.

Since GEOS uses a different text coding from BASIC, you must convert any

text from Commodore ASCII to GEOS ASCII with the ASCGEOSW command

(see Section 7.3). By the same token, any text transferred from GEOS to

BeckerBASIC must be converted by the GEOSASCW command.

Not everything can be produced by the GEOS commands, even though it might

seem as if you can program some things at first glance. This can occur because

of memory layout, or for other technical reasons.

The ability or inability to program is connected with the differences between

BASIC program structures (especially BeckerBASIC) and GEOS program

structures. For example, it's technically impossible to edit icons from geoPaint.

This is because the icon control runs in "multitasking" mode, and the mouse

pointer must be freely movable during the entire program run, so the two items

interfere. You might be able to jump to another program using a keypress in

ONKEYGO (see Chapter 3).

With the help of a few programming tricks, you can simulate such important

GEOS functions as drop-down menus and dialogue boxes from BASIC. In both

cases, command control is given to GEOS then returned to BeckerBASIC.

129

7GEOS BeckerBASIC64

Drop-down menus and dialogue boxes present another problem. These both

need the second hi-res bitmap range starting at memory location 24576. This

area of memory needs to be protected. Use the PBCEND command to do this.

This reduces the available BASIC memory by almost eight kilobytes.

Both dialogue boxes and drop-down menus are best used with programs that

load other programs through overlay commands from diskette (see Section 5.3).

GEOSON (211) (c)
GEOSOFF (212) (c)

GEOSON switches on high-resolution graphics. It is identical to the HRON

function (see Chapter 8). GEOSOFF (identical to HROFF) turns off hi-res

graphics, and returns program control to the normal text screen.

Format: GEOSON:... :GEOSOFF

IMPORTANT: Before you use any GEOS commands, you must call the

GEOSON (or HRON) command. Otherwise, the result will be a system error.

Hi-res graphic drawing is impossible without these commands (the picture is

drawn first, then the graphic screen switches on).

The same rule applies to going from hi-res mode to the normal text screen. If

you want a text screen command (e.g., SCPRINT), you must switch off the hi

res screen with GEOSOFF (or HROFF). Again, failure to do this leads to a

system crash.

Remember these rules, you'll save yourself a lot of time, trouble and system

errors.

HRDEL (220) (c)

Once hi-res graphics are active, you'll want to clear the graphic bitmap. The

HRDEL command performs this function.

Format: HRDEL

130

Abacus 7.GEOS

HRGDCOL

HRPTCOL

HRGTCOL

(218)

(219)

(272)

(c)
(c)

(f)

These three commands handle colors in the hi-res bitmap. HRGDCOL sets the

background color, HRPTCOL sets the point color and HRGTCOL returns the

current hi-res colors.

Format: HRGDCOL Fl:... :HRPTCOL F2:... :FB = HRGTCOL (CD)

Fl is the color code you wish assigned to the unset points of the graphic.

Values for F2 range from 0 to 15 (see the PCOLOR command, Section

3.3).

F2 is the color code you wish assigned to the set points of the graphic.

Values for F2 range from 0 to 15 (see the PCOLOR command, Section

3.3).

CD sets the color status you want CD=0 returns the current point color;

CD=1 returns the current background color.

The border color can be changed with the BORDER command (see Section 3.3).

Here is a demonstration of hi-res graphic initialization:

100 GEOSON:'GRAPHICS ON'

110 HRDEL:'CLEAR BITMAP'

120 HRGDCOL 1:'BACKGROUND COLOR'

130 HRPTCOL 2:'POINT COLOR'

135 HRPLOT 160,100:HRPLOT 161,100:HRPLOT 162,100

140 WAITKEYA:GEOSOFF

Remember that HRON can be used instead of GEOSON to produce the same

result. See Chapter 8 for more commands in hi-res mode.

131

7. GEOS BeckerBASIC 64

7.1 Drop-down menus

GEOS puts its drop-down menu data into a table in memory. BeckerBASIC uses

this table. This code table can be created using the BeckerBASIC Drop-down

Menu Construction Set.

The Drop-down Menu Construction Set is an application program written in

BeckerBASIC. This program lets you set up your data in the correct form, and

place it at the correct location in the menu table. Once you have all your data in

place, the Construction Set displays a sample of your drop-down menu with all

the parameters you defined.

GEOS text appears in the menu in proportional type, so initially you may not get

the menu spacing correct If you make a mistake, tell the program N when it

asks if you want the menu saved.

The program then allows you to correct your data. When you finish editing your

data, the drop-down menu sample appears on the screen again. You can repeat

this procedure as often as you wish. When the menu is finished, and your

parameters are entered, the table is saved to disk under any name you wish for

later recall. The commands you require for recall are DLOADM (load a menu

table from diskette, see Chapter 5) and PDMENU described below.

PDMENU (210) fc)

PDMENU activates (displays) a drop-down menu and allows access using the

mouse pointer. The only additional parameter needed is an address.

Format PDMENU AD

AD is the starting address of the code table +95. If the table address starts

at location 24000, AD must contain the value 24095. The menu then

appears on the screen for easy selection. As soon as you click a menu

option, the option blinks and die menu closes (the hi-res screen restores

the area where the menu had been).

132

Abacus 7.GEOS

A sub-menu will appear below this menu item (a set of selections connected

with the menu item) for further selection. When you click on an item from a

sub-menu, both the sub-menu and the menu disappear, and the program

continues.

MENUCODE (271) (0

This function returns the code of the menu or sub-menu item you clicked.

Format: MC = MENUCODE (CD)

CD returns the number of either the clicked main menu item or the number

of the corresponding sub-menu item. Values for CD range from 0 to

10. CD=0 gives you the number of the clicked menu item in MC.

CD=1 returns the number of the sub-menu item.

The program can react to this data. Here is how the data reacts to menus, using

the ON GOSUB command:

100 ON MENUCODE(0) GOSUB 1000,2000,3000

1000 ON MENUCODE(1) GOSUB 1100,1200

2000 ON MENUCODE(1) GOSUB 2100,2200

3000 ON MENUCODE (1) GOSUB 3100,3200 ...

Line 100 reads the menu. If you click the first menu item, the program branches

to line 1000, where it checks for the sub-menu item selected. If you select the

second menu item, the program jumps to line 2000, where the sub-menu item

routine branches, and so on.

NOTE: If no sub-menu exists below a menu item, MENUCODE(O) returns the

value 0. If this occurs, MENUCODE(l) becomes the clicked menu item.

133

7. GEOS BeckerBASIC 64

7.1.1 Using the Drop-down Menu Construction Set

This program is on the distribution diskette under the name DDM.C.S, and can

be opened by double-clicking its icon from the deskTop. After the program

starts, it asks you where you want the data table placed.

Shorter menus can be easily stored in the cassette buffer (memory locations 828-

1023). Longer menus should be placed in the memory range starting at memory

location 24000 (directly under the second hi-res bitmap).

The next data requested is that of the main menu. First, you must determine the

number of menu items (1-10), then decide whether the menu should be

displayed horizontally or vertically. Next, the construction set needs the hi-res

position of the menu. Finally, the text for each item is requested.

Once you've entered this data, the program asks whether or not you wish to

create sub-menus. If so, you must enter the data for every menu requested.

When all data is ready, press any key to see your drop-down menu on the

screen.

Click on a menu item to end the display. The construction set asks if you like

the menu. If so, you must enter the name under which you want the code table

stored on diskette. If you answer the question with N, the program doesn't save

the data to diskette, but reserves it in memory for the moment.

When the program ends, after the data table is stored on diskette, the screen

displays a message on how to load and start your drop-down menu.

Try entering this data into the construction set program. Enter each value at the

prompt and press the <RETURN> key (don't type in the commas):

24200,5,0,80,60,218,73,GEOS,FILE,VIEW,DISK,SPECIAL,

N,Y,5,1,109,73,154,144,OPEN,DUPLICATE,RENAME,INFO,PRINT,

N,Y, 6,1,158, 73, 200,158,OPEN,CLOSE,RENAME,COPY,VALIDATE,FORMAT,N

This creates a familiar menu, the GEOS deskTop menu. To keep it simple, you

are asked above to enter the data for the second and fourth sub-menus only. If

you save this table to diskettee under the name PDMEX, you'd retrieve it in a

program as follows:

10 PBCEND 24199:'LIMIT MEMORY'

134

Abacus 7. GEOS

20 DLOADM "PDMEX"

30 PDMENU 24200+95

7.2 Dialogue boxes

Creating dialogue boxes is as easy as making drop-down menus. BeckerBASIC

features the Dialogue Box Construction Set, and two commands for dialogue

box access.

DIALOGBOX (213) (c)
DIALCODE (270) (f)

DIALOGBOX activates (displays) a dialogue box. DIALCODE reads the button

clicked within the dialogue box (YES, NO, etc.). Text input is also allowed in

dialogue boxes.

Format: DIALOGBOX AD LEG]:... :CD = DIALCODE

AD is the memory address of the dialogue box's code table. As a rule, this

table is small enough to be stored in the cassette buffer (memory

locations 828 to 1023).

EG is the memory location at which the dialogue box text input is stored.

In most cases, dialogue boxes need some sort of button to allow the user to exit.

When you define several buttons (e.g., YES and NO), DIALCODE reads the

button the user clicked. This code corresponds to the code assigned to the

button:

1

2

3

4

5

6

14

OK button

CANCEL button

YES button

NO button

OPEN button

DISK button

Click anywhere on the screen

135

7. GEOS BeckerBASIC 64

Code 14 reads a click anywhere on the screen. This is functional only when

installed from the Dialogue Box Construction Set. You might want to add

information about Code 14 in the GEOS INFO screen.

7.2.1 Using the Dialogue Box Construction Set

The Dialogue Box Construction Set is on your distribution diskette under the

name D.C.S. Double-click this program's icon from the deskTop.

The program first asks for the desired starting address of the code table. The

cassette buffer area starting at location 828 is ideal for this purpose. Next, the

program asks whether you want the standard dialogue box. The standard box is

the one you see for file operations (e.g., rename). If you don't want the

standard box, you'll need to supply the coordinates of the upper left and lower

right corners of the dialogue box. The next parameter requested is the desired

fill pattern for the box shadow. A fill pattern of 0 casts no shadow.

After this general data, parameters get more detailed. The order of the parameter

codes isn't as crucial here as with the Drop-down Menu Construction Set, but

you can't just throw these codes in at random. Furthermore, you must enter

these codes as individual input routines.

The upper area of the screen displays a table of the available codes. For

example, if you want an OK button, you type a 1 and press the <RETURN> key.

The program then asks the position at which you want the button placed from

the left (X-coordinate) and top (Y-coordinate) of the dialogue box.

After entering this input, you can assign the next code or codes. All these codes

are placed in the table as you go along.

Text output within the dialogue box is made possible through code 11. Again,

the program asks for the spacing from the left and top of the dialogue box. The

find request is for the text you want.

Code 13 enables data input Here the program asks for the starting position of

the input line from the left and top of the dialogue box. Then you are asked for

the maximum length of the input.

136

Abacus 7.GEOS

NOTE: When a dialogue box asks for input, the DIALOGBOX command must

contain the address at which the data should be placed (e.g., DIALOGBOX

850,828: The computer puts the data at memory location 828). From this

location you must use the GEOSASCW command to convert text to ASCII text

format (see Section 7.3). Finally, the data must move to a string variable using

MGETV (see Chapter 4).

The Construction Set always puts the data at memory location 828. Text input

requires a table starting address higher than 828.

Code 33 displays the numbers of your input so far.

Select code 0 to end the input procedure. Now press a key to see your dialogue

box. When you're done looking at it, click on a button to exit NOTE: If you

haven't put in any buttons before looking at this test display, you can't get out of

the display. Power down and start over.

The program then asks if the dialogue box looks okay. Type y or n and press the

<RETURN> key. Select y if you want to save the data; the program asks for the

name under which you want the table saved. Select n to start over.

This program has the disadvantage that you can't edit one code at a time. That

is, you have to start over if you want to change the dialogue box parameters.

Here's a practical example of using this Construction Set: Enter the first value at

the first prompt, press the <RETURN> key, then enter the rest of the values in

the same manner (don't type in the commas):

828,N,10,10,270,90,1,1,1,20,2,10,10,3,19,10,4,1,55,5,10,55,6,19,55,

11, 8,35,PLEASE CLICK ON A BUTTON-ANY BUTTON.,0

Tell the program you want to see this dialogue box, and watch the result that

appears: A box with six buttons and a line of text appears. Save this to diskette

under the name DBEX and exit the Construction Set. Then type in, save and run

this program to put your new dialogue box to use:

10 PBCEND 24575:'LIMIT MEMORY'

20 DLOADM"DBEX"

30 DIALOGBOX 828

DIALCODE reads the clicked button.

137

7. GEOS BeckerBASIC 64

7.3 Entering and displaying hi-res text

BeckerBASIC has four commands for text input and output in hi-res mode.

HRPRINT displays text; HRGET is the high-resolution equivalent of INPUT;

ASCGEOSW and GEOSASCW convert ASCII text into GEOS format and

GEOS text into ASCII format respectively.

HRPRINT (214) (c)

HRPRINT writes text to a specific position on the hi-res graphic screen. You

can use different typestyles (e.g., italics or bold) with this text

Format HRPRINT X,Y,TX$

X,Y are the X-coordinate and the Y-coordinate of the hi-res pixel where the

text begins. Values for X range from 0 to 319. Values for Y range from

0 to 199.

TX$ is the string containing text to be displayed. The text in TX$ can be up

to 255 bytes long, and must end with a null (CHR$(0)).

Text output appears in proportional type. If the text contains uppercase

characters (i.e., characters created by holding down the <SHIFT> key while

pressing letter keys), you must convert the text using the ASCGEOSW

command before using the text in HRPRINT. No conversion is necessary when

using only lowercase lettering, since these letters appear as uppercase lettering

in GEOS.

You have the following control characters available:

CHR$(08) deletes the last character displayed.

CHR$(09) moves the text cursor one character to the right.

CHR$(10) moves the text cursor one character down.

CHR$(11) moves the text cursor to the home position (X-

coordinate=0,Y-coordinate=0).

138

Abacus 7.GEOS

CHR$(12) moves the text cursor one character up.

CHR$(13) moves the text cursor to the start of the next line of text

following a carriage return.

CHR$(14) enables underlining mode. All characters following are

underlined.

CHR$(15) disables underlining mode.

CHR$(18) enables reverse mode. All characters following appear in

reverse video.

CHR$(19) disables reverse mode.

CHR$(24) enables bold mode. All characters following appear in bold

style.

CHR$(25) enables italic mode. All characters following appear in italic

(cursive) style.

CHR$(26) enables outline mode. All characters following appear in

outlined style.

CHR$(27) disables all typestyles (italics, bold, etc.).

The different typestyles can be used in combination (e.g., bold italic text). Not

all combinations give good-looking results.

Examples:

HRPRINT 150,100,CHR$(25)+ftOUTPUT"-fCHR$(0) displays the word

OUTPUT in the center of the screen in italic text

10 GEOSON

15 HRDEL

20 T$=CHR$(10) :HRPRINT 20, 20, IIG"+T$+"E"+T$+"OII+T$+IIS"+CHR$ (0)

30 WAITKEYA

40 GEOSOFF

The above program displays the word GEOS one letter under the next.

139

7. GEOS BeckerBASIC 64

10 GEOSON

12 HRDEL

14 HRGDCOL 15

15 HRPTCOL 0

20 TX$=CHR$(14)+CHR$(26)+"AN EXAMPLE"+CHR$(27)+CHR$(0)

25 HRPRINT 10,90,TX$

30 WAITKEYA

40 GEOSOFF

The text AN EXAMPLE appears in outlined, underlined text. CHR$(27)

disables the typestyles in line 20.

ASCGEOSW (216) (c)

GEOSASCW (215) (c)

GEOS uses a different ASCII from Commodore BASIC. This means that every

text you use must be converted to GEOS ASCII using the ASCGEOSW

command.

GEOSASCW has the opposite effect Data must be converted from GEOS

format to normal BASIC format.

Format: ASCGEOSW AD,AE:... :GEOSASCW AD,AE

AD is the starting address of the memory range whose contents must be

converted to another format. Values for AD can theoretically range

from 0 to 65535.

AE is the ending address of the memory range whose contents must be

converted to another format. Values for AE can theoretically range

from 0 to 65535.

Text contained within a string can be handled directly with both commands.

You can use the following routine for this:

10 W=VARADR(TX$):WL=PEEK(W+l):WH=PEEK(W+2)

20 AD=WL+256*WH:AE=AD+PEEK(W)-1

30 ASCGEOSW AD,AE

140

Abacus 7. GEOS

VARADR conveys the address of the variable TX$. The current memory

position of the contents of TX$ goes into AD and the ending address of TX$

goes into AE.

HRGET (217) (c)

HRGET reads data input in hi-res mode. A vertical blinking "text cursor"

appears.

Format: HRGET X,Y,GT$

X,Y are the X-coordinate and the Y-coordinate of the upper left corner at

which the text should be read. Values for X range from 0 to 319.

Values for Y range from 0 to 199.

GT$ is the variable for the text input GT$ must fulfill two conditions: The

input length for GT$ must be defined beforehand, and the string must

end with a null (CHR$(0)). For example, GT$=" "+CHR$(0) sets an

allowable input length of five characters. You can use spaces or other

characters instead of periods; these just set the input length. If you

prefer other characters, the text in GT$ must be converted to GEOS

text format by ASCGEOSW.

When you define GT$ as described above, the text cursor appears in the hi-res

graphic at the end of the reading position. To move it to the left, you must press

one of the cursor keys (all the cursor keys move the cursor left). Characters

erase to the left of the cursor as you move the cursor left. To make the cursor

appear at the beginning of the reading position, define GT$ as follows:

GT$=CHR$(0)+" "

Press the <RETURN> key to end the hi-res input. The text entered is in GEOS

text format in GT$. The text must be converted to normal BASIC text format

with GEOSASCW, and the CHR$(0) end marker removed (this can be done

with GT$=LEFT$(GT$,LEN(GT$)-1)).

Examples:

10 GEOSON

12 HRDEL

15 GT$=" "+CHR$(0)

141

7.GEOS BeckerBASIC64

20 HRGET 100,50,GT$

30 VGETM 828,GT$:GEOSASCW 828,828+LEN(GT$)

40 MGETV GT$,LEN(GT$)-1,828

50 WAITKEYA

60 GEOSOFF

Line 10 defines GT$ to ten characters and gets input from the hi-res position

100/50. VGETM puts the text at memory location 828, where GEOSASCW

converts the text to ASCII format. MGETV gets data from the variable GT$,

and removes the end marker (CHR$(0)).

