
 The Hitchhiker's

Guide' to GEOS

v2022

A Potpourri of Technical Programming Notes

(provided "as is" without support)

April 1988

Heavily Revised for Digital Medium 2020-2022

Copyright ©1988, 1989 Berkeley Softworks.

Copyright ©2020-2022 Paul B Murdaugh.

This is a copyrighted work and is not in the public domain. However, you may use, copy, and distribute this

document without fee, provided you do the following:

• You display this page prominently in all copies of this work.

• You provide copies of this work free of charge or charge only a distribution fee for the physical act of

transferring a copy.

Please distribute copies of this work as widely as possible.

Note: Berkeley Softworks / Paul B Murdaugh makes no representations about the suitability of this work for

any purpose. It is provided "as is" without warranty or support of any kind.

Berkeley Softworks / Paul B Murdaugh DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

WORK, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO

EVENT SHALL BERKELEY SOFTWORKS AND/OR PAUL B MURDAUGH BE LIABLE FOR ANY

SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE, OR OTHER TORTIOUS ACTIONS, ARISING OUT OF OR IN CONNECTION WITH THE

USE OF THIS WORK.

i

Preface
This document is very different from the original "The Hitchhiker's Guide to GEOS" in the way it is intended to

be used. The original, of course, was designed to be held in your hands in book form. HGG was partially brought

to digital form by an OCR scan of Glenn "Cenbe" Holmer's personal copy of the HGG. While this has been an

excellent resource for the majority of users that did not have a paper copy, I felt there was much more that could

be done with it to make it a very powerful modern tool.

"The Hitchhiker's Guide' to GEOS v2021" was designed from the ground up to live inside a good PDF reader and

to be used from that reader. The key features used are Bookmarks, links and search.

Bookmarks
Bookmarks replace the traditional table of contents that is used in book form. They are always present to the

reader and provide instant navigation ability to any part of the document at any time. There is a mini TOC located

at the start of some chapters that aid in quickly locating an entry in a large chapter. The TOC at the start of "Ch

20 GEOS Kernal 2.0" also doubles as an alternative to the bookmark TOC since it provides the API in a different

sort order than the TOC does.

A very good pdf reader will also give you the ability to create your own favorites in the document so you can

have your own personal set of bookmarks. This makes using an often-used reference point very fast to locate and

use.

Links
All API entries, Kernal variables, and macros have been fully indexed and can be clicked on to instantly go to the

part of the document that defined them. Other important areas like Examples: are indexed as well. If the text is in

bold, it is likely a clickable link. You can then use your readers back up command to return to where you were.

This dramatically reduces the navigation "size" of the document. This replaces the traditional Paper Index. Note:

All internal Links are simply bolded so as not to deter from the "Theme" of having a look and feel of a book from

the 80's. Outside links to websites are bolded and underlined.

Search
A design goal from the start was to be able to instantly find the definition of an API entry, Kernal variable, Macro

etc... This was achieved by having the name of an area that defines and describes an entry end with a colon.

This allows this to happen.

 search for PutBlock: This will take you to the only place in the document where PutBlock has a colon

after the name, which is the API page that fully defines it.

If, instead, you are looking for the places PutBlock is referenced then:

search for PutBlock Searching without the colon will give a result of all the times it appears in the

document.

PDF Readers
Sumatra PDF: This is the recommend reader for HG'G v2020 on a PC. It is fast, small and portable. Handles

multiple tabs and multiple windows. Perfect handling of Bookmarks and its most powerful feature for HG'G

v2020 is its ability to add favorites. Its navigation also mirrors that of web browsers in the way it uses mouse

buttons.

https://www.sumatrapdfreader.org/free-pdf-reader.html

ii

Adobe Acrobat Reader: This reader handles Bookmarks ok. You can trick it into opening the same document

in multiple tabs but it does not do multi window. The basic reader also has no ability to create your own favorites

into the document. Reader allows going back after using a link by using alt + left arrow.

Chromes built in reader: Better than nothing. Bookmark handling is very poor. This one is not recommended.

This is an example of what your view into this document should look like:

• Bookmarks Pane on the left. (This will be the primary method of getting around).

• Favorites Pane below that for creating your own links into the document. (Feature of Sumatra)

• Find section for being able to search.

If you do not have at least the ability to use the bookmarks this document will be very difficult to use.

https://get2.adobe.com/reader/

iii

Introduction to v2020

v2020 has reached its Living Document Stage. This will always be titled "The Hitchhiker's Guide' to GEOS

v2020". It will have a changing sub-version in the document that will be a simple date code: YYMMDD. This

date code will be applied to the end of the filename as well for easily identifying the version. Anyone hosting this

file may have the code on the file or just in the description of the file.

The Goal of this Document is to provide a one stop resource for GEOS programming information. This document

is comprised of the following:

1. 100% Converted to Fully Indexed Digital Form:

The Hitchhiker's Guide to GEOS (HGG)

by Berkeley Softworks 1988

Note: all Apple Information has been removed from this conversion. If I get geoAssembler ported

into the Apple GEOS, there will be another document made from this one with all the Apple

information in it. Until then, the lack of development tools for Apple led to an early death of

GEOS in that environment and its inclusion here is of no value to a CBM GEOS developer.

2. All sections from OGPRG that were not covered by the HGG were assimilated.

The Official GEOS Programmer's Reference Guide (OGPRG)

by Berkeley Softworks 1987

3. Information not available from the above sources has been added and noted with superscript from the

following sources.

A. GEOS Programmer’s Reference Guide (GPRG)

by Alexander Donald Boyce 1986

 Revised by Bo Zimmerman 1997

B. Information now available from the disassembled GEOS Kernal.

C. Information obtained from my disassembly of GEOS applications.

4. Included API Information for Wheels 4.4.

This section is still very much a work in progress and will grow and improve over time.

Note: Thanks to "THE" email chain collected by Bo Zimmerman, there is some original author

source for documentation. In addition, more information will be extracted from the

disassembled sources of both the Wheels Kernal and of Wheels applications.

TODO for future versions:

1. Add Tutorials for at least the following:

a. creating Auto-Exec applications. With all of the special restrictions outlined.

b. creating Desk Accessories. With all of the special restrictions outlined.

c. creating VLIR applications. With fully functioning Module Management outlined.

2. Continue manually going through Wheels Kernal code to provide documentation on the remaining

Kernal additions that have not been documented yet.

Comments, suggestions and error corrections are welcome. They can be emailed to:

Paul B Murdaugh - paulbmurdaugh@gmail.com

Writer of Dual Top and the Landmark Series for GEOS.

mailto:paulbmurdaugh@gmail.com

iv

Sources

Contributors

1 Bruce Thomas Very extensive proofreading and provided much

needed feedback. Provided technical input and

layout ideas for cover page of Chapter 20.

2 Glenn "Cenbe" Holmer Extensive proofreading and provided much needed

feedback. Provided record formats for Text and

Photo Albums V2.1.

3 Scott Hutter Data Mining and proofreading.

Assisted with Keyboard Special Key testing.

4 Bo Zimmerman GEOS Programmer’s Reference Guide 1997.

Wheels documentation collection via email with

Wheels author.

5 Dave Lee Corrected error in StartMouseMode API entry.

6 Facebook group "GEOS - Wheels - GeoWorks -

MegaPatch – gateWay"

General Feedback and a place for me to distribute

this document.

 Additional Contributors to be added as needed

 Hitchhiker's Guide to GEOS 1988 Base Source Document

1 GEOS Programmer’s Reference Guide

1986/1997

Secondary documentation source. Notes with a

superscript 1 (1) are from this document.

2 The Official GEOS™ Programmer's Reference

Guide

Adding Content that is not already covered in HGG

and GPRG

3 Paul B Murdaugh (author). Personal experience,

Information learned from the rewrite / upgrades

of geoProgrammer applications combined with

discoveries from reverse engineering Berkeley

applications.

Additional Content /changes made by me get a (3).

Example note3: Also, any content related to

geoProgrammer' 2.1 is my original content.

4 Scott Hutter. Data Mining Found great extinct resource on additional Wheels

documentation from 2002ish era. All of Kernal

Group 0 was originally documented from his

findings and then greatly expanded upon and

corrected as needed. All the information was

validated using live transactions in geoDebugger.

5 The Official GEOS™ Programmer's Reference

Guide - Italian Version

Contains over 100 new pages that the English

version does not have. Much of that content has

been processed and assimilated.

 Transactor vol 9 issue 5

(a great Canadian magazine :))

Inspiration for Quick Reference at the end of the

Interrupt Main chapter. The construction of this was

made by the same people that made the HGG. It is

just in 6502 pseudo code and fits on one page. What

resulted was a blending of information from HGG

and other information from the actual Kernal and

using the single page layout from Transactor.

 MAPPING THE COMMODORE 128

ISBN 0-87455-060-2

Excellent documentation of the hardware in the

C128.

 Additional Sources to be added as used

v

Table of Contents

 The Hitchhiker's Guide' to GEOS .. 1-1

 Graphics Routines ... 2-1

 Icons, Menus, and Other Mouse Presses .. 3-1

 Process Library ... 4-1

 Math Routines ... 5-1

 Text, Fonts, and Keyboard Input .. 6-1

 MainLoop and Interrupt Level: .. 7-1

 Dialog Box .. 8-1

 File System ... 9-1

 Input Driver ... 10-1

 Printer Drivers .. 11-1

 Sprites... 12-1

 RAM Expansions and GEOS 128 .. 13-1

 WarmStart Configuration.. 14-1

 Reserved for Future Use ... 15-1

 Reserved for Future Use ... 16-1

 Reserved for Future Use ... 17-1

 Reserved for Future Use ... 18-1

 Environment .. 19-1

 GEOS Kernal 2.0 ... 20-i

 Wheels Kernal 4.4 ... 21-1

Appendix A: Atoms ... A-1

Appendix B: Examples ... B-1

Appendix C: Hardware .. C-1

Appendix D: Macros ... D-1

Appendix E: Memory Maps .. E-1

Appendix F: File Formats ... F-1

Appendix G: Special Notes ... G-1

 1-6 Introduction

Introduction

In 1986, Berkeley Softworks pioneered GEOS — the Graphic Environment Operating System — for the

Commodore 64. GEOS offered the power of an icon/windowing operating system, once thought only possible on

the likes of Apple's Macintosh, to one of the world's lowest priced microcomputers. The computing community

quickly recognized this innovation as significant: The Software Publishers Association (SPA) gave GEOS a

Technical Achievement Award and Commodore Business Machines endorsed it as the official operating system

for the Commodore 64. Some industry critics even said it brought the Commodore 64 out of obsolescence. Since

that time, GEOS has been ported to the Commodore 128 and, most recently, to the Apple II family of computers.

Boasting an installed base approaching one-million units, GEOS not only promises to be around for some time,

but to grow into the operating system for low-end computers.

Why Develop GEOS Applications

GEOS provides an environment for programmers and software companies to quickly and efficiently develop

sophisticated applications. GEOS insulates the programmer from the frustrating details and dirty work usually

associated with application development. By using the GEOS facilities for disk file handling, screen graphics,

menus, icons, dialog boxes, printer and input device support, the application can concentrate on doing what it

does best, applying itself to the task at hand, using the GEOS system resources, routines, and user-interface

facilities to both speed program development and build better programs.

Consistent User-interface
A very large portion of GEOS is devoted to supporting the user-interface. The GEOS interface has proven popular

with thousands of users, and an application that takes advantage of this will likely be well received because the

users will already be familiar with the basic program operation. Once a user has learned to operate geoWrite, for

example, it is a smooth transition to another application such as geoCalc.

Large Installed Base and Portability
GEOS is currently available for three machines: The Commodore 64, the Commodore 128, and the Apple II.

There are hundreds of thousands of owners who use GEOS on these machines and there is a correspondingly

large demand for follow-on products. With careful programming, an application can be developed to run under

all available system configurations with only minor changes. Berkeley Softworks plans to port GEOS to other

6502-based microcomputers, thereby further increasing the user base. As the popularity of GEOS grows, so does

the market for your product.

Application Integration
GEOS offers a flexible cut and paste facility for text and graphic images. These photo scraps and text scraps allow

applications to share data: a word processor can use graphics from a paint program and a graph and charting

application can use data from a spreadsheet. The scrap format is standard and allows applications from different

manufacturers to exchange data. Berkeley Softworks is currently developing a second-generation scrap facility

for object-oriented graphics such as those used in desktop publishing and CAD programs.

 1-7 Introduction

Input and Output Technology
GEOS supports the concept of a device driver. A device driver is a small program which co-resides with the

GEOS Kernal and communicates with I/O devices. Device drivers translate data and parameters from a

generalized format that GEOS understands into a format relevant to the specific device. GEOS has input drivers

for mice, joysticks, light pens, and other input devices, printer drivers for text and graphic output devices

(including laser printers), and disk drivers for storage devices such as floppy disk drives, hard disks, and RAM

expansion units (RAMdisks). As new devices become available, it is merely necessary to write a driver to support

it.

What Exactly is GEOS?

First and foremost, GEOS is an operating system: a unified means for an application to interact with peripherals

and system resources. GEOS is also an environment — specifically, a graphics-based user-interface environment

offering a standard library of routines and visual-based controls, such as menus and icons. And finally, GEOS is

a programmer's toolbox, providing routines for double-precision integer math, random-number generation, and

memory manipulation.

GEOS as an Operating System
College textbook writers are forever coming up with splendid new metaphors to describe operating systems. But

as the coach of a baseball team or the governor of California, an operating system has the same basic function: it

is the manager of a computer, providing facilities for controlling the system while isolating the application from

the underlying hardware. An operating system allows the application to function in higher-level abstract terms

such as "load a file into memory" rather than "let a bit rotate into the serial I/O shift register and send an

acknowledge signal". The operating system will handle the laborious tasks of reading disk files, moving the mouse

pointer, and printing to the printer.

GEOS provides the following basic operating system functions:

• Complete management of system initialization, multiple RAM banks, interrupt processing,

keyboard/joystick/mouse input, as well as an application environment that supports dynamic overlays

for programs larger than available memory, desk accessories, and the ability to launch other

applications.

• A sophisticated disk file system that supports multiple drives, fast disk I/O, and RAM disks.

• Time-based processes, allowing a limited form of multitasking within an application.

• Printer output support, offering a unified way to deal with a wide variety of printers.

Note: GEOS as a general term can represent the full the range of concepts — an operating system, a user

environment, the deskTop, a group of integrated applications — but in this book it usually refers

specifically to the GEOS Kernal, the resident portion of the operating system with which the

application deals with.

 1-8 Introduction

GEOS as a Graphic and User-Interface Environment
Interactive graphic interfaces have become the norm for modern day productivity. GEOS provides services for

placing lines, rectangles, and images on the screen, as well as handling menus, icons, and dialog boxes. The GEOS

graphic elements make applications look better and easier to use.

GEOS provides the following graphic and user-interface functions:

• Multi-level dynamic menus which can be placed anywhere on the screen. GEOS automatically handles

the user's interaction with the menus without permanently disrupting the display.

• Icons — graphic pictures the user can click on to perform some function.

• Complete dialog box library offering a standard set of dialog boxes (such as the file selector) ready for

use. The application may also define its own custom dialog boxes.

• A library of graphic primitives for drawing points, lines, patterned rectangles, and pasting photo scraps

from programs like geoPaint.

• Sprite support. (Sprites are small graphic images which overlay the display screen and can be moved

easily. The mouse pointer, for example, is a sprite).

• A secondary screen buffer for undo operations.

GEOS as a Programmer's Toolbox
GEOS also contains a large library of general support routines for math operations, string manipulations, and

other functions. This relieves the application programmer of the task of writing and debugging common routines

("re-inventing the wheel" as it were).

GEOS provides the following support routines:

• Double-precision (two-byte) math: shifting, signed and unsigned multiplication and division, random

number generation, etc.

• Copy and compare string operations.

• Memory functions for initializing, filling, clearing, and moving.

• Miscellaneous routines for performing cyclic redundancy checks (CRC), initialization, error handling, and

machine-specific functions.

Development System Recommendations

There are many ways to develop GEOS applications. Berkeley Softworks, for example, uses a UNIX™ based

6502 cross assembler and proprietary in-circuit emulators to design, test, and debug GEOS applications. Most

developer's, however, will find this method too costly or impractical and will opt to develop directly on the target

machines. Anticipating this, Berkeley Softworks has developed geoProgrammer, an assembler, linker, debugger

package designed specifically for building GEOS applications.

 1-9 Introduction

geoProgrammer
geoProgrammer is a sophisticated set of assembly language development tools designed specifically for building

GEOS applications. geoProgrammer is a scaled-down version of the UNIX™ based development environment

Berkeley Softworks actually uses to develop GEOS programs. In fact, nearly all the functionality of our

microPORT™ system has been preserved in the conversion to the GEOS environment. All sample source code,

equates, and examples in this book are designed for use with geoProgrammer.

The geoProgrammer development system consists of three major components:

geoAssembler, the workhorse of the system, takes 6502 assembly language source code and creates linkable

object files.

• Reads source text from geoWrite documents; automatically converts graphic and icon images into binary

data.

• Recognizes standard MOS Technology 6502 assembly language mnemonics and addressing modes.

• Allows over 1,000 symbols, labels, and equate definitions, each up to 20 characters long.

• Full 16-bit expression evaluator allows any combination of arithmetic and logical operations.

• Supports local labels as targets for branch instructions.

• Extensive macro facility with nested invocation and multiple arguments.

• Conditional assembly, memory segmentation, and space allocation directives.

• Generates relocatable object files with external definitions, encouraging modular programming.

geoLinker takes object files created with geoAssembler and links them together, resolving all cross-references

and generating a runnable GEOS application file.

• Accepts a link command file created with geoWrite.

• Creates all GEOS application types (sequential, desk accessory, and VLIR), allowing a customized header

block and file icon. geoLinker will also create standard Commodore applications which do not require

GEOS to run. Resolves external definitions and cross-references; supports complex expression evaluation

at link-time.

• Allows over 1,700 unique, externally referenced symbols.

• Supports VLIR overlay modules.

geoDebugger allows you to interactively track-down and eliminate bugs and errors in your GEOS

applications.

• Resides with your application and maintains two independent displays: a graphics screen for your

application and a text screen for debugging.

• Automatically takes advantage of a RAM-Expansion Unit, allowing you to debug applications which use

all of available program space.

• Complete set of memory examination and modification commands, including memory dump, fill, move,

compare, and find.

• Symbolic assembly and disassembly.

• Supports up to eight conditional breakpoints.

• Single-step, subroutine step, loop, next, and execute commands.

• RESTORE key stops program execution and enters the debugger at any time.

• Contains a full-featured macro programming language to automate multiple keystrokes and customize the

debugger command set.

 1-10 Introduction

geoProgrammer' 2.1
geoProgrammer' is a ground-up upgrade to geoProgrammer, releasing its full potential for GEOS development.

The geoProgrammer' development system consists of three major components and support components:

geoAssembler, the workhorse of the system, takes 6502 assembly language source code and creates linkable

object files.

• All known documented bugs from 1.1 have been fixed. Plus dozens of other undocumented bugs.

• Macro capacity increased from 30 to 200.

• No more hidden errors.

• Full four drive support with smart search for .include files.

• Shortcut support for double click from the desktop assembling.

• Command line support for use with scripting.

• Label names can now start with an underscore character. _

• Features in development.

o Completely new file dialog box with multi select / sorting and filtering.

o Make application with make file support for mass building large projects.

o 128 only version with even more macro and symbol capacity.

geoLinker takes object files created with geoAssembler and links them together, resolving all cross-references

and generating a runnable GEOS application file.

• All known documented bugs from 1.1 have been fixed. Plus, dozens of other undocumented bugs.

• Up to 3x faster link times over geoLinker V1.1.

• Symbol capacity for all seq applications has increased from 966 to 2000 / (2039 when in 80 Col mode).

• Symbol capacity for all VLIR overlays increased from 764 to 767 (806 when in 80 Col mode).

• Symbol capacity for all VLIR base modules is now dynamic with the ability to use part of the overlay area

as symbols for the base module. Dedicated VLIR base symbols increased from 966 to 1233 with a dynamic

capacity up to 2000. This allows for very large VLIR base modules that only use small VLIR overlays.

• Maximum .rel files per module increased from 10 to 20 to further encourage the use of library (.rel) files.

• New report output types: GEOS Symbol file format and Vice debugger label file format.

• Full four drive support with smart search for include files.

• Shortcut support for double click from the desktop linking.

geoDebugger allows you to interactively track-down and eliminate bugs and errors in your GEOS

applications.

• Utility program to set the keyboard repeat delay so the debugger can be used in high clock rate

environments.

• Future plans

o Greatly increased symbol capacity via reservation of an additional REU bank.

o Greatly increased macro capacity via reservation of an additional REU bank.

o Last three commands in history instead of just one.

o 80 Column support on the 128 that will have a full 80 character wide display in the debugger.

geoMake uses a make file created in geoWrite as a build guide for intelligently building projects with a single

action.

 1-11 Introduction

Commodore 64
GEOS was first implemented on the Commodore 64, and currently there are more GEOS applications for this

system than the Apple II or the Commodore 128. The following is recommended for developing under this

environment:

• Commodore 64 or 64c computer.

• Commodore 1351 mouse.

• At least one 1541, 1571 or 1581 disk drive.

• RAM-Expansion Unit. Commodore 17xx series, GEORAM or CMD RAMLink.

• GEOS supported printer.

• The basic GEOS operating system (GEOS 64), version 1.3 or later which includes geoWrite and geoPaint.

• geoProgrammer for the Commodore 64.

Commodore 128
The Commodore 128 may be the ideal environment for prototyping and developing GEOS applications because

it can be used to create programs which run under GEOS 64 (in 64 emulation mode) and GEOS 128. The 128

sports a larger memory capacity, and geoProgrammer takes advantage of this extra space for symbol and macro

tables. The following is recommended for developing under this environment:

• Commodore 128 computer.

• Commodore 1351 mouse.

• At least one 1541, 1571 or 1581 disk drive.

• RAM-Expansion Unit. Commodore 17xx series, GEORAM or CMD RAMLink.

• GEOS supported printer.

• The basic GEOS operating system (GEOS 64), version 1.3 or later which includes geoWrite and geoPaint.

• The basic GEOS 128 operating system, version 1.3 or later which includes geoWrite 128 and a

128 version of geoPaint.

• geoProgrammer for the Commodore 128.

Vice Emulator
With the Vice emulator you can develop applications for the Commodore 64 and Commodore 128. Vice provides

many advantages over native development platforms. Vice is very actively being developed with improvements

being made all the time. The following is recommended for developing under this environment:

• Linux OS / Windows OS / MacOS for the host OS.

• GEOS 2.0 disk images. Recommended for testing. Can also be used as primary development environment

• Wheels 4.4 disk images. Recommended for primary development environment.

• Reliable drive emulation is limited to 1541/1571/1581 floppy drives and 1541/1571/1581 ram drives.

• Wheels also provides native REU RAM drive support and can create RAM drives up to 16mb.

• Recommended development setup in GEOS 2.0 or Wheels 4.4.

• Drive A 1581. Booting from this drive. Then being the source for moving project files to/from REU

• Drive B RAM 1581. This drive will hold the current project files.

• Drive C RAM 1581. Holds geoAssembler/geoLinker/geoDebugger/ OS includes and applications / fonts.

• Drive D 1581 or 1571 for secondary path for bringing data in and out of REU development area.

• Dual Top for the development desktop.

• geoProgrammer' 2.1 for Commodore 64 and 128.

 1-12 Basic GEOS

Basic GEOS

Introduction
Welcome to programming under GEOS. If you are already a Commodore 64 (C64) programmer you will find

your transition to GEOS to be smooth. If you are new to programming the C64, you will find that you'll progress

quickly because GEOS takes care of many of the difficult details of programming, and lets you concentrate on

your design.

This reference guide assumes a knowledge of assembly language programming, and a general familiarity with

the C64 computer. A good assembly language programming book on the 6502 chip and a copy of the Commodore

64 Programmer's Reference Guide are good references to have handy.

GEOS stands for Graphic Environment Operating System and, as its name implies, GEOS uses graphic elements

to provide a simple user interface and operating system. The philosophy of GEOS is to handle in a simple way

much of the dirty work an application might otherwise have to perform: the disk handling, the bit-mapped screen

manipulation, the menus, the icons, the dialog boxes, and printer and input device support.

Programmers who take full advantage of the features GEOS has to offer should be able to cut development time

significantly and increase the quality of their applications at the same time. Many of these features, such as

proportionally spaced fonts, or a disk turbo, would not make sense for programmers to design into each

application. With GEOS, these features are provided. In the time it takes to write simple text routines one can be

using proportionally spaced fonts, menus, icons, and dialog boxes to provide a sharp, intuitive, and general user

interface.

Using GEOS's menus, window, and other graphic features makes applications look better, and easier to use.

GEOS makes it easier for the user to switch between applications, since different applications are controlled in

more or less the same way.

GEOS also changes what is possible to do with the C64. Having a built-in diskTurbo system makes possible

applications which are much more data intensive. Database and other applications may incorporate much larger

amounts of data. The scope of programs possible on the C64 increases.

Learning any new system is an investment in time. From the very beginning though, the amount of time and

energy put into learning GEOS should pay rewards in the ease of implementing features in your program that

would otherwise take much longer. The goals of GEOS are simple: greater utility and performance for the user;

greater utility and simplicity for the programmer. This manual is part of our effort in achieving these goals.

Speaking the Same Language
Before we begin, a word about the notations which we'll use is in order. Within this manual we refer to constants,

memory locations, variables, and routines by their symbolic names. This makes for much easier reading than

trying to remember a thousand different hexadecimal addresses. A jsr DoMenu is much more descriptive than a

jsr $C151. The actual addresses and values for the symbolic names may be found in chapter 19 "Environment"

and chapter 20 "GEOS Kernal 2.0". As a convention, constants are all in upper case (TRUE, FALSE), variables

begin lower case and have every following word part capitalized (mouseXPos, mouseData) and routine names

have every word part capitalized (DoMenu). In addition to using symbolic names, we also use some simple

assembler macros. For example:

 1-13 Basic GEOS

LoadB variable,#value

is a macro for

lda #value
sta variable

A complete listing of the macros used in GEOS appears in Appendix D: Macros.

The Basics
The following features are supported by GEOS and are described in this manual:

Pull-down menus

Icons

Proportionally spaced fonts

String I/O routines using proportionally spaced fonts

Dialog boxes

Complete graphics library

Complete math library

Multitasking within applications

Fast disk access

Paged file system

Complete set of printer interfaces

Input Drivers with samples for Joystick and Mouse

GEOS is a full-fledged operating system, and its central part is the Kernal. The Kernal is a memory resident

program, i.e., it is always in the C64 memory and is running all the time. It is the Kernal that contains support for

all the windows, menus, icons, fonts and other features of GEOS. The deskTop, on the other hand, is not a part

of the GEOS Kernal but is an application just like geoWrite and geoPaint. In fact, one could write an entirely

different file manipulation "shell", as such programs are called, and throw away the deskTop altogether.

Much of the programming under GEOS consists of constructing tables to define menus and icons and specifying

routines for the Kernal to call when the menus and icons are activated. It works like this:

Applications may still have direct control over the hardware, but in many cases much of this support can be ceded

to the Kernal. As an example, instead of passing a signal to the application like "the mouse was clicked", the

GEOS Kernal might conclude from several mouse movements and clicks that a menu event has occurred, i.e., a

menu was pulled down and a selection was made. Routines inside the GEOS Kernal called dispatchers react to

user actions, whether it be a menu, icon, or other event, and call the proper user defined service routine to handle

it.

Note: Any input the user can send to an application running under the GEOS Kernal - pulling open a menu,

activating a menu, entering text, moving the mouse - is called an event. The GEOS Kernal provides

the support for processing events. The application supplies a table to define the menus, icons, and

other events as well as a service routine to be executed when the event is activated by user input.

When the GEOS Kernal determines an event has occurred it calls the appropriate service routine.

Service routines may then make use of GEOS text, graphics, disk turbo, or other routines to

implement the action desired.

 1-14 Basic GEOS

In the case of our menu event above, the GEOS Kernal would reverse video flash the selected menu box and call

the proper service routine provided for the activated menu selection. This type of interaction is known as event

driven programming.

An event is defined as:

1. A user-initiated action.

2. A user defined time-based process.

An example of a process would be a routine which is run every second to update a clock. The application

programmer provides the routine and tells the GEOS Kernal how often to run it. Every time that amount of time

elapses an event is triggered. When there are no user actions taking place only the GEOS Kernal code is running.

Most applications can run entirely event driven. The GEOS Kernal supports moving the mouse, and detecting

whether the mouse button is clicked over an icon, a menu, or some other area on the screen. The memory location

otherPressVec contains the address of a routine to call when the user clicks the mouse outside any menu or icon.

The memory location keyVector contains the address of a routine to call when a key on the keyboard is hit. The

application may then call a routine that returns all buffered input. In an application such as an editor, the screen

represents part of a page. Clicking the mouse in the screen area has the meaning of selecting a position on the

page. This position then becomes the position at which to enter text or draw graphics.

When the user clicks the mouse in the screen area (outside of menus or icons), the routine whose address is stored

in otherPressVec is called. The routine may look at the variables mouseXPos and mouseYPos to determine the

position of the mouse. When a key, or keys are hit, the routine in keyVector is called and the application may

then call GetNextChar to return the characters entered by the user. otherPressVec and keyVector are initialized

to 0 indicating there are no routines to call. The application's initialization code should set these vectors to the

address of appropriate routines or leave them 0 if no service routine is being provided.

Double Clicks through otherPressVec
Double clicking is clicking the mouse button quickly twice in succession. The reader is already familiar with

double clicking an application's file icon on the deskTop to cause the application to be run. Here we discuss

double clicking through otherPressVec. Double clicking on an icon is discussed in the icon chapter.

The GEOS Kernal supports a variable called dblClickCount. To support a double click we do the following. The

first time the mouse is clicked over the screen area, the otherPressVec routine is dispatched. As part of the service

routine we check the value of dblClickCount and if it is 0, load it with the constant CLICK_COUNT (30). Our

service routine then does anything else it needs to do to service a single click, and return. Every interrupt,

dblClickCount is decremented if it is not already 0. If the screen area is clicked on again before dblClickCount

has reached 0, then our service routine will know that this is the second of two clicks and may take the appropriate

action.

Example: OPVector

Together with otherPressVec and keyVector, the menu and icon service routines provide the tools to design

most simple applications. To provide even more flexibility, the GEOS Kernal makes provisions for running non-

event routines for applications needing them. These will be described later.

Getting Started
The first thing an application should do when run from the GEOS deskTop is to define its menus, icons, and

indicate the service routines to call for keyboard input and mouse presses. It should also clear the screen and draw

any graphic shapes it needs to set up the general screen appearance.

 1-15 Basic GEOS

When any event is triggered, the GEOS Kernal calls the service routine specified by the application. Just as the

initialization routine did, each service routine executes and returns to the GEOS Kernal.

Summary
Several important points have been covered in this section. To summarize, the GEOS Kernal is an operating

system which shares the memory space of the C64 with an application and is running all the time. The GEOS

Kernal handles much of the low-level hardware interaction. When an event occurs, such as the keyboard being

pressed, or a menu being selected, the GEOS Kernal calls the proper application service routine as specified in

the application's initialization code. The application service routine processes the event, possibly calling upon

GEOS graphics and text support routines, and eventually returns to the GEOS Kernal. The GEOS Kernal is then

ready to process the next event and dispatch the proper service routine.

When the application's icon is double clicked by the user, the GEOS Kernal loads the application, initializes the

system to a default state, and calls the application's initialization routine. The initialization routine provides the

necessary tables and calls the proper GEOS Kernal routines for setting up the application's events. It also draws

the initial screen.

In this manual we explain exactly how all this is done and show examples of menus, icons, and text input in a

small sample application. Used in this capacity an application may be easily prototyped in a week. To give a more

intuitive idea of how the GEOS Kernal works, we describe its overall structure in the next section.

Note: When a user double clicks on an application's icon from the deskTop, the GEOS Kernal will

initialize the system to a default state, load the application, and perform a jsr to the application's

initialization routine. The address of the initialization routine is specified in the application's File

Header block, which we'll describe later. The initialization routine contains data tables for defining

the menus, icons, and other events, and calls GEOS routines for reading the tables and setting up the

events. It also draws the initial screen. Upon completion, the initialization routine returns to the

GEOS Kernal. The main program loop in the GEOS Kernal will now be running and will be ready

to handle menu selections, icon presses or any other event defined by the application.

 1-16 Basic GEOS

The GEOS Kernal Structure

There are two levels of code running within the GEOS Kernal, MainLoop and InterruptLevel.

MainLoop
The GEOS Kernal MainLoop is just one long loop of code. It checks for events and dispatches the proper

application service routine. Each time it goes through its cycle, the MainLoop code checks for any user input and

determines its significance.

A mouse button click can signify:

an icon being selected,

a menu being opened,

an item being selected from an open menu,

or, outside of any menu or icon, an activation of otherPressVec.

Keyboard input generates:

user entered text to be dealt with by an application's keyVector service

routine, or text for a dialog box to be processed by the GEOS Kernal.

A process timeout signifies:

that an application service routine should run.

Given the input, MainLoop decides what to do. In the case of a menu, for example, it will figure out if:

1. A submenu needs to be pulled down, e.g., the edit menu is selected and edit menu choices need to be

displayed.

2. An item that triggers a service routine is being selected, e.g., "cut" under the edit submenu, then the

application service routine for the menu item "cut" needs to be run.

InterruptLevel
The GEOS Kernal InterruptLevel code handles the 6510 IRQ interrupt which is triggered 60 times a second on

NTSC systems (50 Times a second for PAL) by a raster interrupt on the C64. Every 60th of a second, the processor

is stopped in its execution of MainLoop, and the InterruptLevel code is run. InterruptLevel completes in much

less than a 60th of a second. All it does is read the hardware. Thus even if MainLoop takes much longer than a

60th of a second (by executing very long application service routines, for example), InterruptLevel will maintain

a timely interaction with the hardware: Keys pressed on the keyboard or clicks of the mouse button won't be lost.

InterruptLevel saves the state of the machine and goes about interacting directly with the hardware. It buffers

keyboard input, decrements the process timers (see the section on processes), moves the sprites and mouse, and

detects presses of the mouse button. For example, if the mouse button is pressed, InterruptLevel sets a flag that

is checked by MainLoop. MainLoop decides what to do depending on whether the mouse was positioned over

a menu, icon, or somewhere else on screen. Thus, the first part of an event sequence always starts in

InterruptLevel. Processes, the mouse, and the keyboard are watched by InterruptLevel and when changes are

detected flags are set which MainLoop checks at least once each time through its loop. InterruptLevel restores

the state of the machine when it exits and returns to MainLoop. MainLoop processes any changes detected in

InterruptLevel and calls the appropriate application service routines.

Most C64 programmers are used to writing their own MainLoop and InterruptLevel code. It is important to

realize that this is already done by the GEOS Kernal. The GEOS Kernal is akin to a skeleton that the programmer

fleshes out. GEOS compatible applications consist of a collection of tables for defining events and service routines

to handle the events. The flow of control is structured by the Kernal.

 1-17 Basic GEOS

Whenever a service routine returns, it returns to MainLoop. Any service routine may redraw the screen, entirely

reinitialize all events, new icons, menus and anything else, and safely return to the MainLoop. MainLoop will

then continue where it left off, just after the call to the service routine. A menu item can be defined that causes

the application to go to another "screen" with all new functions. The service routine for this menu item may erase

the screen and initialize new menus and icons. When the menu item service routine returns to MainLoop,

MainLoop will continue checking for events, but will be checking the newly defined ones. Usually the next event

to check for is an icon press. If a menu was selected, however, MainLoop will skip the icon check since an icon

and a menu could not have both been selected with the same press. The same is true with other event checks.

During the next MainLoop, the new menus, icons, and other events will be checked.

Letting the GEOS Kernal do much of the dirty work and having the application define and process events, frees

the applications programmer from having to reinvent the wheel every time. This approach is sufficient to program

even complex applications. geoWrite, geoPaint, and the deskTop were programmed in this fashion. To make

programming even easier, the GEOS Kernal provides many utility routines (graphics, text, disk) that aid

application development. The following section covers how to call the GEOS Kernal routines.

Calling GEOS Kernal Routines
This section gives a brief description of how the GEOS Kernal routines are used by the programmer. This should

make the following programming examples clear. The first convention adopted when we began to develop the

GEOS Kernal was to set aside some variable storage in zero page (zpage). This was done because 6502

instructions use less space and execute quicker in zpage. We also made the convention that the GEOS Kernal

routines would use this variable space to accept parameters, perform internal calculations, and return values.

Making routines modular like this with specific input and output makes it easier to track how each routine changes

memory, and also makes it easier for developers other than Berkeley Softworks to use the GEOS Kernal routines.

To this end, 32 bytes in zpage beginning at location 2 are set aside for use as pseudoregisters. These memory

locations are divided into 16 word-length variables with the names r0, r1, r2, ..., r15. The low-byte of each

pseudoregister may be referenced as either rN or rNL, where N is the number of the register: e.g., r0, r0L. The

high-bytes may be individually referenced as rNH, e.g., r0H, r1H.

Typically, arguments to the GEOS Kernal routines are passed and returned in these pseudoregisters. This way all

the GEOS Kernal routines may perform all their internal calculations with zpage variables. Instead of starting off

trying to manage hundreds of the GEOS Kernal locations in your head, the programmer starts off with only

sixteen.

The pseudoregisters are not the only way to pass parameters to the GEOS Kernal routines. Sometimes a, x, y, and

even the carry flag is used for speed. There is also another way known as an in-line call. An in-line call solves the

problem that when a routine is used frequently, a large number of bytes within an application can be taken up

simply by the assembly language instructions that load the pseudoregisters for the routines with the proper

values. Some frequently used routines therefore have an in-line form to save bytes. Whereas normally a routine

gets its parameters from pseudoregisters, the in-line version will get its parameters from the bytes immediately

following the call to the routine. For example, the in-line call to the routine to draw a rectangle is shown below:

jsr i_Rectangle ; draw a rectangle in the current system pattern
 ; (The system patterns can be changed with the
 ; routine SetPattern)
.byte 0 ; top of rectangle. possible range: 0-199
.byte 199 ; bottom of rectangle. possible range: 0-199
.word 0 ; left-side. possible range: 0-319
.word 319 ; right-side. possible range: 0-319

 1-18 Basic GEOS

Whereas the standard call looks like:

LoadB r2L,#0 ; top of rectangle. possible range: 0-199
LoadB r2H,#199 ; bottom of rectangle. possible range: 0-199
LoadW r3,#0 ; left-side. possible range: 0-319
LoadW r4,#319 ; right-side. possible range: 0-319
jsr Rectangle ; draw it

When an in-line routine is called, the first thing it does is to pop a word off the stack. Instead of pointing to the

return address though, this word points to the parameters passed in-line after the jsr. The in-line routine picks up

its parameters, loads the proper pseudoregisters with them, stuffs the correct return address back on the stack, and

then enters the regular routine.

In-line routines make sense when a routine is called a large number of times with fixed values, such as Rectangle.

A call to i_Rectangle to erase or set up part of an application screen within an application works well with an

in-line call since the input parameters don't change. It takes fewer bytes to store parameters as .byte and .word

immediately following the subroutine call and have the subroutine include the code to pick the values up than it

does to include the code to load the proper pseudoregisters before each call to the routine. To be more specific, a

"LoadW r3,#0" takes up 8 bytes whereas a ".word 0" takes up only two. In-line routine names always begin with

an i.

Utility routines taking several fixed arguments have in-line entry points. Other routines less frequently called, or

requiring only 1 or 2 parameters, do not have an in-line form.

In this section we talked about how applications call GEOS utility routines, and how the GEOS Kernal calls user

routines in response to events. We covered MainLoop, and Interrupt Level code within the GEOS Kernal and

what each is responsible for. In the next section we cover how an application may include its own code directly

within InterruptLevel or MainLoop. Generally, this is not recommended, but in some circumstances, like

supporting special external hardware, it may be required. When this is necessary, the application can load special

vectors provided in system RAM that allow the addition of code to InterruptLevel or MainLoop. Most

programmers may skip the next paragraph on non-event code. A good rule of thumb is to avoid altering

MainLoop or InterruptLevel code. In particular, an application specific interrupt routine can lead to difficult to

fix synchronization bugs between MainLoop and InterruptLevel code.

Non-Event Code
Most applications will never need non-event driven code. This is code that needs to run every interrupt or every

MainLoop regardless of what the user is doing and also cannot be set up as a process. The only cause for this is

supporting a special hardware device. The programmer who needs to run non-event triggered code may do so by

altering certain system vectors provided for that purpose. The vectors for adding interrupt and MainLoop code

are intTopVector, intBotVector, and appMain. If an application has interrupt code it wants executed before the

GEOS Kernal Interrupt Level code, it can alter the address contained in intTopVector. An indirect jump is

performed through intTopVector which normally contains the address of InterruptMain.

Putting the address of an application routine here will cause it to be run at the beginning of each interrupt. The

end of the application's interrupt routine should contain a jmp to InterruptMain. Similarly, to execute code after

normal the GEOS Kernal Interrupt Code has run, alter intBotVector. At the end of InterruptMain code, the

GEOS Kernal does a subroutine call to the address contained in intBotVector unless it is zero (its default value).