10 AB$="EXAMPLEn+CHR$(0)

20 HRGET 200,50/AB$

30 VGETM 828,AB$:GEOSASCW 828,828+LEN(AB$)

40 MGETV AB$,LEN(AB$)-1,828

The major difference between this and the other example is that the text

EXAMPLE is the given text

142

Abacus 8. High-resolution graphics

8. High-resolution graphics

High-resolution, or hi-res, graphics are definitely among the C64's finest

features. The major disadvantage to the commands supporting these graphics is

that they consume lots of memory. BeckerBASIC only contains the most

important commands and functions supporting high-resolution graphics.

These commands are designed for efficient programming. Besides that, many

commands can be simulated using a combination of hi-res instructions. Since

BeckerBASIC commands optimize time wherever possible, speed is almost

never a problem.

BeckerBASIC supports many GEOS specialties. For example, you can draw a

filled rectangle with HRBOX, using one of the 45 GEOS fill patterns and 256

different combinations of line patterns. If you prefer, HRSTRING allows you to

combine drawing commands into one string for fast execution.

You may want to review the descriptions of GEOS commands (see Chapter 7)

before reading this chapter. You'll find a number of commands there that deal

with data input and output while using GEOS's hi-res screen.

NOTE: that the commands and functions listed in this chapter are not accessible

in the Input System. You wil have to switch to the Testing System with

<CTRL>+<SHIFT> to test your program.

8.1 Initializing graphics

BeckerBASIC uses the first bitmap of GEOS for hi-res mode. This bitmap lies

in memory locations 40960 to 48960. GEOS commands and hi-res commands

can be used in parallel. Bitmap I lies outside of BASIC memory, so the two

won't interfere with each other.

143

8. High-resolution graphics BeckerBASIC 64

HRON

HROFF

HRGTON

(137)

(138)

(269)

(c)

(c)

(f)

HRON enables the hi-res graphic screen, and is identical to the GEOSON

command in Chapter 7. HROFF disables the hi-res graphic screen.

HRGTON tells the user which mode is currently active. If HRGTON returns 0,

the text screen is on; ifHRGTON equals 1, hi-res mode is on.

Format HRON:... :HROFF:... :CD = HRGTON

NOTE: Before you use a hi-res command, you must use a HRON command

first Failure to do so leads to a system crash, since you can't do hi-res pictures

without hi-res mode. The same goes for the opposite direction: you can't use a

standard text screen command without turning hi-res mode off with HROFF.

Remember these rules whenever you work with hi-res graphics.

HRDEL (220) (c)

HRDEL clears the hi-res screen.

Format HRDEL

HRGDCOL

HRPTCOL

HRGTCOL

(218)

(219)

(272)

(c)
(c)

(f)

HRGDCOL sets the background color of the hi-res screen. HRPTCOL sets the

current point color of the hi-res graphic. HRGTCOL returns the current hi-res

colors.

Format HRGDCOL Fl:... :HRPTCOL F2:... :FB = HRGTCOL (CD)

Fl is the color code of the unset pixels. Values for Fl can range from 0 to

15.

F2 is the color code of the set pixels. Values for F2 can range from 0 to 15.

144

Abacus 8. High-resolution graphics

FB is the current color read. GD=0 returns the current foreground pixel

color; CD=1 returns the current background color.

You can use these commands in combination:

100 HRON:'GRAPHIC ON'

110 HRDEL:'CLEAR BITMAP'

120 HRGDCOL 1:'BACKGROUND COLOR'

130 HRPTCOL 2:'POINT COLOR'

135 HRPLOT 160,100:HRPLOT 161,100:HRPLOT 162,100

140 WAITKEYA:HROFF

8.2 Creating graphics

Commodore 64 hi-res graphics take up a total of 64,000 individual pixels, in a

screen resolution of 320 pixels in the X-coordinate (horizontal) direction by 200

pixels in the Y-coordinate (vertical) direction. You can specify a pixel by stating

its X-coordinate (0-319) and Y-coordinate (0-199). The coordinate system starts

at the upper left corner of the screen.

HRPLOT (229) (c)

HRTESTP (273) (f)

HRPLOT lets you access any one of the 64,000 pixels. HRTESTP tells whether

the pixel is set or unset.

Format: HRPLOT XK, YK [,ZM]:... :CD = HRTESTP (XK,YK)

XK are the X- and Y-coordinates of the desired pixel. Values for XK range

YK from 0 to 319. Values for YK range from 0 to 199. Values outside

these ranges result in an ILLEGAL QUANTITY ERROR.

ZM states whether the pixel is set (ZM=0) or unset (ZM=l). The default

value for ZM is 0.

CD is the pixel status. If CD equals 1, the pixel is set; otherwise the value

for CD is 0.

145

8. High-resolution graphics BeckerBASIC 64

Examples:

HRPLOT 150,100:FL = HRTESTP(150,100) places a pixel in the middle of the

screen. The variable FL contains the value 1.

HRPLOT 0,0:HRPLOT 319,0,1:HRPLOT 319,199,1:HRPLOT 0,199 sets the

two left corner pixels and unsets the two right corner pixels.

HRLINE (224) (c)

HRLINE draws a line between two points on the hi-res screen.

Format: HRLINE XI, Yl, X2, Y2 [,ZM]

X1,Y1 are the coordinates of the first point in the line. Values for XI range

from 0 to 319; values for Yl range from 0 to 199.

X2,Y2 are the coordinates of the last point of the line. Values for x2 range

from 0 to 319. Values for Y2 range from 0 to 199. Values outside these

ranges result in an ILLEGAL QUANTITY ERROR.

ZM indicates the character mode. A value of 1 for ZM means the pixel is

unset; a set pixel has a value of 0. The default value is 0.

Example:

HRLINE 0,0,319,199:HRLINE 319,0,0,199 draws a diagonal line on the screen.

HRHLINE (225) (c)

HRVLINE (226) (c)

HRHLINE draws horizontal lines on the hi-res screen. HRVLINE draws vertical

lines. These commands execute much faster than HRLINE. You can draw lines

in up to 256 patterns with both commands.

Format HRHLINE X1,Y1,X2,Y2,ZM:...:

HRVLINE X1,Y1,X2,Y2,ZM

146

Abacus & High-resolution graphics

X1,Y1 are the coordinates of the leftmost (HRHLINE) or topmost

(HRVLINE) pixel of the line. Values for XI range from 0 to 319.

Values for yl range from 0 to 199.

X2,Y2 are the coordinates of the rightmost (HRHLINE) or bottom

(HRVLINE) pixel of the line. Values for X2 range from 0 to 319.

Values for Y2 range from 0 to 199.

ZM is the drawing mode. Values for ZM can range from 0 to 255. You can

figure out your line pattern by converting the number into an 8-bit

binary number. For example, ZM=170 would be 10101010 in binary

notation. Every set bit of the pattern corresponds to a 1, and every unset

bit is a 0.170 gives a dotted line as a pattern.

Examples:

HRHLINE 10,10,300,10,255 draws a solid horizontal line.

HRVLINE 130,25,130,180,0 deletes any vertical line that might have been in

the same position.

HRHLINE 50,100,150,100,102:HRVLINE 100,50,100,150,102 draws a dotted

cross. 102 decimal equals 0110110 in binary notation.

HRFRAME (228) (c)

HRFRAME draws a rectangular frame of any size on the screen. This command

uses the same drawing patterns as HRHLINE and HRVLINE.

Format: HRFRAME X1,Y1,X2,Y2,ZM

X1,Y1 are the coordinates of the upper left corner of the frame. Values for XI

range from 0 to 319. Values for Yl range from 0 to 199.

X2,Y2 are the coordinates of the lower right corner of the frame. Values for

X2 range from 0 to 319. Values for Y2 range from 0 to 199.

147

8. High-resolution graphics BeckerBASIC 64

NOTE: The sequence of these X- and Y-coordinates is very important.

If you give them in the wrong sequence (e.g., giving the lower right

corner first), the drawing routine runs into trouble computing the

frame.

ZM is the drawing mode. Values for ZM can range from 0 to 255. You can

figure out your frame pattern by converting the number into an 8-bit

binary number. For example, ZM=170 would be 10101010 in binary

notation. Every set bit of the pattern corresponds to a 1, and every unset

bit corresponds to a 0.

Example:

HRFRAME 0,0,319,199,170 draws a dotted frame.

HRBOX (227) (c)

HRBOX draws a filled rectangle of any size. You have 45 fill patterns available.

Format: HRBOX X1,Y1,X2,Y2,FM

X1,Y1 are the coordinates of the upper left corner of the box.Values for XI

range from 0 to 319. Values for Yl range from 0 to 199.

X2,Y2 are the coordinates of the lower right corner of the box.Values for X2

range from 0 to 319. Values for Y2 range from 0 to 199.

NOTE: The order of these X- and Y-coordinates is very important. If

you give them in the wrong sequence (e.g., giving the lower right

corner first), the drawing routine runs into trouble computing the box.

FM is the fill pattern. Values for FM can theoretically range from 0 to 255,

but the useful values are up to 44. FM=1 produces a completely filled

box, while FM=0 deletes the box area.

Try this routine to see the available patterns:

100 HRON

110 FOR FM=0 TO 44

120 HRBOX 0, 0,319,199,FMrHRPRINT 10,100,"PATTERN #M+CHR$(0)

148

Abacus 8. High-resolution graphics

122 Q$=STR$(FM)

123 HRPRINT 90,100,Q$+CHR$(0)

125 HRPRINT 10,140,"PRESS A KEY FOR NEXT PATTERN"+CHR$(0):WAITKEYA

130 NEXT FM

140 HROFF

Press a key to see each fill pattern.

Example:

HRBOX 20,15,100,130,10:HRBOX 50,55,170,140,23 displays two overlapping

boxes with two different fill patterns.

HRINV (221) (c)

HRINV inverts the hi-res graphic display, i.e., set pixels become unset and unset

pixels become set

Format HRINV

HRSTRING (230) (c)

HRSTRING lets you place a series of commands into a single string. This

speeds up execution time and saves memory.

Format HRSTRING KM$+CHR$(0)

KM$ is the string containing the codes required for the hi-res commands.

KM$ can be up to 255 bytes in length. The codes for KM$ are as

follows:

01 sets the intended graphic cursor at a certain point, using the coordinate

setXlow/Xhigh/Y.

02 draws a line between any two points. The coordinates of both ends of

the line are set using the coordinate set Xlow/Xhigh/Y (the first

pixel of the line is set by code 01).

149

8. High-resolution graphics BeckerBASIC 64

03 draws a filled rectangle. The upper left coordinates of the rectangle are

set by code 01. The lower left coordinates are set after code 03 using

the coordinate set Xlow/Xhigh/Y.

05 Assigns a particular area pattern to a drawn filled rectangle. The pattern

code (0-44) directly follows 05 (see HRBOX) .

07 draws a rectangular frame. The coordinates of the upper left corner are

set by code 01, while the coordinates of the lower right corner directly

follow 07 using the coordinate set Xlow/Xhigh/Y.

08 places the graphic cursor to the right by the coordinates stated in the

form Low/High.

09 moves the graphic cursor a single byte number down.

00 is the end marker of the string. Failure to end an HRSTRING code

string with this causes a system error.

Here are two examples to demonstrate the practicality of using HRSTRING:

10 HRON

20 HRDEL

30 'GRAPHIC CURSOR AT 10/10'

40 T1$=CHR$(1)+CHR$(10)+CHR$(0)+CHR$(10)

50 'DRAW A LINE FROM 10/10 TO 280/180'

60 T2$=CHR$(2)+CHR$(24)+CHR$(l)+CHR$(180)

70 HRSTRING T1$+T2$+CHR$(0)

80 WAITKEYA

90 HROFF

This program draws a line from coordinates 10,10 to coordinates 280,180. Press

a key to end the program.

90 HRON

95 HRDEL

100 'SET GRAPHIC CURSOR TO 25/40'

110 T1$=CHR$(1)+CHR$(25)+CHR$(0)+CHR$(40)

120 'SET DRAWING PATTERN 17'

130 T2$=CHR$(05)+CHR$(17)

140 'DRAW BOX, 2ND COORDINATE 100/100'

150 T3$=CHR$(03)+CHR$(100)+CHR$(00)+CHR$(100)

155 WAITKEYA

150

Abacus 8. High-resolution graphics

160 T4$=CHR$(1)+CHR$(40)+CHR$(0)+CHR$(70)

170 'MOVE GRAPHIC CURSOR DOWN AND RIGHT'

180 'SET DRAWING PATTERN 9'

190 T5$=CHR$(05)+CHR$(09)

200 'DRAW BOX, 2ND COORDINATE 120/145'

210 T6$=CHR$(03)+CHR$(120)+CHR$(00)+CHR$(145)

220 HRSTRING Tl$+T2$+T3$+T4$+T5$+T6$+CHR$(0)

230 WAITKEYA

240 HROFF

This program produces two overlapping rectangles with different fill patterns.

As already mentioned, HRSTRING saves time since the commands are read as

machine language instead of interpreted BASIC.

When you have a number of these graphic strings in a program, it may help if

you place these in a sequential or relative file. The DGETV command lets you

easily read this data into the computer (see Chapter 5 for more on DGETV).

8.3 Loading and saving graphics

Loading and saving hi-res graphics can be done with DLOADM and DSAVEM

(see Section 5.3). These commands LET you load or save parts of graphic

screens. The next two commands access entire graphic screens.

HRDLOAD (222) (c)

HRDSAVE (223) (c)

HRDLOAD loads a hi-res screen from diskette. HRDSAVE saves a hi-res

screen to diskette.

Format: HRDSAVE NA$:... :HRDLOAD NA$

NA$ is the name assigned to the screen being saved or loaded. This name

can be up to 16 characters long.

Examples:

HRDSAVE "HIRES" saves the hi-res bitmap under the name HIRES.

151

8. High-resolution graphics BeckerBASIC 64

HRDLOAD "HIRDAT1 loads the graphic file HIRDAT into graphic memory.

NOTE: BeckerBASIC saves hi-res graphics so that they load into memory byte-

for-byte, without formatting or compression. Remember this when loading

BeckerBASIC graphics into other graphic programs, or when loading other

graphics into BeckerBASIC.

152

Abacus 9. Sprite commands

9. Sprite commands

The Commodore 64 allows up to eight sprites on the screen at once. The main

purpose of freely movable graphic objects is in game programming, although

sprites can be used effectively in other applications. For example, you can use

sprites to create a title screen, just as in the DEMO program on your

BeckerBASIC distribution diskette.

BeckerBASIC supports sprite development and movement through easy to use

commands, in addition to the BASIC 2.0 POKE and DATA instructions.

Now for some fundamental information about sprites. Like normal characters

which are defined in groups of pixels, sprites are also made up of pixels. Sprites

have horizontal resolutions of 24 pixels and vertical resolutions of 21 pixels.

A pixel is set (on) or unset (off) according to the bytes setting up the sprite

matrix. Every 24-pixel line takes up three bytes, while the 21 columns use up 63

bytes. You have a total of 63 values to control to make up the sprite's shape.

The best method of drawing a sprite design is with a sprite editor. This lets you

see the sprite magnified, so you can control its shape easily. You'll find a sprite

editor at the end of this chapter in Section 9.6. Once you design the sprite, the

data must be fed into memory. You can put this data in most areas of memory.

There are two things to remember when working with sprites:

1) The starting address of the memory range must be divisible by 64

without a remainder.

2) The memory segment must be in the same 16K memory block as the

screen. This means that you shouldn't place the data in active BASIC

memory or any other area used heavily by the computer and the

program.

MBDESIGN (Section 9.1) puts sprite data into memory - as long as this sprite

data exists in a string. It's fairly easy to convert sprite data to a string; it saves

memory and you can actually store this data in integer arrays or variables. The

sprite editor at the end of the chapter converts data into strings, so they can be

easily read by MBDESIGN.

153

9. Sprite commands BeckerBASIC 64

You must state the location in memory you want the sprite data. This is done

with the command MBBLOCK. This allows you to quickly switch between two

blocks of sprite data.

9.1 Setting up sprites

MBDESIGN (139) (c)
MBDATA (248) (f)

MBDESIGN places a string containing sprite data into memory as a 64-byte

memory segment. MBDATA does the opposite: It reads data in memory into a

string variable.

Format MBDESIGN BL, DA$:... :SD$ = MBDATA (BL)

BL is the number of the desired memory block. You compute this block of

memory with the formula BL = STARTING_ADDRESS/64. Values

for BL range from 0 to 1023. Naturally, not all of these block numbers

are useful; avoid active BASIC memory and zeropage memory.

DA$ is the 63-byte string expression containing the sprite data.

You must make sure that the sprite data is in the same 16K memory range for

the sprite design as the active screen memory. That is, if you put the sprite

design data in the first memory segment, the active screen should be in the first

memory segment The following table lists practical values for BL (the

corresponding starting memory addresses are in parentheses):

MEMORY SEGMENT I MEMORY SEGMENT II

(0-16383) (32768-49151)

13 (832) - 15 (960) 552 (35328) - 559 (35776)

As you can see, available screen memory is very small. The normal text screen

starting at 1024 has enough room for three sprites at a time. Memory segment II

(hi-res) is a little bigger; here you can fit eight sprite matrices.

154

Abacus 9. Sprite commands

NOTE: Sprite blocks 552 and 553 already have the data for the GEOS mouse

pointer and the GEOS text cursor. Don't change these when you use GEOS

commands that requires these two sprites. You can change the appearance of

these sprites, however.

The sprite editor in Section 9.6 places the data into the variable MT$. This data

can immediately be used with MBDESIGN BL, MT$. The matrix can be read

into memory with MT$=MBDATA(BL). Both commands work in conjunction

with the sprite editor. For example, if you include a GOSUB

"MATDEF/S":MBDESIGN 13,MT$ in a program containing the sprite editor,

MT$ defines a sprite matrix and places it in memory block 13.

MT$=MBDATA(15):GOSUB "MATDAR/S" reads MT$ from memory block

15 and places the result on the screen. Once the sprite data is read, you can

move and manipulate the sprite with a number of commands.

MBCLR (182) (c)

MBCLR clears a sprite data block.

Format MBCLR BL

BL is the number of the data block. Values for this block can range from 0

to 1023 (see MBDESIGN above).

Example:

MBCLR 13 clears block 13 (memory addresses 832-895).

MBINV (140) (c)

MBINV inverts the data block of a sprite matrix.

Format MBINV BL

BL is the number of the data block. Values for this block can range from 0

to 1023 (see MBDESIGN above).

155

9. Sprite commands BeckerBASIC 64

Example:

MBINV 558 inverts data block 558. The inversion "exchanges" the background

color and the foreground color.