Any routine executed through intBotVector should perform an rts, not rti upon completion.

Most programming can be accomplished through events. Additional MainLoop routines can be added, however,

by loading appMain with the address of the routine to call. During each MainLoop a jmp indirect is made through

 1-19 Basic GEOS

appMain unless it is zero (its default value). Performing an rts at the end of the routine called through appMain

will return properly to the GEOS Kernal MainLoop.

Steps in Designing a GEOS Application

We can now breakdown what is involved in programming under GEOS.

Choose the events:

decide what menus, icons, etc. the application is to have. A special kind of event is a time base

process which we will cover in a later chapter.

Define the events:

load the vectors or construct the tables which define the events themselves. For example, menu

structures are defined with a simple table structure.

Write the routines:

construct the routines which are called by MainLoop to service the events you've defined.

To this point, this first section aims to provide an overview of what programming under the GEOS Kernal is like.

GEOS allows an application to be very quickly prototyped because it breaks the program up into smaller easier

to tackle event definition tables and event service routines. Before we begin coding the events for the application,

we present a short discussion of the hardware setup used by GEOS: the graphics mode it uses, its layout in

memory, and how the bank-switching registers are set.

It is actually possible to program under GEOS and not know anything about graphics modes or bank switching,

so if you are new to the C64, don't worry if this next section seems difficult. It assumes you have read the

Commodore 64 Programmer's Reference Guide. It is unlikely that you will need to change the standard GEOS

memory map. However, you may on occasion wish to access a favorite routine in the Commodore Kernal ROM,

or a floating-point routine in the BASIC ROM and then return to normal execution. The remainder of this chapter

is devoted to a "physical" description of GEOS. That is, the graphics mode its programmed in, where it is located

in memory, how to tell what version Kernal is running, what the hardware control registers are set to and how to

alter the memory map to use Kernal or BASIC ROM routines.

Hi-Resolution Bit-Mapped Mode
GEOS uses the bit-mapped graphics mode of the C64 at a resolution of 320 by 200 pixels. In this mode, 8000

bytes (200 scanlines by 40 bytes per line) are used to display the screen. If you are unfamiliar with this mode you

may want to refer to the Commodore 64 Programmer's Reference Guide (see page 121 for a general description

of the hi-resolution bit-mapped graphics mode as well as pages 102 - 105 for some useful tables).

To make programming applications under the GEOS Kernal easier, another 8000-byte buffer is kept which is

usually used to hold a backup copy of the screen data. Routines are provided which copy the image stored in the

background buffer to the screen (foreground buffer) and vice versa. This is helpful when a menu is pulled down

over the application's window, or a dialog box appears, and it writes over the data on the foreground screen. To

recover what was on the screen previously, the menus and dialog boxes copy the background screen to the

foreground screen thus saving the application the trouble of having to recreate the screen itself, something which

sometimes is impossible.

 1-20 Basic GEOS

These recovery routines are accessible from application routines as well. The geoPaint application uses these

routines to "undo" graphics changes which the user decides to discard, the GEOS Kernal routines used to recover

from background include, RecoverAllMenus, RecoverLine, RecoverMenu, and RecoverRectangle. These

routines are explained in the graphics and Menu sections of this manual. Buffering to the background can be

disabled if the application's program desires to use the area in the background buffer for some other purpose such

as for expanding available code space. This is also described in the graphics section under Display Buffering.

Memory Map
The GEOS Kernal Memory Map table documents the C64 memory used by the GEOS Kernal and that which is

left free for use by the application. Applications have about 22k from address $0400 - $5FFF. With special

provision, applications may also expand over the background screen buffer. This opens up another 8k bringing

the total to about 30k. This may seem like a limited amount of memory at first, but it is important to realize that

all the menu, icon, dialog box, disk, file system, and various buffer support is included within the GEOS Kernal.

This means much less work for the developer, less expensive development, shorter product cycles and it also

means that the 22k to 30k left to the developer will go a lot further. The speed of the disk access routines also

makes it practical to swap functional units in and out during program execution. Very large and sophisticated

applications can be developed using memory overlay techniques. In fact, the new GEOS VLIR file structure as

described in a later chapter is designed to facilitate loading program modules into memory as needed.

The location of application code and RAM is all that most developers will ever need to know about the GEOS

Kernal memory map. RAM is provided in three separate places, plus whatever application space the programmer

wants to devote to it. First, the pseudoregisters r0 - rl5 may be used by applications. GEOS routines also use

these locations. The registers used by each GEOS routine are well documented. Second, there are 4 bytes from

$FB - FE in zpage that are unused by either BASIC or the C64 Kernal. These are used as pseudoregisters a0 and

a1. By passing values to utility routines in zpage locations and having them use these zpage pseudoregisters

internally, a large number of bytes can be saved because zpage locations only generate one byte of addressing.

This far outweighs the bytes wasted loading and unloading the pseudoregisters with parameters before and after

each routine call.

Another zpage area is provided, from $70 - 7F. These are the pseudoregisters a2 - a9. Finally, the memory area

from $7F40 - 7FFF is available for non-zpage RAM. For a complete variable layout, see the variable listings by

address in "Chapter 19 Environment", "Variables by Address".

 1-21 Basic GEOS

Num. Bytes
Decimal

Address Range
Hexadecimal

Description

1 0000 6510 Data Direction Register
1 0001 6510 I/O register

110 0002-006F zpage used by GEOS and application
16 0070-007F zpage for only application, regs a2-a9
123 0080-00FA zpage used by C64 Kernal & BASIC
4 00FB-00FE zpage for only application, regs a0-a1
1 00FF zpage Used by Kernal ROM & BASIC routines

256 0100-01FF 6510 stack
512 0200-03FF RAM used by C64 Kernal ROM routines

23552 0400-5FFF Application program and data
8000 6000-7F3F Background screen RAM
192 7F40-7FFF Application RAM

2560 8000-89FF GEOS disk buffers and variable RAM
512 8A00-8BFF Sprite picture data

1000 8C00-8FE7 Video color matrix
16 8FE8-8FF7 GEOS RAM
8 8FF8-8FFF Sprite pointers

4096 9000-9FFF Disk driver
8000 A000-BF3F Foreground screen RAM or BASIC ROM
192 BF40-BFFF GEOS tables

4288 C000-CFFF 4k GEOS Kernal code, always resident
4096 D000-DFFF 4k GEOS Kernal or 4k C64 I/O space
7808 E000-FE74 8k GEOS Kernal or 8k C64 Kernal ROM
378 FE80-FFF9 Input driver
6 FFFA-FFFF 6510 NMI, IRQ, and reset vectors

All I/O, screen drawing and interrupt control can and should be handled by the GEOS Kernal. The Kernal routines

are extremely easy to use and take up memory space whether the application uses them or not. The following

section describes in detail the hardware configuration used by the GEOS Kernal and can be skipped by most

users. If, for example, you plan on supporting an I/O device which the GEOS Kernal does not (yet) support, or

will be writing in BASIC instead of assembler, this material will be relevant.

GEOS Kernal Version Bytes
There are several bytes within the GEOS Kernal that identify what version GEOS is running. At location $C006

we find the string "GEOS BOOT". This string can be used to determine if the application was booted from GEOS.

Developers who will not be using the GEOS Kernal routines in their applications can write over all but $C000 to

C07F which are used to return the user to the deskTop after quitting the application. These bytes may be copied

elsewhere and moved back to reboot GEOS.

Immediately following the "GEOS BOOT" string are two digits containing the version number. Currently these

bytes may be $12 or $13 for versions 1.2 or 1.3, respectively. For GEOS Kernals version 1.3 and beyond have

additional information bytes just after the version byte. First there is a language byte. Following the language byte

are three bytes that are reserved for future expansion and are currently $00. As of this writing, the English,

German, and Spanish (v1.2 only) have been implemented, whereas the other languages have not.

This area appears in memory as shown on the following page:

GEOS MEMORY MAP

 1-22 Basic GEOS

GEOS Kernal Information Bytes

 ; Kernal code starts at $C000.

BootGEOS:
 jmp o_BootGEOS ; Jump vector back into GEOS. If the routine o_BootGEOS

; moves in future versions of GEOS, doing a jmp to
; BootGEOS at $C000 will still work. As long as the
; space $C000 to $C02F is preserved, a jump to $C000
; will reboot GEOS.

ResetHandle:
 jmp internal routine ; This is a jump vector used by the internals of GEOS.

bootName: ; This is at $C006. This string can be used to check if an
 .byte "GEOS BOOT" ; application was booted from GEOS.

version:
 .byte $20 ; A hex byte containing the GEOS version number.

; The current version is 2.0.
; Wheels Current Version is 4.4 (.byte $44).

nationality:

; L_AMERICAN = 0
; L_GERMAN = 1
; L_FRENCH = 2 (not implemented)
; L_DUTCH = 3 (not implemented)
; L_ITALIAN = 4 (not implemented)
; L_SWEDISH = 5 (not implemented)
; L_SPANISH = 6 (not implemented)
; (Spanish Version Drean is V1.2. 1.2 did not have a
; nationality byte)
; L_PORTUGUESE = 7 (not implemented)
; L_Finnish (Finland) = 8 (not implemented)
; L_UK = 9 (not implemented)
; L_Norwegian (Norway) = 10 (not implemented)

.if AMERICAN
 .byte L_AMERICAN ; ENGLISH
.elif GERMAN
 .byte L_GERMAN ; GERMAN
.else
 .byte NULL ; reserved for future use
.endif

 1-23 Basic GEOS

Bank Switching and Configuring
The major part of the GEOS Kernal occupies memory from $BF40 on up. This means that the GEOS Kernal is

using RAM in address space which is normally used for other purposes. The address space from D000 to DFFF

is normally used as I/O space, but the C64 has RAM which can be swapped in over this area. Similarly, the C64

Kernal ROM and BASIC ROM can be bank switched out and another 8k of RAM opened up. During normal

operation, all the GEOS Kernal banks are swapped in and the BASIC, C64 Kernal ROM, and I/O space are

mapped out. All I/O processing is handled by the GEOS Kernal during interrupt level and the GEOS Kernal takes

care of all the bank switching itself.

The selected bank is determined by the contents of location $0001 and two lines coming from the cartridge and

external ROM ports. Since the GEOS Kernal runs without any ROM cartridges, the internal pull up resistors on

these two cartridge lines cause them to default to high. The placement of screen RAM and the ROM character set

is determined by the contents of address $D018.

Memory mapping is described in the Commodore 64 Programmer's Reference Guide (pages 101 through 106 and

260 through 267). The following two tables outline the default settings which the GEOS Kernal uses.

Control Function Memory Location Value
Stored

Description

Bank Select CPU_DATA

(0001)

xxxxx000 Selects which ROM banks to appear in the

address space. GEOS swaps C64 Kernal, I/O and

BASIC out.
VIC Chip Location
Select

Bits 0,1 of

cia2pra (DD00)

xxxxxx01 Chooses which 16k address range the Vic chip

can address. GEOS selects bank 2 at $8000 -

$BFFF
Screen Memory
(Character Set
 in text mode)

Bits 1,2,3 of

grmemptr (D018)

xxxx100x Set graphic video RAM at A000 - BF3F

(When switching to text mode, this is used to

store the 2K character set)

Color Matrix
(Character Screen
 in text mode)

Top 4 bits of

grmemptr (D018)

0011xxxx

Together with the VIC chip bank select,

determines the location of the video color matrix.

GEOS uses 8C00 – 8FE7

GEOS Control Register Settings

Constants for
RAM/ROM Bank Switching

RAM_64K = $30 ; 64K RAM system
IO_IN = $35 ; 60K RAM, 4K I/O space in
KRNL_BAS_IO_IN = $37 ; both Kernal and BASIC ROMs in
KRNL_IO_IN = $36 ; ROM Kernal and I/O space mapped in
KRNL_CH_BAS_IN = $33 ; ROM Kernal + basic + Character ROM

Note: If your application needs to access I/O space outside of the GEOS Kernal routines, or access the

C64 Kernal or BASIC ROMS, it should make use of two GEOS Kernal routines, InitForIO and

DoneWithIO. These routines will take care of changing and restoring the memory map, and

disabling interrupts and sprites as needed.

 1-24 Basic GEOS

Assembler Directives
Our development environment here at Berkeley Softworks may not be similar to yours. The assembler we use is

of our own design. In the sample application presented throughout this manual then the reader will be seeing our

assembler's directives and our macros. We will then try to keep the usage of macros to a minimum and will try to

provide list file outputs when necessary. Below is a table listing the assembler directives or pseudo operations as

they are sometimes known.

Assembler Directives Used in Examples

Type Pseudo Op Arguments Description

Directive

Start Relocatable Code Section:

.psect Start new relocatable program section. Required after a .zsect and

.ramsect section to return to program section.

Start Zero Page Section:

 .zsect [VALUE] VALUE is a zero page address. The following zero page declarations

are assembled starting at address VALUE. If VALUE is missing $00

will be used as the start address.

Start RAM Section:

 .ramsect [VALUE] VALUE is a system RAM address. The following variable declara-

tions are assembled starting at address VALUE. If VALUE is

missing, starts a relocatable section which the linker will relocate.

Label:

 NAME: Assigns the current address to NAME.

Constants:

 NAME =[key]VALUE Equate NAME to VALUE, where VALUE is a decimal number unless

preceded by a key character:

key type NAME VALUE

 = decimal DEC10 = 10

$ = hex HEX10 = $0A

% = binary BIN10 = %1010

? = octal OCTAL8 =?10

' = Character CHARA = 'A'

Data:

 .byte val1,val2,... Allocates value number of sequential bytes.

 .word val1,val2,... Store val1, val2, ... in sequential 16-bit words.

 .block VALUE Allocates VALUE number of sequential bytes. In .psect this assigns

$00 to each of the bytes in the block. Almost always the .block

directive should only be used in .zsect and .ramsect. Using .block in

.psect will needlessly increase the size of the application on disk.

.zsect

 .block VALUE Allocates VALUE number of sequential bytes.

.ramsect

 .block VALUE Allocates VALUE number of sequential bytes.

Conditional:

 .if expression if expression is true; assemble the enclosed program code.

 .elif ends an .if block and begins another.

 .else begins an alternate block

 .endif terminates .if block.

 1-25 Basic GEOS

What's to Come
In the following sections it will be assumed a basic working knowledge on getting a GEOS application started.

If you need help getting to that level start with the "geoProgrammer User's Manual". This manual will get you

familiar with geoProgrammer (geoAssembler, geoLinker and geoDebugger). After completing the manual, you

will have the ability to build sample applications and be ready to continue on here.

The following sections provide you with all the information needed to build basic or advanced applications under

GEOS. Graphics, Icons, Menus, Processes, Math Routines, Text and Keyboard, MainLoop and Interrupt level,

and Dialog Boxes along with file handling, input and printer drivers, and sprite support are all covered in detail.

Each section consists of a general explanation, with examples throughout.

In Ch 10 Input Driver we present tutorials on how to write input drivers and cover the various library routines.

Fully working source code for both joystick and mouse drivers are located in Appendix B.

Compatibility of applications with GEOS 128
Generally, applications created for GEOS 64 that exploit the jump table at $C100 and delegate to the operating

system the job of all low-level functions, should not encounter compatibility problems if they are run with GEOS

128. Compatibility is possible since GEOS 128 is an extension of GEOS 64, and as such it fully preserves its

characteristics. The global system variables in both GEOS 128 and GEOS 64 are the same; all the Kernal routines

perform the same tasks in both systems, with the only difference that GEOS 128 adds several other routines and

globals. In particular, GEOS 128 is very close to the structure of GEOS V1.3, since it is able to handle RAM

expansions in the same way. However, we will see what could be the reasons for any incompatibilities and how

to remedy them. For now, it is sufficient to underline that in principle all the applications created following the

directives of this manual, should work correctly even with GEOS 128 in 40-columns mode. At the time of writing,

no applications have yet been developed for GEOS 64 that are able to take advantage of the 80-column mode

offered by GEOS 128 and the clock frequency of 2MHz. This does not mean, however, that this will not be

possible later on.

Any application created for GEOS 64, as we will see, can install the switch 40/80 item in the GEOS menu, thus

providing the user with a double horizontal resolution screen (640 x 200). In order to not create unnecessary

confusion, throughout the manual we will refer mainly to GEOS 64, and chapter 13 RAM Expansions and

GEOS 128 will discuss topics useful to the programmer who wants to create applications compatible with GEOS

128, plus other topics. In that chapter it will be assumed that the reader has already read the entire manual and is

therefore aware of the fundamental characteristics of the operating system. Chapter 19 Environment, in addition

to describing all the constants and global variables used by GEOS 64, also contains useful information for creating

applications that exploit some features of GEOS 128.

Note: When testing features such as icons and menus, it is often useful to use dummy service routines that

merely execute an rts. This way menu and icon structures can be tested and verified before adding

true service routines. After these events, are defined, menus will pull down and icon structures will

blink even though they will merely call empty service routines. This allows the structure of the

program to be tested and verified before the actual code is written.

 1-26 Basic GEOS

GEOS V1.3+ and RAM expansions
Version 1.3 of GEOS, in the eyes of the application and the user, is basically just an extension of version 1.2.

Therefore, all the routines of version 1.2, the parameters, the operational structure and the location of the global

variables, are fully maintained in version 1.3. But some other capabilities have been added to the primitive

structure. First of all, GEOS v1.3 is able to manage RAM expansion units (REU) and contains some routines

specifically dedicated to the use of the additional RAM introduced by the expansion modules. These routines are

illustrated in chapter 13 RAM Expansions and GEOS 128 together with compatibility with GEOS 128.

RAM expansions are very useful work tools. They considerably reduce the need for disk access, allowing you to

save work time and therefore speed up operations. Depending on the amount of additional memory, GEOS is able

to use the expansion module to move large amounts of data in a very short time, to simulate a drive (RAM disk),

to install a Shadowed Drive and to quickly reload the system without performing disk accesses, for example after

running a Basic file. But the most remarkable aspect of these possible uses is that the applications are not required

to know how and in what way GEOS is using the inserted RAM expansion, since its management in the

aforementioned cases is entirely entrusted to the Kernal. However, applications can also use RAM expansions to

perform completely different tasks, calling the appropriate routines made available by the Kernal.

In GEOS V1.3 the module dealing with disk access has been further improved. In particular, the entry point of

the FreeBlock routine is now available in the jump table at $C100. Finally, in the new GEOS version it is now

able to manage AUTO_EXEC files that are automatically executed when the system is installed.

 2-1 Graphics Routines

 Graphics Routines

As the name GEOS (Graphics Environment Operating System) implies, screen graphics are central to both the

operating system and its applications. GEOS provides a number of graphic primitives ("primitive" because they

are the basis of more complex objects) for drawing points, lines, rectangles, and other objects, as well as

displaying bitmap images such as those cut from geoPaint. GEOS also provides graphic support routines for

undoing regions, inverting areas, scrolling, and directly accessing the screen memory.

Drawing with the built-in GEOS routines increases program portability by making much of the internal, machine-

dependent screen architecture transparent to the application. When you draw a line, for example, you merely

supply the two endpoints. GEOS takes care of calculating the proper pixel locations and modifying the screen

memory. This allows an application to use the same code to draw lines on machines with very different graphics

hardware and spares the programmer from dealing directly with screen memory.

Introduction to GEOS Graphics

If you look closely at a monitor or television screen, you will notice that the image is made up of many small

dots. These small dots, called pixels, can be either on or off and are represented in memory by l's and 0's,

respectively. A pixel with a value of one is considered set and a pixel of value zero is considered clear. This

binary, or bitwise, representation of images is referred to as bitmapped graphics, and a bitmap is a picture or

image created in this way.

0011110000

0001110000

0001111000

0000111000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

 2-2 Graphics Routines

Color

Although some hardware configurations support color graphics, GEOS assumes that the screen is a

monochromatic device; that is, GEOS only deals with one drawing color and one background color. Typically,

the drawing color is black, like ink, and the background color is white, like a piece of paper. Depending on the

monitor being used and the Preference Manager settings, the actual displayed colors may be different. We will

refer to the color displayed by a zero-pixel as the background color and the color displayed with a one-pixel as

the drawing color. Applications that support multiple drawing colors, such as the Commodore 64 version of

geoPaint, must do so on their own, bypassing GEOS (at the expense of portability) to provide multiple colors on

the screen.

The GEOS Virtual Screen

The GEOS screen is often referred to as a virtual screen, one whose layout and internal storage characteristics

exist independent of any underlying graphics hardware. For this reason, the GEOS screen is fundamentally

identical under all versions of the operating system.

The GEOS screen is a rectangular array of pixels arranged like a sheet of graph paper. Each pixel on the screen

has a corresponding (x, y) coordinate. The x-axis begins with zero and runs horizontally (left to right) across the

screen, and the y-axis begins with zero and runs vertically (top to bottom) down the screen. The maximum x- and

y-positions, because they differ from machine to machine, are calculated by subtracting one from the GEOS

constants SC_PIX_WIDTH and SC_PIX_HEIGHT.

(0,0) (SC_PIX_WIDTH-1,0)

(0, SC_PIX_HEIGHT-1) (SC_PIX_WIDTH-1, SC_PIX_HEIGHT-1)

GEOS

SCREEN COORDINATES

X

increasing

Y

in
creasin

g

 2-3 Graphics Routines

GEOS 128 40/80-Column Support
Because applications that run under GEOS 128 may want to take advantage of both the 40- and 80-column screen

modes, the following conventions have been adopted for the screen width and height constants:

• The following constants can be used to access the dimensions of the 40- or 80-column screen specifically:

SC_40_WIDTH 320 Pixel width of 40-column screen.

SC_40_HEIGHT 200 Pixel height of 40-column screen.

SC_80_WIDTH 640 Pixel width of 80-column screen.

SC_80_HEIGHT 200 Pixel height of 80-column screen.

• If the application is designed to run under GEOS 128 only and not run under GEOS 64 (the C64 constant

is set to $00 and the C128 constant is set to $01), then the standard SC_PIX_WIDTH and

SC_PIX_HEIGHT constants take on the following values:

SC_PIX_WIDTH 640 Pixel width of 80-column screen.

SC_PIX_HEIGHT 200 Pixel height of 80-column screen.

• If the application is designed to run under GEOS 64 and GEOS 128 (both the C64 constant and the C128

constant set to $01), then the standard SC_PIX_WIDTH and SC_PIX_HEIGHT constants take on the

following values:

SC_PIX_WIDTH 320 Pixel width of 40-column screen.

SC_PIX_HEIGHT 200 Pixel height of 40-column screen.

This is because the application (typically) will be written with the 40-column screen in mind. At runtime,

the application can check to see which version of GEOS it is running under and add doubling bits to the

appropriate coordinate values so that the 40-column coordinates will be normalized automatically when

GEOS 128 is in 80-column mode.

An application can use the following subroutine to determine whether it is running under GEOS 128 or

GEOS 64: Check128.

When running under GEOS 128, the graphMode variable may be checked to determine whether GEOS is in 40-

or 80-column mode:

 bit graphMode ; check 40/80 mode bits.
 bpl C64Mode ; branch if in 40-column mode.
 ; else, handle as 80-column.

For more information, refer to "GEOS 128 X-position and Bitmap Doubling" in this chapter. Also see

NormalizeX in the Routine Reference Section.

Important: GEOS does no clipping or range-checking on coordinates passed to it. If you pass it

invalid data or coordinates, the results are unpredictable and will often crash the

application.

 2-4 Graphics Routines

Inclusive Dimensions
All dimensions and GEOS coordinates are inclusive: a line contains the endpoints which define it, and a rectangle

includes the lines that make up its sides. For example, a rectangle defined by an upper-left corner of (10,10) and

a lower-right corner of (20,20) would include the lines around its perimeter defined by the points (10,10), (10,20),

(20,10), and (20,20).

Linear Bitmap
For the purpose of bitmap compaction and patterns, the GEOS screen is treated as a linear bitmap, a contiguous

block of bytes with each bit controlling an individual pixel. The bytes are lined up end-to-end for each screen

line! The high-order bit (bit 7) of each byte controls the leftmost pixel and the low-order bit (bit 0) controls the

rightmost pixel.

GEOS Virtual Screen

Keep in mind that this is a conceptual organization of the screen; the actual in-memory storage of

the screen and bitmap data may be very different.

Dividing the Screen into Cards
Many GEOS routines subdivide the GEOS virtual screen into 8x8-pixel blocks called cards. A card is a two-

dimensional unit of measurement eight pixels on each side. The first card begins in the upper-left corner of the

screen (0,0) and extends to (7,7). The next card is just to the right of the first and extends from (8,0) to (15, 7).

Cards are always aligned to eight-pixel boundaries called card boundaries (pixel positions 0, 8, 16, 24, etc.).

Aligning an object to a card boundary is called card alignment, and the position of an object expressed in cards

is called its card position. Pixel position (32, 72), for example, would correspond to card position (4, 9) because

32/8 = 4 and 72/8 = 9). The card width of an object is its width in cards, and the card height is its height in cards.

An entire row of cards is called a cardrow.

The card is a convenient unit of measurement because its dimensions, 8x8, which is a power of 2, lend themselves

to simple binary arithmetic. For example, converting a pixel position to a card position is merely a matter of

shifting right three times. See MseToCardPos in "Examples / graphics".

Example: MseToCardPos.

Cards are also convenient because they map directly to the internal storage format of the Commodore 40-column

graphics screen. (Converting to other formats, such as the 80-column graphics screen of the Commodore 128,

requires additional translation. This translation is handled automatically by the GEOS graphics routines).

y
-a

x
is

x-axis

byte 1 byte 0

 2-5 Graphics Routines

Display Buffering
Normally the application has control of the screen but, when an item such as a dialog box or a menu is displayed,

GEOS overwrites the screen. When the dialog box is removed or the menu is retracted, GEOS needs to restore

the portion of the screen it destroyed. For this purpose, GEOS maintains a background screen buffer. Most of the

time, the background buffer contains an exact copy of the foreground screen (the screen that is displayed) because

GEOS normally sends graphics data to both screen buffers. When a temporary object is displayed, however, it is

only drawn to the foreground screen. Removing the object, or recovering the original area of the screen, is then

simply a matter of copying pixels from the background buffer to the foreground screen. The GEOS dialog box

and menu routines handle this sort of recovery automatically.

dispBufferOn
Usually the application will want to draw to both buffers so that GEOS can properly recover the foreground screen

after menus and dialog boxes. If graphics are only drawn to one buffer and a menu is brought down or a dialog

box is displayed, the subsequent recover may restore the wrong data.

However, sometimes an application may want to limit drawing to only the foreground or background screen

buffer. GEOS graphics and text routines use the global variable dispBufferOn to determine whether to draw to

the foreground screen, the background buffer, or both simultaneously. Bits 6 and 7 of dispBufferOn determine

the writing and reading mode:

bit 7: 1 — use foreground screen.

 0 — do not use foreground screen.

bit 6: 1 — use background buffer.

 0 — do not use background buffer.

bit 5: 1 — Limit GetString text entry to foreground screen.

 0 — GetString text entry will use b7, b6

bit 5-0: reserved for future use — should always be zeros

There are some constants which allow you to gain access to these bits:

ST_WR_FORE use foreground.

ST_WR_BACK use background.

ST_WRGS_FORE GetString only uses foreground.

and they can be used in the following manner:

;--- Use both foreground screen and background buffer (normal).
LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK)

;--- Use foreground screen only.
LoadB dispBufferOn,#ST_WR_FORE

;--- Use background buffer only.
LoadB dispBufferOn,#ST_WR_BACK

Important: If bits 6 and 7 of dispBufferOn are both zero, GEOS considers this an undefined state and

will not produce useful results. In most cases, the internal address calculations will force your

graphic objects to appear in the center of the drawing area where they can do little harm. If

the center line on the screen becomes garbled, dispBufferOn probably contains a bad value.

 2-6 Graphics Routines

Using dispBufferOn
Typically applications leave dispBufferOn set to draw to both screens, whereas most desk accessories will only

draw to the foreground screen. In some situations, an application may want to limit drawing to the foreground

screen so that it may recover from the background buffer at a later time. Internally this is what GEOS does when

it opens a menu or dialog box: the object is only drawn to the foreground screen, and when it needs to be erased,

the original data is recovered from the background buffer. dispBufferOn can also be used to pre-draw complex

objects in the background buffer (ST_WR_BACK) and make them instantly appear on the foreground screen by

doing a recover.

An application must take special precautions when using dispBufferOn to draw selectively to one buffer or the

other. For example, when GEOS automatically recovers from a menu or a dialog box, it recovers the data from

the background buffer. If the background buffer has not been updated (the application has been drawing with the

ST_WR_BACK bit cleared, for example), then the menu or dialog may recover the wrong data.

Since dialog boxes are only displayed when the application calls DoDlgBox and menus are only opened while

GEOS is in MainLoop, the application has some control over GEOS's automatic recovering. The application can

postpone displaying dialog boxes and returning to MainLoop until the foreground screen and background buffer

contain the same data. If an application must return to MainLoop while the buffers contain different data (to let

processes run, for example), it can always disable menus by clearing the MENUON_BIT bit of mouseOn. The

menus may be reenabled again by restoring the MENUON_BIT bit of mouseOn:

Example: StopMenus

Using the Background Buffer as Extra Memory
Some applications are so starved for memory that they opt to use the background buffer for program code or data.

To do this, they must always keep the ST_WR_BACK bit of dispBufferOn clear so that the background buffer

is not corrupted with graphic data.

If you disable the background buffer, GEOS cannot automatically recover after menus and dialog boxes. The

application must provide its own routine for restoring the foreground screen. There is a GEOS vector called

RecoverVector, which normally points to the RecoverRectangle routine. Whenever GEOS needs to recover

from a menu, dialog box, or desk accessory, it sets up parameters as if it were going to call RecoverRectangle

and jsr's indirectly through the address in RecoverVector. If the application is using the background buffer, it

must place the address of its own screen recover routine in RecoverVector. When GEOS needs to recover a

portion of the screen, it will jsr to the application's recover routine with the following register values describing

the rectangular area to recover:

r3 X1 — x-coordinate of upper-left (word).

r2L Y1 — y-coordinate of upper-left (byte).

r4 X2 — x-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

where (X1, Y1) is the upper-left corner and (X2, Y2) is the lower-right corner of the rectangular area to recover.

The rectangle's coordinates are inclusive. The application must then use these values to restore the portion of the

screen that lies within the rectangle's boundaries and return with an rts. This recovery can be as simple as filling

with a halftoned pattern or as involved as redrawing graphic and text objects that fall within the rectangular

recover area.

 2-7 Graphics Routines

Most of the larger Berkeley Softworks GEOS applications use a technique called saveFG/recoverFG (short for

"save foreground" and "recover foreground") to save and recover the foreground screen when displaying menus

and dialog boxes. Basically, saveFG will save a rectangular subregion of the foreground screen to a special buffer

just before GEOS displays a menu or a dialog box. When GEOS tries to recover from the background buffer,

recoverFG restores the data from the special buffer. Although the size of the buffer varies from application to

application, it will seldom be larger than 5.5K (just large enough to hold the largest standard dialog box).

Transferring data to and from the buffer is fairly straightforward. With the Commodore 40-column screen, it is

mostly a matter of calculating the proper address offsets and copying bytes. With the GEOS 128 80-column

screen, the process is complicated a bit because the bytes must be read from the VDC chip's RAM.

The real trick is knowing how to intercept the normal GEOS menu and dialog box drawing and recovering

mechanisms. Dialog boxes are the easiest because they are always called by the application. The program only

needs to save the foreground screen area prior to calling DoDlgBox. The size of the dialog box can be calculated

from its table (be sure to account for any shadow) and the foreground data can be copied into the saveFG buffer.

When the dialog box is finished, GEOS will jsr through RecoverVector. The application installs its own

recoverFG routine into RecoverVector and restores the foreground area from the saveFG buffer. The GEOS

dialog box recovery does have one quirk that concerns shadowed dialog boxes. GEOS shadowed dialog boxes

consists of two overlapping rectangular areas: the actual dialog box and the slightly offset shadow rectangle.

GEOS first calls through RecoverVector once for the region bounded by the shadow box, then again for the

region bounded by the dialog box. When saving the foreground area, the entire dialog box region (the area

bounded by the union of all eight corner points) should be saved and a special flag should be set so that the area

is only recovered once. The application's recover routine will need to compensate for the shadow box. For more

information on dialog boxes, refer to Chapter 8: "Dialog Box".

Saving the foreground area before a menu is displayed is a bit tougher because GEOS displays menus at

MainLoop, the application has little notice that a submenu is opening up. Fortunately, there is a workaround:

GEOS supports a special type of sub-menu called a dynamic sub-menu. Just before a dynamic sub-menu opens,

GEOS calls a subroutine whose address is stored in the menu data structure. This opportunity can be used to save

the foreground screen area before GEOS draws the menu by calculating the bounding rectangle from the menu

structure. When GEOS recovers a menu, it calls through RecoverVector as it does with dialog boxes. With

multiple sub-menus, the menus are always recovered in the reverse order they were drawn. For more information

on menus, refer to Chapter 3: "Icons, Menus, and Other Mouse presses"

Manual Imprinting and Recovering
Within an application, data can be moved between the foreground screen and background buffer with GEOS

routines that copy data to and from the two areas. Copying data from the foreground screen to the background

buffer is called imprinting, and copying data from the background buffer to the foreground screen is called

recovering. There are GEOS routines for imprinting and recovering points, lines, and rectangular regions.

 2-8 Graphics Routines

Some Possible dispBufferOn Complications
When drawing with both buffers enabled (with both foreground and background bits set in dispBufferOn), GEOS

requires that the foreground screen and the background buffer contain exactly the same data. If they are different,

the results of graphic operations may be unpredictable. If you need to draw to the foreground screen and the

background buffer when they contain different data, you must perform the graphic operation once by writing only

to the foreground screen, and then a second time, writing only to the background buffer — you cannot write to

both screen areas simultaneously if they contain different data.

Machine Dependencies

The GEOS graphics routines hide much of the underlying hardware from the application. This allows the same

code to run under a variety of different environments with very few changes. However, it is sometimes necessary

to optimize graphic routines for a specific machine. This can be as simple as taking advantage of color display

capabilities or as complex as direct screen memory manipulation. Either way, an application should only resort

to such tactics when the desired effect cannot be achieved through the standard graphics routines. Be aware that

circumventing the GEOS Kernal will very likely increase your development time and that there is no guarantee

that the techniques will be compatible with future versions of GEOS.

Commodore 64
The Commodore 64 version of GEOS uses the standard high-resolution bitmap mode (not multi-color bitmap

mode), which is 320 pixels wide by 200 pixels high. Memory is mapped to the screen in eight-byte stacks called

cards: byte 0 controls pixels (0,0) through (7,0), with bit 7 on the left and bit 0 on the right, and byte 1 controls

the same pixels on the line below, which is pixels (0,1) through (7,1). This stacking continues through byte 7,

which controls pixels (0,7) through (7,7) and completes the 8x8-pixel card. Byte 8 begins the next card,

controlling pixels (8,0) through (15,0). The screen memory begins at SCREEN_BASE and occupies 8,000 bytes,

extending to SCREEN_BASE+7999. The background buffer begins at BACK_SCR_BASE and extends to

BACK_SCR_BASE+7999.

GEOS does not directly support the foreground and background color options of the standard high-resolution

bitmap mode. The color matrix, located from COLOR_MATRIX to COLOR_MATRIX + 999, is set to a

constant foreground and background color as determined by the Preference Manager. If an application wants to

support color like geoPaint, it must manage the color matrix itself. Each byte in the color matrix sets the

foreground and background colors of a card (8x8 pixel block): color byte 0 sets the colors for card 0 (bitmap bytes

0-7) and color byte 1 sets the colors for card 1 (bitmap bytes 8-15). Before the application exits, it must restore

the original color matrix. This is best done by saving the first byte and then filling the color matrix before calling

EnterDeskTop, as the following code fragments illustrate:

Example:
 ;--- On entry, save off the first byte of the color matrix
 MoveB COLOR_MATRIX, saveColor
 ...

 ;--- On exit, fill the color matrix with the saved value
 LoadW r0,#1000 ; color matrix is 1000 bytes
 LoadW r1,#COLOR_MATRIX
 MoveB saveColor,r2L ; fill with original color
 jsr FillRam

 2-9 Graphics Routines

Commodore 128
In 40-column mode, GEOS 128 screen memory is identical to the Commodore 64. In 80-column mode, GEOS

128 uses the high-resolution 640x200 mode supported by the 8563 VDC (Video Display Controller) chip. The

foreground screen memory is not stored in the normal Commodore memory but on the VDC chip instead. The

VDC RAM is accessed indirectly through the VDC control registers. The screen occupies 16,000 bytes, and each

byte is accessed one at time by its address within the VDC display RAM (the first screen byte is at 0, the last at

15999). Bits are mapped sequentially from memory to the screen pixels: bits 7 through 0 of byte 0 (in that order)

control the first seven pixels, (0,0) through (7,0). The following byte controls the next seven pixels, (8,0) through

(15,0). And so on for the remainder of the screen. The following two subroutines will access bytes in the VDC

screen RAM when GEOS 128 is in 80-column mode: See Sta80Fore, Lda80Fore in Examples.

For more information on controlling the 8563 VDC chip, refer to the Commodore 128 Programmer's Reference

Guide.

Before writing directly to the 80-column foreground screen, be sure to call TempHideMouse to temporarily

disable the virtual sprites (for more information, refer to TempHideMouse in "Chapter 12 Sprites").

Because the 80-column screen requires a 16,000-byte background buffer, GEOS 128 (when in 80-column mode)

uses the 8,000-byte 40-column screen background buffer (BACK_SCR_BASE to BACK_SCR_BASE+7999) to

store the first 100 scanlines of background buffer data and the 8,000-byte foreground screen buffer

(SCREEN_BASE+$40 to SCREEN_BASE+$40+7999) to store the last 100 scanlines of background buffer data.

Because these data areas are not contiguous, an application that directly accesses the background screen must

compensate for this break.

 2-10 Graphics Routines

Porting Considerations and Techniques

Outside of the normal considerations for porting a GEOS application from one machine to another, there are a

few additional elements which pertain specifically to graphics.

GEOS 128 Virtual Sprites
GEOS 128 (in 80-column mode) renders sprites entirely in software by modifying the actual bitmap screen.

(GEOS 64 and GEOS 128 in 40-column mode, use the hardware sprite capabilities of the VIC chip). In order to

properly treat these virtual sprites as if they were apart from the bitmap screen, they must be erased before any

graphic operation, whether drawing, testing, imprinting, or recovering, is done. To do this, GEOS 128 provides

the TempHideMouse routine to temporarily remove all sprites. The sprites are not redrawn until the application

returns to MainLoop. Normal GEOS graphics and text routines will automatically call TempHideMouse; only

applications that are directly accessing the foreground screen area need call TempHideMouse. For more

information, refer to TempHideMouse in the Routine Reference Section "Soft Sprites" in "Chapter 12 Sprites"

GEOS 128 X-position and Bitmap Doubling
Because the GEOS 128 80-column bitmap screen has a horizontal resolution exactly twice that of GEOS 64 (640

vs. 320), GEOS 128 supports the ability to automatically double the x-coordinate(s) of graphic and text objects,

and the width of bitmap objects, by setting special bits in the x-position and width calling parameter(s). This

allows the visual elements of a GEOS 64 application to run in 80-column mode under GEOS 128 with a minimum

of effort. The special bits can also be added at run-time to dynamically configure a program to run correctly under

both GEOS 64 and GEOS 128. X-position and bitmap doubling is supported by nearly every GEOS 128 routine

that writes to the screen (including text, dialog box, and icon routines). The following constants may be bitwise

or'ed into GEOS 128 x-coordinates and bitmap widths to take advantage of the automatic 80-column doubling

features:

DOUBLE_W For doubling word-length values. Normal x-coordinates, such as those

passed to Rectangle and DrawPoint.

DOUBLE_B For doubling byte-length values. A byte-length value is either a card

x-position or a card width, both of which apply almost exclusively to bitmap

routines, such as BitmapUp and BitmapClip.

ADD1_W Used in conjunction with DOUBLE_W; adds one to a doubled word-length

value. This allows addressing odd-coordinates, as when drawing a one-pixel

frame around a filled rectangle.

These doubling bits have no effect when GEOS 128 is in 40-column mode but come to life when GEOS 128 is in

80-column mode. For example, the following code fragment will frame a filled rectangle. It will appear similarly

in both 40- and 80-column modes.

Example: FilledRect

Important: GEOS 128 filters all word-length x-coordinates (but not widths or byte-length x-coordinates)

through the routine NormalizeX to process the doubling. For more detailed information on

how this routine works, refer to its documentation in this chapter. NormalizeX will also double

signed x-coordinates. If the x-coordinate is a signed number (like you might pass to

SmallPutChar), then the double bits must be exclusive-or'ed into the x-coordinate parameters

rather than simply or'ed.

 2-11 Graphics Routines

The graphic elements of existing GEOS 64 applications can be ported to run under GEOS 128 with a minimum

of effort by taking advantage of the GEOS 128 doubling bits. However, once the doubling bits have been installed,

the application will no longer run under GEOS 64. The simplest approach to this problem is to have two entirely

different applications. One designed to run under GEOS 64 and the other designed to run under GEOS 128. The

doubling bits may be controlled at assembly-time with conditional assembly, as the following example illustrates.