MBMOVE (183) (c)

MBCHANGE (184) (c)

MBMOVE and MBCHANGE allows the copying (MBMOVE) or exchange

(MBCHANGE) of a sprite block.

Format MBMOVE B1,B2:... :MBCHANGE B1,B2

B1,B2 are blocks of memory. Values for Bl and B2 can range from 0 to 1023

(see also MBDESIGN).

MBMOVE copies the data block Bl into block B2. MBCHANGE swaps the

contents of block B1 and block B2.

Examples:

MBMOVE 13,14 copies the contents of data block 13 into block 14.

MBCHANGE 13,14 exchanges the contents of data blocks 13 and 14.

MBAND

MBOR

MBEOR

(185)

(186)

(187)

(c)
(c)
(c)

These three commands allow you to compare sprite data blocks with each other.

Format: MBAND B1.B2:... :MBOR B1.B2:... MBEOR B1.B2

B1,B2 are blocks of memory. Values for B1 and B2 can range from 0 to 1023

(see also MBDESIGN).

156

Abacus 9. Sprite commands

Data blocks Bl and B2 are compared with each other using a logical AND

(MBAND), logical OR (MBOR) or logical EXCLUSIVE OR (MBEOR). The

result of this comparison appears in Bl.

Examples:

MBAND 554,13 compares blocks 554 and 13 for logical AND. The result is in

data block 554.

MBOR 555,556:MBEOR 555,557 compares block 555 and 556 for logical OR,

then compares block 555 with block 557 for an EXCLUSIVE OR.

Logical comparisons let you manipulate data blocks quickly to achieve some

interesting effects. Try these out with a few sprite matrices.

MBBLOCK (141) (c)

MBGTBLK (254) (f)

MBBLOCK arranges all eight sprites into one data block. MBGTBLK reads the

current assignments for the individual sprites.

Format MBBLOCK SC,NR,BL:... :BL = MBGTBLK (SC,NR)

SC is the number of the desired screen used by MBBLOCK. When you

want the sprite on the normal text screen, SC should have a value of 1.

A value of 35 displays the sprite on the hi-res screen.

NR is the sprite number used by MBBLOCK. Values for NR range from 1

to 8.

BL is the data block number containing the sprite data. See MBDESIGN

for further information on BL.

Examples:

MBBLOCK 1,5,13 assigns sprite 5 to data block 13. The corresponding data

pointer moves to normal screen memory (starting at location 1024).

157

9. Sprite commands BeckerBASIC 64

MBBLOCK 35,2,556:SCPRINT MBGTBLK (35,2) assigns sprite 2 to data

block 556. The 35 sends the sprite to active hi-res memory. The SCPRINT

following the MBBLOCK returns 556.

The next six commands control sprite color.

MBMODE (188) (c)

MBGTMOD (257) (ft

Sprites have two modes: The single-color and multicolor modes. Multicolor

mode offers you a total of three colors for your sprites.

Sprite matrices interpret their setups by bits. The three bit combinations are 10,

01 and 11, and when a sprite is assigned multicolor mode, these combinations

have their own colors (the combination 00 equals the background color).

MBMODE lets you set the color mode for each sprite. MBGTMOD returns the

current color mode for every sprite.

Format: MBMODE NR,NM:... :NM = MBGTMOD (NR)

NR is the desired sprite's number. Values for NR range from 1 to 8.

NM is the color mode for the desired sprite. If NM=0, the sprite is in single-

color mode; NM=1 means that the sprite is in multicolor mode.

Example:

MBMODE 5,1:MBMODE 8,0:A=MBGTMOD(5) assigns sprite 5 multicolor

mode and sprite 8 single-color mode. The variable A contains a 1.

MBSETCOL (143) (c)

MBGTCOL (256) [f!

MBSETCOL sets the desired color of a sprite. MBGTCOL reads the current

color code for individual sprites.

Format: MBSETCOL NR,FB:... :FB = MBGTCOL (NR)

158

Abacus 9. Sprite commands

NR is the number of the sprite. Values for NR range from 1 to 8.

FB is the color code assigned/read. Values for FB range from 0 to 15 (see

PCOLORS, Chapter 3).

Example:

MBSETCOL 4,9:MBSETCOL 7,0:SCPRINT MBGTCOL (4) turns sprite 4

brown and sprite 7 black. The SCPRINT command displays 9.

MBEXCOL (142) (c)

MBGTEXCL (255) {&

MBEXCOL sets the additional colors for the bit combinations 01 and 11 in

multicolor mode. MBGTEXCL reads the current additional colors.

Format: MBEXCOL F1,F2:... :FN = MBGTEXCL <ZN)

Fl is the color code for bit combination 01. Values for Fl range from 0 to

15 (see PCOLORS, Chapter 3).

F2 is the color code for bit combination 11. Values for F2 range from 0 to

15 (see PCOLORS, Chapter 3).

FN,ZN set the color code (FN) according to the value in ZN. If ZN=1, FN is

the code for the first additional color. If ZN=2, FN is the code for the

second additional color.

Example:

MBEXCOL 3,7:CF=MBGTEXCL(2) assigns the color cyan to bit combination

01, and the color yellow to bit combination 11. The number 7 is assigned to FC

(color code for the second additional color).

When two or more sprites appear at the same place on the screen, these sprites

must be assigned priorities. Priority states which sprite passes in front of another

when two or more overlap.

159

9. Sprite commands BeckerBASIC 64

Also, it must be established whether a sprite can pass in front of or behind the

other sprite. The first case (sprite/sprite priority) states that sprites with higher

numbers pass in front of sprites with lower numbers. Therefore, if sprites 2 and

7 cross, sprite 2 passes behind sprite 7.

You cannot directly alter these priorities, but you can change them indirectly

using MBBLOCK to switch sprite matrices. This automatically swaps priority.

MBPRIOR (169) (c)

MBGTPR (258) (f)

The MBPRIOR command can determine overlaps between sprite and

background on a hi-res screen. MBGTPR reads the value set by MBPRIOR.

Format: MBPRIOR NR,PR:... :PR = MBGTPR (NR)

NR is the number of the desired sprite. Values for NR can range from 1 to

8.

PR determines the sprite's priority. If PR is equal to 0, the sprite has higher

priority than the background. If PR equals 1, then the sprite travels

behind the background if the two objects cross.

Example:

MBPRIOR 2,1:MBPRIOR 8,0:T=MBGTPR(2) forces sprite 2 to travel behind

the background, while sprite 8 has a higher priority than the background.

Variable T has the value 1 assigned to it.

MBXSIZE (189) (c)

MBYSIZE (190) (c)

Sprites can be expanded horizontally with MBXSIZE or vertically with

MBYSIZE.

Format MBXSIZE NR.MD:... :MBYSIZE NR,MD

NR is the number of the sprite. Values for NR range from 1 to 8.

160

Abacus 9. Sprite commands

MD is the control for sprite size. If MD=0, then the sprite appears in normal

size. When MD=1, the sprite's size doubles. MBXSIZE expands the

sprite horizontally; MBYSIZE expands the sprite vertically.

Example:

MBXSIZE 6,0:MBYSIZE 6,1 sets sprite 6 to normal size horizontally and

expands it vertically.

MBGTXSZ (259) (f)

MBGTYSZ (260) (ft

MBGTXSZ returns the horizontal sprite size code, MBGTYSZ returns the

vertical sprite size code.

Format XD = MBGTXSZ (NR):... :YD = MBGTYSZ (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.

XD XD and YD are the size codes. When XD equals 0, the horizontal size

YD is normal. When YD equals 0, the vertical size is normal. If either size

is expanded, YD or XD return values of 1.

Example:

10 SELECT MBGTYSZ(3)

20 CASE 0:MBYSIZE 3,1:'DOUBLE SIZE'

30 CASE 1:MBYSIZE 3,0:'NORMAL SIZE'

40 ENDSEL

This routine sets the size of sprite 3 according to selection (see Chapter 6 for

information on the SELECT/ENDSEL commands).

161

9. Sprite commands BeckerBASIC 64

9.2 Positioning and moving sprites

like normal screen displays, sprites operate on a coordinate system which lets

you put a sprite anywhere on the screen. The sprite coordinate system is so

accurate that you can put sprites literally anywhere on the visible screen. This

means that you can place a sprite so it's only partially visible (off one edge of

the border).

The coordinate system originates at the upper left corner of the screen. The X-

coordinate (horizontal position) has 512 possible values (0-512); the Y-

coordinate (vertical position) has 256 possible values (0-255). The visible screen

area for sprites lies between coordinates 24/50 (upper left corner), 344/50 (upper

right corner), 344/250 (lower right corner) and 24/250 (lower left corner).

MBSETPOS (144) (c)

MBSETPOS places a sprite at any X- and Y-coordinate on the screen.

Format MBSETPOS NR,XK,YK

NR is the number of the desired sprite. Values for NR range from 1 to 8.

XK is the horizontal coordinate at which the upper left comer of the sprite

should appear - whether that corner is visible or not. Values for XK

range fromO to 511.

YK is the vertical coordinate at which the upper left corner of the sprite

should appear - whether that corner is visible or not. Values for YK

range from 0 to 255.

Examples:

MBSETPOS 3,150,180 places sprite 3 at the approximate center of the screen.

MBSETPOS 1,400,20 positions sprite 1 to the right of the visible screen.

162

Abacus 9. Sprite commands

MBRXPOS (240) (f)

MBRYPOS (241) (f)

These two functions establish the current sprite's coordinates. MBRXPOS

returns the horizontal position; MBRYPOS returns the vertical position.

Format XK = MBRXPOS (NR):... :YK = MBRYPOS (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.

XK is the X-coordinate of the sprite. Values for XK range from 0 to 511.

YK is the Y-coordinate of the sprite. Values for YK range from 0 to 255.

Examples:

A=MBRXPOS(2):B=MBRYPOS(7) list the current horizontal position of sprite

2 in A and the current vertical position of sprite 7 in B.

MBSETPOS 5JMBRXPOS(4),MBRYPOS(4) places sprite number 5 at the same

position as sprite 4 so the two sprites are layered.

The MBSETPOS command moves sprites. Movement is nothing more than a

more or less continuous replacement of a sprite using the MBSETPOS

command. For example, if you wanted to move sprite 1 horizontally across the

screen, you'd use a command sequence something like this:

10 FOR X=0 TO 511 STEP SPr'MAKE SP A VALUE FROM 1 TO 5'

20 MBSETCOL 1,1:MBON 1:'SEE 9.3 FOR MBON'

30 MBSETPOS 1,X,100

40 NEXT X

This short program moves a very primitive sprite across the screen. The step

value SP sets the speed of the sprite movement A value of 1 results in a fairly

slow movement, while a value of 5 moves the sprite very quickly across the

screen.

You can fine-tune the speed using a blank FOR/NEXT loop (e.g., FOR 1=1 TO

25:NEXT I). See Chapter 6 for information about loop construction, particularly

FOR/NEXT loops.

163

9. Sprite commands BeckerBASIC 64

A combination of MBSETPOS and loops will be enough for most users, since

this command is very flexible when compared to the normal C64 sprite

commands.

Take a look at the sprite demonstration program, stored on your distribution

diskette under the name SPRITEDEMO. When you load and run this short game

program, use the <Cursor up> and <Cursor down> keys to move the paddle up

and down the screen. The object of the game is to catch the ball with the paddle.

Your score appears on the upper left corner of the screen. Press the <RETURN>

key to end the game at any time.

9.3 Enabling and disabling sprites

MBON (145) (c)

MBGTON (261) (ft

The MBON command turns the corresponding sprite on. The MBGTON

command tells whether a sprite is on or off.

Format: MBON NR:... :MD = MBGTON (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.

MD is the status number of the desired sprite. If MD=1, the sprite is visible

on the screen. If MD=0, the sprite is inactive.

Example:

MBON 3:MB0N 7:WA=MBGTON(3) enables sprites 3 and 7 and returns the

status of sprite 3 (WA=1).

MBOFF (146) (c)

MBALLOFF (147) (c)

The MBOFF command turns the corresponding sprite off. MBALLOFF

removes all active sprites from the screen.

164

Abacus 9. Sprite commands

Format MBOFF NR:... :MBALLOFF

NR is the number of the desired sprite. Values for NR range from 1 to 8.

Example:

MBON 2-MBON 8:MBON 5: ... :MBOFF 8:... :MBALLOFF turns on sprites 2,

5 and 8 on the screen. MBOFF 8 turns sprite 8 off, then MBALLOFF removes

the rest of the sprites.

9.4 Loading and saving sprite data blocks

MBDSAVE (191) (cl
MBDLOAD (192) (c)

MBDSAVE saves the indicated 64-byte block to diskette. MBDLOAD loads

sprite data into any given sprite block in memory.

Format: MBDSAVE NA$,BL:... :MBDLOAD NA$,BL

NA$ is the filename under which the data is loaded/saved. This filename can

be up to 16 characters long.

BL is the corresponding data block number (see also MBBLOCK).

NOTE: When you save or load several data blocks at once, use the DSAVEM or

DLOADM commands (see Section 5.3) since these commands can handle any

memory size.

Example:

MBDSAVE "SPRBL",13 saves data block 13 to diskette under the name

SPRBL.

MBDLOAD "SPRBL",553 loads this same sprite data into memory block 553.

165

9. Sprite commands BeckerBASIC 64

9.5 Testing for collisions

The following functions operate in conjunction with the commands used for

checking sprite priority. Collisions occur in the visible screen area between

sprites. These collisions set the appropriate sprite matrix bits to 1.

NOTE: The VIC collision register is designed so that reading the register clears

the register. The functions below store the codes in variable memory for later

reading.

This is the reason you can't do multiple readings of MBCHECKS or

MBCHECKG on multiple sprite collision; all eight sprites use one register for

checking sprite/sprite or sprite/background collision. Use the functions

MBCHECKALLS and MBCHECKALLG for multiple reading.

MBCHECKS (242) ffl

This command reads whether a sprite collides with another.

Format MD = MBCHECKS (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.

MD lists the number of the crashed sprite. Otherwise this value is 0.

Example:

A=MBCHECKS(7) tells whether sprite 7 collided with one of the other seven

sprites. If so, A=l; otherwise A=0.

MBCHECKALLS (263) (f)

If you want to convey a collision between sprites, use the MBCHECKALLS

function.

Format: MD = MBCHECKALLS

166

Abacus 9. Sprite commands

All eight sprites return values according to the following table:

Sprite number: 12 3 4 5 6 7 8

Value: 1 2 4 8 16 32 64 128

The total value of MD is the sum of the individual values. If, for example,

sprites 2,3 and 5 collide, MD returns 22.

Examples:

MD=9 means that sprites 1 and 4 collided.

MD=212 means that sprites 3,5,7 and 8 collided.

MD=0 means that no collision occurred since the last reading.

MBCHECKG (243) (ft

This command looks for a collision between a certain sprite and a screen

character or hi-res graphic.

Format: MD = MBCHECKG (NR)

NR is the number of the desired sprite. Values for NR range from 1 to 8.

MD defaults to 0 if no collision occurs. Collisions change this value to 1.

Example:

HG=MBCHECKG(2) tells whether sprite 2 has collided with a background

character. If so, HG becomes equal to 1; otherwise HG remains at 0.

MBCHECKALLG (262) (f)

Similar to sprite/sprite collision reading, except that all sprites are checked for

background collision.

Format: MD = MBCHECKALLG

167

9. Sprite commands BeckerBASIC 64

All eight sprites return values according to the following table:

Sprite number: 12 3 4 5 6 7 8

Value: 1 2 4 8 16 32 64 128

The total value of MD is the sum of the individual values. If, for example,

sprites 2,3 and 5 collide, MD returns 22.

Examples:

MD=32 means that sprite 6 has hit either a character or part of a hi-res graphic.

MD=26 signals that sprites 2,4 and S have collided with the background.

MBDELCOLL (193) (c)

This command clears both VIC registers for sprite/sprite and sprite/background

collisions. Use this command at the beginning of a program so false readings

left from previous programs are not encountered.

Format MBDELCOLL

9.6 The BeckerBASIC sprite editor routine

The program listed here is included on your BeckerBASIC distribution diskette

under the name SPRITE-EDIT. It allows you to create sprites on the screen. The

resulting values are computed in the editor and stored in the string variable

MT$, so you can read them with MBDESIGN.

To start the editor you need the instruction GOTO "MATDEF/S". You can now

use your cursor keys to move around an enlarged 21 x 24 matrix. Press the <F1>

key to set a pixel; press the <F3> key to erase a pixel. Press <F7> to accept the

completed matrix, or <F8> rejects the matrix. Accepted sprites load into the

variable MT$.

168

Abacus 9. Sprite commands

After you define the sprite matrix, the editor allows you to load stored sprite

matrices into memory for editing, or clear the matrix to use new sprites. Load

the matrix into MT$ (using MBDATA, for example) and call the editor with

GOTO "MATDAR/S".

You can change the position of the editor's matrix area by changing the value of

the variable SW. This variable always contains the upper left corner of the

editor.

To move the editor to the center of the screen, for example, you need to set SW

toPEEK(648)*256+88 (see lines 1080,1250 and 1580).

When you call the editor as a subroutine (e.g., GOSUB "MATDEF/S" or

GOSUB "MATDAR/S"), you must change the END in line 1690 to RETURN.

The branches in the editor use labels, so you can change line numbers (with

PRENUMBER, see Section 2.1.1) for merging. The structured design of the

routine allows easy addition of new functions (e.g., mirroring the matrix).