Example: DblDemo1

Designing an application so that it runs well under both GEOS 64 and GEOS 128 is a more difficult task. It

usually involves using self-modifying code: part of the initialization code for each module can check the version

of GEOS it is running under (use the Check128 subroutine illustrated in "GEOS 128 40/80-Column Support"

in this chapter) and add the proper doubling-bits to all relevant x-coordinates.

Note3: A More efficient method is to build the application with all doubling in place. Then if the program detects

it is on a C64 it will remove the doubling bits with a simple and #%00011111. If you are trying to add doubling

instead then you have to have additional logic to handle when an ADD1_W gets applied.

Note3: The best correct solution has not been created yet as of this writing. If the C64 Kernal was updated to be

able to use NormalizeX in the same way 40-column GEOS on the 128 does, then all applications could be written

with no need for self-modification and would work the same on C64/C128 40/80.

 2-12 Graphics Routines

Points and Lines

Points
The simplest graphic operation involves setting, clearing, or testing the state of an individual pixel, or point, on

the screen. GEOS provides two routines for working with points:

DrawPoint Set or clear a single point.

TestPoint Test a single point: is it set or clear?

Horizontal and Vertical Lines
Due to the rectangular nature of bitmapped graphics, horizontal and vertical lines are inherently fast and easy to

create and manipulate. GEOS provides four routines for working with horizontal and vertical lines:

HorizontalLine Draw a horizontal line with a repeating bit pattern.

VerticalLine Draw a vertical line with a repeating bit pattern.

InvertLine Invert the pixels in a horizontal line.

RecoverLine Recover a horizontal line from the background buffer.

Line Patterns
Both HorizontalLine and VerticalLine use a byte-sized bit pattern when creating the line. Each bit in the pattern

byte represents a pixel in the line: wherever a one appears in the pattern byte, the corresponding pixel will be set,

and wherever a zero appears. the corresponding pixel will be cleared. This allows lines which vary from solid (all

l's) to dashed (a mixture of 1's and 0's) to clear (all 0's). Note: this concept of a line-pattern is different from the

8x8 GEOS fill patterns used for rectangles.

Bits in the pattern byte are used left-to-right for horizontal lines and top-to-bottom in vertical lines, where bit 7 is

at the left and the top, respectively. A bit pattern of %11110000 would create a horizontal line like:

and a vertical line like:

The pattern byte is always drawn as if aligned to an eight-pixel boundary. If the endpoints of a line do not coincide

with eight-pixel boundaries, then bits are masked off the appropriate ends. The effect of this is that a pattern is

always aligned to specific pixels, regardless of the endpoints and that adjacent lines drawn in the same pattern

will line up. That is, positions 0, 8, 16, 24, etc. will always depend on pattern bit 7, and positions 1, 9, 17, 25, etc.

will always depend on pattern bit 6.

Note: Because of the internal memory layout of screen memory, horizontal lines will often draw up to eight

times faster than vertical lines.

 2-13 Graphics Routines

Diagonal Lines
For the same reason that bitmap displays are well-suited for displaying horizontal and vertical lines, they are ill-

suited for displaying diagonal lines. A smooth, even-density line cannot be drawn diagonally between two points

(except at 45-degree angles) — the points on the line must be approximated in a stairstep fashion:

GEOS provides one routine for drawing and recovering a line between two arbitrary points:

DrawLine Draw or recover a line between any two points.

DrawLine does not utilize a pattern byte; it will either set or clear all pixels between the two endpoints.

Patterns and Rectangles

Fill Patterns

GEOS uses two types of patterns: line patterns and fill patterns. A line pattern is a one-byte repeating pixel pattern

used by routines like HorizontalLine and VerticalLine, and a fill pattern is an 8x8 pixel block represented by

eight bytes in memory and used by routines like Rectangle. Line patterns are discussed in "Points and Lines"

earlier in this chapter. Fill patterns are discussed here.

Pattern #2 is a 50% fill pattern and is defined by the following:

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

This pattern has alternating set and clear pixels. Drawing a filled rectangle in this pattern would produce a

medium-dark block. (This is the default background pattern in GEOS).

All versions of the GEOS Kernal contain the following predefined patterns numbered 0-31:

 0 15

 16 31

Note: DrawLine is the most general-purpose drawing routine. It can be used to draw single points (both

endpoints the same), horizontal and vertical lines, or lines at arbitrary angles. However, it is

burdened by this flexibility, making it appreciably slower than the other plotting routines.

 2-14 Graphics Routines

There are also 2 additional patterns 32 and 33 that require extra logic to use:

 32 33

Fills occur in the current pattern. The current pattern can be changed with the following routine:

To use one of the system patterns, the application would first call SetPattern with the appropriate pattern number.

SetPattern calculates the proper pattern address, the address of the eight-byte block, and places it in the GEOS

variable curPattern. Any subsequent call to a routine which uses a system pattern will index off of the address

in curPattern to access the 8x8 block. Some applications, finding the need to define their own patterns, modify

either the address in curPattern to point to their own eight-byte pattern or use the address in curPattern (after a

valid call to SetPattern) to modify the GEOS system patterns directly.

Patterns 32 and 33 are accessed as an offset to pattern 31. After calling SetPattern with 31 in the accumulator,

you will need to add the size of a pattern (8) to the curPattern address to use pattern 32 or add 16 to use 33.

Example:
 lda #31
 jsr SetPattern
 AddVW #8,curPattern ; curPattern is now pointing to Pattern 32

AddVW #8,curPattern ; curPattern is now pointing to Pattern 33

Rectangles
Rectangles in GEOS are defined by their upper-left and lower-right corners. The upper-left is usually referred to

as (X1, Y1) and the lower-right as (X2, Y2), where X1, X2, Y1, and Y2 are valid x and y screen positions. From

these two coordinates, the rectangle routines can determine the coordinates of the other two corners:

GEOS provides five routines for dealing with rectangular regions:

Rectangle Draw a solid rectangle using the current fill pattern.

FrameRectangle Draw an unfilled rectangle (bounding frame).

InvertRectangle Invert the pixels in a rectangular area.

ImprintRectangle Imprint a rectangular area to the background buffer.

RecoverRectangle Recover a rectangular area from the background buffer.

SetPattern Set the current pattern to a pattern between 0 and 31.

Note: GEOS does not restore the system patterns when an application exits. If an application modifies the

patterns, it should restore them when it exits unless it is desirable for the next application to inherit

the redefined patterns (as with the GEOS Pattern Editor).

(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)

 2-15 Graphics Routines

Bit-mapped Images

All graphic picture objects, such as icons and Photo Scrap images cut from geoPaint, are stored internally in

GEOS Compacted Bitmap Format to save space. When you paste an image or icon into a geoProgrammer source

file, it is in compacted bitmap format, and when you read a geoPaint image, it too is in compacted bitmap format.

If a compacted image were to be copied directly to the screen, it would very likely be unrecognizable. GEOS

bitmap routines first decompact the image and then transfer it to the screen area.

Standard Bitmap Routines

All versions of GEOS support the following bitmap routines:

BitmapUp Place a full compacted bitmap on the screen.

BitmapClip Place a rectangular subset of a compacted bitmap on the screen.

BitOtherClip Special version of BitmapClip which uses an application-defined routine

to collect the compacted bitmap data a byte at a time, allowing the image

to come from disk or other I/O device.

GEOS bitmaps are compacted from the GEOS virtual screen format rather than the internal machine format.

Because the standard bitmap routines deal with byte-sized chunks (eight-pixels at a time), the following apply:

• Horizontally, the bitmap occupies pixels up to the nearest eight-pixel (byte) boundary. That is: a bitmap

of five pixels is extended to eight and a bitmap of 30 pixels is extended to 32 pixels. Bitmaps which are

not evenly divisible by eight (in the horizontal direction) are usually padded with zero bits.

• Bitmaps can only be placed at eight-pixel intervals on the x-axis (0, 8, 16...). This limitation does not

apply to the y-axis.

GEOS Compacted Bitmap Format

The GEOS compacted bitmap format relies on the observation that pixel patterns in bitmap images are frequently

repetitive. If you were to examine a rectangular area of the screen (in GEOS linear bitmap format) it would often

be the case that adjacent bytes would be identical. The compacted bitmap format encodes this redundancy into

groups of bytes called packets. Each packet can decompress to a large number of bytes in the actual bitmap.

 2-16 Graphics Routines

Packet Format
Each packet in a GEOS compacted bitmap follows a specific format. The first byte of each packet is called the

count byte and is part of the packet header. Depending on its value, it has the following significance:

COUNT (HEX) SIGNIFICANCE

0 $00 reserved for future use.

1-127 $00 - $7F repeat: repeat the following byte COUNT times. The total length of this packet is

two bytes and decompresses to COUNT bytes in the actual bitmap.

128 $80 reserved for future use.

129-219 $81-$DB unique: use the next COUNT-128 bytes literally. The total length of this packet is

(COUNT-128)+1 or COUNT-127 bytes and decompresses to COUNT-128 bytes.

220 $DC reserved for future use.

221-255 $DD - $FF bigcount: the next byte is the BIGCOUNT byte. The following COUNT-220 bytes

comprise packets in repeat and unique format that should be repeated BIGCOUNT

times. The total length of this packet is 2 bytes plus the sum of the repeat and

unique packet sizes. A bigcount cannot contain another bigcount.

Decompaction Walkthrough
Given the following compacted data:

.byte 25, 0, 133, 240, 220, 10, 0, 7, 224, 4, 3, 10, 5, 3

The decompaction routine would interpret it like this:

repeat: the decompaction routine encounters the COUNT value 25, which is in the range 1-127. The

following Byte (0), is repeated 25 (COUNT) times:

Output: 0, 0

unique: the next packet begins with a COUNT of 133, which is in the range 129-219. The next 5

Stream bytes (COUNT-128) are used once each:

Output: 240, 220, 10, 0, 7

bigcount: the final packet begins with a COUNT of 224, which is in the range 221-255. COUNT starts

a two-byte header and the following byte (4) is the BIGCOUNT byte. These two bytes are interpreted

to mean the 4 Packets bytes (COUNT-220) are repeated four (BIGCOUNT) times. The Packets bytes

are expected to be in the repeat and unique compacted formats. In this case, its 3, 10 (repeat: 10 three

times) and 5, 3 (repeat: 3 five times), which in turn are repeated four (BIGCOUNT) times:

Output : 10, 10, 10, 3, 3, 3, 3, 3, 10, 10, 10, 3, 3, 3, 3, 3,

10, 10, 10, 3, 3, 3, 3, 3, 10, 10, 10, 3, 3, 3, 3, 3

COUNT Byte

25, 0

COUNT Stream

133, 240, 220, 10, 0, 7

Header Packets

224, 4, 3, 10, 5, 3

Header: COUNT = 224 ;Packets size = COUNT-220

 BIGCOUNT = 4 ;Number of times to process Packets

 2-17 Graphics Routines

Compacting Strategy
The easiest way to compact a bitmap image is to let geoPaint do it for you by cutting the image out as a photo

scrap and pasting it directly into your geoProgrammer source code. Sometimes this method is impractical and

you will want to compress images directly from within an application.

The following subroutine can be used to compact bitmap data:

Example: BitCompact.

Direct Screen Access and Block Copying

Direct Screen Access
One purpose of an operating system such as GEOS is to insulate the application from the peculiarities of the

machine it is running on, allowing the programmer to worry more about how the application will function than

how it will interact with the hardware. However, because of the complexity of GEOS graphics routines, it is

sometimes necessary, for performance reasons, to bypass the operating system and manipulate the screen memory

directly. Although this practice is not recommended — it increases portability problems, defeating much of the

purpose of a GEOS — it is a reality. And with that in mind, Berkeley Softworks built routines into GEOS to

facilitate direct screen access. The following routine exists in all versions of the Kernal:

GetScanLine Calculate the address of the first byte of a particular screen line.

Special Graphics Related Routines

GEOS provides a few graphics-related routines which don't fit nicely into any other category:

GraphicsString Execute a string of graphics commands.

NormalizeX Adjust an x-coordinate (under GEOS 128 only) to compensate for

the higher-resolution 80-column mode.

SetNewMode Change GEOS 128 graphics mode (40/80-column).

 3-1 Icons, Menus, and Other Mouse Presses

 Icons, Menus, and Other Mouse Presses

When the user clicks the mouse button, GEOS determines whether the mouse pointer was positioned

over an icon, a menu item, or some other region of the screen. GEOS has a unique method of handling a

mouse press for each of these cases. If the user pressed on an icon, GEOS calls the appropriate icon event

routine. If the user pressed on a menu, GEOS opens up a sub-menu or calls the appropriate menu event

routine, whichever is applicable. And if the user pressed somewhere else, GEOS calls through

otherPressVec, letting the application handle (or ignore) these "other" mouse presses.

Icons

When you open a disk by clicking on its picture, delete a file by dragging it to the trash can, or click on

the CANCEL button in a dialog box, you are dealing with icons, small pictorial representations of

program functions. A GEOS icon is a bitmapped image, whether the picture of a disk or a button-shaped

rectangle, that allows the user to interact with the application. When the application enables icons, GEOS

draws them to the screen and then keeps track of their positions. When the user clicks on an icon, an icon

event is generated, and the application is given control with information concerning which icon was

selected.

Icon Table Structure

The information for all active screen icons is stored in a data structure called the icon table. GEOS only

deals with one icon table at a time. The icon table consists of an icon table header and a number of icon

entries. The whole table is stored sequentially in memory with the header first, followed by the individual

icon entries.

Icon Table Header
The icon table header is a four-byte structure which tells GEOS how many icons to expect in the structure and

where to position the mouse when the icons are enabled. It is in the following format:

Icon Table Header:

Index Constant Size Description

+0 OFF_NM_ICNS byte Total number of icons in this table. Range: 1-31

+1 OFF_IC_XMOUSE word Initial mouse x-position. If $0000, mouse position will not be

altered.

+3 OFF_IC_YMOUSE byte Initial mouse y-position.

This first byte reflects the number of icon entries in the icon table (and, hence, the number of icons that

can be displayed). The table can specify up to MAX_ICONS (31) icons.

The next word (bytes 1 and 2) is an absolute screen x-coordinate and the following byte (byte 3) is an

absolute screen y-coordinate. The mouse will be positioned to this coordinate when the icons are first

displayed. If you do not want the mouse positioned, set the x-coordinate word to $0000, which will signal

DoIcons to leave the mouse positions alone.

 3-2 Icons, Menus, and Other Mouse Presses

Icon Entries
Following the icon table header are the icon entries, one for each specified in the OFF_NM_ICNS byte in the

icon table header. Each icon entry is a seven-byte structure in the following format:

Icon Entries:

Index Constant Size Description

+0 OFF_I_PIC word Pointer to compacted bitmap picture data for this

Icon. If set to $0000, icon is disabled.

+2 OFF_I_X byte Card x-position for icon bitmap.

+3 OFF_I_Y byte y-position of icon bitmap.

+4 OFF_I_WIDTH byte Card width of icon bitmap.

+5 OFF_I_HEIGHT byte Pixel height of icon bitmap.

+6 OFF_I_EVENT word Pointer to icon event routine to call if this icon is

selected.

Note: OFF_I_NEXT=8 Offset to next icon in structure if it exists.

The first word (OFF_I_PIC) is a pointer to the compacted bitmap data for the icon. The icon can be of any size

(up to the full size of the screen). If this word is set to NULL ($0000), the icon is disabled.

The third byte (OFF_I_X) is the x byte-position of the icon. The x byte-position is the x-position in bytes. Icons

are placed on the screen by BitmapUp and so must appear on an eight-pixel boundary. The byte-position can be

calculated by dividing the pixel-position by eight (x_byte_position = x_pixel_position/8).

The fourth byte (OFF_I_WIDTH) is the pixel position of the top of the icon. The icon will be placed at

(x_byte_position*8, y_pixel_position).

The next two bytes (OFF_I_WIDTH and OFF_I_HEIGHT) are the width in bytes and height in pixels,

respectively. These values correspond to the geoProgrammer internal variables picW and picH when they are

assigned immediately after a pasted icon image.

The final word (OFF_I_EVENT) is the address of the icon event handler associated with this icon.

Sample Icon Table

The following data block defines three icons which are placed near the middle of the screen. The mouse is

positioned over the first icon:
**
; SAMPLE ICON TABLE
**
;--- Icon positions and bitmap data
I_SPACE = 1 ; space between our icons (in cards)
PaintIcon:

PAINTW = picW
PAINTH = picH
PAINTX = 16/8
PAINTY = 80

 3-3 Icons, Menus, and Other Mouse Presses

WriteIcon:

WRITEW = picW
WRITEH = picH
WRITEX = PAINTX+PAINTW+I_SPACE
WRITEY = PAINTY

PublishIcon:

PUBLISHW = picW
PUBLISHH = picH
PUBLISHX = WRITEX+WRITEW+I_SPACE
PUBLISHY = WRITEY
IESIZE = OFF_I_NEXT ; 8 bytes

;--- The actual icon data structure to pass to DoIcons follows:
; Icon Table

I_header:

.byte NUMOFICONS ; number of icon entries

.word (PAINTX*8)+(PAINTW*8/2) ; position mouse over paint icon

.byte PAINTY+PAINTH/2

;--- Icon Entries
PaintIStruct:

.word PaintIcon ; pointer to bitmap

.byte PAINTX,PAINTY ; icon position

.byte PAINTW,PAINTH ; icon width, height

.word PaintEvent ; event handler

WriteIStruct:
.word WriteIcon ; pointer to bitmap
.byte WRITEX,WRITEY ; icon position
.byte WRITEW,WRITEH ; icon width, height
.word WriteEvent ; event handler

PublishIStruct:
.word PublishIcon ; pointer to bitmap
.byte PUBLISHX,PUBLISHY ; icon position
.byte PUBLISHW,PUBLISHH ; icon width, height
.word PublishEvent ; event handler

NUMOFICONS = (*-I_entries)/IESIZE ; number of icons in table

;--- Dummy icon event routines which do nothing but return

PaintEvent:
WriteEvent:
PublishEvent:

rts

 3-4 Icons, Menus, and Other Mouse Presses

Installing Icons

When an application is first loaded, GEOS will not have an active icon structure. GEOS must be given the address

of the applications icon table before MainLoop can display and track the user's interaction with them. GEOS

provides one routine for installing icons:

DoIcons Display and activate an icon table.

DoIcons draws the enabled icons and instructs MainLoop to begin watching for a single- or double-click on one.

The icon table stays activated and enabled until the ICONSON_BIT of mouseOn is cleared or another icon table

is installed by calling DoIcons with the address of a different icon structure. In either case, the old icons are not

erased from the screen by GEOS.

DoIcons will draw to the foreground screen and background buffer depending on the value of dispBufferOn.

Icons are usually permanent structures in a display and so often warrant being drawn to both screens. If icons are

only drawn to the foreground screen, they will not be recovered after a menu or dialog box.

Example: IconsUp

NoIcons Install a dummy icon table. For use in applications that aren't using icons. Call early in the

initialization of the application, before returning to MainLoop.

NoIcons:

LoadW r0,#DummyIconTable ; point to dummy icon table
jmp DoIcons ; install. Let DoIcons rts

DummyIconTable:
 .byte 1 ; one icon
 .word NULL ; dummy mouse x (don't reposition)
 .byte NULL ; dummy mouse y
 .word NULL ; bitmap pointer to NULL (disabled)
 .byte NULL ; dummy x-position
 .byte NULL ; dummy y-position
 .byte 1,1 ; dummy width and height
 .word NULL ; dummy event handler

Alternative dummy table:

DummyIconTable:
 .byte 1 ; one icon
 .block 5 ; 3 bytes of null mouse position and a NULL bitmap pointer

 ; Scanning of the table stops once the NULL bitmap pointer is read in.
 ; The six additional table bytes are not needed.

Important: Due to a limitation in the icon-scanning code, the application must always install an icon

table with at least one icon. If the application is not using icons, create a dummy icon

table with one icon (see below).

Important: The maximum number of icons that can be in an icon table is 31. Attempting to use more

then 31 icons will likely cause a system crash.

 3-5 Icons, Menus, and Other Mouse Presses

MainLoop and Icon Event Handlers

When the user clicks the mouse button on an active icon, GEOS MainLoop will use IsMseInRegion to recognize

this as an icon event and call the icon event handler associated with the particular icon. The icon event handler is

given control with the number of the icon in r0L (the icon number is based on the icon's position in the table: the

first icon is icon 0). Before the event handler is called, though, MainLoop might flash or invert the icon depending

on which of the following values is in iconSelFlag:

Constants for iconSelFlag:

ST_NOTHING $00 The icon event handler is immediately called; the icon image is untouched

ST_FLASH $80 The icon is inverted for selectionFlash vblanks and then reverted to its normal state before the

event handler is called.

ST_INVERT $40 The icon is inverted (foreground screen image only) before the event handler is called. The event

handler will usually want to revert the image before returning to MainLoop by loading

dispBufferOn with ST_WR_FORE, and calling InvertRectangle. See Example: InvertIcon

Detecting Single- and Double-clicks on Icons
When the user first clicks on an icon, GEOS loads the global variable dblClickCount with the GEOS constant

CLICK_COUNT (30). GEOS then calls the icon event handler with r0H set to FALSE, indicating a single-click.

dblClickCount is decremented at interrupt level every vblank. If the icon event handler returns to MainLoop

and the user clicks on the icon again before dblClickCount reaches zero, GEOS calls the icon event handler a

second time with r0H set to TRUE to indicate a double-click.

Checking for a double-click or a single-click (but not both) on a particular icon is trivial: merely check r0H. If

r0H is TRUE when you're looking for a single-click or its FALSE when you're looking for a double-click, then

return to MainLoop immediately. Otherwise, process the click appropriately. This way, if the user single-clicks

on an icon which requires double-clicking or double-clicks on an icon which requires single-clicking, the event

will be ignored.

However, checking for both a double-click or a single-click on the same icon (and performing different actions)

is a bit more complicated because of the way double-clicks are processed: during the brief interval between the

first and second clicks of a double-click, the icon event handler will be called with r0H set to FALSE, which will

appear as a single-click; when the second press happens before dblClickCount hits zero, the icon event handler

is called a second time with r0H set to TRUE, which will appear as a double-click. There is no simple way (using

the GEOS double click facility) to distinguish a single-click which is part of a double-click from a single-click

which stands alone.

There are two reliable ways to handle single- and double-click actions on icons: the additive function method and

the polled mouse method. The additive function method relies on a simple single-click event which toggles some

state in the application and a double-click event (usually more complicated) which happens in addition to the

single-click event. The GEOS deskTop uses the additive function method for selecting (inverting) file icons on a

single-click and selecting and opening them on a double-click. The icon event handler first checks the state of

r0H. If it is FALSE (single-click) then the icon (and an associated selection flag) is inverted. If it is TRUE

(double-click) then the file is opened. If the user single-clicks, the icon is merely inverted. If the user

double-clicks, the icon is inverted (on the first click) and then processed as if opened (on the second click).

 3-6 Icons, Menus, and Other Mouse Presses

Example:

Function: Icon double-click handler

Description: additive function method

IconEvent1:
 lda r0H ; check double-click flag

bne 10$; branch if second click of a double-click
 ; else, this is a single-click or the
 jsr InvertIcon ; first push of a double-click
 ; so just invert the selection
 bra 90$
10$
 jsr OpenIcon ; double-click detected, go process it
90$
 rts ; exit

The polled-mouse method can be used when the single-click and double-click functions are mutually exclusive.

When a single-click is detected the icon event handler, rather than returning to MainLoop and letting GEOS

manage the double-click, handles it manually by loading dblClickCount with a delay and watching mouseData

for a release followed by a second click.

Example:

Function: Icon double-click handler.

Description: polled mouse method Open Icon.

IconEvent2:
 ;--- User pressed mouse once, start double-click counter going
 LoadB dblClickCount,#CLICK_COUNT ; start delay (30 tics)

10$;--- Loop until double-click counter times-out or button is released
 lda dblClickCount ; check double-click timer
 beq 30$; if timed-out, no double-click
 lda mouseData ; else, check for release
 bpl 10$; loop until released

 ;--- mouse was released, loop until double-click counter times-out or
20$; button is pressed a second time
 lda dblClickCount ; check double-click timer
 beq 30$; if timed-out, no double-click
 lda mouseData ; else, check for second press
 bmi 20$; loop until pressed

 ;--- Double-click detected (no single-click)
 jmp DoDoubleClick ; do double-click stuff

30$;--- Single-click detected (no double-click)
 jmp DoSingleClick ; do single-click stuff

Note: These techniques for handling single- and double-clicks are described here as they pertain to icons;

they are not directly applicable to applications that detect mouse clicks through otherPressVec.

When control vectors through otherPressVec, the value in r0H is meaningless. For more informa-

tion on otherPressVec, refer to "Other Mouse Presses" in this chapter.

 3-7 Icons, Menus, and Other Mouse Presses

Other Things to Know About Icons

Icon Releases and otherPressVec
When the user clicks on an active icon, MainLoop will call the proper icon event routine rather than vectoring

through otherPressVec. However, the routine pointed to by otherPressVec will get called when the mouse is

released. Applications that aren't using otherPressVec can disable this vectoring by storing a $0000 into

otherPressVec ($0000 is its default value). Applications that depend on otherPressVec, however, can check

mouseData and ignore all releases.

Example:

;--- otherPressVec routine that ignores releases (high bit of mouseData is set on releases)
MyOtherPress: ; control comes here from otherPressVec
 lda mouseData ; check state of the mouse button
 bmi 90$; ignore it if it's a release
 jsr PressDown ; otherwise process the press
90$
 rts ; exit

For more information on otherPressVec, refer to "Other Mouse Presses" in this chapter.

Icon Precedence
GEOS draws icons sequentially. Therefore, if icons overlap, the ones which are drawn later will be drawn on top.

When the user clicks somewhere on the screen, GEOS scans the icon table in this same order, looking for an icon

whose rectangular boundaries enclose the coordinates of the mouse pointer. If more than one icon occupies the

coordinate position, the icon that is defined first in the icon table (and therefore drawn on bottom) will be given

the icon event. If an active menu and an icon overlap, the menu will always be given precedence.

Disabling Icons
An application can disable an icon in the current icon structure by clearing the OFF_I_PIC word of the icon

(setting it to $0000). If an icon is disabled prior to a call to DoIcons, the icon will not be drawn. If an icon is

disabled after the call to DoIcons, the icon will remain on the screen but will be ignored during the icon scan.

The application can reenable the icon by restoring the OFF_I_PIC word to its original value. (Actually, any

non-zero value will do because reenabling an icon does not redraw it, it only restores the coordinates to

MainLoop's active search list).

Inverting an Icon
GEOS uses InvertRectangle to invert an icon that has been clicked on while the iconSelFlag=ST_INVERT.

The registers used by InvertRectangle are still loaded with the icon image coordinates when the icon event

handler is called.

Example:
 ;--- On entry, the foreground screen icon image is inverted
 ; Pass: r2L,r2H top and bottom of icon
 ; r3,r4 left and right of icon
 ; Called by: IconEvent1

InvertIcon:
 PushB dispBufferOn ; save current display buffer setting

 LoadB dispBufferOn,#ST_WR_FORE ; set to foreground only
 jsr InvertRectangle ; invert the selected icon using the coordinates
 ; passed from the GEOS icon event
 PopB dispBufferOn ; restore display buffer setting
 rts

 3-8 Icons, Menus, and Other Mouse Presses

GEOS 128 Icon Doubling
As with bitmaps, special flags in the icon data structure can be set to automatically double the x-position and/or

icon width when GEOS 128 is running in 80-column mode. To have an icon's x-position automatically doubled

in 80-column mode, bitwise-or the OFF_I_X parameter with DOUBLE_B. To double an icon's width in

80-column mode, bitwise-or the OFF_I_WIDTH parameter with DOUBLE_B. These bits will be ignored when

GEOS 128 is running in 40-column mode. Do not, however, use these doubling bits when running under GEOS

64. GEOS 64 will try to treat the doubling bit as part of the coordinate or width value rather than a special-case

flag. For more information, refer to "GEOS 128 X-position and Bitmap Doubling" in chapter "Graphics

Routines" for more information.

Example:

Function: Sample GEOS 128 icon table. Uses automatic doubling feature. Using compiler flags for
conditional assembly between C128 and C64.

Note: You can build applications that work on both the 128 in 80cols and the 64 at runtime.

C128 = TRUE
C64 = FALSE
.if !C128

.echo Error: Cannot assemble GEOS 128 specific code without C128 flag set
.else

PaintIcon:

PAINTW = picW
PAINTH = picH
PAINTX = 16/8
PAINTY = 80
OFF_I_NEXT = 8

 ;--- The actual icon data structure to pass to DoIcons follows
 ; Icon Table
 I_header:
 .byte NUMOFICONS
 .word ((PAINTX*8) + (PAINTW*8/2)) | DOUBLE_W ; position mouse over paint icon
 .byte PAINTY + PAINTH/2

 ;--- Icon Entries
 PaintIStruct:
 .word PaintIcon ; pointer to bitmap
 .byte PAINTX | DOUBLE_B ; x card position (dbl in 80-column mode)
 .byte PAINTY ; y-position
 .byte PAINTW | DOUBLE_B ; icon width (dbl in 80-column mode)
 .byte PAINTH ; icon height
 .word PaintEvent ; event handler
 NUMOFICONS - (*-I_entries) / OFF_I_NEXT ; number of icons in table

 ;--- Dummy icon event routines which do nothing but return
 PaintEvent:
 rts
.endif

 3-9 Icons, Menus, and Other Mouse Presses

Menus

Menus, one of the most common and powerful user-interface facilities provided by GEOS, allow the application

to offer lists of items and options to the user. The familiar menus of the GEOS desktop, for example, provide

options for selecting desk accessories, manipulating files, copying disks, and opening applications. Virtually

every GEOS-based program will take advantage of these capabilities, providing a consistent interface across

applications.

GEOS menus come in two flavors: horizontal and vertical. The main menu, the menu which is always displayed,

is usually of the horizontal type and is typically placed at the top of the screen. Each selection in the main menu

usually has a corresponding vertical sub-menu that opens up when an item in the main menu is chosen. These

sub-menus can contain items that trigger the application to perform some action. They can also lead to further

levels of sub-menus. For example, a horizontal main menu item can open up to a vertical menu, which can have

items which then open up other horizontal sub-menus, which can then lead to other vertical menus, and so on.

Division of Labor with Menus

GEOS divides the labor of handling menus between itself and the application. The GEOS Kernal handles all of

the user's interaction with the menus. This includes drawing the menu items, opening up necessary sub-menus,

and restoring the Screen area from the background buffer when the menus are retracted. MainLoop manages the

menus, keeping track of which items the user selects. If the user moves off of the menu area without making a

selection, GEOS automatically retracts the menus without alerting the application.

If the user selects a menu item which generates a menu event, the application's menu event handler is called with

the menus left open. Leaving the menus open allows the application to choose when and how to retract them: all

the way back to the main menu, up one or more levels (for multiple sub-menus), or up no levels (keeping the

current menu open). This lets the application choose the menu level which is given control upon return, thereby

allowing multiple selections from a sub-menu without forcing the user to repeatedly traverse the full menu tree

for each option.

Menu Data Structure

The main menu, all its sub-menus, their individual selectable items, and various attributes associated with each

menu and each item are all stored in a hierarchical data structure called the menu tree. Conceptually, a menu tree

with multiple sub-menus might have the following layout:

Important: Menu tables in GEOS 128 cannot use DOUBLE_W with x-coordinates. If used, the menu

will draw correctly but the mouse will not be able to interact with the menu. This

limitation has been corrected in Wheels.

 3-10 Icons, Menus, and Other Mouse Presses

Level 0 Level 2

Level 1 Level 3

Sample Menu Tree

The main menu (or level 0) is the first element in the tree; it is the menu that is always displayed while menus are

enabled. Each item in a main menu will usually point to a secondary menu or submenu. Items in these submenus

can point to events (alerts to the application that an item was selected) or they can point to additional submenus.

Menus are linked together by address pointers.

Sub-menus are sometimes referred to as child menus, and the menu which spawned the sub-menu as its parent.

Sub-menus can be nested to a depth determined by the GEOS constant MAX_M_NESTING (=4), which reflects

the internal variable space allocated to menus. The depth or level of the current menu can be determined by the

GEOS variable menuNumber, which can range from 0 to (MAX_M_NESTING-1)

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu sub-menu

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

main menu

 3-11 Icons, Menus, and Other Mouse Presses

In memory, all menus, whether the main menu or its children, are stored in the same basic menu structure format.

Each menu is comprised of a single menu header block followed by a number of menu item blocks (one for each

selectable item in the menu):

item n is the last item in

a menu of n items

Menu/Sub-menu structure

Menu/Sub-menu Header
The menu header is a seven-byte structure that specifies the size and location of the menu (How big is the rectangle

that surrounds the menu and where should the menu be drawn?), any attributes that affect the entire menu (Is it a

vertical or horizontal menu?), and the number of selectable items in the menu. The header is in the following

format:

 Menu/Sub-menu Table Header:

Index Constant Size Description

+0 OFF_MY_TOP byte Top edge of menu rectangle (y1 pixel position).

+1 OFF_MY_BOT byte Bottom edge of menu rectangle (y2 pixel position).

+2 OFF_MX_LEFT word Left edge of menu rectangle (x1 pixel position).

+4 OFF_MX_RIGHT word Right edge of menu rectangle (x2 pixel position).

+6 OFF_M_ATTRIBUTE byte Menu type bitwise-or'ed with number of items in this

menu/sub-menu.

The first six bytes specify the screen location and size of the menu with the positions of the bounding rectangle

in pixel positions. The x-positions are word (two-byte) values and the y-positions are byte values. These values

are absolute screen pixel positions. The size of the bounding rectangle depends on the number of menu items and

the size of text strings within the menu. The height of the rectangle can be calculated with the constant

M_HEIGHT: a horizontal menu is always a height of M_HEIGHT, and a vertical menu is a height of the number

of menu items multiplied by M_HEIGHT. For example, the height of a vertical menu with seven items would be

7*M_HEIGHT. The width of a menu is more difficult to calculate because it depends on the length of the

individual text strings. It is best to use a large number for this dimension and adjust it to a smaller size if necessary.

menu

header

block

menu

item

block

(item n)

menu

item

block

(item 0)

 3-12 Icons, Menus, and Other Mouse Presses

All menus and sub-menus are positioned independently. This means that the main menu need not be at the top of

the screen (it can be inside a window, for example), and sub-menus need not be adjacent to their parent menus

(although that is where you will usually want them). You can experiment with the flexibility of menu positioning

to customize your applications.

The seventh byte is the attribute byte. It is the number of selectable items in the menu bitwise-or'ed with any

menu type flags. A menu can have as many as MAX_M_ITEMS (15) selectable menu items.

Menu/Sub-menu Types (use in attribute byte OFF_M_ATTRIBUTE):

Constant Value Description
HORIZONTAL $00 Arrange menu items in this menu/sub-menu horizontally.

VERTICAL $80 Arrange menu items in this menu/sub-menu vertically.

CONSTRAINED $40 Constrain the mouse to the menu/sub-menu. If the menu is a sub-menu, the mouse can

still be moved off to the parent menu (off the top of a vertical sub-menu or off the left

of a horizontal menu).

UN_CONSTRAINED $00 Do not constrain the mouse to the menu/sub-menu. If the user moves off of the menu,

GEOS will retract it.

Bitwise Breakdown of the Attribute byte (OFF_M_ATTRIBUTE):

7 6 5 4 3 2 1 0

b7 b6 n/a b3-b0

b7 orientation: 1 = VERTICAL; 0 = HORIZONTAL.

b6 constrained: 1 = CONSTRAINED; 0 = UN_CONSTRAINED.

b5-b4 not used

b3-b0 number of items in menu/sub-menu (up to MAX_M_ITEMS).

Some of the menu types are obviously mutually exclusive: you can't, for example, make a menu

both vertical and horizontal, nor simultaneously constrained and unconstrained.

A vertical, unconstrained menu with seven selectable items would have an attribute byte of:

.byte (7 | VERTICAL | UN_CONSTRAINED)

A horizontal, constrained menu with 11 selectable items would have an attribute byte of:

.byte (11 | HORIZONTAL | CONSTRAINED)

Most sub-menus are unconstrained: if the user moves the pointer off the sub-menu, all opened menus are retracted

as if GotoFirstMenu had been called. A constrained menu, on the other hand, restricts the pointer from moving

off the menu area from all but one side. A constrained menu will only allow the pointer to move off the side

leading back to where it expects the parent menu to be: off the top for a vertical sub-menu and off the left for a

horizontal sub-menu. If the user moves off of a constrained menu (in the only available direction), the current

sub-menu is retracted and the parent menu becomes active as if DoPreviousMenu had been called.

Important: GEOS 64 before version 2.0 and all versions of GEOS 128 (1.3 and 2.0) do not correctly

handle menus that extend beyond an x-position of 255.

Note: The constrain option is only applicable to sub-menus — if the CONSTRAINED flag is set in the

main menu (level 0), the option will have no effect.

 3-13 Icons, Menus, and Other Mouse Presses

Menu Item Structure
For each selectable item in a menu (the number of items is specified in the header) there is a five-byte item

structure. These item structures follow the menu header in memory. The first item represents the first menu

selection (top- or leftmost), the second, the second, and so on. Each item structure specifies the text that will

appear in the menu, what happens when the item is selected (Will it generate an event or a sub-menu?), and the

appropriate event routine or sub-menu. Each menu item is in the following format:

 Menu Item:

Index Constant Size Description

+0 OFF_TEXT_ITEM word Pointer to null-terminated text string for this menu item.

+2 OFF_TYPE_ITEM byte Selection type (sub-menu, event, dynamic sub-menu).

+3 OFF_POINTER_ITEM word Pointer to sub-menu data structure, event routine, or dynamic sub-

menu routine, depending on selection type.

The first word of the item is a pointer to the text that will be placed in the menu. The text is expected to be null-

terminated (the last byte should be $00 or NULL). If the menu rectangle specified in the header is not wide enough

to contain the entire text string, the text will be clipped at the right-edge when the menu is drawn.

The byte following the text pointer (the third byte) is an item type indicator. Each selectable item can either be an

action, a sub-menu, or a dynamic sub-menu selection. An action type item generates a menu event from

MainLoop. A sub-menu type item automatically opens up a sub-menu structure. And a dynamic sub-menu type

selection opens up a sub-menu, but before it does, it calls an application's routine. Dynamic sub-menus arc useful

for modifying a menu structure on the fly. For example, a point size sub-menu, such as those used in geoWrite,

can be changed dynamically when a new font is selected. When the user chooses the font item, the dynamic

sub-menu routine checks the list of available point sizes and builds out the point size sub-menu based on its

findings. The following table summarizes the three menu item types:

Types of Menu Items (for use in item type byte):

Constant Value Description

SUB_MENU $80 This menu item leads to a sub-menu. The OFF_POINTER_ITEM is a

pointer to the sub-menu data structure (points to first byte of a menu/sub-

menu header).

DYN_SUB_MENU $40 This menu item is a dynamic sub-menu. The OFF_POINTER_ITEM is

a pointer to a dynamic sub-menu routine that is called before the menu

is actually drawn. The dynamic sub-menu routine can do any necessary

preprocessing and return with r0 containing a pointer to a sub-menu data

structure or $0000 to ignore the selection.

MENU_ACTION $00 This menu item generates an event. The OFF_POINTER_ITEM is a

pointer to the event routine to call.

Bitwise Breakdown of the Item Type byte:

b7 b6 b5 b4-b0

b7 sub-menu flag.

b6 dynamic sub-menu flag.

b5-b0 reserved for future use.

Example Menu: mainMenu

 3-14 Icons, Menus, and Other Mouse Presses

Installing Menus

When an application is first loaded, GEOS will not have an active menu structure. GEOS must be given the

address of the application's menu structure before MainLoop can display and track the user's interaction with it

GEOS provides one routine for installing menus:

DoMenu Display and activate a menu structure.

DoMenu draws the main menu on the foreground screen and instructs MainLoop to begin taking care of all menu

processing. The menu stays activated and enabled until the MENU_ON_BIT or the MOUSE_ON_BIT of

mouseOn is cleared or another menu is installed by calling DoMenu with the address of a different menu

structure. In either case, the old menu is not erased from the foreground screen by GEOS. The application must

recover the area from the background buffer itself.

MainLoop and Menu Events

When the user clicks the mouse button on a menu item, GEOS MainLoop will invert the selection and examine

the item data block, processing the selection according to its type.

SUB_MENU
If the menu item is of the SUB_MENU type, then menuNumber is incremented, the appropriate sub-menu is

drawn, and MainLoop begins tracking the user's interaction with the sub-menu, making it the current menu. If

the user moves off of a sub-menu back onto its parent menu, MainLoop will retract the sub-menu, decrement

menuNumber, and make the parent menu the current menu. If the user moves off of the menus entirely (assuming

this is possible — the menu might be constrained), then MainLoop retracts all sub-menus back up to the main

menu and sets menuNumber to zero.

DYNAMIC_SUB_MENU
If the menu item is of the DYNAMIC_SUB_MENU type, MainLoop calls the routine whose address is in the

item structure. This routine is called before the sub-menu is drawn and before menuNumber is incremented. The

accumulator will contain the item number selected (item numbers start with zero). When the routine returns with

the address of the appropriate sub-menu in r0, MainLoop continues processing as if it was handling a

SUB_MENU type menu. If the dynamic sub-menu routine returns $0000 in r0, then the sub-menu is not opened

and the current menu remains active.

MENU_ACTION
If the menu item is of the MENU_ACTION type, GEOS flashes the menu inverted for selectionFlash vblanks.

selectionFlash is a GEOS variable which is initialized with the constant SELECTION_DELAY, but may be

adjusted by the application. MainLoop will then call the menu event routine whose address is in the item

structure, passing the number of the selected item in the accumulator (item numbers start with zero). One of the

first things a menu event routine must do, among its own duties, is specify which menu level MainLoop should

return to when it gets control. This is done by calling one of the GEOS routines designed for this purpose:

ReDoMenu Reactivate the menu at the current level.

DoPreviousMenu Retract the current sub-menu and reactivate the menu at the previous level.

GotoFirstMenu Retract all sub-menus and reactivate the menu at the main menu level.

 3-15 Icons, Menus, and Other Mouse Presses

These routines retract menus as necessary (recovering from the background buffer) and set special flags which

tell MainLoop what has happened; MainLoop is not given control at this time — that is the job of the menu

event handler's rts. If an application's menu event handler does not call one of these routines before it returns to

MainLoop, the menu will remain open but inactive.

Specialized Menu Recover Routines
GEOS provides two very low-level menu routines which recover areas obscured by menus from the background

buffer. Usually these routines are only called internally by the higher-level menu routines such as

DoPreviousMenu. They are of little use in most applications and are included in the jump table mainly for

historical reasons. There are two routines:

RecoverMenu Recovers the current menu from the background buffer to the foreground screen.

RecoverAllMenus Recovers all extant menus and sub-menus from the background buffer to the

foreground screen.

Advanced Menu Ideas
Menu routines can be as clever as desired. One common technique involves dynamically modifying the text

strings associated with menu items. This can be used, for example, to add asterisks next to currently active options

as they are selected.

Note: A menu remains on the foreground screen until DoPreviousMenu or GotoFirstMenu is called to

retract it. If graphics need to be drawn in the area obscured by a menu, but menus cannot be retracted,

then limit drawing to the background buffer by setting the proper bits in dispBufferOn.

 3-16 Icons, Menus, and Other Mouse Presses

Menus and Mouse-Fault Interaction

How GEOS uses Mouse Faults
In general, the following is true:

• When a menu is down, the system interrupt-level mouse-processing routine is checking for two types of

mouse faults:

1. the mouse moving outside of the rectangle defined by mouseTop, mouseBottom,

mouseLeft, and mouseRight.

2. the mouse moving off of the menu.

It sets bits in mouseFault accordingly.

• If the menu is unconstrained, mouseTop, mouseBottom, mouseLeft, and mouseRight are set to full-

screen dimensions, thereby ruling out this type of mouse fault.

• If the menu is constrained, mouseTop, mouseBottom, mouseLeft, and mouseRight are set to the

dimensions of the current menu's rectangle. This will keep the mouse from moving off of the menu area

(and will also generate a mouse fault when an edge is encountered).

• The system mouse fault routine (called through mouseFaultVec) checks the mouseFault variable. If the

mouse faulted by moving off of the menu (only possible if the menu is unconstrained), DoPreviousMenu

is called. If the user moved off of the sub-menu without moving onto another menu, mouse menu faults

will continue to retract menus until only the main menu is displayed. If the mouse faulted by attempting

to move beyond the mouseTop on a vertical sub-menu or mouseLeft on a horizontal sub-menu (only

possible on a constrained menu) then DoPreviousMenu is called.

Application's Use of Mouse Faults
When the user is interacting with menus, the system uses the mouse fault variables (mouseTop, mouseBottom,

mouseLeft, and mouseRight) and expects its own fault service routine to be called through mouseFaultVec. If

an application needs to use mouse faults for its own purposes, it should first disable menus by clearing the

MENUON_BIT of mouseOn. Before reenabling menus, it should set the fault variables to the full screen

dimensions and call StartMouseMode to restore the system's fault service routine:

Example: ResetMouse

 3-17 Icons, Menus, and Other Mouse Presses

Other Mouse Presses

When the user clicks the mouse somewhere on the screen where there is no active menu or icon, GEOS considers

this an "other" press and checks otherPressVec for an application provided subroutine. If otherPressVec is

$0000, then the press is ignored, if otherPressVec contains anything but $0000, GEOS treats the value as an

absolute address and simulates an indirect jsr to that address. otherPressVec defaults to $0000 at application

startup.

otherPressVec gets called on all presses that are not on an active icon or menu and on all releases, whether on a

menu, icon, or anywhere else. In most cases, the application will want to ignore the releases. This is done simply

by checking mouseData for the current state of the mouse button, as in:

lda mouseData ; check state of the mouse button
bpl 10$; branch to handle presses

 rts ; or return immediately to ignore releases
10$
 ;--- Handle press here

Because otherPressVec gets called on each press (and release), any double-click detection must be performed

manually by the other-press routine. Handling double-clicks through otherPressVec is similar to the polled

mouse method used with icons, the major difference being a check for releases on entry.

An alternative double click method is demonstrated in the OPVector example. This method does not use UI time

to implement the polled mouse method; instead, it sets the dblClickCount on a button release and checks the

count on a button press. If the count is greater then zero on a button press, then a double click has been detected.

bbpl mouseData,10$; check state of the mouse button
 ; branch to handle presses
;--- If double click detection is needed, set count to CLICK_COUNT (30) on release events

 LoadB dblClickCount,#CLICK_COUNT
 rts ; return immediately to ignore releases
10$
 ;--- Handle press here
 ; (Check dblClickCount for double click (count > 0))

Example: OPVector

 4-1 Process Library

 Process Library

A process is an event that is triggered on a regular basis by a timer. This allows GEOS to generate an event at

specific time intervals, such as 20 times per second, once every minute, or five times each hour. Processes allow

a limited form of multitasking, where many short routines can appear to run concurrently with MainLoop. Thus,

an application could update an alarm clock and scroll the work area while calculating a cell in a spreadsheet.

Applications can also use processes to monitor the mouse. geoPaint, for example, uses a process to monitor the

mouse's position when using the line tool; when the mouse moves, the process prints the new line length in the

status window. geoPublish operates in a similar manner, using a process to update the values in the coordinate

boxes as the user moves across the preview page.

Process Nomenclature
There are a number of terms associated with processes. Each process has a countdown timer. When the countdown

timer reaches zero or times-out, the process becomes runnable. If a process is frozen, its timer is not being

decremented. The timer will continue when the process is unfrozen. If a process is blocked, a process event will

not be generated until the process becomes unblocked.

Process Data Structure

The application must initialize the GEOS process handler with a process data structure. The process data structure

contains the necessary information for all the desired processes. The table can specify up to MAX_PROCESSES

(20) processes. Each process in the table is in the following format:

Index Constant Size Description

+0 OFF_P_EVENT word Pointer to event routine that is called when this process times-out.

+2 OFF_P_TIMER word Timer initialization value: number of vblanks to wait between one

event trigger and the next.

The first word is the address of the process event handler. The process event handler is much like any other event

handler: it is called by MainLoop when the process becomes runnable (as opposed to, say, when the user clicks

on an icon or selects a menu item) and is expected to return with an rts.

The second word is the number of vblanks to wait between one event trigger and the next. If the OFF_P_TIMER

word of a process is set to 20, for example, then the process event handler will be called every 20 vblanks (about

3 times per second on NTSC machines and 2.5 times per second on PAL machines).

Note: Processes do not provide true multitasking. There is no interrupt-driven context switching, nor any

concurrence (where two routines run simultaneously). Processes are best thought of as events

triggered off of MainLoop just like any other event. When one process is running, the next process

in line won't get executed until the first finishes and returns to MainLoop.

 4-2 Process Library

Sample Process Table
The following data block defines three processes, each with a different process event handler. The first process

will execute once every 10 vblanks, the second will execute once every second, and the third will execute once

every five minutes. Notice the use of the FRAME_RATE constant to calculate the correct vblank delay for PAL

(50) and NTSC (60) machines and the automatic assignment of process constants with (* - procTable)/PSIZE.

Sample process data structure FRAME_RATE NTSC=60 / PAL = 50

procTable:
;--- MOUSE CHECK PROCESS
; Check mouse position and change pointer form as necessary.

.word CheckMouse ; process event routine

.word 10 ; check every 10 vblanks
 MOUSECHECK = (*-procTable)/PSIZE -1 ; process number

;--- REAL-TIME CLOCK PROCESS
; Increment a real-time clock counter every second

.word Tick ; process event routine

.word FRAME_RATE ; one second worth of vblanks
 RTCLOCK = (* - procTable)/PSIZE -1 ; process number

;--- SCREEN-SAVER PROCESS
; Save the screen by turning off colors after five minutes.
 .word ScreenSave ; process event routine
 .word 5*60*FRAME_RATE ; frames in 5 minutes
 ; delay = 5 min * 60 sec/min * frames/sec)
 SCRNSAVER = (*-procTable)/PSIZE -1 ; process number
 NUM_PROC = (*-procTable)/PSIZE ; number of processes in this table
 ; for passing to InitProcesses

.if (NUM_PROC > MAX_PROCESSES) ; check for too many processes
 echo Warning: Too many processes
.endif

Process Management

Installing Processes
The application must install its processes by telling GEOS the location of the process data structure and the

number of processes in the structure. GEOS provides one routine for installing processes:

InitProcesses Initialize and install processes.

InitProcesses copies the process data structure into an internal area of memory, hidden from the application.

GEOS maintains the processes within this internal area, keeping track of the event routine addresses, the timer

initialization values (used to reload the timers after they time-out), the current value of the timer, and the state of

each process (i.e., frozen, blocked, runnable). The application's copy of the process data structure is no longer

needed because GEOS remembers this information until a subsequent call to InitProcesses.

 4-3 Process Library

Example:
;--- initialize process table
 LoadW r0,#procTable ; point at process data structure
 lda #NUM_PROC ; pass actual number of processes

jsr InitProcesses ; call GEOS to install processes
;--- processes in table are now blocked and frozen

Starting and Restarting Processes
When a process table is installed, the processes do not begin executing immediately because all processes are

initialized as frozen. GEOS provides a routine to simultaneously unblock and unfreeze a single process while

reinitializing its countdown timer:

RestartProcess Initialize a process's timer value then unblock and unfreeze it.

RestartProcess should always be used to start a process for the first time, otherwise the timer will begin in an

unknown state.

Example:
 ;--- Start all processes
 ldx #NUM_PROC-1 ; process numbers range from 0 to NUM_PROC-1
10$
 jsr RestartProcess ; reset timer, unblock, and unfreeze process
 dex ; next process
 bpl 10$; loop until done

RestartProcess can also be used to rewind a process to the beginning of its cycle. One application for this is a

screen-saver utility which blanks the screen after, say, five minutes of inactivity to prevent phosphor burn-in. A

five-minute process is established which, when it triggers an event, blanks the screen. Any routine which detects

activity from the user (a mouse movement, button press, keypress, etc.) before the screen is blanked can call

RestartProcess to reset the screensaver countdown timer to its initial five-minute value.

Freezing and Blocking Processes
When a process is frozen, its timer is no longer decremented every vblank. It will therefore never time-out and

generate a process event. When a process is unfrozen, its timer again begins counting from the point where it was

frozen. GEOS provides the following routines for freezing and unfreezing a process's timer:

FreezeProcess Freeze a process's countdown timer at its current value.

UnfreezeProcess Resume (unfreeze) a process's countdown timer.

Example:

 ;--- Freeze all processes
 ;--- disable interrupts to synchronize freezing
 php ; save current interrupt disable status
 sei ; disable interrupts
 ldx #NUM_PROC-1 ; process numbers range from 0 to NUM_PROC-1
10$
 jsr FreezeProcess ; freeze process
 dex ; next process
 bpl 10$; loop until done
 plp ; restore old interrupt status
 ...

 4-4 Process Library

A process may also be blocked. Blocking a process temporarily prevents the event service routine from being

executed. It does not stop the timer from decrementing, but when the timer reaches zero and the process becomes

runnable, the event is not generated. When a process is subsequently unblocked, its events will again be generated.

GEOS provides the following routines for blocking and unblocking processes:

BlockProcess Block a process's events.

UnblockProcess Allow a process's events to go through.

Example:
 ;--- Block mouse-checking process
 ldx #MOUSECHECK ; process number of mouse check
 jsr BlockProcess ; block it

 ;--- Unblock Real-time clock process
 ldx #RTCLOCK ; process number of real-time clock
 jsr UnblockProcess ; unblock it

When a timer reaches zero (times-out), its process becomes runnable. An internal GEOS flag (called the runnable

flag) is set, indicating to MainLoop that an event is pending. The timer is then restarted with its initialization

value. MainLoop will ignore the runnable flag as long as the process is blocked. When the process is later

unblocked, MainLoop will see the runnable flag, recognize it as a pending event, and call the appropriate service

routine. However, multiple pending events are ignored: if a blocked process's timer reaches zero more than once,

only one event will be generated when it is unblocked.

Freezing vs. Blocking
The differences between freezing and blocking are in many cases unimportant to the application. However, a

good understanding of their subtleties will prevent problems that may arise if the wrong method is used.

Normally, a process's timer is decremented every vblank. If a process is frozen, however, the GEOS vblank

interrupt routine will ignore the associated timer. The timer value will not change and, hence, will never reach

zero. The process will never become runnable. If you think of a process as a wind-up alarm clock, freezing is

equivalent to disconnecting the drive spring — even the second-hand stops moving.

Freezing a process only guarantees that the process will not subsequently become runnable. The process may in

fact already be marked as runnable and GEOS is only awaiting the next pass through MainLoop to generate an

event (A process that is marked as runnable but not yet run is said to be a pending event).

If a process is blocked (but not also frozen), GEOS Interrupt Level will continue to decrement the associated

timer. If the timer reaches zero, GEOS will reset the timer and make the process runnable, but MainLoop will

ignore the process and not generate an event because the process is blocked. If the process is later unblocked, the

event will be generated during the next pass through MainLoop. Using the alarm clock analogy, freezing is

equivalent to disconnecting the alarm bell — the clock continues to run but the alarm does not sound unless the

bell is reconnected.

The only way to absolutely disable a process — both stopping its clock and preventing any pending events to get

through — is to freeze and block it.

 4-5 Process Library

Example:

StopProcess Freeze a process timer and block any pending events.

UnstopProcess Unfreeze and unblock the process.

Parameters: x PROCNUM — process number.

Returns: x unchanged.

Destroys: a.

StopProcess:
 jsr FreezeProcess ; not that it really matters, but we'll freeze first
 jmp BlockProcess ; then block (let BlockProcess rts)

UnstopProcess:
 jsr UnblockProcess ; unblock first
 jmp UnfreezeProcess ; then unfreeze (let UnfreezeProcess rts)

Forcing a Process Event
Sometimes it is desirable to force a process to run on the next pass through MainLoop, independent of its timer

value. GEOS provides one routine for this:

EnableProcess Makes a process runnable immediately.

EnableProcess merely sets the runnable flag in the hidden process table. When MainLoop encounters a process

with this flag set, it will attempt to generate an event, just as if the timer had decremented to zero. This means

that EnableProcess has no privileged status and cannot override a blocked state. However, because it doesn't

depend on (or affect) the current timer value, the process can become runnable even with a frozen timer.

The Nitty-gritty of Processes

Processes involve a complex (but hopefully transparent to the application) interaction between multiple levels of

GEOS. In advanced uses, it may be necessary to understand this interaction. The following discussion clarifies

some of the fine points of processes.

Interrupt Level and MainLoop Level
Processes involve two distinct levels of GEOS: interrupt level and MainLoop level. Every vblank an IRQ

(Interrupt ReQuest) signal is generated by the computer hardware. Part of the GEOS interrupt service routine

manages process timers: if a process exists and it is not frozen, its timer is decremented. When the timer reaches

zero, the interrupt level routine sets the associated runnable flag and restarts the timer with its initialization value.

The process event routine is not called at this time.

If for some reason interrupts are disabled (usually by setting the interrupt disable flag with an sei instruction) and

a vblank occurs, the interrupt will be ignored and the process timers, therefore, will not be decremented during

that vblank. This is usually not a problem because interrupts are normally enabled. However, be aware that some

operating system functions (such as disk I/O) disable interrupts.

 4-6 Process Library

During a normal pass through MainLoop, GEOS will examine the active processes. If a process's runnable flag

is set and it is not blocked, MainLoop clears the runnable flag and calls the process. If a process is blocked,

MainLoop ignores it.

Because of the way MainLoop and the interrupt level interact, there is a certain level of imprecision with

processes:

1. If a process has a very low timer initialization value (e.g., less than five) such that it is possible it will

time-out more than once during the time it takes for a single pass through MainLoop, MainLoop may

miss some of these time-outs. Each time the timer reaches zero it sets the runnable flag, but since there is

only one runnable flag per process, MainLoop has no way of knowing if it should generate more than one

event.

2. It is impossible to guarantee any precise relationship (e.g., a timer difference less than five) between

two or more timers. Although all processes that time-out during the same interrupt will become runnable

at that time, the interrupt may occur while MainLoop is the midst of handling processes: processes that

have already been passed-by may become runnable but not get executed until the next time through

MainLoop, which could be a fraction of a second later.

For more Information refer to Chapter 7: "MainLoop and Interrupt Level".

Process Synchronization
It is sometimes desirable to maintain a synchronized relationship between the timer values of two or more

processes. This is nontrivial because even if the calls to restart, freeze, or unfreeze these timers are done

immediately after each other, there is always a slight chance that the vblank interrupt will occur after the status

of some of the timers has changed but before all have been changed. For example: if an application is trying to

freeze three timers simultaneously and the interrupt happens after the first timer has been frozen but before the

other two, the remaining two timers will still be decremented. To circumvent this problem, bracket the calls by

disabling interrupts before freezing, blocking, or restarting, and reenabling afterward. This is best done as in the

following example:

;--- *** RESTART CLOCK PROCESSES AT THE SAME TIME ***
RstartP:
 php ; save interrupt disable flag
 sei ; disable interrupts (stopping timers)
 ldx #RTCLOCK ; restart clock
 jsr RestartProcess
 ldx #SCRNSAVER ; restart screen-saver
 jsr RestartProcess
 plp ; restore interrupt disable status

Disabling Processes While Menus Are Down
Because MainLoop is still running when menus are down, process events continue to occur. It is often desirable

to disable a process while the user has a sub-menu opened. The easiest way to handle this situation is to check

menuNumber at the beginning of the process event routine. If menuNumber is non-zero, then a menu is down

and the event routine can exit early:

 4-7 Process Library

PrEventRoutine:
 lda menuNumber ; check menu level
 bne 90$; and exit immediately if a menu is down
 jsr DoPrEvent ; else, process the event normally
90$
 rts ; return to MainLoop

Sleeping

Sleeping is a method of stopping execution of a routine for a specified amount of time. That is, a routine can stop

itself and "go to sleep", requesting MainLoop to wake it up at a later time. GEOS provides one routine for

sleeping:

Sleep Pause execution for a given time interval.

Sleep does not actually suspend execution of the processor. When the application does a jsr Sleep, GEOS sets up

a hidden timer, much like a process timer, that is decremented during the vblank interrupt. It removes the return

address from the stack (which corresponds to the jsr Sleep) and saves it for later use, then performs an rts. Since

the return address on the stack no longer corresponds to the jsr Sleep, control is returned to a jsr one level lower.

In many cases, this will return control directly to MainLoop.

When the timer decrements to zero, a wake-up flag is set, and, on the next pass through MainLoop, the sleeping

routine will be called with a jsr to the instruction that immediately follows the jsr Sleep. When the routine finishes

with an rts (or another jsr Sleep), MainLoop will resume processing.

Sleep can be used to set up temporary, run-once processes by placing calls to Sleep inside subroutines. For

example, an educational program may want to flash items on the screen and make a noise when the student selects

a correct answer. The routines that handle these "bells and whistles" can be established using Sleep without

needlessly complicating the function that deals with correct answers. The following code fragment illustrates this

idea:

Important: Any temporary values pushed onto the stack must be pulled off prior to calling Sleep. Also,

when a routine is awoken, the values in the processor registers and the GEOS pseudoregisters

will most certainly contain different values from when it went to sleep. This is because

MainLoop has been running full-speed, calling events and doing its own internal processing,

thereby changing these values. If a routine needs to pass data from before it sleeps to after it

awakes, it must do so in its own variable space.

 4-8 Process Library

Function: Routine to handle a correct answer. Does some graphics, makes some noise, and adjusts the

student's score.

BELL_DELAY = 60 ; length of bell
FLASH_DELAY = 23 ; delay between flashes

Correct:
 IncW score ; score = score + 1
 jsr Bell ; start the bell going
 jsr Flash ; start the answer flashing
 rts

Function: If sound is enabled (user-determined), start the bell sound and then go to sleep; Sleep returns

control to the routine that called us. When we wake up, we stop the bell sound and return to

MainLoop. If sound is disabled, then the rts returns directly to the routine that called us.

Bell:
 lda soundFlag ; check sound flag
 beq 90$; exit if user turned sound off
 jsr BellOn ; else, turn the bell on
 LoadW r0,#BELL_DELAY ; and delay before turning off
 jsr Sleep ; by going to sleep (think rts)
 jsr BellOff ; turn bell off when we awake
90$
 rts ; exit

Function: Subroutine: Invert the answer. Go to sleep. Re-invert the answer when we wake up.

Flash:
 jsr InvAnswer ; graphically invert the answer
 LoadW r0,#FLASH_DELAY ; and delay before reverting
 jsr Sleep ; by going to sleep (think rts)
 jsr InvAnswer ; when we awake, revert the image
 rts ; exit

 5-1 Math Routines

 Math Routines

One of the major limitations of eight-bit microprocessors such as the 6502 is their math capabilities: they can

only operate directly on eight-bit quantities (0-255), and multiplication and division require extensive

computational energy. For the sake of the application programmer, GEOS has some of the more popular

arithmetic routines built into the Kernal. These include double-precision (two byte) shifting, as well as

multiplication and division.

Parameter Passing to Math Routines

The math routines use a flexible parameter passing convention: rather than putting values into specific GEOS

pseudoregisters, the application can place the values in any zero page location (almost) and then tell GEOS where

to find the values by passing the address of the parameter. Because the parameters are located on zero page, their

addresses are one-byte quantities that can be passed in the x and y index registers. For example, a GEOS math

routine might require two-word values. The application could place these values in pseudoregisters r0 and r1,

then call a GEOS math routine, like Ddiv (double-precision divide) with the address of r0 and r1 in the x and y

registers.

Example:
 ldx #r0 ; load up address of first parameter
 ldy #r1 ; and address of other parameter
 jsr Ddiv ; divide the word in r0 by the word in r1

Double-precision Shifting

The 6502 provides instructions for shifting eight-bit quantities left and right but no instructions for directing these

operations on 16-bit (double-precision) numbers. GEOS provides two routines for double-precision shifting:

DShiftLeft Arithmetically left-shifts a 16-bit word value.

DShiftRight Arithmetically right-shifts a 16-bit word value.

Double-Precision Arithmetic

Many of the possible double-precision arithmetic operations (such as word + word addition) are provided with

GEOS macros. The standard set of GEOS macros, which include the likes of AddW and SubW, are listed in

"Appendix D: Macros". Many double-precision operations, however, such as multiplication and division, are

complicated enough to warrant an actual subroutine. GEOS provides many of these routines, some of which have

signed and unsigned incarnations.

Important: It is easy to get confused and leave off the immediate-mode sign (#) when trying to load the

address of a zero page variable, thereby loading the value contained in the variable instead.

 5-2 Math Routines

Signed vs. Unsigned Arithmetic
6502 arithmetic operations rely on the two's complement numbering system — an artifact of binary math — to

provide both signed and unsigned operations with the same instructions (adc and sbc). For example, an adc #$6C

can be seen as either adding 188 to the accumulator (unsigned math: all eight bits represent the positive number,

any carry out of bit 7 indicates an overflow) or as adding a -68 to the accumulator (signed math: the high-bit, bit

7, holds the sign and any carry out of bit 6 indicates an overflow). The 6502 has little trouble adding and

subtracting these two's-complement signed numbers. Operations such as multiplication and division, however,

need to special-case the sign of the numbers.

Incrementing and Decrementing
GEOS has only one routine in the category of incrementing and decrementing:

Ddec Decrements a word, setting a flag if the value reaches zero.

However, because incrementing and decrementing words are such common operations, Berkeley Softworks has

created a set of macros specifically designed for incrementing and decrementing word values:

Function: Increment Word.

Args: addr – address of word to increment.

Action: Increment word by 1. If the result is zero, then the zero flag in the status register is set.

.macro IncW addr
 inc addr
 bne done
 inc addr+1
 done:
.endm

Function: Decrement zero page word.

Args: zaddr – zero page address of word to decrement.

Action: Decrement zero page word. If the result is zero, then the zero flag in the status register is set.

Destroys: a, x.

.macro DecZW zaddr
 ldx #[zaddr ; load x with address of zp word for call
 jsr Ddec ; call GEOS routine
 ; z flag is set if both high and low become $00
.endm

 5-3 Math Routines

Function: Decrement Word by 1.

Args: addr – address of word to decrement.

Action: Fast Decrement word by 1. Useful for values that will never go to zero. IE address pointers.

Note: on return, z flag is meaningless.

Destroys: a

.macro DecW addr
 lda addr ; get low-byte
 bne z ; if zero have to do high-byte
 dec addr+1 ; decrement high-byte
z:
 dec addr ; decrement low-byte
.endm

Most applications will use IncW and DecZW to take advantage of the flags which are set when the values reach

zero. However, DecW can be useful when a word needs to be decremented quickly and the zero flag is not needed.

Unsigned Arithmetic
GEOS provides the following routines for arithmetic with unsigned numbers:

BBMult Byte-by-byte multiply: multiplies two unsigned byte operands to produce an unsigned

word result.

BMult Word-by-byte multiply: multiplies an unsigned word and an unsigned byte to produce an

unsigned word result.

DMult Word-by-word (double-precision) multiply: multiplies two unsigned words to produce an

unsigned word result.

Ddiv Word-by-word (double-precision) division: divides one unsigned word by another to

produce an unsigned word result.

Example: ConvToUnits

 5-4 Math Routines

Signed Arithmetic
GEOS provides the following routines for arithmetic with signed numbers:

Dabs Computes the absolute value of a two's-complement signed word.

Dnegate Negates a signed word by doing a two's complement sign-switch.

DSdiv Signed word-by-word (double-precision) division: divides one two's complement word

by another to produce a signed word result.

There is no signed double-precision multiply routine in the GEOS Kernal. The following subroutine can be used

to multiply two signed words together.

Example: DSmult

Dividing by Zero
Division by zero is an undefined mathematical operation. The two GEOS division routines (Ddiv and DSdiv) do

not check for a zero divisor and will end up returning incorrect results. It is easy to add divide-by-zero error

checking by using these two wrapper routines:

Example: NewDdiv, NewDSdiv.

 6-1 Text, Fonts, and Keyboard Input

 Text, Fonts, and Keyboard Input

At one point or another, almost every application will need to place text directly on the screen or get keyboard

input from the user.

GEOS text output facilities support disk-loaded fonts, multiple point sizes, and additive style attributes. The

application can use GEOS text routines to print individual characters, one at a time, or entire strings, including

strings with embedded style changes and special cursor positioning codes. GEOS will automatically restrict

character printing to margins allowing text to be confined within screen or window edges. GEOS even contains

a routine for formatting and printing decimal integers.

GEOS keyboard input facilitates the translation of keyboard input to text output by mapping most keypresses so

that they correspond to the printable characters within the GEOS ASCII character set. GEOS will buffer

keypresses and use them to trigger MainLoop events, giving the application full control of keypresses as they

arrive. And if desired, GEOS can also automate the process of character input, prompting the user for a complete

line of text.

Text Basics

Fonts and Point Sizes
Fonts come in various shapes and sizes and usually bear monikers like BSW 9, Humbolt 12 and Boalt 10. A font

is a complete set of characters of a particular size and typeface. In typesetting, the height of a character is measured

in points (approximately 1/72 inch), so Humbolt 12 would be a 12 point (1/6 inch) Humbolt font. A text point in

GEOS is similar to a typesetter's point: when printed to the screen, each GEOS point corresponds to one screen

pixel. GEOS printer drivers map screen pixels to 1/80 inch dots on the paper to work best with 80 dot-per-inch

printers. A GEOS 1/80 inch point is, therefore, very close to a typesetter's 1/72 inch point.

GEOS has one resident font, BSW 9 (Berkeley Softworks 9 point). The application can load as many additional

fonts as memory will allow. Fonts require approximately one to three kilobytes of memory.

A complete list of official GEOS Font files appears in "Appendix F: File Formats" "Official Fonts".

Proportional Fonts
Computer text fonts are typically monospaced fonts. The characters of a monospaced font are all the same width,

compromising the appearance of the thinnest and widest characters. GEOS fonts are proportional fonts, fonts

whose characters are of variable widths. Proportional fonts tend to look better than monospaced fonts because

thinner characters occupy less space than wider characters; a lower-case "i", for example, is often less than l/5th

the width of an upper-case "W".

Character Width and Height
Although some characters are taller than others, all characters in a given font are treated as if they are the same

height. This height is the font's point size. A 10-point font has a height of ten pixels. If a character's image is

smaller than 10 pixels, it is because its definition includes white pixels at the top or bottom. The height of the

current font is stored in the GEOS variable curHeight. Although fonts taller than 28 points are rare (some

megafonts are as tall as 48 points), a font could theoretically be as tall as 255 points.

 6-2 Text, Fonts, and Keyboard Input

Since GEOS uses proportional fonts, the width of each character is determined by its pixel definition — the

thinner characters occupy fewer pixels horizontally than the wider characters. Most character definitions include

a few columns of white pixels on the right-side so that the next character will print an appropriate distance to the

right. If this space didn't exist, adjacent characters would appear crowded. The width of any single character

cannot exceed 57 pixels after adding any style attributes, which means that the plaintext version of the character

can be no wider than 54 pixels.

The Baseline
Each font has a baseline, an imaginary line that intersects the bottom half of its character images. The baseline is

used to align the characters vertically and can be thought of as the line upon which characters rest. The baseline

is specified by a relative pixel offset from the top of the characters (the baseline offset). Any portion of a character

that falls below the baseline is called a descender. For example, an 18 point font might have a baseline offset of

15, which means that the 15th pixel row of the character would rest on the baseline. Any pixels in the 16th, 17th,

or 18th row of the character's definition form part of a descender. The baseline offset for the current font is stored

in the GEOS variable baselineOffset. The application may increment or decrement the value in this variable to

print subscript or superscript characters.

The following diagram illustrates the relationship between the baseline and the font height:

The y-position passed to GEOS printing routines usually refers to the position of the baseline, not the top of the

character. Most of the character will appear above that position, with any descender appearing below. If it is

necessary to print text relative to the top of the characters, a simple transformation can be used:

charYPos = graphicsYPos + baselineOffset

Where graphicsYPos is the true pixel position of the top of the characters, charYPos is the transformed position

to pass to text routines, and baselineOffset is the value in the global variable of that name.

Styles
The basic character style of a font is called plaintext. Applying additional style attributes to the plaintext modifies

the appearance of the characters. There are five available style attributes: reverse, italic, bold, outline, and

underline. These styles may be mixed and matched in any combination, resulting in hybrids such as bold italic

underline. The current style attributes are stored in the variable currentMode. Whenever GEOS outputs a

character, it first alters the image (in an internal buffer) based on the flags in currentMode:

g

font

height

baseline

offset

baseline descender

 6-3 Text, Fonts, and Keyboard Input

currentMode Bit Flags

b7 underline 1 = on; 0 = off.

b6 boldface 1 = on; 0 = off.

b5 reverse 1 = on; 0 = off.

b4 italic 1 = on; 0 = off.

b3 outline 1 = on; 0 = off.

b2 † superscript 1 = on; 0 = off.

b1 † subscript 1 = on; 0 = off.

b0 unused.

Normally it is not necessary to modify the bits of currentMode directly. Special style codes can be embedded

directly in text strings.

Style attributes temporarily modify the plaintext definition of the character and, in some cases, change the size

and ultimate shape of the character:
.

Underline Inverts the pixels of the line below the baseline. The size of the character does not change.

Boldface The character image is shifted onto itself by one pixel. The width of the character increases by

one.

Outline Transforms the character into an outline style. This transformation occurs after boldfacing and

underlining. Height and width increase by 2.

Italic Pairs of lines above the baseline are shifted right and pairs of lines below the baseline are shifted

left. Thus, the baseline is not changed, the two lines above it are shifted to the right one pixel,

the next two are shifted four pixels from their original position, and so forth. The effect of this

is to take the character rectangle and lean it into a parallelogram. The width is not actually

changed. The same number of italicized characters will fit on a line as non-italicized characters,

and because the shifting is consistent from character to character, adjacent italic characters will

appear next to each other correctly. However, if a non-italic character immediately follows an

italic character, the non-italic character will overwrite the right-side of the shifted italic

character. This can be avoided by inserting an italicized space character.

Reverse Reverses the pixel image of the character. This is the last transformation to take place. The size

of the character does not change.

b7 b6 b5 b4 b3 b2 b1 b0

Important: Although, at this time, style attributes affect the printed size of a character in a predictable

fashion, the application should not perform these calculations itself but use the GEOS

GetRealSize routine to ensure compatibility with future versions of the operating system. For

more information, refer to "Calculating the Size of a Character " in this chapter.

Note: †Superscript and subscript characters are not supported by the standard text routines. However,

geoWrite uses these bits in its ruler escapes. An application can print superscript and subscript

characters by changing the value in baselineOffset before printing: subtracting a constant will

superscript the following characters and adding a constant will subscript the following characters.

 6-4 Text, Fonts, and Keyboard Input

How GEOS Prints Characters

When a character is printed, a rectangular area the width of the character and the height of the current font is

stamped onto the background, leaving cleared pixels surrounding the character. When writing to a clear

background, the cleared pixels around the character will mesh with the cleared background, leaving no trace. But

when writing to a patterned background, the background will be overwritten:

There is no simple way to print to a non-cleared background without getting clear pixels surrounding the

characters. Solutions usually involve accessing screen memory directly.

Text and dispBufferOn
Like graphics routines, most text routines use the special bits in dispBufferOn to direct printing to the foreground

screen or the background buffer as necessary. For more information on using dispBufferOn, refer to "Display

Buffering" in Chapter Graphics Routines.

GEOS 128 Character X-position Doubling
GEOS 128 text routines pass character x-coordinates through NormalizeX, allowing automatic x-position

doubling. (The character width is never doubled, only the x-position). Character x-position doubling is very much

like graphic x-positions doubling and is explained in "GEOS 128 X-position and Bitmap Doubling" in chapter

Graphics Routines. There is one notable difference: because SmallPutChar will accept negative x-positions

(allowing characters to be clipped at the left screen edge), the DOUBLE_W and ADD1_W constants should be

bitwise exclusive-or'ed into the x-positions as opposed to merely bitwise or'ed. This will maintain the correct sign

information with negative numbers.

Character Codes

Each character in GEOS is referenced by a single-byte code called a character code. GEOS character codes are

based upon the ASCII character set, offering 128 possible characters (numbered 0-127). GEOS reserves the first

32 codes (0-31) as escape codes. Escape codes are non-printing characters that provide special functions, such as

boldface enabling and text-cursor positioning. Character codes 32 through 126 represent the 95 basic ASCII

characters, consisting of upper- and lower-case letters, numbers, and punctuation symbols. Character code 127 is

a special deletion character, a blank space as wide as the widest character, used internally for deleting and

backspacing.

Most GEOS fonts do not offer characters for codes above 127 except in one special instance: the standard system

character set (BSW 9) includes character code 128 that is a visual representation of the shortcut key (a

Commodore symbol). There is no inherent limitation in the text routines that would prevent an application from

printing characters corresponding to codes 129 through 159, assuming the current font has image definitions for

these character codes. The printing routines cannot handle character codes beyond 159, however. The text routines

do no range-checking on character codes; do not try to print a character that does not exist in the current font.

Text is stamped

over the background.

Note: A complete list of GEOS character codes appears in "Chapter 19 Environment" "Structures /

Keyboard".

 6-5 Text, Fonts, and Keyboard Input

Printing Single Characters

GEOS will print text at the string level or at the character level. The high-level string routines, where many

characters are printed at once, will often provide all the text facilities an application ever needs outside the

environment of a dialog box. However, in return for generality, string-level routines sacrifice some of the

flexibility offered by character level routines. Character level routines, where text is printed a character at a time,

require the application to do some of the work: deciding which character to print next and where to place it.

Because of this overhead, it is tempting to dispense with text at the character level, relying entirely on the string

level routines instead. But the character level routines are the basic text output building blocks and the string level

routines depend upon them greatly. For this reason, it helps to understand character output even when dealing

entirely with string-level output.

GEOS provides two character-level routines that are available in all configurations of GEOS:

PutChar Process a single character code. Processes escape codes and only prints the character

if it lies entirely within the left and right-margins (leftMargin, rightMargin).

SmallPutChar Draw a single character. Does not check margins for proper placement. Does not

handle escape codes. Prints partial characters, clipping at margin edges.

PutChar is the basic character handling routine. It will attempt to print any character within the range 32 through

256 ($20 through $FF) as well as process any escape codes (character codes less than 32), such as style escapes.

It will also check to make sure that the character image will fit entirely within the left and right-margins.

SmallPutChar, on the other hand, carries none of the overhead necessary for processing escape codes and

checking margins; it is smaller (hence, the name) and faster but requires that the application send it appropriate

data. Do not send escape codes to SmallPutChar.

Typically an application will call PutChar in a loop, using SmallPutChar to print a portion of a character that

crosses a margin boundary. SmallPutChar can also be used by an application that does its own range-checking,

thereby avoiding any redundancy. Be sure to only send SmallPutChar character codes for printable characters.

PutChar and Margin Faults
Prior to printing a character, PutChar checks two system variables, leftMargin and rightMargin. When an

application is first run, these two margin variables default to the screen edges (0 and SC_PIX_WIDTH-1,

respectively). If any part of the current character will fall outside one of these two margins, the character is not

printed. Instead, GEOS jsr's through StringFaultVec with the following parameters:

r11 Character x-position. If the character exceeded the right-margin, then this is the position GEOS tried

to place the offending character. If the character fell outside of the left-margin, then the width of the

offending character was added to the x-position, making this the position for the next character.

r1H Character y-position.

StringFaultVec defaults to $0000. Because GEOS uses the conditional jsr mechanism, CallRoutine, a $0000

will cause character faults to be ignored.

Note: A complete list of GEOS escape codes appears in "Chapter 19 Environment" "Structures /

Keyboard".

 6-6 Text, Fonts, and Keyboard Input

There are many ways to handle margin faults (including ignoring them entirely). Faults on the left-margin are

usually ignored or not even bothered with because printing will usually begin predictably at the left-margin,

thereby precluding that type of fault. But faults on the right-margin, (which are less predictable) will often get

special handling, such as using SmallPutChar to output the fractional portion of the character that lies to the left

of rightMargin.

There is one unfortunate problem with faults through PutChar: the fault routine has no direct way of knowing

which character should be printed and so will lose some of its generality by needing access to data that should be

local to the routine that calls PutChar. One simple way around this problem is to use a global variable — call it

something like lastChar — to hold the character code of the character being printed, or perhaps, make it a pointer

into memory (PutString does just that with r0). This way the fault routine will know which character caused the

fault.

Example:

Function: Save character as last printed and print with PutChar.

Args: none.

Description: Macro to replace jsr PutChar in your code so that lastChar holds the value of the last character

printed.

.macro PutChar
sta lastChar ; character is already in the accumulator
jsr PutChar

.endm

Calculating the Size of a Character

Text formatting techniques such as right justification require the application to know the size of a character before

it is printed. GEOS offers two routines for calculating the size of a character:

GetCharWidth Calculates the pixel width of a character as it exists in the font (in its plaintext form). Ignores

any current style attributes.

GetRealSize Calculates the pixel height, width, and baseline offset for a character, accounting for any style

attributes.

These routines can be used in succession to calculate the printed size of any character combination, whether

groups of random characters, individual words, or complete sentences.

Partial Character Clipping

Confining text output to a window on the screen is called clipping. Characters that will appear outside the

window's margins are not printed; they are "clipped", so to speak. Sometimes, however, it is desirable to print the

portion of the offending character that lies within the margin and only clip the portion that lies outside the window

area. This sort of clipping is called partial character clipping.

Top and Bottom Character Clipping
Both PutChar and SmallPutChar handle top and bottom partial character clipping. Any portion of a character

that lies outside of the vertical range specified by windowTop and windowBottom will not be printed.

 6-7 Text, Fonts, and Keyboard Input

windowTop and windowBottom default to the full screen dimensions (0 and SC_PIX_HEIGHT-1, respectively).

They may be changed by the application before printing text.

Left and Right Character Clipping with SmallPutChar
Whenever a character crosses the left or right-margin boundary, PutChar vectors through StringFaultVec

without printing the character. SmallPutChar, unlike PutChar, will not generate string faults. If a character

crosses a margin boundary, SmallPutChar will print the portion of the character that lies within the margin.

SmallPutChar will also accept small negative values as the character x-position, allowing characters to be

clipped at the left screen edge by placing leftMargin at 0.