100 'AFTER MERGING TO ANOTHER PROGRAM, DELETE THESE LINES'

110 :

115 CLS:LETTERON:CRCOL 1

120 SCPRINT AT 3,1;"THIS PROGRAM CANNOT START ON ITS OWN!"

130 SCPRINT AT 6,1;"IT IS INTENDED TO BE INTEGRATED"

140 SCPRINT AT 7,1;"WITH OTHER PROGRAMS YOU"

150 SCPRINT AT 8,1;"HAVE WRITTEN."

160 SCPRINT AT 17,6;"PLEASE PRESS A KEY."

165 WAITKEYA:END

170 :

180 :

190 :

1000 'SPRITE-EDITOR'

1010 '(C) 1986 BY MARTIN HECHT'

1020 :

1030 'SAVED ON DISKETTE UNDER THE NAME SPRITE-EDIT'

1040 :

1050 :

1060 "MATDAR/S":'DISPLAY MATRIX'

1070 :

1080 CLS:SW=PEEK(648)*256:'HOME POSITION=START OF MATRIX'

1090 FOR Zl=0 TO 60 STEP3

1100 : FOR Z2=0 TO 2

1110 : AW=ASC(MID$(MT$,Z1+Z2+1,1))

1120 : FOR Z3=0 TO 7

169

9. Sprite commands BeckerBASIC 64

1130 : AW=AW/2

1140 : IF AW=INT(AW) THEN PW=46:ELSE PW=160:ENDIF

1150 : POKE SW+Zl/3*40+Z2*8+7-Z3,PW:AW=INT(AW)

1160 : NEXT Z3

1170 : NEXT Z2

1180 NEXT Zl

1190 GOTO "MATDEFINP/S":'MATRIX INPUT CONTROL'

1200 :

1210 :

1220 "MATDEF/S":'DEFINE MATRIX'

1230 :

1240 'DRAW PATTERN ARRAY'

1250 CLS:SW=PEEK(648)*256

1260 FOR Zl=0 TO 20

1270 : HV=SW+Z1*4O:MYFILL HV,HV+23,46

1280 NEXT Zl

1290 :

1300 "MATDEFINP/S":'INPUT CONTROL'

1310 H=SW-PEEK(648)*256:PZ=INT(H/40)+l:PS=H-(PZ-

1)*40+1:'STARTPOSITION'

1320 ZE=PZ:SP=PS:'CURSOR IN STARTPOSITION'

1330 "MATINPUT/S":CRSET ZE,SP:CRON:WAITKEYA:GET EG$:CROFF

1340 SELECT ASC(EG$):'CURRENT INPUT'

1350 CASE 29:'CURSOR RIGHT'

1360 "CR":IF NOT(SP=PS+23) THEN SP=SP+1

1370 ELSE IF NOT(ZE=PZ+20) THEN SP=PS:ZE=ZE+1:ENDIF

1375 ENDIF

1380 CASE 157:'CURSOR LEFT'

1390 IF NOT(SP=PS) THEN SP=SP-1

1400 ELSE IF NOT(ZE=PZ) THEN SP=PS+23:ZE=ZE-1:ENDIF

1410 ENDIF

1420 CASE 17:'CURSOR DOWN'

1430 IF NOT(ZE=PZ+20) THEN ZE=ZE+1:ENDIF

1440 CASE 145:'CURSOR UP'

1450 IF NOT(ZE=PZ) THEN ZE=ZE-1:ENDIF

1460 CASE 133:'F1=SET PIXEL'

1470 POKE PEEK(648)*256+40*(ZE-1)+SP-1,160:GOTO "CR"

1480 CASE 134:'F3=DELETE PIXEL'

1490 POKE PEEK(648)*256+40*(ZE-1)+SP-1,46:GOTO "CR"

1500 CASE 136:'F7=ACCEPT MATRIX'

1510 GOTO "UEBERNAHME/S"

1520 CASE 140:'F8=CANCEL'

1530 GOTO "ENDE"

1540 ENDSEL

1550 GOTO "MATINPUT/S"

1560 :

1570 "UEBERNAHME/S":'ACCEPT MATRIX'

1580 SW=PEEK(648)*256:AW=0:MT$=""

170

Abacus 9. Sprite commands

1590

1600

1610

1620

1630

1640

1650

1660

FOR Zl=0 TO 60 STEP3

FOR Z2=0 TO 2

FOR Z3=0 TO 7

PW=PEEK(SW+Z1/3*4O+Z2*8+Z3)

IF PW=160 THEN AW=AW+2A(7-Z3):ENDIF

NEXT Z3

MT$=MT$+CHR$(AW):AW=0

NEXT Z2

1670 NEXT Zl

1680

1690 "ENDE":END:fIF SUBROUTINE,THEN REPLACE WITH RETURN'

171

Abacus 10. Sound commands

10. Sound commands

You don't have to be a musician to use BeckerBASIC sound commands. Along

with sound effects, the SID chip can perform anything from a simple keyboard

beep up to complete synthesized sounds. Sound is for everyone, and

BeckerBASIC has special commands that let anyone create sounds or program

musical pieces. BeckerBASIC sound commands regulate the SID chip without

lots of POKE commands.

In many cases, you'll only need a few commands to program sound effects. You

can take the programs on the next few pages and re-use them in other programs

as procedures (see Chapter 6).

Each section of this chapter examines a different aspect of the sound chip.

Section 10.1 takes you through the basics of making single notes. Section 10.2

shows you how to turn notes on and off. The last two sections demonstrate

synchronization, filters and ring modulation.

NOTE: that the commands and functions listed in this chapter are not accessible

in the Input System. You wil have to switch to the Testing System with

<CTRLxCommodore> to test your program.

10.1 Making sounds

The C64 sound chip (the SID chip) has a total of three tone generators, which

produce three voices.

SDCLEAR (148) (c)

The SDCLEAR command initializes (resets) the sound chip. This command can

be used at the beginning or end of a program to reset all sound registers to their

normal states.

Format: SDCLEAR

173

10. Sound commands BeckerBASIC 64

SDVOLUME (149) (£

The SDVOLUME command sets the volume for all three voices.

Format: SDVOLUME VL

VL is the volume level. Values for VL range from 0 to 15.

NOTE: You'll use 15 as a volume level most of the time.

SDFREOUENCY (150) (ci

This command sets the frequency of a voice in Hertz.

Format SDFREQUENCY VC,FR

VC is the number of the desired voice. Values for VC range from 1 to 3.

Numbers outside this range result in an ILLEGAL QUANTITY

ERROR.

FR is the frequency of the note. Values for FR range from 0 to 3848. You

can include decimals after a decimal point for fine tuning of up to 1/17

Hertz).

Example:

SDFREQUENCY 1,1497.2:SDFREQUENCY 3,2850 sets voice 1 to 1497.2 Hz

and voice 3 to 2850 Hz.

SDNOTE (151) (c)

When you find it impractical to use the SDFREQUENCY command, especially

when you're programming musical compositions, SDNOTE offers a more

comfortable method of note input

Format SDNOTE VC,NT$

VC is the number of the desired voice. Values for VC range from 1 to 3.

174

Abacus 10. Sound commands

NT$ contains the characters indicating the note you want played, as well as

the desired octave. This sequence reads NOTEOCTAVE. NOTE names

use normal letter names from A to G. Values for OCTAVE range from

0 to 7. The SDNOTE command translates the note and octave into the

equivalent frequency.

10 RESTORE:SDCLEAR:SDVOLUME 15

15 NR=1:'VOICE'

20 SDWAVEON NR,1:SDENVELOPE NR,0,0,15,0:SDVOICEON NR

25 LOOP

30 READ NT$:LPEXITIF NT$="DONE"

35 SDNOTE NR,NT$:FOR 1=1 TO 200:NEXT I

40 ENDLOOP

45 SDVOICEOFF NR:END

50 :

100 DATA C0,C#0,D0,D#0,E0,F0,F#0,G0,G#0,A0,A#0,B0

110 DATA Cl,C#l,Dl,D#l,El,Fl,F#l,Gl,G#l,Al,A#l,Bl

120 DATA C2,C#2,D2,D#2,E2,F2,F#2,G2,G#2,A2,A#2,B2

130 DATA C3,C#3,D3,D#3,E3,F3,F#3,G3,G#3,A3,A#3,B3

140 DATA C4,C#4,D4/D#4,E4,F4,F#4,G4,G#4,A4,A#4,B4

150 DATA C5,C#5,D5,D#5,E5,F5,F#5,65,6#5,A5,A#5,B5

160 DATA C6,C#6,D6,D#6,E6,F6,F#6,66,6#6,A6,A#6,B6

170 DATA C7,C#7,D7,D#7,E7,F7,F#7,67,6#7,A7,A#7

180 DATA DONE

This program plays the complete SID range on voice 1, and contains a complete

list of the notes and octaves accessible to the SID chip (look at the DATA

statements). Please note that the scale stops at the top A#, since that is the

highest note of the SID chip's range.

SDWAVEON (153) (c)

SDWAVEOFF (154) (c)

These commands control the waveform creation for individual voices.

SDWAVEON turns the appropriate waveform or waveforms on (you can

activate several waveforms at once with SDWAVEON). The SDWAVEOFF

command turns a waveform off.

Format: SDWAVEON VC, WF [,PW]:... :SDWAVEOFF VC,WF

VC is the desired SID chip voice. Values for VC range from 1 to 3.

175

10. Sound commands BeckerBASIC 64

WF is the identifier for the desired waveform. You have four waveforms

available:

1 triangle

2 sawtooth

3 pulse

4 noise

PW is an additional parameter which controls the width of the pulse wave

(WF=3) as a percentage. Values for PW can range from 0 to 100, with

provisions for decimal places. This parameter has no effect an any

other waveform.

Examples:

SDWAVEON 2,1 assigns a triangle wave to voice 2.

SDWAVEON 1,2:SDWAVEON 1,3,40 assigns a sawtooth wave and pulse

wave to voice 1; the pulse wave receives a level of 40 percent.

SDWAVEON 3,4: ... :SDWAVEOFF 3,4:SDWAVEON 3,1 assigns a noise

wave to voice 3, then changes that voice to a triangle wave.

10.2 Turning voices on and off

SDENVELOPE (152) (c)

This command gives you the power to create a software envelope which controls

the attack (start), decay (dying out), sustain (hold) and release (end) of a note.

Format: SDENVELOPE VC,A,D,S,R

VC is the desired voice number. Values for VC range from 1 to 3.

A controls the attack (starting) phase of a note. Values for A range from 0

to 15 (maximum volume).

176

Abacus 10. Sound commands

D controls the decay phase of a note, when the sound dies out. Values for

D range from 0 to 15.

S controls the sustain phase of a note (when a note is held). Values for S

range from 0 to 15. S determines its parameter based upon the attack

phase maximum of 15, instead of basing itself on time. If, for example,

S=15, the volume reaches its maximum during the attack phase. A

value of 0 for S means that the tone holds until the decay phase begins.

The increments from S are linear. That is, if S=7, the volume drops to

about half the value of the attack phase.

R controls the release (ending) phase of a note. Values for R range from 0

to 15.

The table below contains the individual values for time (sc=seconds,

ms=milliseconds) and parameters:

Parameter value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

See the descriptions of SDVOICEON and SDVOICEOFF for practical examples

ofSDENVELOPE.

Attack (a)

2 ms

8 ms

16 ms

24 ms

36 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

1 sc

3 sc

5 sc

8 sc

Decay (d) / Release (r)

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 sc

2.4 sc

3 sc

9 sc

15 sc

24 sc

177

10. Sound commands BeckerBASIC 64

SDVOICEON (155) (c)

SDVOICEOFF (156) (c)

These commands let you enable or disable any one of the voices at any time.

Format: SDVOICEON VC:... :SDVOICEOFF VC

VC is the number of the desired voice. Values for VC can range from 1 to

3. The desired voice is audible only if parameters such as volume,

waveform, etc. are set before turning the voice on. The frequency of a

tone can be changed while the voice is on.

When you set up an envelope with the SDENVELOPE command (see above),

SDVOICEON uses that envelope for its sound parameters. The attack executes,

then the decay and sustain phases run. The release phase actually holds the tone

until the SDVOICEOFF command disables the voice. As long as the voice is on,

the tone continues (see below for a concrete example). You can use PAUSE to

sustain notes for certain periods of time (see Chapter 3). SDVOICEON

2:PAUSE4:SDVOICEOFF 2 turns on voice 2 for exactly 4 seconds. You can

fine-tune this timing by using a FOR/NEXT loop instead (e.g., FOR 1=1 TO

100:NEXTI).

Examples:

The example below sounds a standard signal tone that you might use for audible

errors, etc.

1000 NR=1:'VOICE'

1005 SDCLEAR:'INITIALIZATION':SDVOLUME 15:'VOL'

1010 SDFREQUENCY NR,500:'500 HERTZ FREQUENCY'

1015 SDWAVEON NR,1:'TRIANGLE WAVE'

1020 SDENVELOPE NR,0,0,15,0:'ENVELOPE'

1025 SDVOICEON NR:'VOICE ON':PAUSE 3

1030 SDVOICEOFF NR:'VOICE OFF'

1035 END

This example uses the noise waveform.

1100 NR=1:'VOICE'

1105 SDCLEAR:' INITIALIZATION':SDVOLUME 15":'VOL'

1110 SDFREQUENCY NR,3250:'3250 HERTZ FREQUENCY'

1115 SDWAVEON NR,4:'NOISE WAVE'

178

Abacus 10. Sound commands

1120 SDENVELOPE NR,0,9,0,0:'ENVELOPE'

1125 SDVOICEON NR:'VOICE ON':PAUSE 1

1130 SDVOICEOFF NR:'VOICE OFF'

1135 END

This program demonstrates two different sounds: a flute and an oboe.

1200 'FLUTE'

1203 CLS:SCPRINT AT 7,17;"FLUTE "

1205 NR=1:'VOICE'

1210 SDCLEAR:'INITIALIZATION':SDVOLUME 15:'VOL'

1215 SDFREQUENCY NR,600:'600 HERTZ FREQUENCY'

1220 SDWAVEON NR,1:'TRIANGLE WAVE'

1225 SDENVELOPE NR,8,5,15,8:'ENVELOPE'

1226 SCPRINT AT 10,10; "PLEASE PRESS A KEY.11

1230 SDVOICEON NR:'VOICE ON':WAITKEYA:'WAIT FOR KEYPRESS'

1235 SDVOICEOFF NR:'VOICE OFF'

1300 'OBOE'

1303 CLS:SCPRINT AT 7,17;"OBOE M

1305 NR=1:'VOICE'

1310 SDCLEAR:'INITIALIZATION':SDVOLUME 15:'VOL'

1315 SDFREQUENCY NR,450:'450 HERTZ FREQUENCY'

1320 SDWAVEON NR,3,6.11:'PULSE WAVE, WIDTH 6.11%'

1325 SDENVELOPE NR,4,9,15,8:'ENVELOPE'

1326 SCPRINT AT 10,7;"PLEASE PRESS A KEY TO END."

1330 SDVOICEON NR:'VOICE ON':WAITKEYA:'WAIT FOR KEYPRESS'

1335 SDVOICEOFF NR:'VOICE OFF'

1340 END

10.3 Filters

The sound chip can alter voice qualities using a filter. This filter is like the tone

control on your stereo system. One common filter affects all three voices, but

you can state which voices are filtered and which voices come through

"straight."

SDFILTER (157) (c)

This command sets up the filter parameters. The numbers below set the

operating mode and resonance of the filter.

Format: SDFILTER FQ,FA,RS

179

10. Sound commands BeckerBASIC 64

FQ is the top, cutoff or middle frequency, setting the frequency at which

the voice should be filtered. Values for FQ range from 30 to 11800, and

represent Hertz (cycles per second). Values outside this range result in

an ILLEGAL QUANTITY ERROR.

FA sets the filter operating mode. FA=1 sets up a high-pass filter, affecting

only the frequencies above the frequency FQ. FA=2 sets up a low-pass

filter, which affects frequencies below the frequency FQ. FA=3

activates a bandpass filter, which affects frequencies in the area of FQ.

FA=4 enables parallel switching of high-pass and low-pass filters,

called a notchfilter.

RS sets the resonance of the filter. Values for RS range from 0 to 15. This

parameter adds richness to the frequencies in the area of FQ. RS=0

causes minimal resonance, while RS=15 results in maximum

resonance.

SDVCFTON (158) (ci

SDVCFTOFF (159) fc)

These commands set a specific voice for filtering.

Format SDVCFTON VC:... :SDVCFTOFF VC

VC is the number of the tone generator. Values for VC can range from 1 to

4 (!). Voice 4 represents the audio input

SDVCFTON assigns a voice to the filter. SDVCFTOFF removes a voice from

filtering (SDVCFTOFF is the default).

Like all other SID parameters, you can turn filtering on or off at any time.

Examples:

This example creates an explosion.

2000 NR=1:'VOICE'

2005 SDCLEAR:'INITIALIZATION'rSDVOLUME 15:'VOL'

2010 SDFREQUENCY NR,500:'500 HERTZ FREQUENCY'

2015 SDWAVEON NR,4:'NOISE WAVE'

180

Abacus 10. Sound commands

2020 SDENVELOPE NR,0,11,3,12:'ENVELOPE'

2025 'SET FILTER TO HIGHPASS, 500 HERTZ FREQUENCY, 12 RESONANCE'

2030 SDFILTER 1,500,12:SDVCFTON NR:'ASSIGN VOICE TO FILTER'

2035 SDVOICEON NR:PAUSE2

2040 SDVOICEOFF NR:SDVCFTOFF NR

2045 END

The program below imitates a banjo.

2100 NR=1:'VOICE'

2105 SDCLEAR:'INITIALIZATION'rSDVOLUME 15:'VOL'

2110 SDFREQUENCY NR,450:'450 HERTZ FREQUENCY'

2115 SDWAVEON NR,2:'SAWTOOTH WAVE'

2120 SDENVELOPE NR,0,9,0,0:'ENVELOPE'

2125 'FILTER:NOTCH, 2000 HZ FREQUENCY, RESONANCE 15'

2130 SDFILTER 4,2000,15:SDVCFTON NR:'VOICE INTO FILTER'

2135 SDVOICEON NR:PAUSE 1

2140 SDVOICEOFF NR:SDVCFTOFF NR

2145 END

10.4 Synchronization and ring modulation

SDSYNCHRON (160) (cl
SDSYNCHROFF (161) (c)

These commands allow synchronization between one voice and another.

Format: SDSYNCHRON VC:... :SDSYNCHROFF VC

VC is the number of the voice set for synchronization. The voice used for

synchronizing VC is hardware-set. VC=1 means that voice 1 is

synchronized with voice 3; VC=2 synchronizes voice 1 with voice 2;

and VC=3 synchronizes voice 2 with voice 3.

SDSYNCHRON activates syncrhonization; SDSYNCHROFF turns it off at any

time. You can have multiple synchronization. Example:

SDSYNCHRON 1:SDSYNCHRON 2 synchronizes both voice 1 and voice 2.

181

10. Sound commands BeckerBASIC 64

SDRINGMODON (162) (c)

SDRINGMODOFF (163) (ci

These commands control ring modulation between two voices.

Format: SDRINGMODON VC:... :SDRINGMODOFF VC

VC is the number of the voice to be combined with a second voice for ring

modulation. VC=1 creates ring modulation between voices 1 and 3;

VC=2 creates ring modulation between voices 2 and 1; VC=3 creates

ring modulation between voices 3 and 2.

SDRINGMODON turns modulation on; SDRINGMODOFF turns it off.

Multiple ring modulation can also be produced.

Example:

SDRINGMODON 1:SDRINGMODON 3 puts all three voices in ring

modulation mode. The first command creates modulation between voices 1 and

3; the second produces modulation between voices 3 and 2.

NOTE: Waveforms must be set to triangle wave before you can get an audible

ring modulation.

SDVOICE3OFF (164) (c)

SDVOICE3ON (163) (cl

Synchronized or ring modulated voices are normally audible. If you use voice 3,

you can make it "inaudible" with SDVOICE3OFF. (Because of hardware

design, this option exists only for the third voice).

Format: SDVOICE3OFF:... :SDVOICE3ON

When SDVOICE3OFF is used in concert with a synchronization, or ring

modulation, only voice 1 is audible. SDVOICE3ON restores the normal status

(audible third voice).

182

Abacus 10. Sound commands

Examples:

Both examples make siren noises using BeckerBASIC SID chip commands in

different ways.

3000 'SYNCHRONIZATION'

3005 N1=1:N2=3:'VOICES'

3010 SDCLEARrSDVOLUME 15

3015 SDENVELOPE Nl,0,0,15,0:'ENVELOPE'

3020 SDWAVEON Nl,3,40:'PULSE WAVE':SDSYNCHRON Nl

3025 SDWAVEON N2,2:'SAWTOOTH WAVE':SDVOICE3OFF

3030 SDFREQUENCY N2,150:'150 HZ FREQUENCY'

3035 SDVOICEON Nl:SDVOICEON N2

3040 FOR 1=100 TO 2000 STEP 3

3045 SDFREQUENCY Nl,I

3050 NEXT I

3055 SDCLEAR:END

3100 'RING MODULATION'

3105 N1=1:N2=3:'VOICES'

3110 SDCLEAR:SDVOLUME 15

3115 SDENVELOPE Nl, 0,0,15, 0:SDENVELOPE. N2, 0, 0"; 15, 0

3120 SDWAVEON Nl,1:SDWAVEON N2,3,40:SDRINGMODON Nl

3125 SDVOICEON Nl:SDVOICEON N2

3130 'MOVE FREQ'

3135 FOR 1=1 TO 2000 STEP 100

3140 FOR X=l TO 2000 STEP 50

3145 SDFREQUENCY N2,X

3150 NEXT X

3155 SDFREQUENCY N1,I

3160 NEXT I

3165 SDCLEAR:END

183

Abacus Appendix A

Appendix A: Commands and functions listed by number

The following is a complete list of BeckerBASIC commands and functions. You

can find command and function numbers by using the COMNUM command

(see Chapter 1).

This book allows space after the original name for your own defined command

names. This table is intended to help you quickly find information about

BeckerBASIC commands.

The far right column of the table is the page reference for each command or

function. When you want to find a command, the procedure is as follows: Find

the command number on the screen using COMNUM, then look up the

command number in the table.

For example, SCPRINT COMNUMfTRACE") returns a value of 32. Look in

the table for the page number of command number 32. Other references may

appear in this handbook under the main reference.

NOTE: Command or function numbers preceded by an asterisk (*) are available

in all three interpreters - Input, Testing and Run-Only. A number sign (#)

denotes a command or function available only from the Input-System. If no

character precedes the command number, the command/function can be

accessed only be the Testing and Run-Only-Systems, and not by the Input-

System.

185

Appendix A

Commands

Number

* 001

* 002

* 003

004

* 005

* 006

* 007

* 008

009

010

Oil

012

013

♦ 014

015

016

017

018

Original name

GOTO

GOSUB

RESTORE

LIST

RUN

TRON

PAUSE

DESKTOP

PAUTO

PRENUMBER

POLD

PMERGE

PDEL

PBCEND

PMEM

PDFKEY

PKEY

PCOLORS

New name

BeckerBASIC 64

Page

103

103

103

20

103

35

21

22

23

24

26

25

25

26

26

27

28

49

186

Abacus

Number

019

020

021

022

023

024

* 025

♦ 026

* 027

* 028

* 029

* 030

* 031

* 032

♦ 033

* 034

* 035

* 036

* 037

Original name New name

PHELP

NEWCOMTAB

OLDCOMTAB

RENCOM

DSCOMTAB

DLCOMTAB

ONERRORGO

ONERROROFF

RESUMECUR

RESUMENEXT

RESUME

ERRSHOWON

ERRSHOWOFF

TRACE

KEYREPEATON

KEYREPEATOFF

STOPON

STOPOF

WAITKEYA

Appendix A

Page

13

12

12

15

17

17

30

30

30

31

31

29

29

34

37

37

38

38

38

187

Appendix A

Number

* 038

* 039

♦ 040

* 041

* 042

* 043

♦ 044

* 045

* 046

* 047

* 048

* 049

* 050

* 051

♦ 052

* 053

* 054

* 055

* 056

Original name

WATTKEYS

KGETV

KBGETV

ONKEYGO

RETKEY

SGETV

SGETM

DGETV

DGETM

SCPRINT

AT

RVSON

RVSOFF

BORDER

GROUND

CLS

SCRON

SCROFF

SCRDSAVE

New name

BeckerBASIC 64

Page

39

39

40

42

43

44

44

80

80

46

46

47

47

49

50

50

50

50

51

188

Abacus

Number

* 057

* 058

* 059

* 060

* 061

* 062

* 063

* 064

* 065

* 066

* 067

* 068

* 069

* 070

* 071

♦ 072

* 073

* 074

* 075

Original name New name

SCRDLOAD

CRHOME

CRSET

CRCOL

CRON

CRREPEATON

CRREPEATOFF

CRFREQ

TRANSFER

DOKE

MYFILL

MGETV

ASCBSCW

BSCASCW

SWAP

DIR

DSTATUS

DSENDCOM

DHEADER

Appendix A

Page

51

51

51

52

52

52

52

52

55

58

56

60

57

57

21

64

65

65

67

189

Appendix A

Number

* 076

* 077

* 078

♦ 079

* 080

* 081

* 082

* 083

* 084

* 085

* 086

* 087

* 088

* 089

* 090

* 091

* 092

* 093

* 094

Original name

DDSflT

DRESET

DRENAME

DSCRATCH

DOPEN

DCLOSE

DSAVEB

DSAVEM

DCSAVEB

DCSAVEM

DVERIFYB

DVERIFYM

DLOADB

DLOADM

DLOADAM

DRLOADB

DOVERLAYK

DOVERLAYW

DSQOPEN

New name

BeckerBASIC 64

Page

67

68

66

66

78

82

70

72

70

72

72

73

74

74

74

74

75

75

82

190

Abacus

Number

* 095

* 096

* 097

* 098

* 099

* 100

* 101

* 102

* 103

* 104

* 105

♦ 106

* 107

* 108

* 109

* 110

* 111

* 112

♦ 113

Original name New name

DSOCONCAT

DRLOPEN

DRLRECORD

DUSOPEN

DDAOPEN

DDAPOINT

DDAREADBL

DDAWRITEBL

DDABLALLOC

DDABLFREE

DDABLEXEC

DMYPOKE

DMYWRTTEM

DMYWRTTEV

DMYEXEC

IF

THEN

ELSE

ENDIF

Appendix A

Page

84

84

86

88

89

92

91

92

93

93

98

96

97

97

98

105

105

105

105

191

Appendix A

Number

* 114

* 115

* 116

* 117

* 118

* 119

* 120

♦ 121

* 122

* 123

♦ 124

* 125

♦ 126

♦ 127

* 128

* 129

* 130

* 131

* 132

Original name

WHILE

DO

ENDDO

REPEAT

UNTIL

LOOP

LPEXTTEF

ENDLOOP

SELECT

CASE

OTHER

ENDSEL

PROCEDURE

PROCEND

CALL

DSAVEPROC

DLOADPROC

DELPROC

LDEL

New name

BeckerBASIC 64

Page

110

110

110

111

111

113

113

113

107

107

107

107

115

115

115

121

121

122

77

192

Abacus

Number

* 133

♦ 134

* 135

* 136

137

138

* 139

* 140

* 141

•; 142

* 143

* 144

* 145

* 146

* 147

148

149

150

151

Original name New name

LETTERON

LETTEROFF

LOCKON

LOCKOFF

HRON

HROFF

MBDESIGN

MBINV

MBBLOCK

MBEXCOL

MBSETCOL

MBSETPOS

MBON

MBOFF

MBALLOFF

SDCLEAR

SDVOLUME

SDFREQUENCY

SDNOTE

Appendix A

Page

47

47

47

47

144

144

154

155

157

159

158

162

164

164

164

173

174

174

174

193

Appendix A

Number

152

153

154

155

156

157

158

159

160

161

162

163

164

165

* 166

* 167

♦ 168

* 169

* 170

Original name New name

SDENVELOPE

SDWAVEON

SDWAVEOFF

SDVOICEON

SDVOICEOFF

SDFILTER

SDVCFTON

SDVCFTOFF

SDSYNCHRON

SDSYNCHROFF

SDRINGMODON

SDRINGMODOFF

SDVOICE3ON

SDVOICE3OFF

ONKEYOFF

TROFF

CROFF

MBPRIOR

PRLIST

BeckerBASIC 64

Page

176

175

175

178

178

179

180

180

181

181

182

182

182

182

43

35

52

160

20

194

Abacus
Appendix A

Number

♦ 171

* 172

* 173

* 174

* 175

* 176

* 177

* 178

* 179

* 180

* 181

* 182

* 183

* 184

* 185

* 186

* 187

♦ 188

* 189

Original name

PRPRINT

PRCOM

DB

ON

RESET

KEYDEL

NEW

WAITST

PFKEYON

PFKEYOFF

VGETM

MBCLR

MBMOVE

MBCHANGE

MBAND

MBOR

MBEOR

MBMODE

MBXSEE

New name Page

48

48

19

103

22

38

22

41

28

28

60

155

156

156

156

156

156

158

160

195

Appendix A

Number

* 190

* 191

* 192

* 193

♦ 194

* 195

* 196

* 197

* 198

* 199

* 200

* 201

♦ 202

♦ 203

* 204

* 205

* 206

* 207

♦ 208

Original name New name

MBYSIZE

MBDSAVE

MBDLOAD

MBDELCOLL

DADRCHANGE

DKDEVNB

DPGOPEN

DSAVEL

DCSAVEL

DVERIFYAM

DRLCLOSE

DMYREADM

DMYREADV

PDUMP

POPREP

POPWHL

POPPROC

POPLP

POPIF

BeckerBASIC 64

Page

160

165

165

168

68

68

88

71

71

73

85

96

95

27

113

111

120

114

107

196

Abacus

Number

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Original name

TABNAME

PDMENU

GEOSON

GEOSOFF

DIALOGBOX

HRPRINT

GEOSASCW

ASCGEOSW

HRGET

HRGDCOL

HRPTCOL

HRDEL

HRINV

HRDLOAD

HRDSAVE

HRLINE

HRHLINE

HRVLINE

HRBOX

New name

Appendix A

Page

18

132

130

130

135

138

140

140

141

144

144

144

149

151

151

146

146

146

148

197

Appendix A

Number

228

229

230

Original name

HRFRAME

HRPLOT

HRSTRING

New name

BeckerBASIC64

Page

147

145

149

198

Abacus Appendix A

Functions

Number

231

* 232

* 233

* 234

♦ 235

* 236

* 237

* 238

* 239

* 240

* 241

* 242

* 243

* 244

* 245

* 246

♦ 247

* 248

Original name New name

COMNUM

STTEST

CRPOSL

CRPOSC

DEEK

TEEK

VARADR

EOF

DMYPEEK

MBRXPOS

MBRYPOS

MBCHECKS

MBCHECKG

DF

CLGROUND

CLBORDER

CLCURSOR

MBDATA

Page

14

41

51

51

58

59

61

81

95

163

163

166

167

19

50

49

52

154

199

Appendix A

Number

* 249

250

* 251

* 252

* 253

* 254

* 255

* 256

* 257

* 258

* 259

* 260

* 261

* 262

* 263

* 264

* 265

* 266

* 267

Original name New name

GTBCEND

COMTAB

COMNAME

FILENUM

DDEVADR

MBGTBLK

MBGTEXCL

MBGTCOL

MBGTMOD

MBGTPR

MBGTXSZ

MBGTYSZ

MBGTON

MBCHECKALLG

MBCHECKALLS

LEVELIF

LEVELREP

LEVELWHL

LEVELLP

BeckerBASIC 64

Page

26

13

15

80

68

157

159

158

158

160

161

161

164

167

166

106

113

111

114

200

Abacus Appendix A

Number

* 268

269

270

271

272

273

Original name

LEVELPROC

HRGTON

DIALCODE

MENUCODE

HRGTCOL

HRTESTP

New name Page

120

143

135

133

131

145

201

Abacus Appendix B

Appendix B: Commands and functions listed alphabetically

The following table lists the commands and functions alphabetically. The

command or function name is followed by its number. C and F indicate whether

if it a command or function. The last number on the line is the page number

where the command or function is located.

Page

57

140

46

49

57

115

107

49

52

50

50

14

15

13

Name

ASCBSCW

ASCGEOSW

AT

BORDER

BSCASCW

CALL

CASE

CLBORDER

CLCURSOR

CLGROUND

CLS

COMNUM

COMNAME

COMTAB

Number

(069)

(216)

(048)

(051)

(070)

(128)

(123)

(246)

(247)

(245)

(053)

(231)

(251)

(250)

Type

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(F)

(F)

(F)

(Q

(F)

(F)

(F)

203

Appendix B

Name

CRCOL

CRFREQ

CRHOME

CROFF

CRON

CRPOSC

CRPOSL

CRREPEATOFF

CRREPEATON

CRSET

DB

DADRCHANGE

DCLOSE

DCSAVEB

DCSAVEL

DCSAVEM

DDABLALLOC

DDABLEXEC

DDABLFREE

Number

(060)

(064)

(058)

(168)

(061)

(234)

(233)

(063)

(062)

(059)

(173)

(194)

(081)

(084)

(198)

(085)

(103)

(105)

(104)

Type

(C)

(Q

(C)

(Q

(C)

(F)

(F)

(C)

(Q

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(Q

(Q

(C)

BeckerBASIC 64

Page

52

52

51

52

52

51

51

52

52

51

19

68

82

70

71

72

93

98

93

204

Abacus

Name

DDAOPEN

DDAPOINT

DDAREADBL

DDAWRITEBL

DDEVADR

DEEK

DELPROC

DESKTOP

DF

DGETM

DGETV

DHEADER

DIALCODE

DIALOGBOX

DINIT

DIR

DKDEVNB

DLCOMTAB

DLOADAM

Number

(099)

(100)

(101)

(102)

(253)

(235)

(131)

(008)

(244)

(046)

(045)

(075)

(270)

(213)

(076)

(072)

(195)

(024)

(090)

Type

(C)

(Q

(C)

(Q

(F)

(F)

(Q

(C)

(F)

(C)

(Q

(C)

(F)

(Q

(Q

(Q

(C)

(F)

(C)

Appendix B

Page

89

92

91

92

68

58

122

22

19

80

80

67

135

135

67

64

68

17

74

205

Appendix B BeckerBASIC 64

Type Page

(C) 74

(C) 74

(C) 121

(C) 98

(F) 95

(C) 96

(Q 96

(C) 95

(C) 97

(C) 97

(C) 110

(Q 58

(C) 78

(C) 75

(C) 75

(C) 88

(C) 66

(C) 68

(Q 85

206

Name

DLOADB

DLOADM

DLOADPROC

DMYEXEC

DMYPEEK

DMYPOKE

DMYREADM

DMYREADV

DMYWRTTEM

DMYWRTTEV

DO

DOKE

DOPEN

DOVERLAYK

DOVERLAYW

DPGOPEN

DRENAME

DRESET

DRLCLOSE

Number

(088)

(089)

(130)

(109)

(239)

(106)

(201)

(202)

(107)

(108)

(115)

(066)

(080)

(092)

(093)

(196)

(078)

(077)

(200)

Abacus Appendix B

Page

74

84

86

70

71

72

121

17

66

65

84

82

65

88

73

72

73

105

110

207

Name

DRLOADB

DRLOPEN

DRLRECORD

DSAVEB

DSAVEL

DSAVEM

DSAVEPROC

DSCOMTAB

DSCRATCH

DSENDCOM

DSQCONCAT

DSQOPEN

DSTATUS

DUSOPEN

DVERIFYAM

DVERIFYB

DVERIFYM

ELSE

ENDDO

Number

(091)

(096)

(097)

(082)

(197)

(083)

(129)

(023)

(079)

(074)

(095)

(094)

(073)

(098)

(199)

(086)

(087)

(112)

(116)

Type

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(Q

(C)

(Q

(Q

(O

(C)

(Q

(C)

(O

(Q

(Q

Appendix B

Name

ENDEF

ENDLOOP

ENDSEL

EOF

ERRSHOWOFF

ERRSHOWON

FILENUM

GEOSASCW

GEOSOFF

GEOSON

GOSUB

GOTO

GROUND

GTBCEND

HRBOX

HRDEL

HRDLOAD

HRDSAVE

HRFRAME

Number

(113)

(121)

(125)

(238)

(031)

(030)

(252)

(215)

(212)

(211)

(002)

(001)

(052)

(249)

(227)

(220)

(222)

(223)

(228)

Type

(Q

(C)

(C)

(F)

(Q

(C)

(F)

(Q

(Q

(C)

(C)

(C)

(Q

(F)

(C)

(C)

(O

(C)

(Q

BeckerBASIC 64

Page

105

113

107

81

29

29

80

140

130

130

103

103

50

26

148

144

151

151

147

208

Abacus

Name

HRGDCOL

HRGET

HRGTCOL

HRGTON

HRHLINE

HRINV

HRLINE

HROFF

HRON

HRPLOT

HRPRINT

HRPTCOL

HRSTRING

HRTESTP

HRVLINE

IF

KBGETV

KEYDEL

KEYREPEATOFF

Number

(218)

(217)

(272)

(269)

(225)

(221)

(224)

(138)

(137)

(229)

(214)

(219)

(230)

(273)

(226)

(110)

(040)

(176)

(034)

Type

(C)

(Q

(F)

(F)

(C)

(C)

(C)

(Q

(C)

(C)

(Q

(Q

(C)

(F)

(C)

(Q

(Q

(C)

(C)

Appendix B

Page

144

141

131

143

146

149

146

144

144

145

138

144

149

145

146

105

40

38

37

209

Appendix B

Name

KEYREPEATON

KGETV

LDEL

LETTEROFF

LETTERON

LEVELIF

LEVELLP

LEVELPROC

LEVELREP

LEVELWHL

LIST

LOCKOFF

LOCKON

LOOP

LPEXITIF

MBALLOFF

MBAND

MBBLOCK

MBCHANGE

Number

(033)

(039)

(132)

(134)

(133)

(264)

(267)

(268)

(265)

(266)

(004)

(136)

(135)

(119)

(120)

(147)

(185)

(14.1)

(184)

Type

(C)

(C)

(C)

(Q

(C)

(F)

(F)

(F)

(F)

(F)

(O

(C)

(Q

(Q

(Q

(C)

(C)

(C)

(C)