Manual Character Clipping
One of the criticisms of GEOS is the inconsistent and sometimes capricious character clipping capabilities — not

all versions of GEOS fully support partial character clipping and the versions that do have inherent idiosyncrasies.

A carefully designed program can usually work around these limitations. Some applications, however, will need

a reliable method to perform partial character clipping. The following ClipChar subroutine will properly clip and

print a character that partially exceeds one of the left or right-margins. Be aware that ClipChar does quite a bit of

calculation and should only be used in special cases where controlled character clipping is needed.

Example: ClipChar.

Printing Decimal Integers (PutDecimal)

One of the unfortunate side-effects of binary math is the conversion necessary to print numbers in decimal.

Fortunately, GEOS offers a routine to remove this drudgery from the application:

PutDecimal Format and print a 16-bit, positive integer.

PutDecimal is like a combination of character and string level routines. The application passes it a single 16-bit,

positive integer, some formatting codes (e.g., right justify, left justify, suppress leading zeros), and a printing

position. PutDecimal converts the binary number into a series of one to five numeric characters and calls

PutChar to output each one.

String Level Routines

Many applications will never need complex text output and can rely on GEOS's string-level routines for simple

text output and input. GEOS provides two string-level text routines, one for printing strings to the screen and one

for getting strings through the keyboard.

PutString Print a string to the screen.

GetString Get a string from the keyboard using a cursor prompt and echoing characters to

the screen as they are typed.

Note: Clipping at the left-margin, including negative x-position clipping, is not supported by early versions

of GEOS 64 (earlier than version 1.4) — the entire character is clipped instead. Left margin clipping

is supported on all other version of GEOS: GEOS 64 v1.4 and above, GEOS 128 (in both 64 and

128 mode).

 6-8 Text, Fonts, and Keyboard Input

GEOS Strings
A GEOS string is a null-terminated group of character codes. (Null-terminated means the end of the string is

marked by a NULL character ($00)). These strings can contain alphanumeric characters as well as special escape

codes for changing the style attributes or changing the printing position.

There is no basic limit to the possible length of a string; GEOS processes the string one character at a time until

it encounters the NULL, which it interprets as the end of the string. If the string is not terminated, GEOS will

have no way of knowing where the end of the string is and will continue printing until it encounters a $00 in

memory.

A simple string of ASCII characters might look like this:

String1:

.byte "This is a simple string.",NULL

The above string, including the NULL, is 25 characters long (and therefore 25 bytes long also). Escape codes may

be embedded within the string to effect changes while printing. An individual word, for example, may be

underlined by embedding an ULINEON escape code before the word and an ULINEOFF after it as in:

String2:

.byte "This word is "

.byte ULINEON,"underlined",ULINEOFF,".",NULL

The embedded escape codes change the style attribute bits in currentMode mid-string, resulting in something

like:

This word is underlined.

 6-9 Text, Fonts, and Keyboard Input

PutString

PutString offers a simple way to handle text output. It really does nothing more than call PutChar in a loop, so

issues that apply to PutChar, such as top and bottom character clipping, also apply to PutString. PutString

directly supports a feature that PutChar doesn't, though: multibyte escape codes, such as GOTOXY which require

r0 to contain a pointer to the auxiliary bytes in a multibyte sequence (PutString maintains r0 automatically,

allowing the extra parameters to be embedded directly in the string). Printing a string to the screen with PutString

involves specifying a position to begin printing and passing a pointer to a null-terminated string:

Example: Print.

String Faults (Left or Right Margin Exceeded)
Because PutString calls PutChar, if any part of the current character will fall outside of leftMargin or

rightMargin, the character is not printed. Instead, GEOS jsr's through StringFaultVec with the following

parameters:

r11 Character x-position. If the character exceeded the right-margin, then this is the position GEOS

tried to place the offending character. If the character fell outside of the left-margin, then the width

of the offending character was added to the x-position, making this the position for the next

character.

r1H Character y-position.

r0 Pointer to the offending character in the string. Only valid with PutString, unused by PutChar.

GEOS 64 and GEOS 128 do nothing special to handle these string faults. If the application has not installed its

own string fault routine, StringFaultVec should contain a default value of $0000, which will cause the string

fault to be ignored. If this is the case, the following will happen:

• If part of the character was outside of the left-margin, the width of the offending character was added to

the x-position in r11 before the fault. PutString moves on to the next character in the string and attempts

to print it at this new position.

• If part of the character was inside the left-margin but outside the right-margin, PutString leaves the

x-position unchanged and moves on to the next character in the string.

The strategy behind this system is to only print the portion of the string that lies entirely within the left and

right-margins. Unfortunately, this strategy is flawed. Whenever the right-margin is encountered, PutString

should stop completely. But it doesn't. It continues searching through the string, looking for a character that will

fit. This can be a problem when a thin character follows a wide character. For example, trying to print the word

"working" with only a few pixels of space before the right-margin, PutString would try to print the "w", but since

it doesn't fit, would move on and try its luck with the following "o". But the "o" won't fit either, so it moves on

until it encounters the "i" which just happens to fit in the available space. PutString proudly prints the "i" thinking

it has done a good thing, entirely unaware that the proper sequence of characters has been lost.

PutStrFault is a partial solution to this problem. PutStrFault immediately terminates string printing on any fault

(left or right-margin) by moving r0 forward to point to the null. Install PutStrFault into StringFaultVec prior

to using PutString.

 6-10 Text, Fonts, and Keyboard Input

The above technique, however, has two flaws: if a character lies outside the left-margin, printing is aborted, and,

with either type of fault, the application has no way of knowing which character in the string caused the fault.

The following routine, SmartPutString, will solve both these problems. If a character lies outside the left-margin,

it is skipped, and if it lies outside the right-margin, SmartPutString returns with r0 pointing to the character in

the string that caused it to terminate. If r0 points to a NULL, then SmartPutString was able to print the whole

string and terminated normally.

Example: SmartPutString.

Embedding Style Changes Within a String
A string may contain embedded escape codes for changing the style attributes mid-string. For example, if while

printing a string GEOS encounters a BOLDON (24) escape code, then PutString will temporarily escape from

normal processing to set the boldface bit in currentMode. Any characters thereafter will be printed in boldface.

Style changes are typically cumulative. If a OUTLINEON code is sent, for example, then the outline style attribute

will be added to the current set of attributes. If boldface was already set, then subsequent characters will be both

outlined and boldfaced. The PLAINTEXT escape code returns text to its normal, unaltered state.

When PutString is first called, it begins printing in the styles specified by the value in currentMode and when

it returns, currentMode retains the most recent value, reflecting any style-change escapes. The next call to

PutString (or any other GEOS printing routine) will continue printing in that style. To guarantee printing in a

particular style without inheriting any style attributes from previous strings, the first character in the string should

be a PLAINTEXT escape code. Any specific style escape codes can then follow.

Position Escapes (Moving the Printing Position Mid-string)
GEOS provides escape codes for changing the current printing position. Like other escape codes, these can be

embedded within the string. Some of them are simple, such as LF and UPLINE, which move the current printing

position down one line or up one line, respectively, based on the height of the current font. Others, such as

GOTOX, GOTOY, and GOTOXY, require byte or word pixel coordinates to be embedded within the string

immediately after the escape code.

Example:

String:
 .byte HOME,LF ; start in the upper-left corner and
 ; move down one line so we have room
 .byte "This ",LF,"is ",LF,"stepping ",LF
 .byte "Down",LF,"ward",CR
 .byte LF,"HELLO"
 .byte GOTOXY
 .word 40 ; x-position
 .byte 15 ; y-position of baseline
 .byte "Look! I moved.",NULL

Note: A complete list of GEOS escape codes appears in "Chapter 19 Environment" "Structures /

Keyboard".

 6-11 Text, Fonts, and Keyboard Input

Escaping to a Graphics String
GEOS provides a special escape code (ESC_GRAPHICS) that takes the remainder of a string and treats it as input

to the GraphicsString routine. This allows graphics commands to be embedded within a text string, which is

useful for creating complex displays, especially those that require graphics to be drawn over text. The current pen

positions for the graphics are uninitialized so the first graphics string command should be a MOVEPENTO.

Example:

TextGraphics:

.byte GOTOXY

.word 20

.byte 20

.byte "BOX: "

.byte ESC_GRAPHICS

.byte MOVEPENTO

.word 10

.byte 10

.byte RECTANGLETO

.word 50

.byte 30

.byte NULL

If it is necessary to print additional text after graphics, the ESC_PUTSTRING command may be used to escape

from GraphicsString. A subsequent NULL will still mark the end of the string. Be aware that each context-switch

between these two routines allocates additional 6502 stack space that is not released until the NULL terminator

is encountered.

GetString

GetString provides a convenient way for an application to get text input from the user without using a dialog

box. GetString takes care of intercepting keypresses and echoing the characters to the screen. The beauty of

GetString is that it builds the string concurrently with the rest of MainLoop, allowing menus, icons, and

processes to remain functional while the user is typing in the string.

When you call GetString, you place the address you want GEOS to call when the user presses [Return] into

keyVector. GEOS saves this address, prints out an optional default data string, and inserts its own routine

(SystemStringService) into keyVector, assuming control of future keypresses. GEOS then returns back to the

application with an rts, which is left to return to MainLoop in its normal course of events. As MainLoop

encounters keypresses, it vectors through keyVector, calling SystemStringService. SystemStringService masks

out invalid keypresses and prints valid characters, backspacing as necessary when the backspace key is pressed.

When the [Return] key is pressed, GEOS clears keyVector and calls the event routine specified in keyVector

when GetString was called. The null-terminated string is passed in a buffer.

GetString has a variety of options and flags that are described completely in the GetString reference section.

These include specifying a maximum length for the entered string, providing a default data string, and enabling

an option to give application control of string faults. But GetString is of limited usefulness. and applications that

rely on a lot of this type of keyboard and text interaction might warrant a customized string/keyboard routine.

Important: When GraphicsString encounters the NULL marking the end of a string, control is returned to

the application as if PutString had terminated normally. The NULL does not resume PutString

processing.

 6-12 Text, Fonts, and Keyboard Input

GetString uses the pointer in r0 combined with the size of the buffer in r2L to provide a working window for

the user to be able to enter/edit data in a field. This buffer can start out empty (field does not have any data yet)

or it can start out with some data already in it (field has had information previously entered into it). Since r2L is

the size of the buffer and not the size of the data already in the buffer, the value of r2L will be the same in both

of these situations.

Example:
.ramsect
 rName: .block 20+1 ; 20 character name buffer plus byte for null terminator
.psect
 tName:
 .byte "Name: ",NULL

DisplayForm:
 jsr DispTxtPrompts ; call routine to PutString all text prompt labels to the form
Field1:
 LoadW r0,#rName ; set buffer pointer to our name buffer
 LoadB r2L,#20 ; set size of buffer (max characters to enter)
 LoadB r1L,#0 ; use system fault routine
 LoadW r11,#nameXPos ; set x-position of text prompt to application defined value
 LoadB r1H,#nameYPos ; set y-position of text prompt to application defined value
 LoadW keyVector,#Field2 ; set STRINGDONE to point control to next field after CR is entered
 jsr GetString ; call GetString. user input starts after we return to the
MainLoop
 ;--- do any additional desired steps prior to user having control of entry
 rts
Field2:
 ... same code structure as in Field1

The first time DisplayForm is called, the rName buffer is empty, so the user just has a blank prompt to enter data

into. For our example, the user enters "Arthur Dent" into the "Name: " field. When the user causes this form to

be displayed a second time, the rName buffer contains "Arthur Dent", NULL. When the Field1 block is executed

again the user will see the "Name: " field already populated with "Arthur Dent" ("Name: Arthur Dent") and the

text entry prompt will be after the name. The user now has the ability to edit the name in any way needed.

GetString and dispBufferOn
GetString uses the PutChar routine to print text to the screen, and PutChar depends on the value in

dispBufferOn to decide where to direct its output. Because SystemStringService runs concurrently with other

MainLoop events — events that might alter the state of dispBufferOn — it needs a way to override the current

value of dispBufferOn, which, depending on the events running off of MainLoop, may contain different values

on every keypress, sending characters to different screen buffers at different times.

One solution to controlling where GetString sends its characters, demonstrated below. involves patching into

keyVector and updating dispBufferOn before SystemStringService gets control.

Example: NewGetString.

Note: Original handwritten note about the above paragraphs regarding dispBufferOn: "Not entirely clear.

Make sure people know that this is not really of that much importance".

Note: Some early versions of GEOS used bit 5 of dispBufferOn as a flag to limit GetString's character

printing to the foreground screen. This bit, however, is no longer guaranteed to have this effect and

should always be zero.

Note: When GetString returns, keyVector will always be set to $0000. If the application was using

keyVector, it will need to reload it after the string has ended.

 6-13 Text, Fonts, and Keyboard Input

Forcing End of String Input
Because GetString accepts input concurrently with MainLoop there might be some user action other than

pressing [Return] that the application may want to recognize as the end of input marker. Unfortunately, there is

no direct way to terminate GetString before the user presses [Return]. The trick of choice in this situation is to

simulate a press of the return key by loading keyData with a CR and vectoring through keyVector as in:

;--- Simulate a CR to end GetString

LoadB keyData,#CR ; load up a CR [RETURN] key
lda keyVector ; and vector through keyVector
ldx keyVector+1 ; so SystemStringService will
jsr CallRoutine ; think it was pressed now

This same technique can be used to terminate a DBGETSTRING when an icon is pressed to leave a dialog box.

Fonts

In GEOS a font is a complete set of characters of a particular size and typeface. On disk, fonts are organized by

style, where a single font file holds all the available point sizes for a given style. Each point size occupies its own

VLIR record in the font file. The record number corresponds to the point size. For example, a font file called

MyFont might use three VLIR records, one for each available font size: the MyFont 10 would occupy record 10,

MyFont 12 would occupy record 12, and MyFont 24 would occupy record 24.

It is the job of the application to decide which fonts to keep in memory at any one time, reading in the appropriate

records from the VLIR font file. Once a font is in memory (usually as the result of a call to ReadRecord), the

application must inform GEOS to begin using the new font with the following routine:

LoadCharSet Instruct GEOS to begin using a new font. (Font is already in memory).

Although the word "Load" in LoadCharSet is misleading in that it implies it automatically loads the character

set from disk into memory, the application must read the font data into memory prior to calling this routine.

LoadCharSet expects an address pointer to the beginning of the font in memory. It will then build out a variable

table for the text routines, providing information such as the baseline offset and font point height. The application

may keep as many fonts resident as free memory will allow, switching them at will with calls to LoadCharSet.

Some sophisticated GEOS applications use a font-caching system where fonts are kept in memory based on their

frequency of use.

GEOS provides an additional routine for returning to the always-resident BSW 9 system font:

UseSystemFont Instruct GEOS to begin using the default BSW 9 font.

UseSystemFont passes the address of the system BSW 9 font to LoadCharSet.

Note: GEOS 64 and GEOS 128 (through v1.3) do not null-terminate the string until [Return] is pressed

(or simulated).

 6-14 Text, Fonts, and Keyboard Input

The Structure of a Font File
Fonts are stored in VLIR files of GEOS type FONT. A single font file contains all the available point sizes for a

particular style (up to a maximum of 15). Each point size occupies one complete VLIR record. The record number

corresponds to the point size (i.e., record 9 would contain the data for the nine-point character set). If a VLIR

record in a font file is empty, then the corresponding point size is not available (the record will exist, but will be

marked as empty in the index table). The data in each of these records is what GEOS considers a character set,

and its structure is described later in "Character Set Data Structure". Unless the application is creating or

modifying fonts, this data structure is unimportant.

The font files on a given disk can be found using the FindFTypes routine. Once the font files are known, the

application can use GetFHdrInfo to access the header block for each font file. The font file header block contains

information pertinent to the particular font file, such as the font style ID, the available point sizes, and the amount

of memory required for each point size. These values can be accessed in the header block by using the following

offsets:

Constant Offset Field Size Description

O_GHFONTID $80 1 word Font style ID. (0 – 1023)

O_GHPTSIZES $82 15 words Character set ID's for those available in this file. Arranged from

smallest to largest point size. Table is padded with zeros.

O_GHSETLEN $61 15 words Size (in bytes) of each character set from smallest to largest point

size. (These numbers have a one-to-one correspondence with the

O_GHPTSIZES table). Table is padded with zeros.

Every font style has a unique 10-bit ID number. This number is stored in the word-length field O_GHFONTID.

The next field, O_GHPTSIZES, has room for 15-character set ID numbers. A character set ID number is a 16-bit

combination of the style ID and a point size identifier. The style ID is stored in the upper 10 bits and the point

size is stored in the lower 6 bits:

Character Set ID Word:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10-bit font style ID (b6-b15) point size (b0-b5)

b6-bl5 font style ID.

b0-b5 point size.

This combination of font style ID and point size gives each character set (font) a unique word length identifier.

This allows any style/point-size combination to be referenced with a two-byte number. For example, the Durant

style has a style ID of 15, so the Durant 10 font would have a character set ID of:

(15 << 6) | 10 or $03CA

(15 * 64) + 10 = 970 or $03CA ; alternate method to calculate the character set ID

Berkeley Softworks' applications use the NEWCARDSET escape followed by the character set ID word to flag

font changes within a text document.

 6-15 Text, Fonts, and Keyboard Input

Character Set Data Structure
A character set is stored — both in memory and in its VLIR record — as a contiguous data structure consisting

of an eight-byte header, followed by an index table and the actual character image data. The image data for the

characters are stored in a bitstream format, pixel row by pixel row. Imagine laying every printable character side

by side, in character code order, starting with character number 32 (the space character). If the top row of pixels

from every character were then stored together as a contiguous stream of bits, this would be the proper bitstream

format. In GEOS, for every pixel of height in a character set, there is a corresponding bitstream row. Starting with

the top row, each bitstream row is padded with zeros to make it end on a byte boundary. The next row (if there is

one) is appended at the next byte. The number of bytes in each bitstream row is called the set width.

Because each character in a GEOS font can be of a different pixel width, GEOS needs some way of indexing into

the bitstream data to find the beginning of each character. For each character there is 2 byte index that indicates

where the character begins in the bitstream. For example, if the first pixel for the "A" character begins at pixel

148 in the bitstream, then the index value for character code 65 (uppercase "A") would be 148.

Character Set Data Structure:

 Offset Field size Description

+0 byte Baseline offset (in pixels from top of character).

+1 word Bytes in one bitstream row (set width).

+3 byte Font height.

+4 word
Pointer to beginning of index table (relative to beginning of data structure). Usually
$0008 because the index table follows immediately after the next word.

+6 1 word
Pointer to beginning of character bitstream data (relative to beginning of data
structure). Bitstream data typically follows the index table.

+(8) ? words

Index table: one word entry for each printable character (the first word corresponds to
character code 32). Each index word is pixel position of the character in each bitstream
row. Total number of words = number of printable characters in the set.

+? ? bytes

Bitstream rows: one row of bitstream data for each pixel of height in the character set.
Each bitstream row is padded with zero bits out to the next byte boundary. Total bytes
= number of printable characters in the set times the set width.

Note: GEOS font IDs were meant to be unique; in fact, Berkeley Softworks even had a font registration

service to help ensure this. However, GEOS users didn't always use the service, and a complete list

wasn't available unless you had Dick Estel's Font Resource Directory, which itself could get out of

date.

A web app listing all known GEOS fonts and a PDF sample sheet including a sorted list of font IDs

and names can be found here: Lyon Labs GEOS Fonts.

You can use these resources to explore GEOS fonts and to make sure that if you create one yourself,

it will have a unique font ID.

https://www.lyonlabs.org/geofont/
https://www.lyonlabs.org/commodore/onrequest/geos/geos-fonts.html

 6-16 Text, Fonts, and Keyboard Input

Saving and Restoring the Font Variables
In both GEOS 64 and GEOS 128 all the information GEOS needs for using a font is stored in the variable table

beginning at fontTable and stretching for FONTLEN (9) bytes. Whenever GEOS needs to switch fonts internally

(while drawing the BSW 9 text in menus, for example), these bytes are saved off to saveFontTab, which is also

FONTLEN bytes long. If a GEOS application needs to temporarily change fonts, it can simply duplicate this

technique, saving and restoring to fontTable and saveFontTab as needed.

Keyboard Input

Many keyboard input needs can be accommodated through normal processing with GetString and through dialog

boxes with DBGETSTRING, but many specialized functions require servicing keypresses directly. The

application might want to implement shortcut keys — special key combinations that allow quick access to menu

items or other functions — or an application, such as a word processor, might need to do dynamic text formatting

as characters are typed.

Key-scan Conversion
The internal code that the computer hardware returns for each keypress usually reflects the position of the key on

the keyboard, not the actual character on the keycap. GEOS pre-processes all keypresses, ignoring some and

translating others. For most keys, the keypress is translated into the GEOS ASCII character code equivalent: [a]

translates to 97, [SHIFT] + [a] translates to 65, and [RETURN] translates to CR. These keys can go directly to

GEOS text routines without any further work. However, there are some key combinations that get translated

outside of the printable character range (codes between 0 and 32), and the application will need to filter these out.

If the shortcut key (designated by the Commodore logo on CBM computers) is pressed in combination with

another key, the high-bit (bit 7) of the keypress byte will be set. This means, for example, that [SHORTCUT] +

[a] is equivalent to:

.byte (SHORTCUT | 'a')

How GEOS Handles Keypresses
At interrupt level, GEOS scans the keyboard looking for key presses and releases. If a new key has been pressed

or an old key has been held down long enough to begin auto-repeating, GEOS places the corresponding character

code for the key at the end of the keyboard queue. The keyboard queue is a circular FIFO (first-in, first-out) buffer

that holds keypresses. A queue is used because many typists can, at times, type keys faster than the application

can process them. If there was no key buffer, keypresses would be lost. As long as there are characters in the

keyboard queue, the KEYPRESS_BIT of pressFlag is set.

On each pass through MainLoop, GEOS checks the KEYPRESS_BIT of pressFlag. If the bit is set, GEOS

removes the oldest keypress from the queue, places it in the global variable keyData, and attempts to vector

through keyVector. keyVector usually contains a $0000, which causes GEOS to ignore the vector and, hence,

ignore the keypress. As long as keyVector is $0000, keypresses will continue to accumulate in the queue at

interrupt level and be ignored, one at a time, at MainLoop level.

By placing the address of a key-handling routine in keyVector, the application can be called off of MainLoop to

process keypresses as they become available. When the application's key handler gets called, it merely picks up

the key code from keyData, does any necessary processing, and returns to MainLoop with an rts when done.

With this technique, though, the application can only process one keypress on each pass through MainLoop, even

though the keyboard queue may have more than one character in it. This is typically not a problem because the

overhead most applications need to handle a character is minimal. But take geoWrite, for example. If only one

 6-17 Text, Fonts, and Keyboard Input

character could be processed at a time, it might need to print, word-wrap, and scroll for each character. Even a

medium speed typist could get far ahead of the screen updating. If there was a way to get at all the keypresses in

the queue at once, then all the calculating and screen manipulations could be done for more than one character on

each pass through MainLoop. GEOS offers a routine to do just this:

GetNextChar gets the keycode of the next available character from the keyboard queue and returns it in the

accumulator. If there are no more characters available, GetNextChar returns a NULL. To retrieve all the queued

keypresses, an application can call GetNextChar in a loop, transferring all queued characters to its own buffer.

This buffer must be at least KEY_QUEUE bytes long so that it won't be overflowed.

Example: KeyHandler.

Ignoring Keys While Menus are Down
Because MainLoop is still running full-speed when menus are down, keyVector will still be vectored through

on a regular basis. The application may want to postpone any text output or keypress interpretation when menus

are down. Checking for this case is simple:

lda menuNumber ; check current menu level
bne 99$; leave if any menus are down

Implementing Shortcuts
Shortcut keys are a common user-interface facility found in GEOS applications. Briefly, a shortcut key is a key

combination that allows the quick selection of a menu item or function in the application. Typically, shortcuts are

distinguished from other keypresses by pressing the shortcut key (the Commodore logo) while typing another

key. Key combinations that include the shortcut key will have the high-bit set, which makes them easy to

recognize. Even if an application is not using shortcuts, it will most likely want to at least filter out all shortcut

keys. To process shortcut keys, the normal key handler (the one the application installs into keyVector) should

first check the high-bit of the keypress and branch to the shortcut key handler if the bit is set:

KeyHandle:
 lda menuNumber ; check current menu level
 bne 99$; ignore keys while menus down
 lda keyData ; get the keypress
 bmi 10$; was it a shortcut?
 jsr NormalKey ; no, process normally
 bra 99$; exit
10$
 jsr ShortKey ; yes, process as a shortcut
99$
 rts ; exit

The shortcut key handler will need to decide what to do based on the key that was pressed. Usually the shortcut

bit (bit 7) will be removed, the character will then be converted to uppercase, and the resulting character code will

be used to search through a table of valid shortcut keys. If the particular shortcut key is not supported, the handler

just returns, ignoring the keypress. If the key is implemented, the handler needs to call an appropriate subroutine

to process the shortcut key:

Example: ShortKey.

GetNextChar Retrieve the next character from the keyboard queue.

 6-18 Text, Fonts, and Keyboard Input

The Text Entry Prompt

Whenever an application will be accepting text input, it is a good idea to offer a prompt, or cursor, to mark the

point at which text will appear. GEOS offers three routines for automatically configuring sprite #1 to act as a text

entry prompt:

The prompt automatically flashes on the screen without disrupting the display and can be resized to reflect the

point size of a particular font.

Sample Keyboard Entry Routine

As an example, we will use some of the concepts covered in this chapter in real-world code. The following routine

will patch into keyVector and output text as keys are pressed:

Example: "Sample Keyboard Entry Routine."

InitTextPrompt Initialize sprite #1 for use as a text prompt.

PromptOn Turn on the prompt (show the text cursor on the screen).

PromptOff Turn off the prompt (remove the text cursor from the screen).

Important: Interrupts should always be disabled and alphaFlag should be cleared when PromptOff is

called. The following subroutine illustrates the proper use of PromptOff:

KillPrompt:

php ; save current interrupt disable status
sei ; disable interrupts
jsr PromptOff ; prompt = off
LoadB alphaFlag,#0 ; clear alpha flag
plp ; restore old interrupt status
rts ; exit

 6-19 Text, Fonts, and Keyboard Input

Sample Better Get String

With the routines discussed in this chapter it is possible to build a sophisticated word processor. To show how

these routines fit together we can build a simple version of GetString. For want of a better name, let's call it

OurGetString. It will read buffered input from the keyboard, display and update the text prompt position so that

it moves ahead of the text, and echo the characters back to the screen. When we get this running, we can generalize

it by adding support for reading embedded control characters. OurGetString can then be used as the basis for a

text editor module that reads from a buffer as well as/instead of from the keyboard.

We begin by looking at keyVector, and keyData. keyVector contains the address of the keyboard dispatch

routine. keyData gets the value of the key that was pressed. The keyVector routine gets called every time GEOS

detects that a key was hit. Initially keyVector is set to 0 by the GEOS Kernal so all characters typed from the

keyboard will be ignored. The application should load keyVector with the address of a routine to handle character

input. In the present case this is the address of OurGetString.

When a key is pressed on the keyboard, the Interrupt Level code in GEOS places the ASCII value of that key in

the variable keyData. Interrupt Level checks this every 60th of a second. During MainLoop, GEOS will check

a flag left by Interrupt Level and if it indicates that a key has been pressed, MainLoop will call OurGetString.

OurGetString can then get the character value out of keyData.

MainLoop does a little more than this though. If the application is doing a lot of processing, then it is possible

that the user may have had a chance to enter two or three characters since the last call through keyVector to

OurGetString. In this case, GEOS automatically buffers keyboard input. If Interrupt Level finds that another key

has been pressed, and keyVector hasn't been serviced, it saves the character in its own internal buffer. The routine

GetNextChar can then be call from within the keyboard dispatch routine to retrieve characters stacked up in the

input buffer. Each time GetNextChar is called it returns the next character from the input buffer. When there are

no more characters to return, GetNextChar returns zero.

When OurGetString is called, we retrieve the first character from keyData. We then call GetNextChar in a

loop to return the remaining characters. Each time we get a character we store it in our own input buffer, inBuffer.

As we retrieve the input characters, we will want to echo them back. This means calling PutChar to print it to

the screen. You pass PutChar the character to print and an x and y-position on screen to print it at. The position

can be any legal position on the screen, 0 to 319 for x, and 0 to 199 for y. PutChar is the same routine used by

GetString and PutString.

It is also possible to use StringFaultVec to handle printing off screen, or outside of margins. StringFaultVec

will get called when PutChar tries to print a character outside of the leftMargin, rightMargin. PutChar will

also clip any part of a character that appears outside of windowTop and windowBottom. Clipping means that

any part of a character appearing outside the top and bottom-margins will not be printed. Therefore, on the top

and bottom-edges of a text window, chopped off characters may appear. This is useful for implementing scrolling

where characters may be of different fonts and sizes on the same line.

StringFaultVec can be used to scroll a text window left or right or to wrap characters from the right-side of the

screen to the left. In the first case, if the text window as defined on the screen by windowTop, windowBottom,

leftMargin and rightMargin is used as a window overlooking a much larger document, then it is natural to want

to scroll the document under the window. When a character is entered that lies outside the window, the

StringFaultVec routine is called and may then erase the text in the window area and redraw it shifted to the left

to make room for the new text on the right.

 6-20 Text, Fonts, and Keyboard Input

OurStringFault dispatch routine will perform a simple character text wrap. Characters typed past the end of the

line will be moved to the beginning of the next. It will look at the height of the current line, add that to the vertical

position of the text and use the result as the new vertical position. leftMargin is used as the new horizontal

position. When the OurStringFault handler returns, it returns the same as if PutChar had returned.

OurGetString will not know that OurStringFault was ever triggered. All it knows is that it called PutChar and

a character was printed.

To briefly recap, OurGetString will prompt the user for input, display the text prompt, and get keyboard data

from reading keyData and calling GetNextChar. As the characters are entered they will be echoed via PutChar

and stored in our own internal buffer. If the end of the line is reached before the user hits return, OurStringFault

handler will perform a character wrap.

The routine begins with the call to PutString in order to print the prompt.

jsr i_PutString ; call the routine
.word XPOSPROMPT ; the inline x-position, Possible range 0-319
.byte YPOSPROMPT ; the inline y-position, Possible range 0-199
.byte "Enter something here: ",0 ; the string to print
;--- code resumes here

Now we should put up the text prompt. To do this we need to set the size and position. For now we will be printing

in the standard GEOS character set which is 9 point and so let's choose 12 for the size of the vertical bar. The x,

y-position for the bar is easiest to find by experiment, trying a value and running the program. For now lets define

the constants XPOSPROMPT and YPOSPROMPT and guess at their initial values, later.

XPOSPROMPT = some x value in range 0 to 319
YPOSPROMPT = some y value in range 0 to 199

Next we call PromptOn in order to turn on the sprite used for the text prompt and position it. The text prompt

uses sprite 1.

lda #9 ; pass height of text prompt
jsr InitTextPrompt ; init the prompt
LoadW stringX,#XPOSPROMPT ; pass the x-position and y-position for prompt
LoadB stringY,#YPOSPROMPT
jsr PromptOn ; make it visible

stringX and stringY are the variables used by PromptOn to hold the x, y-position of the prompt. The cursor is

now visible. OurGetString will get a character, print it to the screen, and then move the prompt to the right of

the character. Luckily PutChar returns r1 and r11 updated for the width of the char. All we need to do is transfer

the updated x-position to stringX. So let's start writing OurGetString.

The first thing to do is make sure we get called. Let's load keyVector with OurGetString's address. While we're

at it let's do the same for our string fault vector routine. Add the following line to the prompting code above.

LoadW keyVector,#OurGetString ; set up keyboard dispatch
LoadW StringFaultVec,#OurStringFault ; set up Margin Fault Handler

 6-21 Text, Fonts, and Keyboard Input

Let's take a close look at OurGetString. It gets the first character from keyVector, checks for the carriage return

the user types to terminate the input string. If the character is not a CR then we echo it with PutChar, and store

it in the input Buffer. Next, GetNextChar is called to return any additional chars until it returns zero. As part of

echoing each input character, OurGetString will advance the text prompt the width of the character. Since

stringX and stringY are used to pass the x, y-position for the text prompt to PromptOn, we also use them to

hold the position to print the input characters at as well. The code is as follows.

OurGetString:
 ldx #0 ; used as index into our buffer
 lda keyData ; get first key
10$
 cmp #CR ; see if user indicates end of string
 beq 90$; if so go terminate the string

 sta inBuffer,x ; add to our input buffer
 pha ; save the char
 inx ; point to next open byte in inBuffer

 MoveW stringY,r1H ; Get position for char from stringX and stringY
 MoveW stringX,r11 ; (the position of the prompt)
 pla ; get the character from stack
 jsr PutChar ; echo the char to the screen

; PutChar returns new x, y-position
; in r11 and r1H, use for prompt

 MoveW r11, stringX ; Get x-position for next char into
; stringX. Only x-position changed

 jsr PromptOn ; update the prompt position

 jsr GetNextChar ; see if last character
 ;cmp #0 ; (Z flag is set by GetNextChar when buffer is empty)
 bne 10$; Loop again if more characters
 ;--- if zero then exit
90$
 lda #NULL ; terminate the input string in
 sta inBuffer,x ; inBuffer
 rts

 6-22 Text, Fonts, and Keyboard Input

We can now input and echo characters to the screen. Eventually though, OurGetString will try to print a character

past rightMargin, and OurStringFault will get called. We want it to change the x, y-position of the text prompt

and the location for drawing upcoming characters to the next line. In order to reset the y-position to the next line,

OurStringFault has to know how tall the characters on the present line are. The easiest way to do this is to use

the routine, GetRealSize. OurStringFault should save the character passed to it, and call GetRealSize to find

out the height of the character. It needs to add this height plus a little more to space the lines apart to the present

vertical position in stringY. stringX is set to the left-margin and the character is printed.

OurStringFault:

pha ; save the char passed us
ldx currentMode ; style may affect char width
jsr GetRealSize ; we want the height
txa ; height returned in x
clc
adc stringY ; add height to stringY
adc #2 ; add a little line spacing
sta stringY ; new y-position
LoadW stringX,#leftMargin ; print from left-margin
pla ; restore the char
jsr PutChar ; print the char at beginning of line
rts

.

 7-1 MainLoop and Interrupt Level a Technical Breakdown

 MainLoop and Interrupt Level a Technical Breakdow n

MainLoop and Interrupt Level:
a Technical Breakdown

The GEOS Kernal operates on two distinct levels: MainLoop Level and Interrupt Level. MainLoop Level is

characterized by the GEOS MainLoop — a never-ending loop at the heart of GEOS that routes events to the

application. Whenever the application does not have control, MainLoop usually does.

But there is also Interrupt Level. Periodically (usually every l/60th of a second) the computer hardware

temporarily interrupts the microprocessor. The processor may be in the middle of MainLoop, deep within a

GEOS routine, or somewhere in the application. Either way, the 6502 immediately suspends whatever it is doing

and passes control to the GEOS Interrupt Level. Interrupt Level scans the keyboard circuitry, moves the mouse

pointer, flashes the text prompt, decrements timers, and performs other low-level tasks. Interrupt Level operates

independently of MainLoop and ensures that certain things get done on a regular basis. When the Interrupt Level

processing is complete, control returns to the point where the original interrupt occurred.

Whatever GEOS does at Interrupt Level is mostly transparent to the application. Only when an application strays

from the beaten path will it need to worry about the specifics of Interrupt Level processing.

MainLoop Level

When GEOS starts an application, it first initializes the operating system and then jsr's to the application's start

address. The application is expected to perform its basic startup procedures, such as initializing its menus, icons,

and processes, and then return immediately with an rts. This rts will place GEOS at the beginning of MainLoop.

MainLoop is primarily a small, endless loop of function calls.

MainLoop Service Routines
MainLoop itself is rather short. The meat of its function is hidden in the various service routines that it calls.

Because these service routines interact directly with the application, it is useful to understand the specific

conditions that affect their operation. The pseudo-code diagrams at the end of this chapter illustrate the operation

of the more important service routines.

Patching into MainLoop
Although most applications can function entirely off of events, some may find the need to install their own service

routine directly off of MainLoop. GEOS has a single vector for this purpose: appMain, which usually contains

$0000 and is therefore unused. By placing a routine address into this vector, GEOS will call through this vector

every pass through MainLoop. To remove this call, the application can again store $0000 into the vector.

The Basics of Interrupt Level

Interrupt Level is primarily responsible for maintaining the interactive and time-based aspects of GEOS. Interrupt

Level updates the mouse state and the mouse cursor position, watches for double clicks, decrements process and

sleep timers, gets keyboard input, flashes the prompt, and generates a new random number every vblank, among

other (more obscure) tasks.

 7-2 MainLoop and Interrupt Level a Technical Breakdown

The Vertical Blank Interrupt
The Interrupt Level interrupt is tied directly to the video circuitry. In order to keep the screen phosphors glowing,

the image must be redrawn, or refreshed, many times per second. Each complete coverage of the picture tube is

called a frame, and the rate at which frames are drawn is called the frame rate or refresh rate.

At the end of each frame, the electron beam is switched off and returned to the upper left corner of the picture

tube to begin drawing again. This period when the beam is off is called the vertical blank, or vblank. Every vblank,

the IRQ (Interrupt ReQuest) line on the 6502 is pulled low. If the interrupt disable bit in the status register is clear

(as it usually should be), an interrupt is generated. This interrupt is often called the vblank interrupt. GEOS uses

the vblank interrupt as the basis for its Interrupt Level processing.

The vblank interrupt, along with the scanning of the video frame, occurs in a precisely timed sequence: 60 times

per second on NTSC monitors (the United States standard) and 50 times per second on PAL monitors (the

European standard). The GEOS FRAME_RATE constant reflects the number of frames per second (either 50 or

60) depending on the state of the PAL and NTSC constants.

How to Disable Interrupts
Because the vblank interrupt is an IRQ (Interrupt ReQuest), the 6502 has the option of ignoring the request. To

disable IRQ interrupts, an application need only set the interrupt disable bit in the 6502's status register using the

sei (Set Interrupt disable bit) instruction. Because GEOS depends on Interrupt Level executing on a timely basis,

an application should disable interrupts only when absolutely needed and then only for short periods of time. If

an interrupt occurs while the interrupt-disable bit is set, the interrupt will not be serviced. If too many interrupts

are missed, much of the real-time features of GEOS — the mouse pointer, processes, double click detection,

etc. — will become sluggish.

In conventional 6502 programming, it is standard practice to surround blocks of interrupt-sensitive code with an

sei-cli sequence: an initial sei to disable interrupts and an ending cli to reenable interrupts. This, however, is not

a totally safe practice because the cli always reenables interrupts regardless of their original state. If interrupts

were originally disabled, the cli may inadvertently reenable them. As applications get large, it becomes easier to

embed these interrupt disable/enable sequences deep within subroutines. If one subroutine disables interrupts then

calls another subroutine that then performs a cli (returning with interrupts enabled when they shouldn't be), the

results may be a disastrous bug.

It is good to practice a little defensive coding and get into the habit of saving the interrupt status when disabling

them around blocks of code. The following sequence works well:

php ; save current interrupt disable status
sei ; disable interrupts

 ; (interrupt-sensitive code goes here)
plp ; restore old interrupt status

This php-sei-plp method will save, set, and then restore the interrupt disable bit. This way interrupts won't be

inadvertently reenabled when they're expected to be disabled.

 7-3 MainLoop and Interrupt Level a Technical Breakdown

Important Things to Know About Interrupt Level

The vblank interrupt service routine is one of the most complex aspects of GEOS. Fortunately, most applications

will need to know little more about the Interrupt Level process than its basic functioning. However, there are

some unavoidable conflicts between Interrupt Level and normal, mainstream processing, and these are important

to know.

Two-byte Variables
During non-interrupt level processing, it is important to disable interrupts before referencing a word value that

might get changed at Interrupt Level or changing a word value that might get referenced at Interrupt Level. A

two-byte quantity requires two memory accesses, and there is a small chance that an interrupt may occur after the

first byte has been accessed but before the second byte has been accessed. This can result in a situation where a

word value has the high-byte of one number and the low-byte of another. Take for example the variable

mouseXPos, which is modified at Interrupt Level. The seemingly innocent code fragment below illustrates the

problem:

MoveW mouseXPos,oldX ; update our old mouse x-position with current mouse x-position

Which expands to the following at assembly time:

lda mouseXPos+1 ; update our old mouse x-position with current mouse x-position
sta oldX+1
lda mouseXPos
sta oldX

If an interrupt occurs between the lda mouseXPos+1 and the subsequent lda mouseXPos, the word stored in oldX

may be entirely wrong. The solution is to temporarily disable interrupts around the access:

php ; save current interrupt disable status
sei ; disable interrupts around access
MoveW mouseXPos,oldX ; update our old mouse x-position with current mouse x-position
MoveB mouseYPos,oldY ; Get a consistent y-position at the same time.
plp ; restore old interrupt status

Be aware, though, that the php-sei-plp sequence has its own set of idiosyncrasies: the plp restores the entire status

register, not just the interrupt disable bit, thereby overwriting any new condition codes. Therefore, disabling as in

php ; save current interrupt disable status
sei ; disable interrupts around compare
CmpW mouseXPos,oldX ; compare current x-position with Old x-position
plp ; restore old interrupt status

would defeat the whole purpose of the CmpW. In such cases, the condition codes can, of course, be tested before

the plp. A better solution, however, would disable interrupts, shadow the word value to a temporary variable,

restore the interrupt disable status, then do all checking against this temporary value, which won't get changed by

Interrupt Level.

Example: IsMseInMargins

Word variables to be careful with include mouseXPos, mouseLeft, mouseRight, intTopVector, and

intBotVector, all of which are either read or written to by Interrupt level.

 7-4 MainLoop and Interrupt Level a Technical Breakdown

The Decimal Mode Flag
GEOS adopts the convention that the normal operating state of the computer has decimal mode disabled. Any

routine that enables decimal mode must also disable it. Versions of GEOS 64 prior to v1.2 do not disable decimal

mode during interrupt level processing. If operating under one of these versions, it is necessary to disable

interrupts prior to using the decimal mode flag.

Patching Into Interrupt Level

Very few applications will need access to the system at Interrupt Level. Most tasks that would traditionally require

the use of a time-based interrupt can be handled deftly enough with GEOS processes. If an application can drive

itself entirely off of MainLoop events, it should. The world of Interrupt Level is a delicate one; it is very easy to

disrupt the entire system by doing the wrong thing during Interrupt Level. With that said, though, GEOS provides

two vectors that allow an application that knows what it's doing to tap directly into Interrupt Level: intTopVector

and intBotVector.

As illustrated in the Interrupt Level pseudo-code at the end of this chapter, control passes through these two

vectors at different points in the interrupt process. intTopVector allows the application to patch in before most

of the Interrupt Level processing has occurred and intBotVector allows the application to patch in after most of

the Interrupt Level processing has occurred.

System Use of intTopVector and intBotVector
GEOS 64 and GEOS 128 use intTopVector to point to InterruptMain, a vital function of the GEOS Interrupt

Level. An application that uses intTopVector should call the address that was originally in intTopVector when

it is done. This will ensure that the GEOS InterruptMain will be executed properly.

Example:
;--- Install our interrupt routine into intTopVector
Installint:
 php ; save current interrupt disable status
 sei ; disable interrupts
 MoveW intTopVector,oldTopVector ; save address of current routine
 LoadW intTopVector,#MyIntRout ; install our interrupt routine
 plp ; restore old interrupt status
 rts

;--- Remove our interrupt routine from intTopVector, replacing it with old.
Removeint:
 php ; save current interrupt disable status
 sei ; disable interrupts
 MoveW oldTopVector,intTopVector ; restore old routine
 plp ; restore old interrupt status
 rts

;--- My interrupt service routine
MyIntRout:
 ... ; interrupt code here
 ...
 ldx oldTopVector+1
 lda oldTopVector
 jmp CallRoutine ; end with transfer to InterruptMain

Important: The application should always disable interrupts before loading a new address into either

intTopVector or intBotVector. The program will very likely crash if this precaution is not taken.

 7-5 MainLoop and Interrupt Level a Technical Breakdown

Guidelines for Interrupt Level Routines
There are a few general guidelines for any routine that patches into Interrupt Level:

• Keep the routines short. Interrupt level is not the place for time-consuming code.

• Stay away from GEOS. Some routines will work correctly at interrupt level and others won't. Even worse,

the ones that won't work might only show this trait after your product has been released and in the hands

of users for months. (It is O.K., though, to use CallRoutine, as many of the examples in this chapter

illustrate).

• Never clear the interrupt disable bit.

Following these guidelines will keep your Interrupt Level routines as innocuous as possible.

 7-6 MainLoop and Interrupt Level a Technical Breakdown

Interrupt Level Pseudo-Code

The following pseudo-code diagrams illustrate the general Interrupt Level constructs in both systems (GEOS 64,

GEOS 128). This information can be crucial when trying to track down a subtle interaction between the various

levels of GEOS.

GEOS 64 and GEOS 128 Interrupt Level

InterruptLevel:

{

/* Context Save:

Save out any information about the system configuration that we might destroy */

Save6502Regs(); /* save the status of the A, X, Y, and S registers */

SaveGEOSRegs(); /* save r0-r15 and a few internal variables */

SaveCBMState(); /* save state of Commodore memory banks */

SetIOIn(); /* set RAM 1 and I/O registers in. Much of Kernal

 is now inaccessible */

DblClicks(); /* decrement dblClickCount if non-zero */

if (GEOS128)

{ DoMouse(); /* GEOS 128 updates mouse here */

 DoSetMouse(); /* and also calls SetMouse in mouse driver. SetMouse

 doesn't exists in GEOS 64 input drivers.*/

}

DoKeyboard(); /* scan the keyboard and add a char to the queue if key pressed */

DoAlarmSnd(); /* update timer for alarm sound duration */

/ * Application can patch into the following two vectors. The application's routine should always end by

indirectly calling the routine whose address was originally installed in the vector. Use CallRoutine in

the Kernal in case the pointer is $0000.

* /

CallRoutine(intTopVector) /* call indirectly through intTopVector. On the C64/128, this

 points to InterruptMain. */

CallRoutine(intBotVector) /* call indirectly through intBotVector. This is usually

 $0000, which CallRoutine ignores. */

/ * Context Restore:

Restore information about the system configuration that we saved */

RestoreCBMState(); /* put memory banks back as they were */

RestoreGEOSRegs(); /* restore r0-r15, etc.*/

Restore6502Regs(); /* restore A, X, Y, and S registers */

ReturnFromIRQ(); /* pick up where we left off */

}

 7-7 MainLoop and Interrupt Level a Technical Breakdown

GEOS 64 and GEOS 128 InterruptMain

/ *

InterruptMain

Called through intTopVector under GEOS 64/128.

* /

InterruptMain:

{

if (GEOS64)

{ DoMouse(); /* GEOS 64 updates mouse here */

}

UpdateProcesses(); /* Update the process timers */

UpdateSleeps(); /* Update the sleep timers */

UpdatePrompt(); /* Flash/Update the text prompt */

GetNewRandom(); /* jsr GetRandom in Kernal */

Return();

}

UpdateProcesses

UpdateProcesses:

{

if (numProcesses > 0) / * Only do this if there are processes in the table */

{

for (EachProcess) /* go through each process in the table */

{

if (Process != FROZEN) /* only if unfrozen... */

{ DecrementTimer(); /* count down one tick */

if (Timer ==0) /* if timer timed-out

{ Process = RUNABLE; /* make it runnable */

ResetTimer(); /* and reset the counter */

}

}

}

}

Return();

}

UpdateSleeps

UpdateSleeps:

{

if (numSleeping > 0) / * Only do this if there are routines sleeping */

{

for (EachSleeping) /* go through each sleeping routine */

{

if (SleepTimer > 0) /* if counter not zero, then still asleep! */

{ Decrement(SleepTimer); /* so count down one tick */

}

}

}

}

 7-8 MainLoop and Interrupt Level a Technical Breakdown

UpdatePrompt

UpdatePrompt:

{

if (alphaFlag(BIT7) ==1) /* prompt enabled if hi-bit of alphaFlag set */

{

DecrementAlphaFlagTimer(); /* dec timer in lower 6 bits of alphaFlag */

if ((alphaFlag&$3F) == 0) /* if time to change prompt state */

{

/* Toggle the state of the prompt */

if (PromptState == ON) /* bit 6 of alphaFlag= 1 */

{ PromptOff ();

}

else

{ PromptOn ();

}

}

}

Return();

}

DoMouse

DoMouse:

{

UpdateMouse (); / * call input device driver for new positioning */

{

if (mouseOn(MOUSEON_BIT) == 1) /*if mouse is on... */

{

FaultCheck(); /* check for faults */

/* Draw the mouse here */

{

DrawSprite (mousePicData) /* copy mouse picture into sprite data table */

PosSprite (mouseXPos, mouseYPos) /* position the sprite */

if (GEOS64) / * if GEOS 64... */

{ EnablSprite (MOUSE) /* always enable the sprite each time */

}

}

}

}

Return();

}

 7-9 MainLoop and Interrupt Level a Technical Breakdown

FaultCheck

FaultCheck:

{

/* Check mouse against left constraint and left screen edge*/

if ((mouseXPos < mouseLeft) || (mouseXPos < 0))

{ mouseXPos = mouseLeft; /* force mouse to constraint */

faultData (OFFLEFT_BIT) = 1; /* show left fault */

}

/* Check mouse against right constraint and right screen edge */

if ((mouseXPos > mouseRight) || (mouseXPos > SC_PIX_WIDTH-1))

{ mouseXPos = mouseRight; /* stop mouse at edge */

faultData (OFFRIGHT_BIT) = 1; /* show right fault */

}

/* Check mouse against top constraint and top screen edge*/

if ((mouseYPos < mouseTop) || (mouseYPos < 0))

{ mouseYPos = mouseTop; /* stop mouse at edge */

faultData (OFFTOP_BIT) »1; /* show top fault */

}

/* Check mouse against bottom constraint and bottom screen edge */

if ((mouseYPos > mouseBottom) || (mouseYPos > SC_PIX_HEIGHT-1))

{ mouseYPos = mouseBottom; /* stop mouse at edge */

faultData (OFFBOTTOM_BIT) = 1; /* show bottom fault */

}

if (mouseOn(MOUSEON_BIT) == 1) /* if menus on, see if mouse is off current menu */

{

if ((mouseYPos < menuTop) ||

(mouseYPos > menuBottom) ||

(mouseXPos < menuLeft) ||

(mouseXPos > menuRight)

) /* if mouse outside any menu edge... */

{ faultData (OFFMENU_BIT) - 1; /* show menu fault */

}

}

Return();

}

 7-10 MainLoop and Interrupt Level a Technical Breakdown

MainLoop Level Pseudo-Code

The following pseudo-code diagrams illustrate the general MainLoop Level constructs in both systems (GEOS

64 and GEOS 128). This pseudo-code is useful for determining exactly how icons, menus, and other event-

generating mechanisms interact with your application.

MainLoop

MainLoop:

{

while (TRUE) /* This loop is never ending */

{

KeyboardService(); /* service keyboard and related MainLoop functions */

ProcessService(); /* service processes */

SleepService(); /* service sleeping routines */

CBMTimeService(); /* service the Commodore time */

CallRoutine(appMain); / * Call any application code that NEEDS to be handled

Every MainLoop */

} /* endwhile */

}

 7-11 MainLoop and Interrupt Level a Technical Breakdown

KeyboardService

KeyboardService:

{

if (C128) /* GEOS 128 handles sprites here */

{ SoftSprHandler();

}

/* RUN THROUGH THE BITS IN PRESSFLAG AND DISPATCH AS NECESSARY.

THESE DISPATCHES GO THROUGH VECTORS THAT TYPICALLY DEFAULT TO

GEOS ROUTINES FOR HANDLING THE VARIOUS USER-INPUTS */

/* input device changed vector (currently unused by GEOS) */

if (pressFlag (INPUT_BIT) ==1) /* if input device changed */

{

pressFlag (INPUT_BIT) = 0) /* clear flag */

CallRoutine(inputVector) /* and go through vector «$0000» */

}

/* state of mouse changed vector (mouse moved; state of button changed)

mouseVector usually points to an internal GEOS routine SystemMouseService() */

if (pressFlag (MOUSE_BIT) ==1) /* if mouse state changed... */

{

pressFlag (MOUSE_BIT) = 0) /* clear flag */

CallRoutine(mouseVector) /* and go through vector «SystemMouseService» */

}

/* keyboard character ready

keyVector defaults to $0000. */

if (pressFlag (KEYPRESS_BIT) =* 1) /* if key in queue... */

{

keyData = GetCharFromQueue(); /* get keypress */

if (QUEUE_EMPTY) /* if no more keys in the queue... */

{

pressFlag (KEYPRESS_BIT) = 0); /* clear flag */

}

CallRoutine(keyVector) /* go through vector «$0000» */

}

/* any mouse faults since last time?

mouseFaultVec usually points to an internal GEOS routine SystemFaultService() */

if (faultData != 0) /* if any faults... */

{

CallRoutine(mouseFaultVec); /* go through vector «SystemFaultService» */

faultData = 0; /* and clear faults afterward */

}

Return();

}

 7-12 MainLoop and Interrupt Level a Technical Breakdown

ProcessService

ProcessService:

{

if (numProcesses > 0) / * If no processes, ignore */

{

for (EachProcess) /* go through each process in the table.

(start with last in table & work backward) */

{

if ((Process == (RUNABLE & ~BLOCKED)) /* only if runnable & not blocked */

{ Process ==~RUNABLE; /* clear runnable flag */

ProcessEvent(); /* and generate a process event by calling the

routine in the table. */

}

}

}

Return();

}

SleepService

SleepService:

{

if (numSleeping > 0) /* Only do this if there are routines sleeping */

{

for (EachSleeping) /* go through each sleeping routine */

{

if (SleepTimer=0) /* if counter not zero, then time to awake! */

{

RemoveSleep(); /* remove this sleeper from the internal list */

WakeUp(); /* and go wake it up */

}

}

}

Return();

}

 7-13 MainLoop and Interrupt Level a Technical Breakdown

SystemMouseService

SystemMouseService:

{

if (mouseData(BIT_7) == DOWN) /* if mouse button down (bit == 0)... */

{

if (mouseOn(MOUSEON_BIT) ==1) /* if mouse checking is on... */

{

if (mouseOn(MENUON_BIT) ==1) /* if menus scanning is on... */

{

/* Check if the mouse is within the currently active menu (level 0/main) */

if ((mouseYPos > menuTop) &&

(mouseYPos < menuBottom) &&

(mouseXPos > menuLeft) &&

(mouseXPos < menuRight))

{

MenuService(); /* mouse was pressed on menu, go handle it */

Return(); /* Return without checking icons */

}

}

/* Not on a menu, see if press was on an icon */

if (mouseOn(ICONSON_BIT) ==1) /* if icon scanning is on... */

{

/* search through the icon table looking for a match */

for (EachIcon)

{

if (icon(OFF_I_PIC) != $0000) /* if icon not disabled... */

{

if (MouseOnIcon() == TRUE) /* if mouse on top of this icon... */

{

/* flash or invert icon as necessary */

if (iconSelFlag (ST_FLSH_BIT)) /* flash icon? */

{ InvertIcon(); /* invert once */

Sleep (selectionFlash); /* sleep awhile */

InvertIcon(); /* invert back again */

}

else if (iconSelFlag (ST_INVRT_BIT)) /* invert icon? */

{ InvertIcon(); /* just invert */

}

/* check for double click */

if (DBL_CLICK) /* if this is the second click of a dbl click...*/

{ r0H = TRUE; /* set double click flag */

}

else

{ r0H = FALSE; / * else, set single click flag */

}

 7-14 MainLoop and Interrupt Level a Technical Breakdown

/* call the icon event routine */

r0L = icon; /* tell event routine which icon */

CallRoutine (icon(OFF_I_EVENT)); /* generate an event */

Return(); /* break out of the for loop (check no more icons!) */

}

}

}

}

}

}

/* If we got here, the following is true:

1) mouse button was released (as opposed to pressed)

- or -

2) mouse was pressed, but not on an icon nor on a menu

*/

CallRoutine (otherPressVec); /* it's an "other" press... "other" as in something the

system doesn't really care about */

}

 7-15 MainLoop and Interrupt Level a Technical Breakdown

SystemFaultService

SystemFaultService:

{

/* only deal with faults if the mouse is on, menu scanning is enabled, and we've got a

submenu down... */

if ((mouseOn(MOUSEON_BIT) == 1) && (mouseOn(MENUON_BIT) ==1)&&

(menuNumber > 0) }

{

if (menuType == CONSTRAINED)

{

/* for constrained menus... */

/* If mouse faulted off the top of a vertical menu or off the left of a horizontal

menu, then we go to the previous menu. Otherwise, the fault is ignored because

the menu is constrained */

if ((menuType == VERTICAL && faultData(OFFTOP_BIT) == TRUE) ||

(menuType == HORIZONTAL && faultData(OFFLEFT_BIT) == TRUE))

{

DoPreviousMenu();

}

}

else /* menuType == UN_CONSTRAINED */

{

DoPreviousMenu(); /* always try to go to the previous menu. If mouse didn't

move onto the previous menu, then next pass through

MainLoop will see this as a fault and try to remove

that menu, and so on until we're back to the main menu

* /

}

}

Return();

}

 7-16 MainLoop and Interrupt Level a Technical Breakdown

Quick Reference Pseudo-Code

InterruptMain

Called during each interrupt via intTopVector.

This routine performs the bulk of the interrupt's

work and must be called or things will freeze up.

 .if GEOS64
 GEOS 64 services the mouse here
 jsr DoMouse
 .endif
 jsr UpdateProcesses update process

timers
 jsr UpdateSleeps update sleep timers
 jsr UpdatePrompt flash text prompt
 jmp GetRandom get a new random

number

MainLoop

GEOS 128 will handle soft (80-col) sprites here.

 jsr KeyboardService service pressFlag,

 inputVector,

mouseVector,

keyVector,

mouseFaultVec

Menu/Icon mouse presses are handled through

mouseVector. mouseVector is normally set to

SystemMouseService. When mouse action is not

handled, then SystemMouseService calls

CallRoutine (otherPressVec)

Now we check if any processes or sleeping routines

should be executed.

 jsr ProcessService
 jsr SleepService

Next, update the time and alarm variables. If it is

time for the alarm to sound call alarmTmtVector.

 jsr CBMTimeService

appMain is normally NULL. You can wedge your

own MainLoop routines in here

 ldx #]appMain
 lda #[appMain
 jsr CallRoutine

 rmbf 7,grcntrl1

 jmp MainLoop loop is never ending

InterruptLevel

Save the state of the machine. This includes A, X, Y

and S plus r0-rl5 and the memory configuration

jsr SaveState

Now the I/O area is switched in. GEOS 128 also

ensures that bank 1 is the active bank.

jsr SetIOIn

Now dblClickCount is decremented. This variable

is used to tell if the user clicks the mouse twice in

rapid succession

jsr DblClicks

 .if GEOSl28
 GEOS 128 updates the mouse here

jsr DoMouse
jsr SetMouse

 .endif

Now scan the keyboard and if a key is found place

it in the keyboard queue.

jsr DoKeyboard

jsr DoAlarmSnd service alarm tone timer

Normally intTopVector points to InterruptMain.

If you wedge a routine in here the routine must end

with jmp InterruptMain.

 ldx #]intTopVector
 lda #[intTopVector
 jsr CallRoutine execute InterruptMain

Normally intBotVector is NULL, i.e. $0000.

A routine wedged in here should end with rts.

ldx #]intBotVector
lda #[intBotVector
jsr CallRoutine normally unused.

jsr RestoreState back the way it was.

rti

 8-1 Dialog Box

 Dialog Box

Dialog Boxes (DB) appear as a rectangle in which text, icons, and string manipulation may occur. Dialog Boxes

are used by applications to display error conditions, warn the user about possibly unexpected side effects, prompt

for a sentence or two of input, present filenames for selection, and perform various other tasks where user

participation is desired. Several frequently used Dialog Box functions are built directly into the GEOS Kernal.

Along with programmer defined functions, Dialog Boxes provide a simple, compact, yet flexible user interface.

A Dialog Box may be called up on the screen at any time. It is like a small application, running in its own

environment. It will not harm the current application, or change any of its data (unless this is intentionally done

by a programmer supplied routine). Calling up a Dialog Box causes most of the state of the machine to be saved.

All the Kernal variables, vectors, and menu and icon structures are saved. The Dialog Box can therefore be very

elaborate, since it need not worry about permanently affecting the state of the machine. The pseudoregisters

r0H-rl5, however, are not saved, nor is the screen under where the Dialog Box appears. Restoring the screen

appearance after a DB is run is described later.

To call up a Dialog Box use the routine DoDlgBox. To exit from a Dialog Box and return to the application call

RstrFrmDialog. All the variability of Dialog Boxes is provided by a powerful yet simple table. The table

specifies the dimensions and functionality of the Dialog Box. DB tables are made up of a series of command and

data bytes. DB command bytes indicate icons to display or commands (usually for printing text) to execute within

the DB. DB data bytes specify information such as location of the DB, its dimensions, and text strings.

DB Structure

The first entry in a DB table is a command byte defining its position. This can either be a byte indicating a default

position for the DB, DEF_DB_POS, or a byte indicating a user defined position, SET_DB_POS which must be

followed by the position information.

Position Command
The position command byte is or'ed with a system pattern number to be used to fill in a shadow box. The shadow

box is a rectangle of the same dimensions as the DB and is filled with one of the system patterns. The shadow

box appears underneath the DB one card to the right and one card below. A system pattern of 0 indicates no

shadow box. It's easier to look at an example of a DB with a shadow box than it is to describe it. A picture of one

appears in the Open Box example later in this chapter.

The two forms for the position byte, default and user defined, are:

Start of Default Dialog Start of Custom Size Dialog
------------------------------------- --

.byte DEF_DB_POS | pattern .byte SET_DB_POS | pattern

.byte top ; (0-199)

.byte bottom ; (0-199)

.word leftside ; (0-319)

.word right ; (0-319)

Note: Additional information on Dialogs can be found in "Chapter 19 Environment > Structures >

dialog/Icons/Menus/Graphics"

 8-2 Dialog Box

DB Icons and Commands
The Kernal supports a special set of resident icons for use in DBs. DB Icons provide a simple user response to a

question or statement. When the user clicks on one of these icons the DB is erased, the number of the selected

icon is returned in r0L, and RstrFrmDialog is automatically called. The application that called DoDlgBox then

checks r0L and acts accordingly, usually calling a routine it associates with that icon. DB Icons indicating OK,

CANCEL, YES, NO, OPEN and DISK are provided.

DB Commands are provided for running any arbitrary routine, printing a text string, prompting for and receiving

a text string, putting up a scrolling filename box, putting up a user-defined icon, and providing a routine vector

to jump through if the joystick button is pressed when the cursor is not over any icon. DB Commands take the

form of one command byte containing the number of the command to execute and any following optional data

bytes. After the position byte (or bytes) may appear a number of icon or command bytes.

Icon Commands

Whenever a system DB icon is activated, the DB exits, returning the icon's number in r0L. The application can

then know which icon was selected and take the appropriate action. A maximum of 8 icons may be defined in a

DB.

An Icon byte is followed by two bytes defining the position of the icon as an offset from the upper left corner of

the DB. The first is the x-position (icon x-position uses cards, 0-39; text x-position use pixels 0-255); the second

is the y-position in pixels, 0-199. The OK icon is the most common icon. The OK icon command would look like

the following:

.byte OK ; icon to display

.byte x_card_offset ; icon x-position uses bytes (cards) 0-39

.byte y_offset ; y-position is always in pixels 0-199

Table of icon commands

Icon Value Example Description

OK 1 .byte OK

.byte x_card_offset

.byte y_offset

Draw OK icon

 x-offset is in cards (0-39)

 y-offset in lines (0-199)

CANCEL 2 .byte CANCEL

.byte x_card_offset

.byte y_offset

Draw CANCEL icon

 x-offset is in cards (0-39)

 y-offset in lines (0-199)

YES 3 etc...

NO 4

OPEN 5

DISK 6

 7-10 Marked for future use.

Important: The x-position of text fields is stored in a single byte, not in the normal word. This limits the

x-position to a range of 0-255. Since the x-position is an offset from the left-side of the Dialog

Box this would only be a limitation if a custom size dialog box is created that is wider than 255

pixels.

 8-3 Dialog Box

Dialog Box Commands

Several commands are defined for use in DBs. Many are used to put up text within the Box. For example, the

command DBTXTSTR is followed by two position offset bytes and a word pointing to a text string. When used

in a DB, DBTXTSTR will display the text string at a position offset from the upper left corner of the DB. The

position offsets are measured in pixels from top of the DB to the baseline of the text string, and in pixels from the

left-side of the DB to the left-side of the first character in the string. This means any string may be offset at most

255 pixels from the left-side of the DB. The following table contains the available commands.

Table of DB Commands:

Command Value Example Description

DBTXTSTR 11 .byte DBTXTSTR

.byte x_offset

.byte y_offset

.word textPtr

PutString textPtr at selected offsets.

 pixel offset 0-255

 pixel offset 0-199

textPtr contains address of null terminated string

DBVARSTR 12 .byte DBVARSTR

.byte x_offset

.byte y_offset

.byte zPgPtr

PutString @@zPgPtr

zPgPtr is an address of a zero page ptr to a null

terminated string.

Example: .byte r15

DBGETSTRING 13 .byte DBGETSTRING

.byte x_offset

.byte y_offset

.byte zPgPtr

.byte maxChars

Read a text string typed by user into buffer.

zPgPtr points to address of a buffer that is maxChars

bytes.

Example: .byte r5

 with r5 containing address of string buffer

DBSYSOPV 14 .byte DBSYSOPV Enable function that causes a return to the

application whenever mouse is pressed any place

except over an icon.

DBGRPHSTR 15 .byte DBGRPHSTR

.word graphicsStrPtr

i_GraphicsString graphicsStrPtr

graphicsStrPtr contains address of a graphics string.

(1This command will end Dialog Box processing)

DBGETFILES¥

16 .byte DBGETFILES

.byte x_offset

.byte y_offset

Display the filename box inside the DB. ¥

 r7L = FILETYPE

 r5 = buffer

 r10 = file class

DBOPVEC 17 .byte DBOPVEC

.word msePressVector

sets otherPressVec to msePressVector. Vector is

called when the mouse button is pressed any place

except over an icon.

DBUSRICON 18 .byte DBUSRICON

.byte x_card_offset

.byte y_offset

.word userIcon

userIcon table:

 .word ptrIconData

 .word NULL

 .byte width in bytes

 .byte height in pixels

 .word ServiceRoutine

Note: (width | DOUBLE_B for 128)

DB_USR_ROUT 19 .byte DB_USR_ROUT

.word userVector

Call userVector after the DB is drawn and before the

DB icons have been drawn.

NULL 0 .byte NULL Ends the Dialog Box definition.
¥ See Example: GetWorkFile.

 8-4 Dialog Box

The registers r5 through r10 and r15 may be used to pass parameters to those commands expecting them. (As

well as any other zero page address the application has defined for itself, e.g. a0). A couple of the commands

deserve further explanation.

DBGETSTRING
DBGETSTRING receives a text string from user input and stores it in the buffer pointed to by the register address

specified in zPgPtr. The command also echoes the input string onto the screen, at the position indicated by the

coordinates x_offset and y_offset, expressed in pixels. The offsets refer to the upper left corner of the dialog box.

The maximum number of characters that can be entered is set with maxChars.

DBGRPHSTR
DBGRPHSTR command will always be the last command processed in the table. If you need to draw grahics on

the dialog box and you need another command to be the last command, you should use DB_USR_ROUT instead

and do the call to GraphicsString within the user routine.

DBGETFILES
The DBGETFILES DB command is the most powerful. A picture of it appears below:

A box containing the names of files which can be selected is displayed. If there are more files than can be

displayed at one time, the up/down arrow icon can be used to scroll the filenames up or down. A maximum of 15

files may be viewed this way. Usually this is enough. Upon execution of the DB, r7L is expected to contain the

GEOS file type (SYSTEM, DESK_ACC, APPLICATION, APPL_DATA, FONT, PRINTER, INPUT_DEVICE,

DISK_DEVICE, AUTO_EXEC, INPUT_128). r5 should point at a buffer to contain the selected filename. If the

caller passes a filename in r5 and this file is one of the files found by DBGETFILES, then this filename will

appear highlighted when the filenames are displayed in the dialog box.

When a file is selected, its name will be null terminated and placed in this buffer. r10 should be set to null to

match all files of the given type, or point to a buffer containing the permanent name string of files to be matched.

The permanent name string is contained in the file header block for each file. It contains a name that is the same

for all files of the same type. For example, geoPaint will only want to open files it created. It points r10 to the

Important: When GraphicsString encounters the NULL marking the end of a string, control is returned to

the application as if the DB definition table had terminated normally. The NULL does not

resume the DB definition table processing.

 8-5 Dialog Box

string "Paint Image", when using DBGETFILES. This is useful for displaying only those files of GEOS type

APPL_DATA created by a specific program.

The end of a DB definition table is signaled with a .byte NULL as the last entry. As examples speak louder than

explanations, we present two DB examples below:

Example: openBoxDB, getFileDB.

DBOPVEC
DBOPVEC sets up a vector which contains the address of a routine to call whenever the user clicks outside of an

icon. This routine will be run and its rts will return to the DB code in MainLoop. Other icons or DB commands

may then be executed, or icons selected.

If the programmer wants the routine to exit from the DB altogether as DBSYSOPV does, then a jmp

RstrFrmDialog should be executed from within the routine. Whenever this is done, sysDBData should be

loaded with a value that RstrFrmDialog will then transfer to r0L when it exits. In situations where several user

responses are possible within a DB, the calling application checks r0L to determine the action that caused the

DB exit. Your DBOPVEC routine should return sysDBData a value that cannot be mistaken for a different icon

in the same DB. Since DBs can only handle 8 icons, any number greater than 8 is sufficient.

DBUSRICON
If the programmer wishes to have an icon in a DB that is not one of the Kernal supported DB icons, he may use

the DBUSRICON command to define his own. A word following the command byte points to an icon table not

unlike the table normally used to define icons within an application. As can be seen in the Table of DB

Commands, the position bytes for the icon within this table are set to zero as the position offset bytes just

following the command byte are used instead. The user routine pointed to from inside this icon table is executed

immediately when a press within the icon is detected. Like DBOPVEC, instead of returning to the application

like the predefined system icons, this user icon returns to the DB level in MainLoop.

To make the user routine return to the application it may execute a jmp RstrFrmDialog. A QUIT or OK icon

may also be used in the same DB to cause a return to the application. As with DBOPVEC, the DBUSRICON

routine should load sysDBData with a value that RstrFrmDialog will then transfer to r0L. This value should be

selected so that the application will not mistake it for one of the DB icons.

 8-6 Dialog Box

DB_USR_ROUT
The DB_USR_ROUT command executes a programmer supplied routine when the DB is drawn. This routine

may be quite elaborate, setting up processes, menus, edit windows and the like. Since DoDlgBox and

RstrFrmDialog, respectively, save and restore the system state, a DB_USR_ROUT called routine need not worry

about trashing the state of the system. However, you may not call DoIcons from within a DB_USR_ROUT if you

are also using the standard Dialog Box Icons as the two sets of icons will interfere. The DB icon structure is drawn

and initialized after the DB_USR_ROUT is called. This way an icon may be placed on top of a graphic drawn by

the DB_USR_ROUT.

Example:
ExDB:

.byte DEF_DB_POS | 1 ; simple dialog definition table

.byte OK, DBI_X_2,DBI_Y_2 ; OK Button

.byte DB_USR_ROUT ; setup for our routine to get hooked

.word DBHook ; into the MainLoop

.byte NULL

DBHook:
 ;--- code here executes BEFORE Dialog Box icons are drawn

LoadW appMain,#UsrRoutine ; set our UsrRoutine to be called at
rts ; the end of the next MainLoop

UsrRoutine:
 ;--- code here executes AFTER all dialog box setup is done.

LdNull appMain ; remove hook into main loop
LoadW r0,#myGraphics
jsr GraphicsString
...

Exiting from a DB
The applications screen is recovered in one of two ways. First, if the screen's contents are buffered to the

background screen, then all that needs to be done is a RecoverRectangle which will copy the background screen

to the foreground screen. If the dispBufferOn flag is set so that the background is being used for code space and

not to buffer the foreground screen, then the application must provide another means to recreate the screen

appearance.

When RstrFrmDialog is called it will call the routine whose address is in RecoverVector. RecoverVector

normally contains the address of RecoverRectangle. To recover the screen when the display is being buffered,

two calls through RecoverVector are done. First, the RstrFrmDialog routine sets up the coordinates of the DB's

shadow box and vectors through RecoverVector. This will restore the area under the shadow box. Second, it sets

up the coordinates of the area under the DB itself and vectors through RecoverVector again. In this way the

contents of the Background Screen corresponding to the area under the DB and its shadow box are copied to the

Foreground Screen.

Note: It is standard practice in Berkeley applications to have the DB_USR_ROUT set appMain to point to

the routine that will perform the custom dialog box setup. The first step that routine performs is to

remove it's hook from appMain. This allows the dialog to complete its internal processing before we

do our modifications. The first time the MainLoop runs after the dialog is done our routine will get

called through the appMain vector.

 8-7 Dialog Box

If the application does not use the Background Screen RAM as a screen buffer then it must provide the address

of a different routine to call. The alternate routine address must be stored in RecoverVector in order to provide

some other means of recreating the screen appearance. RecoverVector is called once for the Shadow and then

once for the Dialog Box. If there is no Shadow then RecoverVector will only be called one time.

The dimensions of the areas to recreate are passed in the regular RecoverRectangle registers r2-r4. When you

have a shadow, it will be more efficient to only recover the screen behind the "Full Dialog Box" one time instead

of once for the Shadow rectangle and again for the Dialog Box only rectangle. To do that you will need a flag to

show the state of the drawing and variables to save the shadow dimensions. The Following example illustrates a

simple recovery setup that uses the default background pattern to replace the removed dialog box.

Example:
;--- (ramsect area assumed to be initialized to NULL at program startup)
.ramsect
 rYB:

.block 1 ; holds the bottom y-coordinate of the shadow and doubles as our flag
 rXR:
 .block 2 ; holds right x-coordinate of the shadow area

RecoverRect:
 lda rYB ; if rYB is zero we are in the first call
 bne 50$
 ;--- First call from RecoverVector
 MoveB r2H,rYB ; save the bottom y-coordinate
 MoveW r4,rXR ; save the right x-coordinate
 rts ; exit so the dialog can continue to be removed

50$;--- second call from RecoverVector
 sta r2H ; set bottom of the recovery rectangle to the bottom of the shadow
 MoveW rXR,r4 ; set right-side of the recovery rectangle to the right of the shadow
 LoadB rYB,#NULL ; reset flag to NULL so it will be in correct state next use
 lda #2 ; recover behind the full dialog Box using standard background pattern
 jsr SetPattern
 jmp Rectangle

 ;--- sample Setup before call to DoDlgBox
 LoadW RecoverVector,#RecoverRect ; activate RecoverVector processing
 LoadW r0,#dlgDB
 jsr DoDlgBox ; activate dialog box
 LoadW RecoverVector,#NULL ; turn off RecoverVector processing
 lda r0L
 ...

 8-8 Dialog Box

Dialog Box RAM Buffer

This buffer is for variables that are saved when dialog boxes or desk accessories are run. Both of these actions

require the system to be able to warmstart GEOS and return to the application state after the action completes.

This ability to backup and restore the system state allows for both the Dialog Box / Desk Accessory to startup

into a known base startup, just like the application itself always starts up at this same warmstart state.

Limitations
There are 2 rules to Dialog Boxes that have to be followed since there is only 1 buffer and no mechanism for

nesting.

1. Never run a Dialog Box from a Dialog Box.

2. Never run a Dialog Box from a Desk Accessory.

Attempting to do either of those actions will cause unpredictable results likely causing a system crash when

returning from the Dialog Box. To see why this happens we will need to examine the contents of the

dlgBoxRamBuf.

Removing Limitations
In order to perform either of the tasks listed above, an application will need to back up the Dialog Box RAM

Buffer before either of those actions and then restore it after the action is done.

The dlgBoxRamBuf is TOT_SRAM_SAVED bytes so you will need a buffer in ramsect large enough to hold it.

Applications can do their own backup and restore of this buffer to get around the Dialog Box limitations:

Example:

TOT_SRAM_SAVED = 417

.ramsect
dbrb_back:
 .block TOT_SRAM_SAVED ; allocate enough RAM to hold a copy of the buffer

.psect
Bck_dbrb:
 jsr i_MoveData ; move the contents of the dlgBoxRamBuf to holding
 .word dlgBoxRamBuf ; buffer
 .word dbrb_back
 .word TOT_SRAM_SAVED
 rts

Note: See "Dialog Box RAM Buffer" in Chapter 19: "Environment > Structures" for a detailed

breakdown of the contents of this buffer.

 8-9 Dialog Box

Rst_dbrb:
 PushB r0L
 jsr i_MoveData ; restore the contents of the dlgBoxRamBuf
 .word dbrb_back ; from the holding buffer
 .word dlgBoxRamBuf
 .word TOT_SRAM_SAVED
 PopB r0L
 rts

 ;--- From an Auto Exec or from inside a dialog.

 jsr Bck_dbrb ; backup dialog RAM buffer
 LoadW r0,#dlgBox ; display the dialog box
 jsr DoDlgBox
 jsr Rst_dbrb ; restore the dialog RAM buffer
 lda r0L
 ;--- process Dialog Box Result

Note: To allow further nesting of Dialog Box's, an application would need a way of tracking nesting levels

and a storage strategy for keeping the nested 417-byte buffers. With nesting logic in place, you could

easily allow an Auto Exec to not only use a Dialog Box, but that Dialog Box could also call another

Dialog Box.

 9-1 File System

 File System

The GEOS file system is based on the normal C64 DOS file system. A combination of two factors led to an

augmentation of the basic structure: first, the C64 was not originally designed to be a disk computer, and second,

the addition of the diskTurbo now makes it practical to read and write parts of a file as needed. Previously the

slowness of the disk drive often meant that files were read in at the beginning of execution, and not written until

exiting the program. If file writes had to be done in the middle of execution, a coffee break was usually warranted.

GEOS supports two different types of files. The first is similar to regular C64 files and is called a SEQUENTIAL¥

file. This type of file is made up of a chain of sectors on the disk. The first two bytes of each sector contain a track

and sector pointer to the next sector on the disk, except for the last sector which contains $00 in the first byte to

indicate that it is the last block, and an index to the last valid data byte in the sector in the second byte. The second

type of file is a new structure, called a Variable Length Indexed Record, or VLIR for short. An additional block,

called a Header Block, is added to both VLIR & SEQUENTIAL files. It contains an icon graphic for the file, as

well as other data as discussed later.

To understand GEOS files, one must first understand the Commodore files on which they are based. I refer the

reader to any of the several good disk drive books available. I use the Commodore 1541 (or 1571) User's Guide,

and The Anatomy of the 1541 Disk Drive (from Abacus Software).

This chapter is divided into three sections. The first, for those already familiar with the 1541, is a brief refresher

of the basic Commodore DOS. Second, we present GEOS routines for opening and closing disks and dealing with

directories and standard files. The final section is devoted to a detailed look at VLIR files.

The Foundation
A 1541 disk is divided into 35 tracks. Each track is a narrow band around the disk. Track 1 is at the edge of the

disk and track 35 is at the center. Each track is divided into sectors, which are also called blocks. The tracks near

the outside edge of the disk are longer and therefore can contain more blocks than those near the center. The

Block Distribution by Track tables show the number of sectors in each track for each of the GEOS 2.0 supported

drives.

Directory Track

1571 Block Distribution by Track
Track Number Range of Sectors Total Blocks

1 to 17 0 to 20 21

18 to 24 0 to 18 19

25 to 30 0 to 17 18

31 to 35 0 to 16 17

36 to 52 0 to 20 21

53 to 39 0 to 18 19

60 to 35 0 to 17 18

66 to 70 0 to 16 17

 1366

1541 Block Distribution by Track
Track Number Range of Sectors Total Blocks

1 to 17 0 to 20 21

18 to 24 0 to 18 19

25 to 30 0 to 17 18

31 to 35 0 to 16 17

 683

1581 Block Distribution by Track
Track Number Range of Sectors Total Blocks

1 to 80 0 to 39 3160

 3160

Note: ¥ SEQUENTIAL stands for any non-VLIR file in GEOS, and should not be confused with the SEQ

C64 file format. In fact, USR, PRG and SEQ C64 files all qualify as GEOS SEQUENTIAL file

types.

 9-2 File System

Track 18, the 1541/1571 directory track (1581 uses track 40), is used to hold information about the individual

files contained on the disk. Sector 0 on this track contains the Block Availability Map (BAM) and the directory

header. The BAM contains 1 bit for every available block on the disk. The bits corresponding to blocks already

allocated to files are set while the bits corresponding to free blocks are cleared. Before the BAM bits is a pointer

to the first directory block, which is described later. The BAM format is unchanged by GEOS.

Directory Header
The Directory Header contains the disk name, an ID word (to tell different disks apart), and three new elements

for GEOS, a GEOS ID string, a track/sector pointer to the Off-Page Directory block, and a disk protection byte.

The GEOS ID string is contained in an otherwise unused portion of the BAM/directory header block. It identifies

the disk as a GEOS disk and identifies the version number, which can be important for data compatibility between

present and future versions of GEOS. See the BAM Format/directory header table below. This string should not

be confused with the GEOS Kernal ID and version string at $C000 as described in "GEOS Kernal Information

Bytes" in Chapter "Basic GEOS".

Here is the format of the 1541/71 BAM and directory header:

 BAM Format/Directory Header

 Byte
Offset

Constant Contents Definition

 $00 18 Track of first directory block. Always 18.

 $01 1 Sector of first directory block. Always 1.

 $02 'A' ASCII char A indicating 1541 disk format.