BeckerBASIC 64

Page

37

39

77

47

47

106

114

120

113

111

20

47

47

113

113

164

156

157

156

210

Abacus

Name

MBCHECKALLG

MBCHECKALLS

MBCHECKG

MBCHECKS

MBCLR

MBDATA

MBDELCOLL

MBDESIGN

MBDLOAD

MBDSAVE

MBEOR

MBEXCOL

MBGTBLK

MBGTCOL

MBGTEXCL

MBGTMOD

MBGTON

MBGTPR

MBGTXSZ

Number

(262)

(263)

(243)

(242)

(182)

(248)

(193)

(139)

(192)

(191)

(187)

(142)

(254)

(256)

(255)

(257)

(261)

(258)

(259)

Type

(F)

(F)

(F)

(F)

(C)

(F)

(Q

(C)

(C)

(C)

(Q

(C)

(F)

(F)

(F)

(F)

(F)

(F)

(F)

Appendix B

Page

167

166

167

166

155

154

168

154

165

165

156

159

157

158

159

158

164

160

161

211

Appendix B

Name

MBGTYSZ

MBINV

MBMODE

MBMOVE

MBOFF

MBON

MBOR

MBPRIOR

MBRXPOS

MBRYPOS

MBSETCOL

MBSETPOS

MBXSIZE

MBYSEZE

MENUCODE

MGETV

MYFILL

NEW

NEWCOMTAB

Number

(260)

(140)

(188)

(183)

(146)

(145)

(186)

(169)

(240)

(241)

(143)

(144)

(189)

(190)

(271)

(068)

(067)

(177)

(020)

Type

(F)

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(F)

(F)

(C)

(C)

(Q

(C)

(F)

(Q

(Q

(C)

(Q

BeckerBASIC 64

Page

161

155

158

156

164

164

156

160

163

163

158

162

160

160

133

60

56

22

12

212

Abacus Appendix B

Page

12

103

30

30

42

43

107

21

23

26

49

25

27

132

27

30

28

13

28

213

Name

OLDCOMTAB

ON

ONERRORGO

ONERROROFF

ONKEYGO

ONKEYOFF

OTHER

PAUSE

PAUTO

PBCEND

PCOLORS

PDEL

PDFKEY

PDMENU

PDUMP

PFKEYOFF

PFKEYON

PHELP

PKEY

Number

(021)

(174)

(025)

(026)

(041)

(166)

(124)

(007)

(009)

(014)

(018)

(013)

(016)

(210)

(203)

(180)

(179)

(019)

(017)

Type

(C)

(Q

(C)

(Q

(C)

(O

(Q

(C)

(Q

(C)

(C)

(C)

(C)

(C)

(C)

(C)

(Q

(C)

(Q

Appendix B

Nairn

PMEM

EMERGE

POLD

POPIF

POPLP

POPPROC

POPREP

POPWHL

PRCOM

PRLIST

PRENUMBER

PROCEDURE

PROCEND

PRPRINt

REPEAT

RENCOM

RESET

RESTORE

RESUME

Number

(015)

(012)

(Oil)

(208)

(207)

(206)

(204)

(205)

(172)

(170)

(010)

(126)

(127)

(171)

(117)

(022)

(175)

(003)

(029)

Type

(Q

(Q

(Q

(C)

(Q

(C)

(Q

(C)

(Q

(C)

(Q

(Q

(Q

(Q

(C)

(Q

(Q

(C)

(C)

BeckerBASIC 64

Page

26

25

26

107

114

120

113

111

48

20

24

115

115

48

111

15

22

103

31

214

Abacus Appendix B

Type Page

(C) 30

(C) 31

(C) 43

(C) 103

(Q 47

(C) 47

(C) 46

(C) 51

(C) 51

(C) 50

(C) 50

(C) 173

(C) 176

(C) 179

(C) 174

(C) 174

(C) 182

(C) 182

(C) 181

215

Name

RESUMECUR

RESUMENEXT

RETKEY

RUN

RVSOFF

RVSON

SCPRINT

SCRDLOAD

SCRDSAVE

SCROFF

SCRON

SDCLEAR

SDENVELOPE

SDFILTER

SDFREQUENCY

SDNOTE

SDRINGMODOFF

SDRINGMODON

SDSYNCHROFF

Number

(027)

(028)

(042)

(005)

(050)

(049)

(047)

(057)

(056)

(055)

(054)

(148)

(152)

(157)

(150)

(151)

(163)

(162)

(161)

Appendix B

Name

SDSYNCHRON

SDVCFTON

SDVCTOFF

SDVOICE3OFF

SDVOICE3ON

SDVOICEOFF

SDVOICEON

SDVOLUME

SDWAVEOFF

SDWAVEON

SELECT

SGETM

SGETV

STOPOFF

STOPON

STTEST

SWAP

TABNAME

TEEK

Number

(160)

(158)

(159)

(164)

(163)

(156)

(155)

(149)

(154)

(153)

(122)

(044)

(043)

(036)

(035)

(232)

(071)

(209)

(236)

Type

(Q

(C)

(C)

(C)

(C)

(C)

(Q

(C)

(Q

(C)

(C)

(C)

(C)

(Q

(C)

(F)

(C)

(C)

(F)

BeckerBASIC 64

Page

181

180

180

182

182

178

178

174

175

175

107

44

44

38

38

41

21

18

59

216

Abacus

Name

THEN

TRACE

TRANSFER

TROFF

TRON

UNTIL

VARADR

VGETM

WATTKEYA

WATTKEYS

WAITST

WHILE

Number

(HI)

(032)

(065)

(167)

(006)

(118)

(237)

(181)

(037)

(038)

(178)

(114)

Type

(C)

(Q

(C)

(C)

(Q

(Q

(F)

(C)

(C)

(C)

(C)

(Q

Appendix B

Page

105

34

55

35

35

111

61

60

38

39

41

110

217

Abacus Appendix C

Appendix C: Error messages

This table contains the complete set of BeckerBASIC error messages. The error

messages coincide with the ONERRORGO command (see Section 2.2).

ERROR NUMBER

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

• 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

ERROR TEXT

TOO MANY FILES

FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILENAME

ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX

RETURN WITHOUT GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF'D STATEMENT

BAD SUBSCRIPT

REDIM'D ARRAY

DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

FORMULA TOO COMPLEX

CAN'T CONTINUE

UNDEF'D FUNCTION

VERIFY

LOAD

BREAK

REMARK

COMMAND TOO LONG

219

Appendix C BeckerBASIC 64

ERROR NUMBER

33

34

35

36

37

38

39

40

41

42

43

44

45

ERROR TEXT

COMMAND TOO SHORT

PROCEND WITHOUT PROCEDURE

UNDEFINED PROCEDURE

PROCEDURE-PARAMETER

CONSTRUCT NOT CLOSED

ENDDO WITHOUT WHILE

UNTIL WITHOUT REPEAT

LPEXITIF/ENDLOOP WITHOUT LOOP

LABEL

CASE/OTHER/ENDSEL WITHOUT

SELECT

RETKEY WITHOUT ONKEYGO

RESUME WITHOUT ONERRORGO

ILLEGAL COMMAND

220

Abacus Appendix D

Appendix D: Memory map

The following table is an overview of the BeckerBASIC and GEOS memory

layout As you have already seen, memory is divided into sections.

This memory map will help you when you want to make your own changes to

BeckerBASIC or GEOS. In conjunction with this, you should refer to the

BeckerBASIC memory access commands (see Chapter 4). This allows access to

ROM lying in RAM, where the gross majority of GEOS routines lie.

You can find a C64 operating system memory map, as well as the BASIC

interpreter layout, in your C64 Programmer's Reference Guide and Anatomy of

the C64 from Abacus.

Memory range

2-68

251-254

1024-2047

2048-6799

16800-32575

(24576-32575)

32576-32767

Layout

This range is used by BeckerBASIC, BASIC

2.0 and GEOS. You'll find buffer memory

for the other values starting around address

32576.

Miscellaneous memory.

Text screen memory.

BeckerBASIC program code. The Input-,

Testing- and Run-Only-Systems reside here.

Approx. 15,800 bytes of BASIC memory.

Hi-res bitmap II. Dialogue boxes and drop

down menu routines need this second

bitmap. Using these features reduces your

available memory by around 8K.

Important BeckerBASIC routines and zero

page buffer memory. Do not use this

memory.

221

Appendix D BeckerBASIC 64

32768-40959

40960-48959

(40960-43959)

(43960-45800)

(47104-48103)

48960-65535

GEOS program and data memory. Hi-res

color memory for bitmap I stays in 35840-

36839.

Hi-res bitmap I. Hi-res graphics appear here

for both GEOS and BeckerBASIC. When

you avoid using the hi-res graphics in either

the Testing-Systen or Run-Only-System,

you have 8K more BASIC memory

available. The Input-System uses this area

for the BeckerBASIC command table (the

Input-System cannot use hi-res graphics).

Command

names).

name table I (user-assigned

Command name table II (original names).

This area serves as buffer memory for the

GEOS routines that normally lie in text

screen color memory from 55296 to 56295

(for switched off hi-res graphics).

GEOS program and data memory.

222

Abacus Appendix E

Appendix E: BeckerBASIC in action

The following is a program designed as an example for demonstrating

BeckerBASIC in action. It is on the BeckerBASIC disk under the name

ADDRSAMPLE.

Let's assume that you want to save a list of names on your disk. For our sample

program we'll need a drop-down menu.

Let's run the DDM.C.S program on the disk. First it will want to know where

the table needed by the menu will be stored in memory. Enter 24200. Next it

will ask for how many item will appear on the menu bar. Enter 2. Now, will it

be a horizontal menu or vertical? Enter 0 for horizontal. Next enter 0 then 0 for

the upper left corner of the menu. Enter 7 9 and 13 for the lower right corner.

When creating menus, it is best to enter height in multiples of 14, starting with

0. such as 0,13,27,41 and so on.

Now you need to enter the text to appear on the menu. Enter FILE. And enter

DATA.

Next, we'll create the sub-menus. It now asks if a sub-menu should be created

for FILE. Answer Y. Now enter 2 for the number of items. Enter 1 for vertical

menu. Enter 0,13, 59, and 41 as the location coordinates. Now enter the text

for items on the sub-menu. Type CREATE/LOAD and QUIT. To create the

second sub-menu, enter the following text at the appropriate prompts: Y (for yes,

you want a sub-menu for data), 2 (number of items), 1 (vertical), 20,13, 64,

41 (coordinates), ENTER, READ (names of the sub-menus).

Once you have created your menu, the program will wait for a keypress then

display it. Click on a sub-menu item to continue. After you click, it will ask if

the menu is acceptable. If you answer Y, it will ask for a name to save it under.

If you answer N, you will be able to go through and reenter your data. Answer Y

now to save the menu. Enter the name ADDRMENU.

You have now just created the table for your menu. To use it in our program, we

will load it into memory with DLOADM"ADDRMENU".

223

Appendix £ BeckerBASIC 64

Now let's create a dialogue box. Load and run D. c. S off the BeckerBASIC

disk. Now enter 828 for the address where the table will be loaded into

memory. Enter N so you can create your own size of dialogue box. Enter the

coordinates 60 and 50 for the upper-left corner. Now enter 260 and 150 for

the lower-right corner. Next enter 0 for no shadow.

To add a button to the dialogue box, enter the number for the desired button. For

our example we only want the CANCEL button so enter 2. Now the program

wants to know how far over the button should be placed. Enter the number in

bytes (divide actual pixels by 8, i.e., you want the button over 16 pixels so you

would enter 2). Enter 2 now. Enter 70 for the number of pixels down from the

top. You have just added a CANCEL button to the dialogue box.

To add text, enter 11. Do this now. Next enter the coordinates of were the text

should be placed. Enter 16 and 14. Enter the text Please enter

filename. at the prompt Now add an input prompt so the use can enter text

using the dialogue box. Type 13 for an input prompt Enter the coordinates of

the prompt as 16 and 35. Next enter the number of characters that will be

allowed to be entered. Type 14.

Our dialogue box is now complete. You can enter 33 to see if the data for the

buttons was entered correctly. Enter 0 and the dialogue box will be displayed.

Before you display a dialogue box, make sure you added a button or you will

not be able to return from the dialogue box. Click on the button to exit. If

everything is okay, then enter Y to save the table. Enter ADDRDIAL as the name

of the table.

With both the drop-down menu and the dialogue box tables saved, we are ready

to enter our program. This program has a little of nearly everything. The

following explains the program ADDRSAMPLE (on the BeckerBASIC disk)

section by section. It will show some of BeckerBASICs highlights in action.

The first section is labeled "SETUP". The first line sets up the error routine used

for editing and debugging the program as it was written. When an error is

encountered, it does the following: jumps to the line number after the

ONERRORGO statement, places the error number in EN, places the error text in

EN$, and places in EL the line number where the error occurred.

224

Abacus Appendix E

The next line sets the end of memory for your BeckerBASIC program. Since we

want to protect our menu starting at location 24200, we set the end of BASIC to

24199. CLR resets variables and pointers.

GEOS is turned on next The program sets up the arrays for the screen text and

the address data. Then it loads the menu and dialogue tables into memory. Next

it defines the strings that are to be placed on the screen. Finally it jumps to the

routine that creates the screen.

The section labeled "MENU" first displays the drop-down menu. Then it defines

where it should jump to when a menu item is selected. The labels that it jumps

to correspond to the names of the items on the menu.

"DRAWSCREEN" first clears the screen. It then draws a box filled with the

background pattern. Now it draws a smaller black box. Next it draws a black

box for a shadow, then a white box overlapping the black box. A frame is then

added.

The next three lines draws a wide, narrow box that will be used to display

information.

The last group of lines prints the screen title in bold, italic and reversed type and

the field descriptions in bold type.

"CREATE/LOAD" uses a dialogue box to enter the name of the data file. First it

assigns N$ the default filename. Then N$ is stored into memory at 880. Next it's

converted from ASCII to GEOS text. The dialogue box is called with the

following line and the text inputted is to be placed at memory location 880.

Since we placed the contents of N$ there, it will be displayed at the input

prompt The next line checks to see if the CANCEL button was selected. If it

was the program flow returns to "MENU". The entered text is converted from

GEOS back to ASCII. N$ is filled with the contents of 880 through 893. The

REPEAT UNTIL loop looks for the end of the text in N$ so the extra characters

can be stripped out If the first character in N$ is CHR$(0) then there is no text

and it returns back to "MENU". Next N$ is stripped of the extra characters. A

sequential file is then created under the name N$. The program then checks to

see if a file under that name exists. If it does exist than it is checked to see if

data can be appended to it If it cannot append data then an error occurs and is

displayed in the info box we created on die screen. Before it jumps back to the

"MENU" loop, a flag is set to indicate that a file exists to be used.

225

Appendix E BeckerBASIC 64

The "ENTER" routine permits data to be added to the sequential file. First it

checks to see of a file has been cleared. If it was not cleared, it prints "NO

FILE" in the info box. If it has, it continues and opens the file. The HRBOX

command clears what data might be on the screen. The FOR-NEXT loop sets

the entry variables to blanks and allows up to 15 characters to be entered. The

next FOR-NEXT loop allows the user to enter the data and does the necessary

conversions. Also it strips the entries of any extra text Next it asks if the entry

was okay. If it was not, then it allows you to make corrections on the text

already entered. Once the text entered is satisfactory, the program then saves the

data to disk. It then asks you if you want to enter more data.

The next section is "READ". This routine checks to see if the file has been

okayed then opens the file. Next it INPUTs the data in the D$ array and displays

each record until the EOF.

"INFOBOX" is used to display information on the screen. It then waits for a

single keypress and stores what key was pressed in AN$. It then clears the box.

'ERRORS' uses the "INFOBOX" routine to display any errors that might occur.

Once the program is thoroughly debugged, you may want to take this section out

along with the ONERRORGO command.

"QUIT1 turns GEOSOFF and ENDs the program.

If you want to RUN this program from the GEOS deskTop, first replace the

END statement in the last line with DESKTOP. When you QUIT the program, it

will return to the deskTop.

The next thing you will need to do is to run the CONVERTER program. This

program converts your program so that it is accessible from the deskTop. You

can add a creation date and design your own icon. More information on the

CONVERTER program is in Section 1.1.4.

226

Abacus Appendix F

Appendix F: Distribution of the Run-Only System

Abacus grants to you a royalty-free right to copy and distribute the "Run-Only

System" of BeckerBASIC provided that you:

(a) distribute the "Run-Only System" ONLY in conjunction with your

own software program created using BeckerBASIC

(b) leave the Run-Only System unchanged and named "SYSTEM 3"

upon the disk

227

Appendix G BeckerBASIC 64

Appendix G: Examples of DB and DF

Section 1.4 (page 19) described the DB and DF commands which allow the

machine language programmer to add a command or function to BeckerBASIC.

Here are two BeckerBASIC programs demonstrating each of these function

from BASIC.