 $03 1541 and 1581 not used: $00

1571 double-sided flag:

$00 = single-sided format

$80 = double-sided format

BAM $04 OFF_TO_BAM Number of free sectors in track 1

TRACK $05 Track 1, BAM for sectors 0-7

1 $06 Track 1, BAM for sectors 8-15

 $07 Track 1, BAM for sectors 16-20

BAM $08 Number of free sectors in track 2

TRACK $09 Track 2, BAM for sectors 0-7

2 $0A Track 2, BAM for sectors 8-16

 $0B Track 2, BAM for sectors 17-20

... BAM for tracks 3-35

 $90 OFF_DISK_NAME 16-byte Disk name

D H $A0 $A0 x 2 2 Shifted spaces

I E $A2 OFF_DSK_ID Disk ID (word)

R A $A4 $A0 Shifted space

E D $A5 '2' DOS version: 2

C E $A6 'A' Format type

T R $A7 $A0 x 4 4 Shifted spaces

O $AB OFF_OP_TR_SC Tr/Sr of off page directory block

R $AD OFF_GS_ID 16 bytes GEOS ID string. "GEOS format V1.2"

Y $BD OFF_GS_DTYPE $00 / 'P' 'B' indicates protected Boot disk

'P' indicates protected Master disk

 $BE $00 Unused

 9-3 File System

Disk Protection Byte
The disk protection byte is at OFF_GEOS_DTYPE (189) in the Directory Header. This byte is normally 0, but

may be set to 'P, to mark a disk as a Master Disk. GEOS Version 1.3 and beyond deskTops will not allow a Master

Disk to be formatted, copied over, or have files deleted from the deskTop notePad. Files may still be moved to

the border and deleted from there. This saves GEOS developers from having to replace application disks that have

been formatted, or otherwise destroyed by user accident.

Off Page Directory Block
The Off-Page directory block is a new GEOS structure but has the same format as regular Commodore directory

blocks. Directory blocks hold up to 8 directory entries. Each directory entry (also known as file entry because it

describes a file), contains information about one file. When a file is moved off the deskTop notepad onto the

border, the file's directory entry is erased from its directory block and is copied to the off-page directory block. A

buffer in memory is also reserved to save information about each file on the border.

Directory Block
The format of the directory block is shown below. The overall structure of a directory block is unchanged. The

following table was derived from the C64 disk drive manual.

Directory Block Structure

Offset Description

$00 Track and sector of next directory block

$02 Directory entry 1

$20 Unused

$32 Directory entry 2

 ...

$E0 Unused

$E2 Directory entry 8

Directory blocks appear only on the directory track

Directory Entry

Several unused bytes in each directory entry have been taken for use by GEOS. Bytes 1 and 2 point to the first

data block in the file unless the file is a GEOS VLIR file. In this case these bytes point to the VLIR file's index

table. Bytes 19 and 20 point to a new GEOS table, the file header block as described below. Bytes 21 and 22 are

used to convey the GEOS structure and type of the file. The structure byte indicates how the data is organized on

disk: 0 for SEQUENTIAL, or 1 for VLIR. The file type refers to what the file is used for, DATA, BASIC,

APPLICATION and other types as listed in the table below. The SYSTEM_BOOT file type should only be used

by GEOS Boot and Kernal files themselves.

The TEMPORARY file type is for swap files. All files of type TEMPORARY are automatically deleted from any

disk opened by the deskTop. The deskTop assumes they were left there by accident, usually when an application

crashes and a swap file is left behind. When creating swap files, use the TEMPORARY file type and start the

filename with the character PLAINTEXT.

Important: The off-page feature exists so that a file can be copied between disks on a one drive system.

The Icon for an off-page file will remain on the deskTop border when a new disk is opened

and the deskTop set to display the contents of the new disk. The file can then be dragged to the

notepad from the border, thus copying it to the new disk.

 9-4 File System

Example:
swapName:

.byte PLAINTEXT,"My swap file",NULL

This will cause the file to print in plain text on the desk top and will prevent a user file with the same name to be

accidentally removed when "My swap file" is created. Finally, bytes 23 through 27 are used to hold a time and

day stamp so that files may be dated.

Directory Entry

Offset Description

$00 Commodore file type

$01 Track and sector of first data block in this file. or VLIR index block

$03 16 Character file name padded with shifted spaces $A0

$13 Track and sector of GEOS file header (new structure)

$15 GEOS file structure type: 0=SEQuential, 1=VLIR

$16 GEOS file type

$17 Date: Year. The year is stored as the last two digits of the actual year.

Applications must provide their own century logic. It is safe to assume any

year < 86 is in the 21st century. The original spec was for the year to be an

offset from the year 1900. This would have been the perfect solution. The

GEOS code base may be too large to patch and fix this problem now.

$18 Month/day/hour/minute

$1C File size expressed as number of blocks in the file. (word)

File Header Block
The GEOS file header block was created to hold the icon picture and other information that is handy for GEOS

to have around. Something worth bringing attention to is that the file header block is pointed to by bytes $13-14

of the file's directory entry. Thus, any C64 SEQUENTIAL file may have a header block. (Bytes $13-14 was

previously used to point to the first side sector in a C64 DOS relative file, so these bytes are unused in a

SEQUENTIAL file. This is also why the REL file is not a valid Commodore file type under GEOS). Bytes 0 and

1 in all disk blocks point to the next block in the file, or the offset to the last data byte in the last block of a file.

Since the file header block is only a single block associated with a file, bytes 0-1 are always set to $00, $FF. This

indicates that no blocks follow and all bytes in the block are used.

Note: For a more detailed view of the directory entry see "Directory Entry" in Chapter 19 "Environment

> Structures".

 9-5 File System

We follow the header block diagram below by a complete description of its contents:

GEOS File Header Block
(256 bytes. New GEOS file extension. Pointed to by Directory Entry)

Offset Constant Contents Description

$00 00, FF 00=Indicates this is the last block in the chain.

FF=Index to the last valid data byte in the block.

$02 O_GHIC_WIDTH 3 Width of icon in bytes, always 3

$03 O_GHIC_HEIGHT 21 Height of file icon in lines, always 21.

$04 O_GHIC_PIC Icon data

$44 O_GHCMDR_TYPE C64 file type

$45 O_GHGEOS_TYPE GEOS file type

$46 O_GHSTR_TYPE GEOS structure type

$47 O_GHST_ADDR Start address in memory for loading the program.

$49 O_GHEND_ADDR End address in memory for loading a desk accessory, otherwise start address -1.

$4B O_GHST_VEC Address of initialization routine to call after loading the program.

$4D O_GHFNAME
O_GHCNAME

 Permanent filename. Bytes 0-11 = Filename padded with spaces;

Permanent ClassName. (Data Files) Bytes 0-11 = ClassName Padded with spaces

12-15=version string "V1.3"; 16-18=0's.

$60 O_128_FLAGS OS compatibility flag.

$61 O_GH_AUTHOR Author Name If application program, holds name of software designer.

$75 O_GHP_FNAME Parent

Application

If data file, 20-byte parent application's permanent filename. Bytes 0-11=name

padded with spaces; 12-15=version string "V1.3"; 16-20=0's

$89 O_GHAPDAT Application 23 bytes for application use.

$A0 O_GHINFO_TXT Get Info Used for the file menu option Info. String must be null terminated.

Fonts use the data area of the file header block from $61 to $9F in a different way.

Offset Contents Description

$61 O_GHSETLEN VLIR Size (word) of each Point Size. 15 words.
$80 O_GHFONTID Font style ID (word).
$82 O_GHPTSIZES List of Character Set ID (word). 15 words.

File Header Block In Detail:

Icon data
Bytes at offset O_GHIC_WIDTH contain the width and height of the icon data that follows. File icons are always

3 bytes wide by 21 scan lines high. The two-dimension bytes precede the data because the internal routine used

by GEOS to draw icons is a general routine for drawing any size icon and it expects the two bytes to be there.

The image bytes at O_GHIC_PIC contain the picture data for the icon in compacted bit-map format. Byte 4 is the

bitmap format byte. There are three compacted bit-map formats. The second format as described in "GEOS

Compacted Bitmap Format" in chapter Graphics Routines, is a straight uncompacted bit-map. To indicate this

format, the format byte should be within the range 128 to 220. The number of bytes in the bit-map is the value of

this format byte minus 128. Since the value of the highest bit is 128, the lower 7 bits, up to a value of 92 indicate

the number of bytes that follow.

Commodore File Type
The lowest 3 bits at O_GHCMDR_TYPE is the old C64 file type, PRG, SEQ, USR, or REL.

Note: For a more detailed view of the File Header Block see "File Header Block" in Chapter 19

"Environment > Structures".

 9-6 File System

GEOS file type
The byte at O_GHGEOS_TYPE, is the GEOS file type. Presently there are 15 different GEOS file types. There

may be additional file types added later, but these will most likely be application data files and will be lumped

together under APPL_DATA.

GEOS file structure type
O_GHSTR_TYPE is the GEOS file structure type. This is either VLIR or SEQUENTIAL. (Remember, a

SEQUENTIAL GEOS file is just a linked chain of disk blocks. It does not mean a C64 SEQ file).

Start Address
The word at O_GHST_ADDR is the starting address at which to load the file. Normally, GEOS will load a file

starting at the address specified in O_GHST_ADDR. Later we will see how an alternate address can be specified.

This is sometimes useful for loading a data file into different places in memory.

End Address
The word at O_GHEND_ADDR contains the address of the end of the file. GEOS uses this address when loading

Desk Accessories. This allows GEOS to backup enough application space to allow the desk accessory to be

loaded. Other file types besides Desk Accessories should have an End Address = Start Address – 1.

Application Initialization vector
If the file is a BASIC, ASSEMBLY, APPLICATION, or DESK_ACC, then it is an executable file. The deskTop

will look at the word at offset O_GHST_VEC for the address to start execution at after the file has been loaded.

Usually this is the same as the start address for loading the file, but need not be.

Permanent Filename / Permanent ClassName
A Permanent Filename for a file is necessary since the user can rename files at will. VLIR applications like

geoWrite need to be able to find their VLIR records when they first load up. Instead of searching for the name

"GEOWRITE" which can be changed by the users, it searches for it's Permanent File Name which will always be

the same even if the file is named "Suzy Wong at the Beach".

The 20 bytes at O_GHP_FNAME store the Permanent Filename string for all files except APPL_DATA files.

Though there are 20 bytes allocated for this string, the last 4 bytes should always be 3 nulls (0). For applications

the last byte is the OS Compatibility Flag at offset O_128_FLAGS, otherwise it is another 0. Bytes 0-11 are used

for the file name and padded with spaces if necessary. Bytes 11 to 15 should be the version number of the file.

We have developed the convention that Version numbers follow the format: V1.0 where V1 is just a capital ASCII

V followed by the major and minor version numbers separated by an ASCII period.

Example Permanent File Name:
 .byte "geoWrite V2.1",NULL,0,0,CF_40

APPL_DATA files use a Permanent ClassName at O_GHP_CNAME. This is the same location in the header as

O_GHP_FNAME. The 20 byte string is a 12 character ClassName followed by a 4 character Version number and

then 4 nulls. The Class Name is used by applications when they are looking for their data files. They will search

for all files of a specific class. This also serves the purpose of allowing the Application to know the version of the

Data File.

Example Class Name:
 .byte "Write Image V2.0",NULL,0,0,0

 9-7 File System

Author
The 20 bytes at O_GH_AUTHOR are for storing Information about the Creator of the application. The string in

this field must be NULL terminated.

Example:
.byte "Dave & Mike",NULL,0,0,0,0,0,0,0,0

Parent Application
When GEOS needs to locate an application it looks at the Parent Application string at O_GHP_FNAME. When

a user double clicks on a data file, GEOS will look at the Parent Application string and try to find a file of that

name. If it cannot find the file on the current disk, it will ask the user to insert a disk containing an application

file of that name, "Please insert a disk with geoWrite". When looking for an application, GEOS will only check

the first 12 letters of the name, the filename, and will ignore the Version Number for the time being. GEOS

assumes that the user will have inserted the version of the application he wants to use. In making this assumption,

GEOS tacitly assumes that applications will be downwardly compatible with data files created by earlier versions

of the same application. This need not absolutely be the case as will be seen below.

When the application is loaded and begins executing, it should look at the Permanent ClassName String of the

data file. Normally this string will be similar to the Parent Application filename and the version numbers may be

different. Thus, if you double click on a datafile and that datafile has a Parent Application of "geoWrite V2.1"

the deskTop, which doesn't compare version numbers, will load and start executing geoWrite 2.1. geoWrite will

then look at the version number in the data file's Class Name String and determine if a conversion of data file

formats needs to take place. If there were changes between the V1.2 and 2.0 versions of the data files then the

data will have to be converted.

It is much more likely for the code of a program to change - to fix bugs - than it is for the data file format to

change. Data format version numbers then tend to leapfrog application numbers. For example, application X starts

out with V1.0. After a month of beta test V1.1 is released. After 1 week of retail shipping a bug is found and a

running production change to V1.2 is made and users with V1.1 are upgraded. Meanwhile the data file format is

still V1.0; any version of the application can use it. Six months later V2.0 is released with greatly expanded

capabilities and a new data format. The data Version Number should then change to V2.0, leapfrogging V1.1,

and V1.2. This will indicate to V1.0 to V1.2 versions of the program that they cannot read the new format. If the

user has the newer version of the program than he should be using it and not an older version.

Permanent Name Example
As an example, suppose the user double clicks on a geoWrite 1.0 document. The deskTop will look for a file with

the name stored in the Parent Application string. If this program is not found on the current disk the deskTop will

ask the user to insert a disk containing it. The deskTop only looks at the first 12 characters and will ignore the

version number. After loading geoWrite, control is passed to the application. The deskTop passes a few

appropriate flags and a character string containing the name of the data file. The application, in this case geoWrite,

will look at the data file's Permanent Class name string, then its version number, and determines if it can read the

file, or if it needs to convert it to the more up-to-date version. Similarly, if an older version of an application, e.g.

geoWrite 1.0, cannot read a data file created with a newer version of the application, it needs to cancel itself and

return to the deskTop or request another disk.

Constants for Accessing Table Values
Constants that are used with the file system and tables described above are included in Chapter 19 "Environment

> Constants". These constants make code easier to read and support, and therefore are included here. Most of the

constants are for indexing to specific elements of the file tables presented above. The constants are broken down

Important: It is up to the application in its initialization code to look at the data file's version number and

determine whether or not it can handle it, and if so whether or not the data needs to be converted.

 9-8 File System

into the following sections, GEOS file types, standard Commodore file types, directory header, directory entry,

file header, and disk constants.

Disk Variables
When an application first gets called there is already some information waiting for it. Several variables maintained

by the deskTop for its own use are still available to the application when it is run. Other variables are set up by

the deskTop in the process of loading the application. This subsection covers all the variables an application may

expect to be waiting for it when it is first run. This information set up for desk accessories is slightly different.

For more details on running desk accessories see the routines GetFile and LdDeskAcc later in this chapter.

Several variables necessary to talk to the drive are available to the application. The variable curDrive contains

the number of the drive containing the application's disk, either 8 or 9. When first run, the ID bytes for the disk

containing the application are in the drive as one might expect.

Numerous variables are set up during the process of loading an application. The first group of these have to do

with how the application was selected by the user. If the user double clicked the mouse pointer on a data file,

GEOS will load the application and pass it the name of the data file. The application may then know which data

file to use. A bit is set in r0L to indicate if a datafile has been specified. If this is the case, r3 will point to the

filename of the data file, and r2 will point to a string containing the name of the disk which contains the data file.

An application may have also been run merely in order to print a data file. Another bit is used in r0L to indicate

this.

r0L - load option flag

Bit 7 (application files only)

0 - no data file specified

1 - (constant for this bit is ST_LD_DATA) data file was double-clicked on and this application is

its parent.

Bit 6 (application files only)

0 - no printing

1 - (constant for this bit is ST_PR_DATA) The deskTop sets this bit when the user clicked on a

data file and then selected print from the file menu. The application prints the file and exits.

r2 and r3 are valid only if bits 1 and/or 6 in r0L are set.

r2 - Pointer to name of disk containing data file. Points to dataDiskName, a buffer containing the name

of the disk which in turn contains a data file for use with the application we are loading. The

application can then process the data file as indicated by bit 6 of r0L.

r3 - Pointer to data filename string. r3 contains a pointer to a filename buffer, dataFileName that holds

the filename of the data file to be used with the application.

The directory entry, directory header and the file header block are also available in memory.

dirEntryBuf - Directory entry for file.

curDirHead - The directory header of the disk containing the file.

fileHeader - Contains the GEOS file header block.

There is also a BLOCKSIZE table created as the application file is read.

fileTrScTab - List of track/sector for file. Max file size is 127 blocks (32,258 bytes).

r5L - Offset from the beginning of fileTrScTab to the last track/sector entry in fileTrScTab

 9-9 File System

We now turn to discussing the actual routines used to access the disk. The next section presents an overview of

how to use the disk routines, and how to use the serial bus with GEOS.

Using GEOS Disk Access Routines
The GEOS Kernal contains a multitude of disk routines. These routines span a range of uses, from general

powerful routines, to specific primitive routines. Most applications use only a handful out of the collection, mostly

the general high-level routines. Other applications need more exacting level of disk interaction and so an

intermediate level of disk access routine is provided. These are routines used by the high-level routines to do what

they do, and can be used to create other functions.

Finally, the most primitive routines are interesting only to those who want to access a serial device other than a

printer or disk drive, use the C64 DOS disk routines, or create a highly custom disk routine, a nonverified write

for example.

Basic Disk Access
When running GEOS, only one device at a time may be selected on the serial bus. Usually this is one of the disk

drives, A or B, but it may also be a printer or other device. The routine SetDevice is used to change the currently

selected drive. You pass SetDevice the number of the drive, (8 or 9) for the drive you want to have access to the

serial bus.

After selecting the drive with SetDevice, call OpenDisk to initiate access to the disk. OpenDisk initializes both

the drive's memory and various GEOS Kernal variables for accessing files on the disk.

Once the disk has been opened, the programmer may call any of the following:

high-level Disk Routines Page

DeleteFile Delete file. 20-13

EnterDeskTop Leave application and return to GEOS deskTop. 20-15

FindFile Search for a particular file. 20-20

FindFTypes Find all files of a particular GEOS type. 20-21

GetFile Load GEOS file. 20-31

GetPtrCurDkNm Return pointer to current disk name. 20-38

OpenDisk Open disk in current drive. 20-48

RenameFile GEOS disk file. 20-58

RstrAppl Leave desk accessory and return to calling application. 20-59

SaveFile Save Memory to create a GEOS file. 20-60

SetDevice Establish communication with a new serial device. 20-62

SetGEOSDisk Convert normal CBM disk into GEOS format disk. 20-65

For VLIR Routines, see "VLIR files" Later in this chapter.

mid-level and low-level Routines
The routines above handle many of the functions required of an operating system, but by themselves are by no

means complete. These high-level routines are implemented on top of a functionally complete set of

intermediate-level routines that may be used to implement any other function needed. For example, there are no

routines for formatting disks, copying disks, or copying files in the GEOS Kernal. Most applications have little

need for copying disks or files and so these functions were not included in the Kernal. Instead, these functions

are provided by the deskTop. The deskTop is an application like any other such as geoWrite or geoPaint, except

that the deskTop is a file manipulation application, and not an editor. The copy and validate functions available

in the deskTop are implemented by using the intermediate GEOS Kernal routines.

 9-10 File System

Care must be taken when using these routines to make sure that all entry requirements are met before calling

them. Calling one of these routines without the proper variables and/or tables set up may trash the disk, crash the

system, or both. In particular, a block is set aside in the GEOS Kernal to contain a copy of the disk's Directory

Header. Some of the routines expect curDirHead, to be valid, and if any values were changed by the routine it

will be necessary to write the header back to disk afterwards. Below is a list in decreasing order of usefulness of

these more primitive routines.

Name Description Page

GetBlock Read single disk block into memory. 20-27

GetBufBlock Read single disk block into diskBlkBuf 20-28

PutBlock Write single disk block from memory. 20-50

PutBufBlock Write single disk block from diskBlkBuf. 20-51

GetFHdrInfo Read a GEOS file header into fileHeader. 20-30

ReadFile Read chained list of blocks into memory. 20-55

WriteFile Write chained list of blocks to disk. 20-71

ReadByte Read a File 1 byte at a time. 20-54

GetDirHead Read directory header into memory. 20-29

PutDirHead Write directory header to disk. (Updates BAM) 20-52

NewDisk Initialize a drive. 20-45

LdApplic Load GEOS application. 20-40

LdDeskAcc Load GEOS desk accessory. 20-42

LdFile Load GEOS data file. 20-44

GetFreeDirBlk Find an empty directory slot. 20-34

AllocateBlock Mark a disk block as in-use. 20-6

BlkAlloc Allocate space on disk. 20-8

NxtBlkAlloc Version of BlkAlloc that starts at a specific block. 20-46

SetNextFree Search for nearby free disk block and allocate it. 20-66

FreeBlock Mark a disk block as not-in-use in BAM. 20-24

SetGDirEntry Create and save a new GEOS directory entry. 20-63

BldGDirEntry Build a GEOS directory entry in memory. 20-7

FollowChain Follow chain of sectors, building track/sector table. 20-23

FastDelFile Quick file delete (requires full track/sector list). 20-18

FindBAMBit Get allocation status of particular disk block. 20-19

FreeFile Free all blocks associated with a file. 20-25

Get1stDirEntry Get first directory entry. 20-26

CalcBlksFree Calculate total number of free disk blocks. 20-10

ChkDkGEOS Check if a disk is GEOS format. 20-12

GetNxtDirEntry Get directory entry other than first. 20-36

GetOffPageTrSc Get track and sector of off-page directory. 20-37

StartAppl Warmstart GEOS and start application in memory. 20-68

 9-11 File System

Very Low-Level Primitive Routines
An even more primitive level of routines is also available. There are only three reasons one might have for using

these routines:

1. To access the standard C64 DOS routines. As mentioned before, the deskTop does this to access

the formatting routines.

2. To talk to a device other than the disk drive or printer.

3. To write highly optimized disk routines for moving large numbers of blocks around that are

ordered on the disk in some unusual way. The routines in the previous sections for reading and

writing a linked chain of blocks on disk are almost always sufficient.

These are all ways you might want to use the serial bus that are outside the realm of what GEOS supports directly.

The low-level routines below are provided to allow safe access to the serial bus, and a safe return to GEOS disk

usage:

Name Description Page

InitForIO Turn off all interrupts, disable sprites, bank switch the C64 Kernal

and I/O space in.

20-39

DoneWithIO Restore interrupts, enable sprites, and switch in the previous RAM

configuration.

20-14

EnterTurbo Uploads the turbo code to the drive and starts it running. 20-16

ExitTurbo Deactivate disk turbo on current drive. 20-17

PurgeTurbo Normally the turbo code is always running. PurgeTurbo removes

the turbo code resident in the disk drive and returns control of the

serial bus to the C64 DOS.

20-49

ReadBlock Read a block from disk. Turbo code must already be running, and

InitForIO must have been called.

20-53

WriteBlock Write a block to disk. No verify is done, the Turbo code must be

running, and InitForIO must have been called.

20-70

VerWriteBlock Same as WriteBlock except that the block is verified after writing. 20-69

ReadLink Read track/sector link. 20-57

ChangeDiskDevice Change disk drive device number. 20-11

Accessing the Serial Bus

Follow the procedure below to use the C64 serial bus:

1. Call SetDevice to set up the device you want to use. SetDevice will give the serial bus to whatever

device you request.

2. If you want to use C64 DOS disk routines, then you will have to turn off the disk turbo code running

in the drive. To do this, call PurgeTurbo. If not using the C64 DOS routines skip this step.

3. Call InitForIO to turn off interrupts, sprites and set the I/O space and C64 Kernal in.

4. Call any of the standard C64 DOS serial bus routines to access the serial device on the bus.

5. When finished with the bus, call DoneWithIO. This sets the system configuration back to what it

was before you called InitForIO. The next GEOS disk routine that you call (except for ReadBlock,

WriteBlock, or VerWriteBlock) will automatically restart the diskTurbo.

 9-12 File System

VLIR Files

File Structure
The VLIR file structure was created to allow applications to grow much larger than the 30k available to them in

GEOS. With a faster 1541 disk speed, it becomes practical to break an application up into several different

modules, and swap them in as needed. A good way to organize such an application is to keep one module always

resident while the others share a common memory area. The resident module is allowed to call subroutines in any

of the other swap modules but the other modules may only call routines in the resident module. This keeps the

application from getting bogged down with endless swapping. Applications tend to execute out of one module

for a while, and then swap modules and execute out of another for a while.

Records
A VLIR file is comprised of several modules referred to as records. Each record, is a chained link of blocks just

like a regular Commodore file. Thus, a VLIR file is somewhat like a collection of files. The same routines used

to save a regular SEQUENTIAL file to disk may be used to save individual records in a VLIR file. In addition,

several VLIR specific routines are provided.

The VLIR file routines allocate sectors on disk for records the same as is done for regular files, using the one

block track/sector allocation table, fileTrScTab. Each record may therefore be from 0 to 127 blocks long, (just

under 32k: 32,258 bytes), the maximum number of track/sector pointers fileTrScTab can hold. If the application

uses the background screen buffer for program space, it has the use of memory from $400 to $8000 which is also

just under 32k. An Index Table, holds the track/sector pointers to the first block in each record. The diagram

below shows how the VLIR file uses an Index Table to organize the records in the file.

A VLIR file can be identified by looking at the GEOS Structure type byte in the file's Directory Entry. In addition,

the Directory Entry contains a track/sector pointer to the file's Index Table. In a regular SEQUENTIAL file this

word points to the first data block in the file. See the beginning of the file system section for more details on the

Directory Entry structure. The Index Table consists of 127 entries, numbered 0 to 126, where each entry is a

pointer to a record. The rest of the entries in the Directory Entry, such as the pointer to the Header Block, are the

same.

Note: VLIR is an acronym for Variable Length Indexed Record. Both applications, and data files may be

stored in VLIR format. For example, the font files are divided into several records, one for each point size.

 9-13 File System

VLIR - Variable Length Indexed Record

File Structure

Directory Entry

for File

$01

$13

Bytes at OFF_GHDR_PTR ($13)

point to the Header Block
File Header Block

Bytes at OFF_INDEX_PTR ($01) of the File's

Directory Entry point to the file's Index Table.

Index

Table

$00,$FF

...

0

127 Track Sector

Record Pointers

VLIR

Records

 9-14 File System

VLIR Routines
The routines for reading and writing records, closely resemble those one might expect for manipulating objects

in a linked list: NextRecord, PreviousRecord, and others.

This "linked list" concept makes use of a pointer to the current record. This pointer may be set directly or set to

the next or previous record. The current record may be deleted, read from, or written to. At each access, the full

record must be dealt with. Thus, the application should provide sufficient RAM at any one time to accommodate

the largest possible record it could be processing. New empty records may be inserted before, or appended after

the current record. New records are empty and may be written to. Presently there is no way to detach a record and

re-attach it somewhere else (This would be a trivial task for an application to handle on its own). DeleteRecord

is destructive, i.e., frees up the sectors, and InsertRecord only works with empty records.

The index table may be stored in memory, often in the fileHeader buffer, to make it possible to go directly to a

record using PointRecord instead of advancing one record at a time with NextRecord or PreviousRecord.

Description of the routines available specifically for VLIR files:

Name Description Page

AppendRecord Insert a new VLIR record after the current record. 20-73

CloseRecordFile Close/Save currently open VLIR file. 20-74

DeleteRecord Delete current VLIR record. 20-75

InsertRecord Insert new VLIR record in front of current record. 20-76

NextRecord Make next VLIR the current record. 20-77

OpenRecordFile Open VLIR file on current disk. 20-78

PointRecord Make specific VLIR record the current record. 20-79

PreviousRecord Make previous VLIR record the current record. 20-80

ReadRecord Read current VLIR record into memory. 20-81

UpdateRecordFile Update currently open VLIR file without closing. 20-82

WriteRecord Write current VLIR record to disk. 20-83

An attempt has been made to return meaningful error flags concerning operations on the structure. The following

is a list of possible errors as returned in the x register by VLIR Record routines.

Error Messages

UNOPENED_VLIR

This error is returned upon an attempt to Read/Write/Delete/Append a record of a VLIR file before it has been

opened with OpenRecordFile.

INV_RECORD

This error will appear if an attempt is made to Read/Write/Next/Previous a record what doesn't exist (isn't in the

Index Table). This error is not fatal, and may be used to move the Record pointer to the end of the record chain.

OUT_OF_RECORDS

This error occurs when an attempt is made to Insert/Append a record to a file that already contains the maximum

number of records allowed (127 currently).

STRUCT_MISMATCH

This error occurs when a routine supporting a function for one type of file structure is called to operate on a file

of different type.

 9-15 File System

Creating a VLIR File

Use the SaveFile routine to initially create a VLIR file:

The File Header should contain the following values:

 Offset $00. Pointer to VLIR filename (word).

 C64 file type - USR

 GEOS File Structure Type - VLIR

For Creating an empty VLIR File:

 Start address: 0

 End address: FFFF (-1)

For Saving Data into a new VLIR file with Record 0 populated:

 Start address: Start address of data to save.

End address: End address of data to be saved.

This creates a VLIR file on disk with an Index Table with no records. The current record pointer is set to -1: a

null pointer. Before any manipulation of the file is possible, it must be opened with OpenRecordFile. This loads

certain internal buffers GEOS needs. With a completely empty record file like this, the first record must be created

with AppendRecord. After that, calls to InsertRecord, and DeleteRecord are possible.

When through with the file, it is imperative that the programmer close it by calling CloseRecordFile. This will

update the file's index table, the disk BAM, and the "blocks used" entry in the file's directory entry. Note that only

one VLIR file may be opened at time.

 10-1 Input Driver

 Input Driver

The Standard Driver
GEOS currently supports the joystick (the standard driver), a proportional mouse and a graphics tablet. On the

screen, the position of the joystick or mouse is shown by an arrow cursor. We shall use the terms, mouse, pointer,

and cursor, interchangeably to refer to the arrow cursor on the screen. We shall use the term device to denote the

actual hardware.

Each Interrupt, the GEOS Kernal Interrupt Level code calls the input driver. The job of the input driver is to

compute the values of the following variables.

mouseXPos:

.block 2 ; word x-position in visible screen pixels of the mouse pointer (0-319)

mouseYPos:
 .block 2 ; byte y-position in visible screen pixels of mouse pointer (0-199)

mouseData:

.block 1 ; byte set to nonnegative if fire-button pressed, negative if released

pressFlag:

.block 1 ; byte bit 5 (MOUSE_BIT) set if a change in the button
; bit 6 (INPUT_BIT) if any change in input device since last interrupt

Both the GEOS Kernal and applications may then read and act on these variables. The GEOS Kernal reads bit 5

(MOUSE_BIT) in the pressFlag variable to determine if there has been a change in the mouse button. If there

has been a change, then the Kernal reads mouseData to determine whether the change is a press or release. If the

mouse button has been pressed (indicated by mouseData changing from negative to nonnegative) then GEOS

will check to see whether the mouse position is over a menu, an icon, or screen area. If it is over a menu, then the

menu dispatcher is called. If it's over an icon, then the icon dispatcher is called. If it's not a menu or icon then the

routine in otherPressVec is called.

If the joystick changes from being pressed to being released (mouseData has a negative value) then the Kernal

will vector through otherPressVec. Note: all releases are vectored through otherPressVec, even if the original

press was over a menu or icon. The application's otherPressVec routine must be capable of screening out these

unwanted releases. The reason that the mouse acts like this is that the ability to detect releases was added relatively

late to the GEOS Kernal. The menu and icon modules were already complete. otherPressVec is called on all

releases including those for menus and icons so that its routine can take special action on those releases as well

as its own, if necessary. Usually, the application's otherPressVec routine will either ignore releases altogether,

or only act on releases following screen area presses.

What an Input Driver Does
It is the job of the input driver to read the hardware bytes it needs to load mouseData and pressFlag with the

proper values. It must determine the change in the position of the mouse and store new values in mouseXPos and

mouseYPos.

Different input drivers compute the mouse x, y-position in entirely different ways. As an example, the joystick

driver does this by first reading the joystick port, and then computing an acceleration from the direction the

joystick was pressed. From that, a velocity, and finally a position is determined. A proportional mouse is entirely

different. The Commodore mouse sends differing voltage levels to the potentiometer inputs in the joystick port

and the SID chip in the C64 reads the voltage level and stores an 8-bit number for both x and y. The driver

 10-2 Input Driver

computes a change in position from the voltage level as reflected by the value of the two bytes. No matter how it

is done, though, the input driver is responsible for setting the 4 variables mentioned above.

Location and Responsibilities of Input Driver
The code for the joystick input driver takes up the 380 bytes beginning at MOUSE_BASE, the area from

$FE80-FFF9. GEOS 128 uses MSE128_BASE, the area from $FD00-FE7F

When an alternate input driver such as a graphics tablet is loaded by the deskTop, it is installed at this location.

If you write an input driver, it should be assembled at this address. All GEOS applications will expect three

routines, InitMouse, SlowMouse and UpdateMouse, and the four variables mentioned above to be supported by

any input driver. These three routines should perform the same function, regardless of the input device. This way

the particular application running need know nothing about which input driver the user has chosen. These routines

may begin anywhere within the input driver area just so long as a short jump table is provided right at the

beginning of the input driver space:

Address Contents

MOUSE_BASE jmp InitMouse
MOUSE_BASE + 3 jmp SlowMouse
MOUSE_BASE + 6 jmp UpdateMouse

MOUSE_BASE + 9 jmp SetMouse ; 128 Driver has 1 additional jump table entry

These are the addresses that the GEOS Kernal and applications will actually call. For example, to call

UpdateMouse, the Kernal will do a jsr MOUSE_BASE + 6 during Interrupt Level. The first routine the input

driver must provide is InitMouse. It is called to perform any initialization, and set any variables, the driver needs

before the other two routines are called.

Acceleration, Velocity, and Nonstandard Variables
Some input devices, such as the joystick, need to be adjusted for different sensitivities. For example, sometimes

the user will want the joystick to accelerate to its maximum velocity quickly. Other times, such as when opening

a menu, the user will want it to move more slowly so as to make it easier to select an item without slipping off

the menu altogether.

Other devices such as proportional mice and graphics tablets do not make use of acceleration and velocity. These

devices deal more directly with position and distance moved. Still other devices as yet uninvented may need

special variables of their own. The question arises how to best support different input devices in a way that the

application need not know which device is being used, and yet leave room for new devices. There are three parts

to the solution.

First, there is a basic level that every input drive should be able to support. This includes maintaining the position

variables mouseXPos, and mouseYPos, and the mouse button variables, pressFlag, and mouseData. At the very

least, an input driver must generate values for these variables.

Second, additional variables for joystick-like devices, are allocated in the GEOS Kernal RAM space. The joystick

is the default driver for GEOS, and needs to keep track of acceleration and velocity variables. These variables

include maxMouseSpeed, minMouseSpeed, and mouseAccel. These variables are loaded with default values

by the driver's initialization routine, and are located in GEOS Kernal RAM area so that they may be used by the

Note: SetMouse does not exist in GEOS 64 Input Drivers. If a 128 Input Driver does not need to use

SetMouse, then place an rts at MOUSE_BASE + 9 instead of a jmp entry.

 10-3 Input Driver

preference manager to adjust the speed of the mouse. There is also a routine, SlowMouse that is called by the

GEOS Kernal itself to slow the mouse down during menu selection. This routine is presented below. Together

this routine and these variables allow a high level of control over joystick behavior. This may seem like a lot of

effort to spend on a joystick, but considering that most users will be using a joystick, such effort is appropriate.

Different devices like Commodore's proportional mouse do not require any special treatment. It is not based on

velocity, but on distance. Its motion is precise enough to make fine tuning unnecessary. It is possible that some

as yet unknown input device may become available that does require special treatment. In this case a third

approach may be used.

This approach is to augment the regular position and button variables with four bytes beginning at the label

inputData in the Kernal RAM. These variables may be used to pass additional values to an application. Any

input device that needs to pass parameters to an application other than the position, mouse button, or velocity and

acceleration variables, should pass them here. Note: Applications which rely on inputData become device

dependent.

Whenever the input state has changed, the driver must:

1. update the 4 mandatory mouse variables;

2. update inputData, if supported;

3. the INPUT_BIT, (bit 6) should be set in pressFlag.

In addition, an application that uses inputData must load the vector inputVector with the address of a routine

that retrieves values from inputData. When the Kernal sees the INPUT_BIT set, it will vector through

inputVector if it is nonzero. As an example, the joystick driver loads a value for the direction in the first of these

four bytes and the current speed of the mouse in the second. geoPaint uses these values in its routine to scroll the

drawing. When in scroll mode, geoPaint sets inputVector with the address of a routine used in scrolling.

Whenever the direction of the joystick changes, inputVector is vectored through and the geoPaint scroll routine

stops or changes the direction of the scrolling.

This use of these variables is probably unfortunate because although they are natural to generate for the joystick,

they are not so natural to generate for other drivers, such as proportional mice. The drivers for these devices must

generate these direction values by hand so that they will completely work with geoPaint.

The general approach then for supporting a new input driver should be clear. First compute the position and button

variables. If geoPaint scrolling is to be supported, direction variables will need to be supported. Finally, some

custom tailorable driver support is possible. The variables discussed above are presented in more detail below,

after the outlines for SlowMouse and UpdateMouse.

SlowMouse
The SlowMouse routine, as outlined below, sets the joystick speed to zero. The joystick is then free to accelerate

again. From its name, one might instead expect SlowMouse to reduce the maxMouseSpeed, but this is not the

case.

Note: The only reason for using inputData is to support a special input device that communicates in a

custom fashion with its own application. As this can cause incompatibility with other input devices

and other applications, this approach should be used sparingly. An application can check the

variable string inputDevName for the name of the current input device. The deskTop loads the

null-terminated filename of the input driver file into this 17-byte string.

 10-4 Input Driver

The reason for having a routine like this is to make using menus easier. When a menu opens, and the user slides

down the selections and hits the mouse button when over the desired item, the GEOS Kernal will then open a

submenu and put the mouse pointer on the first selection of the submenu. The user may then select one of it's

items. It was found that almost all users keep the joystick direction pushed until the submenu comes up. By this

time the mouse will have reached maximum velocity, and, when placed on the submenu graphic by the

application, will go flying off. SlowMouse just zeros out the mouse's speed so that this won't happen. Drivers for

mice and graphics tablets which don't use velocity need to include this routine even though in this case it will

merely perform an rts.

To make the mouse actually slowdown from within an application, maxMouseSpeed, and mouseAccel can be

lowered. The standard values for these variables may be found in the Mouse Variable and Mouse Constant

sections later in this section.

UpdateMouse
UpdateMouse is the main routine in an input driver. Its responsibilities include reading the joystick port in order

to determine how the input device has changed, and translating this into a change in mouseXPos, mouseYPos,

mouseData and pressFlag. If geoPaint scrolling is to be supported, then direction information must be returned

in inputData. If special input driver information is to be passed to an application then inputData should again

be used.

Mouse Variables for Input Driver
The following variables are supported by the mouse module. Most of these variables have been described briefly

above.

Required Mouse Variables

mouseXPos word x-position in visible screen pixels of the mouse pointer (0-319).

mouseYPos byte y-position in visible screen pixels of mouse pointer (0-199).

mouseData byte Nonnegative if fire-button pressed, negative if released.

pressFlag byte Bit 5 (MOUSE_BIT) set by driver if a change in the button;

Bit 6 (INPUT_BIT) set if any change in input device since last interrupt.

MOUSE_BIT = %00100000

INPUT_BIT = %01000000

Optional Mouse Variables

maxMouseSpeed byte Used to control the maximum speed or motion of the input device. In the

case of a joystick, maxMouseSpeed controls the maximum velocity the

mouse can travel across the screen. This variable is unused for graphics

tablets and proportional mice. Best values for this byte depend on how the

input driver uses this variable to compute current speed and position. For a

joystick, legal values are 0-127. Default value is:

MAXIMUM_VELOCITY=127

This is the constant for the default maximum velocity to store in

maxMouseSpeed.

 10-5 Input Driver

minMouseSpeed byte Used to control the minimum speed or motion of the input device. See

maxMouseSpeed above. Legal joystick values are; 0-127. Default value is:

MINIMUM_VELOCITY=30

Minimum velocity to store in minMouseSpeed. Anything slower than this

bogs down.

mouseAccel byte This byte controls how fast the input device accelerates. In the case of a

joystick, it controls how fast the joystick accelerates to its maximum speed.

In the case of a graphics pad it might scale the distance moved with the

pointer on the pad to the distance moved on the screen. Currently this

variable is only used by the joystick driver. Legal values are 0-255. Default

value is:

MOUSE_ACCELERATION=127

Typical acceleration byte value of mouse.

inputVector word Contains the address of a routine called from MainLoop to use input driver

information supplied by unorthodox input devices. The idea here is that

some input drivers may be able to produce more information than the x and

y-position data for an application that may want to use this info. If

UpdateMouse supports such extra info it should store it in inputData array

and set the INPUT_BIT in pressFlag. When GEOS MainLoop sees this bit

set it will call the routine whose address is stored in inputVector.

inputData 4 bytes Used to store device dependent information. For joysticks:

inputData:0-7

joystick directions:

 0 = right

 1 = up & right

 2 = up

 3 = up & left

 4 = left

 5 = left & down

 6 = down

 7 = down & right

 -1 = joystick centered

inputData+1: current mouseSpeed

 10-6 Input Driver

The Mouse as Seen by the Application
To this point, we have discussed input devices as seen from the perspective of a programmer wanting to write an

input driver. The other side of the coin is how an application interacts with the input driver. The regular action of

the mouse is as described above. Mouse presses are checked for icon, or menu activation, or a press in the user

area of the screen.