DB:

10 POKE 25500,169:POKE 25501,65:POKE 25502,32:POKE 25503,210

20 POKE 25504,255:POKE 25505,96

30 :fOTHER PROGRAM CODE AS NEEDED'

40 DB

The above sequence, which prints the A character on the screen when the DB in

line 40 executes, is the equivalent of the marine language program:

LDA #$41

JSR $FFD2

RTS

DF:

10 POKE 25000,160:POKE 25001,1:POKE 25002,76:POKE 25003,162

20 POKE 25004,179

30 :'OTHER PROGRAM CODE AS NEEDED'

40 SCPRINT DF

The above program, which returns a value of 1 when the SCPRINT DF executes

in line 40, is the equivalent of the machine language program:

LDY#$01

JMP$B3A2

228

Abacus Index

activate drop-down menu 132

ASCBSCW 57

ASCGEOSW 129,140

ASCII 129

AT 46

auto line numbering 23

background color 50

BAM (Block Availability Map) 67

BASIC 2.0 commands 19

BASIC extension 1

BASIC icon 4

BeckerBASIC

distribution 9

exit 3

interpreters 1

program errors 2

starting 3

structure 1

system files 4

bold 139

BORDER 49

border color 49

branch structures 105

BSCASCW 57

buttons 135

calculated line numbers 103

CALL 115

CASE 107

CLBORDER 49

CLCURSOR 52

clear text screen 50

clear VIC registers 168

clearing hi-res screen 144

clearing hi-res screen (HRDEL) 130

CLGROUND 50

CLS 50

colors 49

229

Index BeckerBASIC 64

command table 12

loading 17

saving 17

commands 1, 5

comments 102

Commodore key 41

COMNAME 15

COMNUM 14

COMTAB 13

CONVERTER 1

CONVERTER program 4

copy sprite block 156

CRCOL 52

CRFREQ 52

CRHOME 51

CROFF 52

CRON 52

CRPOSC 51

CRPOSL 51

CRREPEATOFF 52

CRREPEATON 52

CRSET 51

CTRL key 41

CTRL/Commodore keys 2

cursor

color 52

control 51

position 51

DADRCHANGE 68

DATA 153

data input 37

data output 46

DB 19

DOLOSE 78,82

DCSAVEB 70

DCSAVEL 71

DCSAVEM 72

DDABLALLOC 93

DDABLEXEC 98

230

Abacus Index

DDABLFREE 93

DDAOPEN 89

DDAPOINT 92

DDAREADBL 91

DDAWRITEBL 92

DDEVADR 68

DEEK 58

delete files 66

DELPROC 122

DEMO program 4,11

deskTop 1,6,22

DF 19

DGETM 78,80

DGETV 78,80

DHEADER 63,67

DIALCODE 135

DIALOGBOX 135

Dialogue Box Construction Set 4

operation 136

dialogue boxes 3,129,135

DINIT 67

DIR 64

direct diskette access 89

disabling hi-res screen 144

disabling sprites 164

disabling voices 176

disk

addresses 68

commands 63

memory access 95

operating system (DOS) 95

status (DSTATUS) 65

directory 64

DKDEVNB 68

DLCOMTAB 17

DLOADAM 74

DLOADB 5,74

DLOADM 74,151

DLOADPROC 121

DMYEXEC 98

231

Index BeckerBASIC64

DMYPEEK 95

DMYPOKE 96

DMYREADM 96

DMYREADV 95

DMYWRTTEM 97

DMYWRTTEV 97

DO 101,110

DOKE 58

DOPEN 78

DOVERLAYK 75

DOVERLAYW 75

DPGOPEN 88

drawing in hi-res

filled rectangle 148

frame 147

horizontal line 146

line 146

vertical line 146

DRENAME 64,66

DRESET 68

DRLCLOSE 85

DRLOADB 5,74

DRLOPEN 84

DRLRECORD 86

Drop-Down Menu Construction Set 4,132

operation 134

drop-down menus 3,129,132

DSAVEB 5,70

DSAVEL 71

DSAVEM 72,151

DSAVEPROC 121

DSCOMTAB 17

DSCRATCH 66

DSENDCOM 63,65

DSQCONCAT 84

DSQOPEN 82

DSTATUS 63,65

DUSOPEN 88

DVERIFYAM 73

232

Abacus Index

DVERIFYB 72

DVERIFYM 73

editing 2

ELSE 105

enabling hi-res screen 144

enabling voices 176

ENDDO 101,110

ENDIF 105

ENDLOOP 101,113

ENDSEL 101,107

EOF 81

Error

display 2,29

handling 2,29

messages 6,7,8,16,90

ERRSHOWOFF 8,29

ERRSHOWON 2, 6,7,8,29

executing machine language programs 98

FDLENUM 80

Fill memory range 56

Filters 179

FOR 101

format diskette 63

format diskettes 67

function keys

assignment 27

layout 27

functions 1

GEOS iv, 129

commands 129

format 4

specialties 129

GEOSASCW 129,140

GEOSOFF 130

GEOSON 130

GET# 78

GOSUB 103

233

Index BeckerBASIC 64

GOTO 19,103

GROUND 50

GTBCEND 26

hi-res 5

background color 131,144

commands 5,129

graphic control 130

graphic string 149

graphics 7,143

input 141

mode 129

plot 145

point color 131,144

screen clear 130

text display 138

text entry 138

HRBOX 148

HRDEL 130,144

HRDLOAD 151

HRDSAVE 151

HRFRAME 147

HRGDCOL 131,144

HRGET 138,141

HRGTCOL 131,144

HRGTON 144

HRHLINE 146

HRINV 149

HRLINE 146

HROFF 130,144

HRON 130,144

HRPLOT 145

HRPRINT 138

HRPTCOL 131,144

HRSTRING 149

HRTESTP 145

HRVLINE 146

icon editor 10

icons 1

234

Abacus Index

IF 19,101,105

initializing graphics 143

INPUT 138

INPUT* 78

Input-System 1

loading 6

interpreters 5

invert hi-res graphic display 149

invert sprite data block 1SS

italics 139

KBGETV 40

keyboard input 37

KEYDEL 38

KEYREPEATOFF 37

KEYREPEATON 37

KGETV 39

labels 103

language extensions iv

LDEL 77

LETTEROFF 47

LETTERON 47

LEVELIF 106

LEVELLP 114

LEVELPROC 120

LEVELREP 113

LEVELWHL 111

LIST 19,20

loading

command tables 17

hi-res graphics 1S1

programs 5

LOCKOFF 47

LOCKON 47

logical files 77

LOOP 101,113

loop structures 110

LOOP/LPEXTTIF/ENDLOOP 101

LPEXTITF 101,113

235

Index BeckcrBASIC64

MBALLOFF 164

MBAND 156

MBBLOCK 154,157

MBCHANGE 156

MBCHECKALLG 167

MBCHECKALLS 166

MBCHECKG 167

MBCHECKS 166

MBCLR 155

MBDATA 154

MBDELCOLL 168

MBDESIGN 153,154

MBDLOAD 165

MBDSAVE 165

MBEOR 156

MBEXCOL 159

MBGTBLK 157

MBGTCOL 158

MBGTEXCL 159

MBGTMOD 158

MBGTON 164

MBGTPR 160

MBGTXSZ 161

MBGTYSZ 161

MBINV 155

MBMODE 158

MBMOVE 156

MBOFF 164

MBON 164

MBOR 156

MBPRIOR 160

MBRXPOS 163

MBRYPOS 163

MBSETCOL 158

MBSETPOS 162

MBXSEE 160

MBYSEE 160

memory

access 55,57

exchange 60

236

Abacus Index

memory

fill 56

reading contents 60

transfer 55

MENUCODE 133

MGETV 55,60

multicolor bit combinations 159

MYHLL 55,56

nested loops 101

NEW 19,22

NEWCOMTAB 12

NEXT 101

OLDCOMTAB 12

ON 19,103

ONERRORGO 6,7,8,30

ONERROROFF 30

ONKEYGO 42

ONKEYOFF 43

opening

direct access files 89

files 78

program files 88

user files 88

OTHER 107

outlined text 139

PAUSE 21

PAUTO 23

PBCEND 26

PCOLORS 49

PDEL 25

PDFKEY 27

PDMENU 132

PDUMP 5,27

PFKEYOFF 28

PFKEYON 28

PHELP 13

Piracy 9

237

Index BeckerBASIC 64

PKEY 28

PMEM 26

PMERGE 25

POKE 153

POLD 26

POPIF 107

POPLP 114

POPPROC 120

POPREP 113

POPWHL 111

PRCOM 48

PRENUMBER 5,24

PRINT* 78

printer codes 48

printer output 48

PRLIST 20

PROCEDURE 115

procedures 114

PROCEND 115

program distribution 3

program files 64

programmer's tools 2

proportional type 132,138

PRPRINT 48

RAM 60

reading

disk bytes 95

memory 58

sprite data 154

track and sector 91

relative file commands 84

relative files 64

REM 102

renaming disk files 64, 66

renaming commands 12,16

RENCOM 15

REPEAT 101,111

REPEAT/UNTIL 101

RESET 22

238

Abacus Index

reset disk drive 68

RESTORE 19,103

RESUME 31

RESUMECUR 30

RESUMENEXT 31

RETKEY 43

return menu code 133

reverse 139

ring modulation 181

RUN 5,19,103

Run-Only-System 1

running programs 5,7

RVSOFF 47

RVSON 47

saving

command tables 17

hi-res graphics 151

programs 5,70

SAVE with replace 70

SCPRINT 46

SCRDLOAD 51

SCRDSAVE 51

screen input 43

screen output 46

SCROFF 50

SCRON 50

SDCLEAR 173

SDENVELOPE 176

SDFDLTER 179

SDFREQUENCY 174

SDNOTE 174

SDRINGMODOFF 182

SDRINGMODON 182

SDSYNCHROFF 181

SDSYNCHRON 181

SDVCFTOFF 180

SDVCFTON 180

SDVOICE3OFF 182

SDVOICE3ON 182

239

Index BeckerBASIC 64

SDVOICEOFF 178

SDVOICEON 178

SDVOLUME 174

SDWAVEOFF 175

SDWAVEON 175

SELECT 101,107

SELECT/ENDSEL 101

sending disk commands 65

sequential file commands 82

sequential files 64

SGETM 44

SGETV 44

SHIFT key 41

software envelope 176

sound commands 5,173

sound generation 173

SPRITE-EDIT program 4,168

sprite 153

collisions 166

commands 153

coordinates 162

data block comparison 156

disabling 164

editor 153,168

enabling 164

expansion 160

loading data blocks 165

moving 162

positioning 162

priority 160

saving data blocks 165

swapping blocks 156

STOP key 38

STOPOFF 38

STOPON 38

structured programming 101

STTEST 41

sub-menus *34

SWAP 21
swap sprite block 156

240

Abacus Index

Synchronization 181

TABNAME 18

TEEK 59

Testing-System 1

function keys 2

menu 2

text color 52

text conversion 140

THEN 19,105

TRACE 6,29,34

TRANSFER 55

TROFF 8,35

TRON 8,35

typestyles

bold 139

italics 139

outline , 139

reversed 139

underlining 139

UNTIL 101, 111

user files 64

validate 63

VARADR 55,61

variable address 61

verifying programs 70

VGETM 55,60

VLIR files 1

voices

disabling 176

enabling 176

WATTKEYA 38

WAITKEYS 39

WATTST 41

WHILE 101,110

WHILE/DO/ENDDO 101

wildcards 64

241

Index BeckerBASIC 64

WINPROC program 122

writing

disk bytes to RAM 96

disk memory 97

sprite data 154

string to disk memory 97

242

Selected Abacus 11H Products for Commodore computer

SpeedTerm
Terminal Software

for both the C-128 and C-64

As a group, Commodore owners are one of the largest

users of online communication services, such as

CompuServ, The Source, Delphi and GEnie. SpeedTerm

was designed to handle the communication needs of this

rapidly growing base of Commodore owners who access

these services. Both programs are packaged together, so

it's easy for you to order and stock SpeedTerm.

SpeedTerm sets a high standard in economical

telecomputing software—this package offers more power

per dollar than any other terminal program for the '64

and "128. SpeedTerm is a completely command-driven

program that is easy to learn and use, yet provides great

power and flexibility.

Even though SpeedTerm is simple in design, it packs

numerous features that aren't found in others terminal

packages. For instance, it supports both Xmodem and

Punter file transfer, protocols so that large files can be

uploaded and downloaded without error. In addition to

these popular file transfer protocols, SpeedTerm includes

partial DEC VT52 terminal emulation. In addition to the

standard options found in other terminal programs,

manages a large 45K.capture buffer and permits user

defined function keys. SpeedTerm understands more than

30 powerful commands.

SpeedTerm is compatible with most of the inexpensive

modems for the C-64 and C-128, and if properly

interfaced, will function with all Hayes® compatible

RS-232 modems. SpeedTerm's versatile capture buffer

which can be used to both send and receive ASCII text

files, or to record an online session.

The complete SpeedTerm package includes a 70 page

manual with easy to understand tutorial.

Modems:

• Commodore 1600, 1650, 1660

• Hayes and Hayes-conipatibles

SpeedTerm Features:

• Xmodem and Punter protocols for error-free filetransfer
• Supports partial VT52 terminal emulation
• Manages large capture buffer for recording long

sessions (C-128 version has a 45K buffer, C-64

version has 24K)

• Use buffer to copy sequential files from disk to disk,

1 Execute disk commands, e.g. scratching/renaming files

> Lists sequential files on the screen or printer.

1 Displays directory listings

1 Send commands to the disk and read the error channel

■ Mas powerful command mode with over 30 commands
• Complete access to the DOS

1 Permits flexible user-defined function keys

1 Works with most popular modems

1 Works with either 40 or 80 column monitors

1 Includes 70-page manual with easy to understand

tutorial

Hardware requirements:

SpeedTerm-64

• Commodore 64

• 1541/MSD or 1571 disk drive

• 40-column monitor

SpeedTerm-128

• Commodore 128

• 1541/MSD or 1571 disk drive

• 40- or 80-column monitor

Suggested retail price:

Program disk contains

both '64 and '128 versions $39.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Commodore 64. Commodore 128.1541.1571 JS25i«rfl526«eti^en«itaorfegteefedti^«mk«orOoo»«)doceHee»wie»,UiJ.

Selected Abacus Bill Products for Commodore computers

PowerPlan-64
Spreadsheet and Graphics package

fortheC-64

"PowerPlan is one ofthe best programs ever writtenfor

the Commodore 64, giving Lotus 1-2-3® a run for the
money... It was a pleasure to work with this amazing

product. I strongly recommend PowerPlan to anyone

interseted in using spreadsheet programsfor business."

—Al Willen

Commodore Magazine

Ever since VisiCalc and Lotus 1-2-3 stormed the

personal computer market, the computer has become an

important financial planning tool. By using an

electronic ledger, you can perform hundreds of

calculations and "what-if analyses quickly and easily,

and reduce reams of data into meaningful information.

PowerPIan-64 offers the '64 user a software tool that

combines spreadsheet operations with a powerful built-

in graphics-program to display data in graphs as well as

numbers. PowerPlan-64 can handle up to 255 rows by

63 columns—a total of 16,065 individually protected

cells. This outstanding package includes all major math

functions, manually controllable calculation mode, and

built-in disk commands. The integrated graphics

program, PowerGraph, has eight different windows

—you can select bar charts, curve graphs, point charts,

pie charts, or min-max charts in two or three directions.

PowerPIan-64's menus make it easy to use for the first-

time spreadsheet ufer. All of PowerPlan-64's selections

are clearly displayed on the screen for the user to choose

from. In addition, online HELP screens are available at

the touch of a key.

PowerPIan-64's complete 200-page handbook has a plain-

speaking tutorial that gently introduces the user to

spreadsheets.

Hardware requirements:

Commodore 64

1541 disk drive (or MSD. disk drive)

Printer optional

Self-running demo available

PowerPlan-64 Features:

•Menus make PowerPlan-64 easy to learn

•Large capacity spreadsheet serves all the user's

analysis needs

•Convenient built-in notepad documents user's

important memos

•Flexible online calculator gives access to

quick computations

•Powerful options such as cut, copy and paste

operations speeds the user's work

•Integrated graphics summarize hundreds of data

items

•Draws pie, bar, 3D bar, line and area charts

automatically (8 chart types)

•Multiple windows emphasize the analyses

Printers:

PowerPlan-64 works with the following printers:

•Commodore 1525, 1526

•Epson MX, FX, Homewriter 10 and compatibles

(Star Gemini SG-10, lOx, IOC, 15x, Panasonic

KXP 1080)

•MPS 801, 802

Suggested retail price:

C-64 version $39.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Commodore W, ConmxaJore 1

Selected AbacusHI Products for Commodore .computers

BASIC
Complete BASIC compilers

and development systems

fortheC-64orC-128

'The package is easy to use and the manual well-written.

It should take only a few minutes to create code from

scratch, assuming the BASIC source code already

exists... In summary, BASIC enhances the performance

of programs written in BASIC. It provides a good

introduction to those programmers who intend to go on

to use larger machines and other high-level langiuages. I

enjoyed using it."

—Shlomo Ginsberg

Commodore Microcomputers

BASIC 64 and BASIC 128 are complete development

systems that compile standard Commodore BASIC

programs into either superfast machine code or very

compact speedcode. In fact, the user can mix the two in

during a single compilation. BASIC-64 and BASIC-128

speed up BASIC programs from 5 to 35 times faster.

BASIC lets the user compile a series of programs using

the overlay features, and even allows the use of many of

the language extensions found in Simon's Basic, Video

Basic, Victree or BASIC 4.0.

BASIC-64 and BASIC-128 compile to either ultra-fast

8510 machine codei very compact p-code, or a

combination of both. There are two separate

optimization levels. The user chooses the level suited to

his specific needs. BASIC-128 has faster and higher-

precision math functions. It uses integer and formula

optimizing techniques and is completely compatible

with Commodore BASIC 2.0/7.0.

The 80-page programmer's guide explains the compiler's

simple operation. For more in-depth use, it also covers

the extensive compiler options and directives, flexible

memory usage, program overlay techniques, optimi

zation considerations and programming tips and hints so

the user can understand every feature of this quality

product.

BASIC-128 was crafted in West Germany by one of the

most successful author and compiler writers in Europe,

Thomas Helbig. Our BASIC-64 and BASIC-128

packages are the tools users need to make their BASIC

programs run lightning fast, and protect their programs

from unwanted listing or alteration.

Make your BASIC programs

Convert them to high-speed

machine language

Hardware requirements:

BASIC-64:

Commodore 64 with 1541 or 1571 disk drive

BASIC-128:

Commodore 128 with 1541 or 1571 disk drive

(supports 40- or 80-column monitor)

Printer optional

Suggested retail price:

C-64 version $39.95

C-128 version $59.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Selected AbacusBffii Products for Commodore computers

Cadpak
Computer-Aided Design package

fortheC-64or(M28

Cadpak is a superb tool for computer aided design and

drawing for the Commodore 64 and 128—it's been our

bestselling software package for the last year and a half.

It offers Commodore users a simple, versatile solution

for producing high quality computer-aided designs and

drawings without requiring any programming

knowledge. Cadpak was designed to be simple enough

for the novice, yet incorporate the design functions and

printout capabilities of a truly professional CAD

system. Its simplicity, accuracy and speed make Cadpak

a standout

Cadpak can be used with either the keyboard, an optional

lightpen or optional mouse to draw directly on the

screen and create and edit pictures, drawings, layouts and

renderings. The feature that sets Cadpak apart from its

competition is its exclusive dimensioning feature, which

allows exact scaled output of designs to most popular

dot-matrix printers (listed below). Choose from the

menu options and draw on the screen at an exact location

with Cadpak's exclusive AccuPoint cursor positioning.

Cadpak's menu options make it easy to use for

beginners. Cadpak also boasts many sophisticated

features for the advanced user. Using the two graphics

screens, you can draw lines, boxes, circles, ellipses; fill

with solid colors or' patterns; draw freehand; copy

sections of the screen. The user can zoom in to do

detailed design on a small section of the screen. Cadpak's

improved object editor lets the user define and save

furniture, electronic circuitry, machinery, etc. as intricate

as the screen resolution permits. Perfect for all design

needs on the Commodore C-64, 64C and C-128.

Cadpak-64 has two screens with 320 x 200 resolution.

Cadpak-128 has a first screen resolution of 640 x 360

and the second screen resolution of 320x200.

Hardware requirements: (Ughtpen and mouse optional)

Cadpak 64:

Commodore 64

1541 disk drive (or MSD disk drive).

Cadpak 128:

Commodore 128

1571/1541 disk drive (or MSD disk drive)

1351 Mouse version now available!

Enhancedand1351 Mouse Versions!

Exclusive Dimensioning feature assures

exact scaled output of designs

Cadpak Features:

• Precision scaled output to most dot-matrix printers

—Objects retain exact proportions when printed

« Two screens for flexible copy operations

• Drawing using either the keyboard, high-quality

lightpen (optional), or new MOUSE version

(optional, available April 87)

• Pre-defined or user-defined fill patterns

• SAVE/RECALL designs to and from diskette

• Library contains pre-defined objects, symbols,

fonts—create and add custom symbols/fonts

*. Mirror, rotate and zoom furtchons

• Advanced labeling/ measuring features

• Sophisticated graphic functions for lines, boxes,

ellipses, arcs, etc,

• Custom-created text fonts or graphic symbols

Printers:

Commodore 1525,1526

Comrex CR-220

Epson MX, FX, Homewriter 10 and compatibles

(Star Gemini SG-10, lOx, 10C, 15x, Panasonic KXP

1080)

MPS 801, 802, 803, 1000

OkidataMicroline

Okimate-10 b/w and color.

Prowriter 8510A, 851OSC color

Seikoska 1000 • Siemens PT88/89

Suggested retail price:

C-64 version $39.95

C-128 Version (Mouse version July 87) $59.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Selected Abacus Ilia Products for Commodore computers

COBOL
for the C-64 or the C-128

COBOL is the most widely used commercial
programming language in use today. The COBOL-64

and COBOL-128 packages let users leam the COBOL

language using their Commodore 64 or Commodore 128

home computer. The COBOL language uses English-

like sentences. This makes it an easy to leam language.

And since COBOL-64 and COBOL-128 are designed

with easy of use in mind, it's perfect for the beginner.

Since the COBOL language is common to many

different computers, every aspect of COBOL learned on

the '64 and '128 is valid for larger system versions.

Our COBOL software includes a syntax checking editor,

a compiler, an interpreter and symbolic debugging aids.

So you'll be able to write and test your COBOL

programs very quickly.

COBOL-128 is more than a conversion of our popular

COBOL-64. It takes advantage of the new '128 features.

COBOL-128 works with either a 40- or 80-column

monitor. In addition, because of the increase memory of

the '128, COBOL-'l28 runs much faster than the C-64
version.

COBOL-64 and COBOL-125 Features:

• Includes integrated editor for creating COBOL source

• Fast compiler/interpreter to transform source into

excutable program

• Features Symbolic debugging tools: breakpoint, trace,

single step.

• Supports subset of ANSI COBOL 74

• Includes a crunch function to reduce the memory size

of your programs

• Includes sample programs demonstrating file handling

• Complete 150-page manual

Hardware requirements:

COBOL-64:

Commodore-64 with 1541 or 1571 disk drive

COBOL-128:

Commodore 128 with 1541 or 1571 disk drive

(supports 40- or 80-column monitor)

Works with most popular dot-matrix printers (optional).

Complete with Editor,

Interpreter and

IDENTIFICATION DIVISION.
PROGRAM-ID. BUILD-DATA1.
AUTHOR. VISIONARY-SOFTWARE.
ENVIRONMENT DIVISION.

CONFIBURATION SECTION.
SOURCE-COMPUTER. C64.
OBJECT-COMPUTER. C64.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DATA1 ASSIGN TO D18K-1541 DRIVE-
FILE STATUS IB F1LE-BT.

DATA DIVISION.
FILE SECTION.

FD DATA1

LABEL RECORDS ARE OMITTED

OOO1OO

OO0200

000300

OOO4OO

OOOSOO

000600

000700

OOO800

000900

001000

001100

001200

001300

001400

001300

001600 02 NAME-FIELD PIC X(20».
0019O0 02 ADDR-FIELD PIC X(20l.
002000 01 DATA-RECORD-2.
002100 02 NAME-FIELD-EXIT PIC X»4).
002200 02 FILLER PIC X<36>.
O0230O H0RKIN8-6T0RA8E SECTION.
002400 77 NR1TE-FLA8 PIC X VALUE "N".
002S00 77 RV8-ON VALUE CHR 18 PIC X.
0O2600 77 RETURN-CODE VALUE CHR 13 PIC X.
002700 77 CLEAR-HOME VALUE CHR 147 PIC X.
002B00 77 F1LE-ST PIC XX.
002900 PROCEDURE DIVISION.
003000 START-UP.

003100 DISPLAY CLEAR-HOME
003200 OPEN OUTPUT DATA1
003300 IF FILE-ST IB NOT EOUAL TO

ss "°°" St^Sun:0™ error"
S3S END^r™ BET-°ATfl-L00P THRU t-^P-EXIT.
003800 CLOSE DATA1
OO39OO IF FILE-ST NOT EOUAL TO "00"
004000 DISPLAY "CLOSE ERROR".
004100 STOP RUN.

Suggested retail price:

C-64 version $39.95

C-128 version $39.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Selected Abacusffilll Products for Commodore compi

Super C
C language development package

fortheC-64orC-128

'The Super C Compilerprovides an ideal introduction to

a very functional version of the C language...it is the

best starter C package (for the Commodore 64) and the

price is right"

—Walt Lounsberry

Commodore Microcomputers

The C language is one of the most popular in use

today—it's an excellent development tool, produces fast

6510 machine language code and is very easy to

transport from one computer to another. To maintain

Cs portability, our Super C development packages

support the Kemighan & Ritchie C standard (except for

bit-fields), making them very complete.

Super Cs powerful full-screen editor lets the user create

source files up to 4 IK in length (larger on C-128).

Super Cs editor includes Search and Replace functions

and features horizontal and vertical scrolling on a 40-

column monitor. The, C-128 version supports 40- or 80-

column monitors.

The fast compiler (maximum of53K object code) creates

files which the linker turns into a ready-to-run machine

language program. Super Cs linker combines up to

seven separately compiled modules into one executable

program.

The I/O library includes many of the standard functions,

including print£ and fprintf, with libraries for

math functions and graphics. The runtime library may

be called from machine language or included as a BASIC

lookalike program.

Super C Features:

• Built-in editor with search, replace, block commands,

and much more

, * Supports strings and arrays

• Handles object code up to 53K

• Supports recursive programming techniques

• Includes very complete math functions and library

• Includes standard I/O and fast graphics libraries

• C-128 version features High-speed RAM disk support

: and 40/80 column

• Complete with 275-page manual

SuperC
Language Compiler

Learn the the language of
; the 80'$ andtbeyond \s

3 char buffer{41];

4

5 main()

6 {

7 putc(CLR,STDIO);

8 BASICset(charrami);

while ()

do{

gets(buffer,40,STDIO);

putc(CR,STDIO);

)while(strcmp(buffer,"read\n");

putsC\nnames:n, STDIO);

gets(buffer,40,STDIO);

putc(CR,STDIO);

readset(buffer,charrami);

Hardware requirements:

Super C 64:

Commodore 64 with 1541 or 1571 disk drive

Super C 128:

Commodore 128 with 1541 or 1571 disk drive

(supports 40- or 80-column monitor)

Printer optional.

Suggested retail price:

C-64 version $59.95

C-128 version $59.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Selected AbacusHH! Products for Commodore computers

Super Pascal
Pascal language development package

fortheC-64orC-128

Super Pascal is a complete program development system

for the Commodore 64 or Commodore 128. Super

Pascal is so capable that hundreds of schools are using it

to teach Pascal programming to their students. But

Pascal is more than just a learning language. Super

Pascal features language extensions for serious system

level programming.

Super Pascal implements the full Jensen & Wirth

compiler plus extensions for graphics. The package

consists of an easy-to-use, very complete source file

editor; an online assembler for optionally coding in

machine language; and a super-fast compiler to turn the

source file into executable code and a high-speed DOS

for speeding up disk access to the 1541/1571.

Other Super Pascal package features include a high-

precision 11-digit arithmetic; a very fast compiler;

overlays; automatic loading of editor and source

program; exact error messages and localization during

compilation; complete statistics reporting; free runtime

package, and mucb more.

Super Pascal 128 contains all the features found in our

popular C-64 version while taking advantage of the C-

128's 40/80 column modes; it's high-resolution graphics

package runs in 80. columns and makes some truly

remarkable artwork possible.

Another "extra" qf Super Pascal 128 is its RAM disk,

which allows for ultra-fast loading/compiling, and

supports 1571 Burst mode.

Super Pascal Features:

Full implementation of Jensen & Wirth Pascal

High speed DOS is three times faster than 1541 DOS

Includes many language extensions for systems

programming

Integrated assembler for machine code requirements

Built-in editor with renumber, auto, find, etc.

Includes Tast graphics libraries

Works with one or two disk drives

Large 48K workspace

C-128 version supports 80-column hi-res graphics and

supports RAM disk '

Complete With 200-page manual

GET^NUMtFROM);

IF "NOT EOLN THEN GET_SECND{'-') ELSE
TIL:=FROM

END

END

END;

PROCEDURE GBTjriTLB(FOR_GET:BOOLEAN);

BEGIN

TEST_SYNTAX

IF INPUT*-1*' THEN

BEGIN

IF NO_DEF THEN STOP (TITLE_ND);

IF FOR_GET THEN TEST_FOR_SAVE

END

ELSE

BEGIN

IF NOT (INPUT* IN LETTER) THEN

STOP (ILL TITLE);

READ (TITLE);

IF FOR_GET THEN TEST_FOR_SAVE;

NOT_DEF:-FALSE;COMMON*:=TITLE

END

END;

Hardware requirements:

Super PascaI-64:

Commodore 64 with 1541 or 1571 disk drive

Super Pascal-128:

Commodore 128 with 1541 or 1571 disk drive

(supports 40- or 80-column monitor)

Printer optional

Suggested retail price:

C-64 version $59.95

C-128 version $59.95

Abacus Inc.

5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

GEOS INFO
AnotherAba*** GEQS lnslde and Qut

If you use GEOS then our new book, GEOS Inside and Out, has the info you need.

A detailed introduction is laid out for the novice-beginning with how to load the

GEOS operating system...how to create a backup...how to alter the preference

manager...how to format disks...learn geoWrite and geoPalnt in detail...use geoPaint

for designing floor plans or drawing electronic diagrams. Easy-to-understand

examples, diagrams and glossary are included to enflghten the beginner.

7776 advanced user will find more detailed Information on GEOS's internals and

useful tricks and tips. Add a constant display dock-includes assembly and BASIC

listing...complete listing of our FlteMaster utility (converts your programs to GEOS

format with an icon editor) with a line by line explanation...create a single-step
simulator for observing memory and the various system registers...learn about

windows and how to use them to your advantage...understand GEOS file structure.

If you're just getting started with GEOS or getting to the point of wanting to add your

own applications, then QEOS Inalda and Out will help you on your way. $19.95

To receive your copy of OEOS Inslda and
Out and/or QEOS Tricks 4 Tips, call now

for the name of the dealer or bookstore near

you. Or order directly using your Visa, MC or

Amex card. Add $4.00 per order for shipping

and handling. Foreign orders add $10.00 per

book. Call or write today for your free catalog.

Dealer inquires welcome—2000 nationwide.

Order both todayI

qEOS Trlcks & p

Continuing the tradition established by our famous C-64 reference library, GEOS

Tricks « Tips Is a collection of helpful techniques for anyone who uses GEOS with

their Commodore. It's easy to understand without talking down to the reader, and
detailed in the applications of the routines. Includes a font editor to create up to 64
point text and a machine language monitor. A perfect companion volume to OEOS
AisMfc and Out. Available Second Quarter. $19.95

GEOS, geoWrite, geoPalnt are tradenames of Berkeley Softworto.

m ■ You Cm Count On is

Abacus!
5370 52nd Street SE

Grand Rapids, Ml 49508

Phone (616) 698-0330

Just a few of our books...

BeckerBASIC for GEOS
Nowyou can write BASIC applications to work with GEOS

programing *yrtem con Idtnq ■:■(
nr.d bum *7tl cnwn-.iirifl< .ir.H lum-n.-.r.?

with the onboard BASIC 2.0, uou hnve ovai

O'.jei 'he r.e-f lew tcfe«ns, uou'll.read a shod ovejuleiu of tr
njitam, As thi* progfarn continues, you'll laom about come of

BtckerBASlCi practical nspects, nj u.rell ac its fecitgras.

■■ pffltf tl ken lo ccntinu

Becke*BASIC 6-1

Undarllnlnq

::;ZI:,~~7"; >.:>, ,i™^!.■;..'. .,:: ■:?; :
BeckeiPHSlC Hf-na; common>1j otfer mmvj spetttal

Introducing BeckerBASIC. If you already

know BASIC, you can now write your own

GEOS applications in BASIC, easily.

BeckerBASIC gives you the power of

over 270 new commands and functions.

Over 20 commands to make

your programming easier. For example,

TRACE, RENUMBER, DUMP, DIR, etc.

Packed with over 50 commands for easy

disk access. Load and save blocks of

memory or selected lines of your program.

You can even PEEK and POKE into your

disk drive's memory.

10 commands can be used for easier

cursor control. Turn the cursor on and off.

Set how quickly it flashes. Position it at any

location on the screen.

20 commands are available for all your

For credit card orders call 1-800-451-4319

Michigan residents call 1-616-698-0330

Call today or mail the coupon for your free catabg covering
our complete line of software and books for the Commodore B

64 and 128. Or ask for the location of the dealer nearest ;
you. You can order direct by phone using your VISA,]
American Express or MasterCard or detatch and mail your j
completed coupon. Dealer inquiries welcome—over 2400 |.

nationwide. II

Abacus HUBS
5370 52nd Street SE

Grand rapids, Ml 49508
Telex 709-101 • FAX 616/698-0325

hires programming needs. Creat boxes, plot

points, and draw lines.

18 additional commands are dedicated to

creating sound. Set ring modulation, change

the filter, alter the waveform and set the

envelope.

Over 35 commands let you create and

animate sprites with ease. Load and save

sprites directly. Alter their size, change their

positions and check for collisions. Use the

sprite editor to create sprites and icons.

Use the Pulldown Menu Construction Set

and Dialog Box Construction Set to aid in

the creation of you own applications

Royalty-free distribution of your

BeckerBASIC applications.

Now anyone can create applications in

BASIC to run with GEOS. Only $49.95

For technical support call 1-616-698-0330

If your Commodore dealer doesn't carry Abacus products, then have
him order them for you. Or you can order direct using the following
order blank or by catling—1-800-451-4319

Product Prte

BockerBASIC for the Commodore 64 $49.95

In USA add S-1.00 for S & H per order. Foreign add $12.00 per Hem.

Michigan residents include 4% sales lax __

ToUl amount ancloMd (US funda)

Payment: () MasterCard {) VISA () American Enpress

() Money Order {) Check

Card No &p,

Nama

Addrees

City .State. .Zb

Phone No.

$25,000 in prizes
for the best GEOS applications using

BeckerBASIC

PRIZE LIST

1st Prize

2nd Prize

3rd Prize

4th Prize

5th Prize

$1000 CASH (1 winner)

Choice of Abacus books and

software (2 awards) $500 value

Choice of Abacus books and

software (2 awards) $400 value

Choice of Abacus books and

software (2 awards) $300 value

Our complete C-64 Library set-$227

value {100 awards)

To enter:

Return this entry form and your 51/4" diskette.the BeckerBASIC

Entries must be received by midnight, August

31,1988, to be eligible. To win, you must comply with the
competition rules. (Over)

Mail entry and this form to:

Abacus BeckerBASIC contest

5370 52nd Street

Grand Rapids, Ml 49508 Abacus!

CONTEST RULES

* Write your entries using BeckerBASIC to run under GEOS.Entrki mull be submitted

on a diskette.

* You can submit multiple enlrles provided that all entries fit on a single diskette.

* Entries must be accompanied by the official entry form you'll find Inside the

BeckerBASIC package. Xerox or reproductions of the entry form are not acceptable.

* Your entry Is received by Abacus no later than August 31, 198S.

* We'll announce the winning entries by October 31, 1988.

* Entry forms must be completed In full to be valid. No responsibility is assumed for

late, lost or mlsdfrected mall.

* This competition Is open to registered owners of the BeckerBASIC software program.

All prizes will be awarded. Prizes are non-transferable and not redeemable Tor cash. No

substitution or prizes arc permitted. Prizes to consist of (1) first prize of: $1000 CASH,

(2) 2nd prize of: $500 value Abacus books and software, (2) 3rd prize of: $400 value

Abacus books and software, (2) 4th prize of: $300 value Abacus books and software, (104)

5th prize of: Our complete C-*4 Library Set-$227 value.

* Winners will be notified by mail, and must claim their prize within 30 days or an

alternate winner will be selected. Prizes won by a minor will be awarded to the winner's

parent or legal guardian. For a list of the winners, send a stamped, self-addressed

envelope to Abacus Software.

* All federal, ftlale, provincial, and local taxes will be the rcspomihllily of the prize

winner. Winners may be required to execute an affidavit of eligibility and release.

* The competition is open to all registered owners of BeckerBASIC software program

from within the U.S. and Canada, except employees and their families of Abacus Software

Inc. or their affiliates, subsidiaries, or agents. Void where prohibited by law.

* Selection of winners will be conducted by Abacus whose decision will be final. No

correspondence will be entered into, and all entries become the property of Abacus

Software.

* Entrants grant Abacus Software, without limitation the right lo use their names,

likeness, and competition entry for any advertising and/promotion purpose.or marketing

ENTRY FORM

Registration Program name:_

Name

Address

City State Zip

Abacus

Register this software and be eligible

to win additional software free

in ourmonthly drawing.

Return this card to register your purchase and to

receive free technical support for this product. You

may also order a non-copy protected backup of

this program.

Monthly drawing winner will be notified by mail.

Good Luck!

REGISTRATION CARD

1 7 R **} 1 A
Reeistraoon# — • ° ' -*- * Proeram r ime:

Name

Address

City

Purchase Information:

Dealer

Address
Citv

State

Slate

Zip

Zip.

705
Product ID

Return this registration card to obtain a non-copy protected backup of the above

program for a handling charge of $10.00. A check, money order, or credit

card number must accompany this request. Purchase orders are not acceptable.

Non-copy protected backup?

LJ No, do not send a non-copy protected backup, but register my purchase,

d Yes, send a non-copy protected backup. $10.00 payment is enclosed.

Credit card#

Expiration Date / /

8096* IN 'spidey
3S199J1S PU29 0l£9

Abacus HUBS

Software You Can Count On

Abacus
If

i ti
ni

!!

5370 52nd Street SE • Grand Rapids, Ml 49508

ISBN 1-55755-033-b