To start the mouse functioning like this, the routine StartMouseMode is called. Since this is done by the deskTop

to get itself running, the application need not call StartMouseMode itself. To turn mouse functioning off, one

calls ClearMouseMode. A bit in the variable mouseOn is cleared, the sprite for the mouse is disabled (the sprite

data is no longer DMA'd for display, important for RS-232, disk, and other time critical applications) and

UpdateMouse is no longer called during interrupt level. This is the reason the mouse pointer flickers during disk

accesses: ClearMouseMode is called by the disk turbo code. To restore mouse functioning after a call to

ClearMouseMode, call StartMouseMode.

To temporarily turn the mouse picture off, but have its position and inputData variables still set, call MouseOff.

UpdateMouse in the input driver is still called, just the sprite for the mouse, sprite 0 is disabled. To turn the

mouse on again, call MouseUp. MouseUp reenables the mouse sprite and causes the mouse to be redrawn the

next interrupt in case the mouse had been moved since being turned off. To temporarily disable the mouse,

call MouseOff and then MouseUp.

Additional Mouse Control
GEOS allows you to limit the movement of the mouse to a region on screen. The GEOS Kernal will constrain the

mouse within a rectangle defined by two word length variables, mouseLeft, and mouseRight, and two byte length

variables, mouseTop, and mouseBottom. The input driver needs know nothing about these variables. After it

updates mouseXPos, and mouseYPos, the Kernal will check to see if the new position is out of bounds, and if

necessary force its position back to the edge of the rectangle. The Kernal will also vector through mouseFaultVec.

This vector is initialized to zero by the Kernal. The application may load mouseFaultVec with the address of a

routine to implement, for example, scrolling a document under the screen window. The effect would of the screen

scrolling whenever the user drew the mouse pointer off the edge of the screen.

There is also a routine for checking to see if the mouse pointer is within a certain region on screen. This routine

is quite useful if clicking inside a box or other region is to have special significance in your application. This

routine is called IsMseInRegion and you pass it the coordinates of the sides of the rectangular region you want

it to check.

A couple of more mouse variables are used. mousePicData contains 64 bytes for the sprite picture of the mouse,

while mouseVector contains the address of the routine MainLoop calls to handle all mouse functioning. If the

MOUSEON_BIT of mouseOn is set, then every time the input driver indicates the mouse button has been pushed,

mouseVector is vectored through. It is unclear why the programmer might want to change mouseVector, as this

would disable icon and menu handling. otherPressVec is more likely the vector to change.

mouseOn also contains bits for turning menu and icon handling on and off. Unfortunately, a call to the menu

handling routine will serve to turn the icon enable bit on upon its exit. This is the reason a dummy icon table is

necessary for those programs running without icons.

 10-7 Input Driver

Mouse Variables for Applications
The following variables are supported by the mouse module in the GEOS Kernal for application use.

mouseOn
byte A flag which contains bits determining the status of the mouse and menus.

Also contains bits used by the Menu and Icon modes.
bit 7 Mouse On if set
bit 6 Set if Menus being used (should always be 1)
bit 5 Set if Icons being used (should always be 1)

SET_MSE_ON = %10000000 Bit set in mouseData to turn mouse on
SET_MENUON = %01000000 Bit set in mouseData to turn Menus on
SET_ICONSON = %00100000 Bit set in mouseData to turn Icons on
MOUSEON_BIT = 7 The number of bit used to turn mouse on
MENUON_BIT = 6 The number of bit used to turn on menus
ICONSON_BIT = 5 The number of bit used to turn on icons

mouseLeft
word mouse cursor not allowed to travel left of this programmer set position.

Legal range is 0-319.

mouseRight
word Mouse cursor not allowed to travel right of this pixel position on screen.

Legal range is 0-319.

mouseTop
byte Mouse cursor not allowed to travel above this pixel position on screen.

Legal range is 0-199.

mouseBottom
byte Mouse cursor not allowed to travel below this pixel position on screen.

Legal range is 0-199.

mousePicData
bytes Sprite picture data for mouse cursor picture. This area is copied into the actual

sprite data area by the GEOS Kernal.

mouseVector
word Routine called by GEOS Kernal when mouse button pressed.

mouseFaultVec
 word Routine to call when mouse tries to go outside of mouseTop, mouseBottom, mouseLeft,

and mouseRight boundaries. GEOS will not allow the mouse to actually go outside the
boundaries.

Sample Joystick Driver
A Complete driver ready to build has been included to show how all the content of this chapter come together.

See "Joystick Driver" in Examples\Drivers.

Example: Joystick Driver

 11-1 Printer Drivers

 Printer Drivers

This chapter is intended for:

1. programmers who want to use GEOS printer drivers with their applications,

or

2. programmers who want to write a GEOS printer driver for a previously un-supported printer.

The State of Printers
There is such a multitude of different printer types on the market today that several books could be written about

their operation. In fact, several have. To find out about a specific printer or interface card consult the operator's

manual or visit the local computer store.

There are two basic categories of printers: "character" (typewriters, daisywheel, band printers, etc.), and dot-

matrix printers. Character printers are only capable of printing character shapes that are physically on the print

wheel (band, ball, or hammers). In general, this makes them unsuitable for use with GEOS since GEOS stores

and prints both character fonts and graphics as a bit map. GEOS does support a near letter-quality print mode for

the 1526 Commodore printer, but to use GEOS as it was intended to be used requires a dot-matrix printer.

Dot-matrix printers are constructed with vertical lines of pins which can be individually controlled to strike the

ribbon (or squirt the ink, in the case of an ink-jet printer, which also falls into the dot-matrix category) onto the

paper. The device holding these pins is called the printhead. As the printhead moves across the page, different

dot-columns are printed, leaving a two-dimensional pattern (matrix) of dots. Individual characters are patterns of

adjoining dots on the page as in the illustration below:

ASCII and Graphic Printing
Dot matrix patters usually operate in two modes. In the first, ASCII mode, an application feeds the printer ASCII

character codes and the printer prints from its own internal character set. In its own memory it stores the dot

pattern for all the letters. In addition to this first mode there is the ability to send the printer the actual dot patterns

to print.

The printer's internal character set is used for draft and near-letter quality (NLQ) modes of printing. In draft mode

the application passes the printer driver a string of regular ASCII (not Commodore ASCII) characters. The printer

prints these out in its fast-single strike draft mode using its internal character set. NLQ mode is just like draft

mode except that several overstrikes or other methods are used in order to make the printed output

sharper.

GEOS uses the graphics mode of the printer for all graphic and most text printing. This is how it is possible to

print different fonts. This mode is variously referred to as Graphics Mode, Bit-Image Mode, or APA (All Points

Addressable) Graphics Mode. This mode interprets bytes in the print buffer not as ASCII characters, but as bit

patterns (vertically oriented) for the printhead to print. The example below shows how a typical printhead might

be addressed in graphics mode. Each pin on the printer is assigned a bit. The "Dot Columns as Printed" columns

show the value passed to the printer and the image it produces.

Printhead Character Matrix

or

Sweeps across

horizontally

to print:

 11-2 Printer Drivers

Bit Value Printhead Dot Columns as Printed

$01 %00000001
$02 %00000010
$04 %00000100
$08 %00001000
$10 %00010000
$20 %00100000
$40 %01000000
$80 %10000000

 01 02 04 08 10 20 40 80 AA 55 00 3C 42 81 81 42

Dot Matrix Printer Types
There are two general categories of printheads around today: 9-pin and 24-pin. 9-pin printheads use the top 7 or

8 pins to actually print in graphics mode. The bottom one or two pins are used to print descending characters.

These are ASCII characters like "g" and "p" that have tails below the print line. Whether 7 or 8 pins are used to

print graphics is also dependent on the printer itself. Bit 0 may be at either the top or the bottom pin, depending

on the individual printer. Since 8-bit data is easier for an 8-bit computer to handle than 7-bit data, having to spoon

feed a printer 7-bit wide data can be tedious. As a bit of foreshadowing let us mention this will be discussed in

more detail later when we discuss the print algorithms. Presently we continue with a general printer description.

Typically, the pins make a 1/72" x 1/72" dot, spaced 1/72" apart vertically. Dot-columns are spaced at 1/60",

1/72", 1/80", or even closer depending on the printer and the mode in which it is running. 24-pin printers work

basically the same way the 9-pin printers do, except at a higher resolution (24 pins in the same area as the 9 and

a correspondingly higher horizontal resolution).

Printers enter and exit graphics mode one of two ways: some are given a command to enter graphics mode and

stay that way until a command is given to exit graphics mode. Others are given the command to enter graphics

mode, followed by a byte count. Until the count reaches zero, every byte that the printer sees is printed out in

graphics mode.

Once the program is capable of individually firing pins on the printhead, the only thing preventing it from printing

a whole page of solid graphics is the control of how far the printer line-feeds when told to do so. Fortunately,

every printer that has a graphics mode, also has the ability to be told how far to advance the paper when a LF is

encountered. The first step in understanding printing in either ASCII or graphics mode is to learn how to

communicate with the printer. Most printing is done through the C64's serial port. An exception to this is geoCable

by Berkeley Softworks which allows you to run any Centronics parallel printer from the user parallel port with

GEOS. The following section deals with the C64 serial bus interface to the printers.

Talking to Printers
This section describes the way the serial bus works, the routines in the C64 Kernal ROM used to communicate

with peripheral devices, and the types of interfaces available for parallel input printers.

The C64 communicates with its peripheral devices (disk drives, printers, etc.) over a serial bus. The serial bus

supports up to five devices connected at once in a daisy-chain fashion. There are three basic types of activity on

Note: For more information on the serial bus and how it works, see the Commodore 64 Programmer's

Reference Guide (pp 362-366).

 11-3 Printer Drivers

the serial bus, "control", "talk", and "listen". The C64 is the controller of the bus, and can tell peripheral devices

when to "talk" (to output data onto the bus) or when to "listen" (accept input from the bus). The devices are

assigned unique addresses which are output on the bus when a control signal from the C64 is sent out. These

"addresses" are single byte numbers based on device type. All serial printers are assigned the number 4. To work

with the C64, a printer must recognize a 4 on the serial bus as its "address" and react to the next byte which is one

of several possible command bytes. It can be any valid command byte that the device recognizes. This second

byte is called the secondary address.

The C64 Kernal ROM has routines resident within it to operate the serial bus. These routines "talk", "un-talk",

"listen", "un-listen", send secondary addresses, and receive and send data on the serial bus. These routines are

called with device addresses (if needed for the routine) in the accumulator, and return error codes in the

accumulator. The Kernal routines set the carry flag to indicate that the value in the accumulator is a valid error

code and not just left-over garbage. These primitive routines are used by printer drivers to set up transmission of

data over the serial bus to the printer.

Parallel Interface Questions
Since many of the higher quality printers available are not equipped with interfaces for the Commodore serial bus

(most have Centronics parallel interfaces), the user must either use the geoCable printer cable and geoCable

printer drivers, or use a serial-to-parallel interface that recognizes the Commodore serial bus protocol and the

Centronics standard. Fortunately, a few such devices exist, and are readily available to the consumer at major

retailers. Some of these are: Cardco G-Whiz, Cardco Super-G, and Telesys Turboprint CG.

Note: For more information on the Kernal ROM routines, see the Commodore 64 Programmer's Reference

Guide (pp 270-304).

 11-4 Printer Drivers

GEOS Printer Drivers
Now that we have covered the basics of printer operation, we proceed to printer driver operation. In order for all

applications to be able to talk to all printer drivers, two things are necessary.

1. All applications must see a single general interface standard.

2. A driver must be written for each functionally different printer that takes the application's output, and

tailors it to a specific printer.

The application is responsible for one half of the work and the printer driver for the other half.

The Interface - For Graphic Printing
Printer drivers and applications pass data through a 640-byte buffer. This buffer is sized to hold eight scanlines

of 80 bytes per scanline resolution. This is the maximum line width supported by GEOS. (Some applications may

not support the entire width of a GEOS page. For example, geoWrite versions prior to 2.1 only support 60 bytes

across. In this case the application must put out blank bytes on either end of the buffer line).

What this amounts to is the application assembles a buffer of graphics data in hi-res bitmap mode card format,

calls a printer driver routine that reorganizes the data, and sends it over the serial bus. The application's

programmer must then know how to format the data, and what routines in the printer driver to call. The printer

driver author must implement the standard set of routines to print on a specific printer. This means reordering the

bytes significantly since the printer expects bytes that represent vertical columns of pixel data while each byte of

data passed in the 640-byte buffer represents eight horizontally aligned pixels. This work is done in four separate

callable routines.

 GetDimensions: Return the dimensions in Commodore screen cards of the page the printer can

support.

 InitForPrint: Called once per document to initialize the printer. Presently only used to set

baud rates.

 StartPrint: Initialize the serial bus at the beginning of every page, and fake an opened

logical file in order to use C64 Kernal routines to talk to the printer.

 PrintBuffer: Print the 640-byte buffer just assembled by the application when printing in

graphics mode.

 StopPrint: Do end of page handling, a form feed and for 7-bit graphics printing flush the

remaining scanlines in the buffer.

The application is in control of the printing process. It calls InitForPrint once to initialize the printer. Then

StartPrint is called to set up the serial bus. After that GetDimensions is usually called to find out the width of

the printable line and the max number of lines in the page. The application then fills the buffer with bitmap data

in card format and calls PrintBuffer to print it. As soon as a full page has been printed, StopPrint is called to

perform the form feed and any other end of page processing necessary. The process begins again on the next page

with a StartPrint.

 11-5 Printer Drivers

ASCII Printing
All ASCII printing is done on a 66 lines per page and 80 character per line basis. The application passes the printer

driver a null terminated ASCII string. Any formatting of the document such as adding spaces to approximate tabs

should be done by the application. All end-of lines are signaled by passing a carriage return to the driver. The

driver will output a CR as well as a linefeed for every CR it receives in order to move the printhead to the

beginning of the next line. For some applications, such as geoPaint, a draft or NLQ mode of printing do not make

sense. Others, such as geoWrite, will offer draft and NLQ modes of printing for printing text and will skip any

embedded graphics in the document.

The procedure for ASCII printing is much the same as for graphic printing. The application calls InitForPrint

once to initialize the printer. If NLQ mode is desired then SetNLQ is called. The application then calls

StartASCII, instead of StartPrint to set up the serial bus. The application may now begin sending lines. It passes

a null terminated string of characters, pointed to by r0, to StartASCII. Spaces used to format the output should

be embedded within the string passed to StartASCII. A carriage return should be printed at the end of every line.

 StartASCII: same as StartPrint except for printing in draft or NLQ modes.

 PrintASCII: Use this routine instead of PrintBuffer for draft and NLQ printing. The

application passes a null terminated ASCII character string to the driver instead

of the 640-byte buffer, and the printer prints in its own charset.

 SetNLQ: Send the printer whatever initialization string necessary to put it into near letter

quality mode.

Calling a Driver from an Application
Printer drivers are assembled at PRINTBASE ($7900), and may expand up to $7F3F. Applications must leave

this memory space available for the printer driver. In addition, the application must provide space for two 640-

byte RAM buffers. The application uses the first buffer to pass the 80 cards (640-bytes) of graphics data to the

driver. The driver uses the other internally. These two buffers are pointed at by r0 and r1 when a driver routine

is called.

At the beginning of each printer driver is a short jump table for the externally callable routines. Once the driver

is loaded an application calls printer routines just like any other Kernal routine.

Name Description Page

GetDimensions Get CBM printer page dimensions. 20-176

InitForPrint Initialize printer (once per document). 20-177

PrintASCII Send ASCII data to printer. 20-178

PrintBuffer Send graphics data to printer. 20-179

SetNLQ Begin near-letter quality printing. 20-180

StartASCII Begin ASCII mode printing. 20-181

StartPrint Begin graphics mode printing. 20-182

StopPrint End page of printer output. 20-183

 11-6 Printer Drivers

Using a Printer Driver from an Application

For Graphics Printing:
(A) Call GetDimensions to get: (1) the length of the line supported by the printer (constant is

CARDSWIDE) usually 80 but sometimes 60, in x, and (2) the number of rows of cards in a page

(which is the same as the number of times to call PrintBuffer) in y (constant is CARDSDEEP).

(B) Call InitForPrint once per document to initialize the printer. Call StartPrint once per page to set

up the Commodore file to output on the serial bus. Any errors are returned in x and the carry bit is

set. If no error was detected, x is returned with $00.

(C) To print out each row of cards (do 1, 2, and 3 for each line) do the following.

(1) Load a 640-byte buffer with a line of data (80 cards) and load r0 with the start address of

the 640-byte buffer.

(2) Load r1 with the start addr of 640-bytes RAM for the print routines to use. Load r2 with

the color to print. Multicolor printers require several passes of the print head. Each in a

different color, each with a different set of data. For each line then, PrintBuffer is called

for each color.

(3) Call the PrintBuffer routine. Note: Go to 1 until page is complete.

(D) Call the StopPrint routine after each page to flush the print buffer (if using a 7-bit printer then

scanlines left in the buffer pointed to by r1 need to be printed out rather than combined with the

next row of data) and to close the Commodore output file.

For ASCII Printing:
(A) Call InitForPrint once per page to initialize the printer.

(B) Call SetNLQ if printing in near letter quality mode is desired.

(C) Call StartASCII once per page to set up the Commodore file to output on the serial bus. Any

errors are returned in x and the carry bit is set. If no error was detected, x is returned with $00.

(D) To print out each row of cards (do 1, 2, and 3 for each line) do the following.

(1) Load a buffer with a string of ASCII character data and load r0 with the start address of

the buffer. Append a CR to the end of each line to cause a CR and LF to be output by the

printer.

(2) Load r1 with the start address of 640-bytes RAM for the print routines to use.

(3) Call the PrintASCII routine. Note: Unlike PrintBuffer, r1 need not point to the same

memory for the whole document, or be preserved between calls to PrintASCII. r0 can

change each time PrintASCII is called. Goto 1 until document is complete.

(E) Call the StopPrint routine (PRINTBASE + 9) at the end of every page to form feed to the next

page, and to close the Commodore output file.

Note: CARDSWIDE is the number of Commodore hi-res bit-mapped cards wide.

 CARDSDEEP is the number of Commodore hi-res bit-mapped cards deep.

Note: r1 must point to the same memory for the whole document, and must be preserved between

calls to PrintBuffer. r0 can change each time PrintBuffer is called.

 11-7 Printer Drivers

We now describe these routines in greater detail. After this section we present two sample printer drivers. The

first is for Commodore compatible printers. This driver is a good model for any 60 dot per inch printer. Following

the Commodore driver is the driver for the Epson FX series of printers. This driver is a good model for any 80

dot per inch printer.

SamplePrinterDriver

Introduction to Sample Driver
Two basic printer drivers provide the prototypes for the remainder of drivers in existence, one for 7-bit and one

for 8-bit printers. These two types of drivers differ in that the 7-bit high printers can only print out 7 scanlines of

data at one time. Since we pass 8-bit data to the printers, one scanline of data must be saved after the first call to

PrintBuffer and joined with the next set of data. The second time PrintBuffer is called it prints the leftover

scanline along with six scanlines from the eight just passed. Two scanlines will be left over. By the time 56

scanlines have been passed, PrintBuffer will have enough left over to print two scanlines high rows. It will have

six left over, print them with one from the newly passed eight and then print the seven left over.

The diagram below shows the first few step in the printing out of a page:

Print Driver
Buffer

Application
Buffer

80 Cards

80 Cards

Application passes data in 640 byte buffer

Data in application print buffer is transferred to print driver buffer.

After printing, PrintBuffer returns and the application reads in new buffer data.

The printer driver buffer holds the leftover scanline.

Data Shifted to top of printer buffer. Six lines of data from application buffer are

shifted in. Two scanlines of data remain in application buffer.

Printing with a 7-Bit high Printer

 11-8 Printer Drivers

The first panel shows the application has passed a full buffer to the printer driver; the printer driver then copies

the data into its buffer for printing. In the second panel the printer driver has printed the top 7 scanlines of its

buffer, sent a CRLF to the printer, and left one scanline unprinted. The application has also reloaded its buffer

with 8 more scanlines of data. In the third panel, the leftover scanline in the printer driver's buffer has been shifted

to the top and 6 scanlines of data have been shifted in from the application's buffer to fill up the lower part of the

buffer. The PrintBuffer routine is now ready to start printing out the buffer.

It should be clear then that the printer driver needs its own 640-byte buffer to save scanlines between calls from

the application so that it may combine the leftover lines with incoming lines.

The 8-bit printers avoid all this shifting around of data. They print the entire buffer of data at each call to

PrintBuffer. Both types of drivers, however, must take some pains to "rotate" the data, which is to say assemble

the horizontal bytes into vertical bytes for transmission over the serial bus. The first byte to be sent to the printhead

is made up of the seventh bit from each of the first 8 (or 7 for a 7-bit printer) bytes in the first card. One bit at a

time is shifted out from each of the bytes in the first card. Some printers put the bit from the first byte on top and

others on the bottom.

We now turn to a sample printer driver for an 8-bit printer, the Epson FX80. Later we will present the algorithm

we use to deal with 7-bit printers such as the Commodore 801.

Sample printer driver for an 8-bit printer:

Sample is located in Appendix B: Examples: 8-Bit FX-80 Printer Driver.

Sample Printer driver for 7-bit printers:
The Commodore driver is similar in overall structure to the Epson driver presented earlier. The fact that the

Commodore printer is a 7-bit printer makes life a bit harder. The 8-byte high card-oriented buffer must itself be

buffered into so that it may be printed 7 scanlines at a time. This is done in routines TopRollBuffer and

BotRollBuffer. TopRollBuffer calls RollaCard to take a byte off the top of a card in the print buffer and shift

each byte in the card up one as shown below.

 11-9 Printer Drivers

Roll a byte from the user buffer to the internal buffer.

After the line is printed, there will be left over lines in the user buffer that will be printed the next time PrintBuffer

is called. (Remember that with 7-bit printers, PrintBuffer can only print 7 of the 8 scanlines passed from the

application in the buffer pointed to by r0. This leaves one scanline of data left over after the first call to

PrintBuffer). BotRollBuffer rolls these leftover lines into the internal print buffer. For example, before the first

line is printed, TopRollBuffer rolls the top 7 lines from the user print buffer to the internal printer driver buffer.

These lines are printed and then BotRollBuffer is called to shift the remaining scanline from the user buffer to

the internal buffer. PrintBuffer then returns to the application which is now free to reload the user buffer.

TopRollBuffer and BotRollBuffer read a table to determine how many scanlines to roll each time they are called.

The actual rolling of the scanlines is done a card at a time because the bytes in the user print buffer are organized

that way. It was decided to have the application pass its output graphics data in card format since it is probable

that most of the routines for drawing to the screen could then be reused to create the data for the printer.

Included below is an assembler listing of the driver for Commodore compatible printers.

Sample is located in Appendix B: Examples: 7-Bit MPS-801 Printer Driver.

Buffer created by application, (pointed to by r0)

Buffer used by printer driver (pointed to by r1)

Note: GEOS was also designed to communicate with Postscript™-equipped printers which may print via

Laser or Ink-jet technology. When using special fonts and software they will produce near typeset-

quality output. However, creating drivers for Postscript™ is outside the scope of this document. If you

want to get the best possible print output from GEOS, search the internet for the Laser Lovers' Disk

and/or the geoPublish Tutorial.

 12-1 Sprites

 Sprites

Hardware Sprites
The GEOS Kernal provides a simple interface to the hardware sprites supported by the C64. These routines control

the sprites by writing to the VIC chip sprite registers as well as writing to the data space from which the VIC

reads the sprite picture data. The reader should be familiar with the basic structure of sprite support on the C64

as explained in the Commodore 64 Programmer's Reference Guide.

One of the space/function tradeoffs made in GEOS was to support only basic sprite functions. Applications

requiring elaborate sprite manipulation, such as games, will probably not be using many of GEOS's features,

whereas business, or text-based applications will benefit from GEOS text, disk, and user interface features, and

probably not need complicated sprite support.

The GEOS Kernal provides the following routines for drawing, erasing, and positioning:

Name Description Page

DisablSprite Disable sprite. 20-194

DrawSprite Define sprite image. 20-195

EnablSprite Enable sprite. 20-196

PosSprite Position sprite. 20-197

Plus, additional Sprite related mouse routines:

Name Description Page

MouseOff Disable mouse pointer and GEOS mouse tracking. 20-170

MouseUp Enable mouse pointer and GEOS mouse tracking. 20-171

Soft Sprites
The C64 contains a VIC chip to handle sprites in hardware. Unfortunately, the VIC is not available on the 128

while in 80-column mode. The functions of the VIC have been simulated in software that is included in the 128

Kernal. Most of the capabilities of the VIC chip have been taken care of, and if you are not doing exotic things

with sprites your code may work with one or two changes. The 128 Kernal provides the following additional

routines for Soft Sprites:

Name Description Page

HideOnlyMouse C128 Temporarily remove soft-sprite mouse pointer. 20-168

SetMsePic C128 Set and preshift new soft-sprite mouse picture. 20-172

TempHideMouse C128 Hide soft-sprites before direct screen access. 20-174

The major changes include: sprite 0 (the mouse pointer) is treated differently than any other sprite. The code for

this beast has been optimized to get reasonably fast mouse response, with a resulting loss in functionality. You

cannot double the pointer's size in either x or y. You cannot change the color of the pointer. The size of the pointer

image is limited to 16-pixels wide and 8 lines high. One added feature is the ability to add a white outline to the

image that is used for the pointer. This allows it to be seen while moving over a black background.

 12-2 Sprites

For the other 7 sprites, all the capabilities have been emulated except for color and collision detection. In addition,

the 64th byte of the sprite image definition (previously unused) is now used to provide some size information

about the sprite. This is used to optimize the drawing code.

Problem Areas to Watch Out for:

All sprite image data
All image data should be adjusted to include the 64th byte. This byte has size information that is required by the

software sprite routines. The format of this byte is: high bit set means that the sprite is no more than 9 pixels wide

(this means it can be shifted 7 times and still be contained in 2 bytes). The rest of the byte is a count of the scan

lines in the sprite. You can either include this info as part of the sprite image definition, or stuff it into the right

place with some special code.

Writing directly to the screen
Since the 40-column sprites are handled with hardware, writing directly to the screen memory isn't a problem. If

you do write directly to the VDC screen memory (system calls NOT included), then call "TempHideMouse"

before the write. This will erase the cursor and any sprites you have enabled. You don't have to do anything to

get them back, this is done automatically during the next MainLoop.

Writing directly to the VIC chip
This is generally ok, since the sprite emulation routines take the position and doubling info from the registers on

the VIC chip, with the exception of the x-position. The VIC chip allows 9 bits for x-positions, which is not enough

for the 640 pixels screen width. You must use PosSprite to set the x-position. (PosSprite uses NormalizeX on

the x-coordinate and then divides the x-coordinate by 2 before storing it into the VIC).

Reading values from the VIC chip
This is also ok for the status values and for the y-position. The x-position is in 40-column format. It will need to

be multiplied by 2 to get the 80-column coordinate.

Using VIC chip collision detection
The chip continues to operate, so if you are using the PosSprite call (see above) collisions should be detected

with some loss of accuracy (the low bit).

Writing to the VIC chip
(or calling PosSprite, EnablSprite, DisablSprite) at interrupt level:

Don't do it. Since the mouse and the sprites are drawn at MainLoop, this causes subtle, irreproducible timing

bugs that are impossible to get out.

Known bugs in release 1 of GEOS 128 (1.3):

1) If location $1300 in application space is zero, then sprites in 80-column mode go haywire. All of our

current applications that run in 80-column mode have put in a patch for this. Bug is in sprite code.

2) Doubling bitmaps through BitmapClip doesn't work.

3) i_BitmapClip needs call to TempHideMouse before being called.

Note: These three bugs were fixed in GEOS 128 V1.4.

 13-1 RAM Expansions and GEOS 128

 RAM Expansions and GEOS 128

Introduction
Starting in version 1.3, GEOS is able to manage memory expansions in various ways (REU, RAM-Expansion

Unit). This is one of the features that most differentiate version 1.2 from later versions. In the first part of this

chapter we will examine the operations that GEOS performs in a "transparent" way to applications and the

application possibilities of additional RAM in tasks parallel to those of the system.

In the second part of the chapter we will instead address the compatibility problem of an application with GEOS

128, and the various measures necessary to take advantage of the 80-columns offered by the C128.

Finally, in the last part of the chapter we will illustrate a whole series of small tricks useful to every programmer.

Some are mostly gimmicks to get around the rare bugs present in the GEOS Kernal.

RAM expansions
The C64, by its nature, is unable to access an amount of memory higher than 64K. This limitation is due to the

size of the address bus of the 6510 CPU, which, being formed by 8 distinct lines, can address at most 65536 bytes

(64K). Faced with this physical limitation, any memory increase just seems impossible. Instead, the obstacle can

be overcome. At the expansion port (Expansion Port) of the C64 are several lines, among which are the entire

address bus, the data bus and a line that allows you to temporarily disable the CPU.

It is therefore possible that an external processor may temporarily take over the computer and perform operations

directly in the memory of the C64. The REU's take advantage of this. They are in fact equipped with an internal

processor capable of performing memory operations at very high speed, with large amounts of data. The CPU of

the C64 cannot therefore directly access the banks of memory contained in the REU, but can communicate with

the external processor, passing it some parameters and ordering it to perform some operations. In the moment the

REU receives the command, it disables the 6510 and performs the required operations by interacting with the

computer memory and the REU. The banks are all 64K and the size of the expansion determines the number of

banks it contains.

To communicate with the REU the CPU must provide some parameters:

1. The REU BANK with which the operation takes place.

2. The address inside the bank.

3. The address inside the C64 where the operation is to begin.

4. The number of bytes needed.

These parameters must be stored in particular REU registers, located from EXP-BASE (DF00) onwards. With

the addition of the REU the control registers of the external processor become accessible. When the parameters

have been set, the CPU must store the operations in the command register assigned to the external processor. At

this point, each time there is a command, the expansion processor executes it by temporarily disabling the 6510.

The 6510 resumes control only when the operation is completed, and does not participate in anyway. The

operation, therefore, takes place in a completely "transparent" and instant way as far as the C64 CPU can tell.

There are four main operations that can be carried out with the REU. Each requires a different command:

1. The VERIFY command allows you to compare data blocks of the same size, respectively contained in the

memory of the C64 and that of the expansion.

2. The STASH command allows the transfer of a block of data from C64 memory to expansion.

3. The FETCH command, vice versa, transfers a block of data from the expansion to the C64 memory.

 13-2 RAM Expansions and GEOS 128

4. SWAP allows you to simultaneously exchange a block of data in memory with a block of the same size

contained in the REU.

Name Description Page

VerifyRAM RAM-Expansion Unit verify. 20-165

StashRAM Transfer memory to RAM-Expansion Unit. 20-161

FetchRAM Transfer data from RAM-Expansion Unit. 20-156

SwapRAM Swap memory with an REU memory block. 20-163

Obviously, the amount of memory involved in each operation cannot exceed the size of the memory bank you are

working with. The speed of the data transfer reaches 200K per second, and this makes it convenient to use RAM

expansions even to just move large amounts of data from one area of the computer memory to each other. The

last important feature for the management of expansions in the GEOS environment is about resetting the

computer. Contrary to what one might think, the RAM expansions are not erased when resetting the computer

and the information that is stored in them remains unaltered. The REU will only lose its contents by turning off

the computer or deleting the contents voluntarily.

Now that we know more about how REUs work, we're able to illustrate how they are used by the GEOS Kernal

and in which configurations you can get them. The GEOS Kernal V1.3 is able to "see" expansions up to 512K of

memory. To be more precise, it can interact with any size REU up to 512K and organized in 64K banks. The

possible quantities are therefore 64K, 128K, 192K, 256K, 320K, 384K, 448K, 512K. The actions that can be

performed by the Kernal depend on the amount of external memory available. Note: GEOS 2.0 can use up to

2MB of an REU.

The user chooses the type of configuration that best suits his needs through the Configure application, which

recognizes the type of expansion inserted and (depending on the amount of additional memory available) offers

the user different possible system configurations.

There are two operations that the Kernal can always perform, even with the smallest expansion:

1. Move data areas very quickly from one point to another in the memory.

2. Save the Kernal in the REU for fast reboots that do not require disk access.

Applications that have to move large amounts of data, such as geoPaint when moving the working window to the

drawing pad, often employ the MoveData routine of the GEOS Kernal. But MoveData is very slow when it has

to perform large movements, since it must resort to a loop of instructions. If there is an expansion, however, you

can delegate this task to the external processor: the Kernal does nothing but transfer the command to the REU,

and immediately afterwards the REU transfers control back to the computer with the memory at the new address.

The total time required for the operation is much lower than that required by the traditional MoveData loop.

When you choose this option, also called MoveData, Configure alters the system appropriately so that MoveData

performs its functions using BANK 0 of the REU. The second thing the Kernal is able to do with an expansion

consists in transferring the entire system and the reboot code into REU Bank 0, so that you can reboot without

accessing the disk. With this option, when the user orders the Kernal to give control to Basic, the entire Kernal is

transferred in the expansion together with a loader. To return to the GEOS environment, the user can press the

"restore" button, or do a sys 49152, or finally run the Rboot file; the entire Kernal is then transferred from the

expansion into memory in less than a second and control is immediately given back to GEOS. At this point the

Kernal loads and runs deskTop.

The option just described, which Configure identifies as RAM Reboot, is particularly useful when you have to

run many non-GEOS compatible files, returning to the GEOS environment each time in the shortest possible time.

Upon returning, the previous configuration is kept, including the contents of any RAM disk, which we will discuss

 13-3 RAM Expansions and GEOS 128

shortly. Note that if the Kernal is also simulating a RAM disk on the expansion, and a copy of deskTop resides in

the RAM disk, when the system is reactivated by the expansion, deskTop is also loaded by the expansion.

MoveData and RAM Reboot can be selected simultaneously and they do not interfere with other possible uses

of the REU. If the amount of available external memory exceeds 256K, GEOS is able to exploit it to achieve a

Shadowed drive or RAM disk. Of course, these are alternative options to each other. The new "virtual" disk drive

1541 that is created can be either drive A or drive B. (With GEOS 2.0, 1571 and 1581 RAM disks can also be

created).

The Shadowed drive is a real 1541 disk drive backed by a RAM Drive the same capacity as the formatted disk.

Each time the user loads an application or a data file into memory, the file is transferred to the Shadowed drives

RAM drive so that the Kernal can load from it (and not from disk) in a very short time. Each time an application

saves a file to disk, the file is also copied to the RAM drive. In this way the loading of all the files read or saved

at least one time can happen directly from the REU.

As an alternative to the Shadowed disk, the user can configure the GEOS Kernal to use the RAM expansion as a

virtual 1541 disk, i.e. as a standalone RAM disk. The virtual disk is identified as drive B since the real drive is

drive A. For applications and for the user, it is as if a second disk is a connected 1541 drive. The difference is that

the files saved on the virtual disk are loaded very quickly (in little more than the time to double click the mouse

button on the icon), and RAM disk data copying is virtually instant. However, we must remember that the contents

of the RAM disk are completely lost if the computer is turned off. Since the two options cannot coexist, the user

must decide which one will be most useful to him when making his choices via Configure.

The Configure application is of the AUTO-EXEC type, and therefore during system boot is always executed

before deskTop. When it executes, Configure checks the contents of firstBoot, and if it is $00 it detects that

deskTop has not been loaded yet and therefore the installation should progress. (Configure was not called by the

user, but by the system). Configure will automatically configure the system according to the specifications that

were saved by the user the previous time, or sets the default ones. However, when Configure is called by the user,

it finds the contents of firstBoot is different from $00 and therefore decides the user should receive control for

setting up a new system configuration, which will be saved on disk. From now on, when CONFIGURE

automatically runs at boot time it will use the data saved on disk to configure the system as established by the

user.

All the operational possibilities just described, offered by the GEOS V1.3+ Kernal, are completely transparent to

applications. The applications are not required to know if drive A is Shadowed, or if drive B is virtual, since the

system masks any differences, and not even if the MoveData routine uses the expansion processor or not.

Applications continue to use the routines of the Kernal as they always have, that is, by checking exclusively if

there are two disk drives or just one.

Apps and Expansions
Even though GEOS is able to efficiently and independently manage any RAM expansion, it may happen that an

application wishes to use the REU to perform different tasks. For example, store fonts without the expansion

necessarily being used as a RAM disk. For this purpose, GEOS makes five system routines available to

applications specifically to give commands to the memory expansion. The applications can access the

ramExpSize variable to determine the number of 64K banks of which the currently inserted expansion is

composed. The addresses within each bank are relative to the beginning of the bank itself, and therefore are

independent from your order number. Finally, remember that these routines are only available in GEOS version

1.3 and later, and in GEOS 128.

 13-4 RAM Expansions and GEOS 128

Applications and compatibility with GEOS 128
- Most C64 GEOS software will run under the C128 GEOS in 40-column mode.

- All data files, scraps, fonts, & printer drivers are identical under C64 and C128 GEOS.

- Input drivers are located at different addresses in the two machines, and hence are incompatible. We

have added a new file type, INPUT_128, for C128 input drivers.

- As the deskTop is heavily tied into each OS, we've decided to give the 128 its own desktop filename,

"128 DESKTOP", so as to avoid confusion with the 64's "DESK TOP" file. (The deskTop is of file type

"SYSTEM", and can't be renamed by the user).

- Use the c128Flag to determine what OS you are running under. See Example: Check128.

GEOS 128 can be considered a very close relative of GEOS for the C64. All the routines in GEOS for the C64

jump table are faithfully reported in GEOS 128, and the parameters are all the same. All system variables that are

available in GEOS V1.3+ are the same in GEOS 128 1.3+. For these reasons, applications produced by Berkeley

Softworks for GEOS 64 can be run in the GEOS 128 environment. The "almost" is necessary because there is

always some difference.

Applications that need to access the computer's original Kernal are not compatible with GEOS 128, due to the

substantial differences between the Kernal of the C128 and that of the C64. These applications include, for

example, the desk accessory calculator and geoCalc, which perform complex mathematical operations by

accessing the computer's ROM math routines. If you want the application to be compatible with both systems

while accessing ROM routines, it is necessary to create two distinct jump tables into the ROM, one for each

Kernal.

GEOS 128, in addition to faithfully reproducing the characteristics of GEOS V1.3+ for the C64, has several new

features including 80-column graphics. Let's see what steps are required for applications that were created

explicitly for GEOS 64 to use the 80-column screen of the C128.

128 Flags for Applications & Desk Accessories
In order for the 128 DESKTOP & other applications to know what files run in what mode, we've adopted a

standard that should be used on ALL application, desk accessories, & auto-execution applications. This flag is

located in the file header block of each of these programs. Since permanent filenames are only 16 bytes long, we

have 4 leftover bytes that have been unused till now, that we've constantly been setting to all 0's. The last of the

bytes (see O_128_FLAGS) now has meaning to the 128 OS & DeskTop.

Bit 7 Bit 6 Description

0 0 The application runs in 40-column mode only.

0 1 The application runs in both 40-column and 80-column modes.

1 0 The application cannot run under GEOS 128.

1 1 The application runs only in 80-column mode.

80-column graphics with GEOS 128
If you want the application to be able to enable and manage the 80-column mode offered by GEOS 128, you have

to follow some fundamental guidelines.

1. GEOS 128 must be able to determine if the application is compatible with 80-column mode. GEOS 128

needs this information because if 80-column mode is enabled, and the application cannot use the 80-

column screen, you must notify the user or automatically return to 40-column mode. The application must

Note: bits 5 through 0 are unused and should always be 0.

 13-5 RAM Expansions and GEOS 128

set the value CF_40_80 ($40) in the O_128_FLAGS location of its File Header. This will allow GEOS

128 to use both graphic modes (40 and 80-columns) with the application.

2. In 80-column mode it is necessary to enlarge all menus so that they are able to contain the BSW 128

system font, which is wider than the C64 system font. The custom of Berkeley is to set the right limit

value in the menu structures based on the value contained in graphMode ($80 for 80-columns, $00 for

40-columns). The graphMode variable is only present in GEOS 128.

3. Most changes in graphical values needed for compatibility with the 80-column mode can be accomplished

by setting bit 15 of all the x-coordinates and all widths that are passed to the system by OR’ing the value

with DOUBLE_W. In 40-columns mode the high bit is ignored, while in the 80-column mode it serves

double all horizontal dimensions. By doing so, the image always has the same size on the screen. For

example, if an x-coordinate = 50 pixels in 40-column mode, it must be passed to GEOS 128 in the form

$0032 | DOUBLE_W ($8032), so that in 80-column mode it becomes $0064 (100 pixels).

4. In the application's GEOS menu (or in any case within any menu) the entry "switch 40/80" must be

available. The procedure associated with the event must simply perform the logical EOR operation

between graphMode and the constant $80 (inverts the value of bit 7), store the result in graphMode and

call the SetNewMode routine ($C2DD GEOS 128 only). Later the application must redraw the current

screen in the new graphics mode. If the horizontal dimensions already have bit 15 set to 1, the routine that

redraws the screen works without any changes. Here is an example of the codes associated with the item

"switch 40/80":

SwitchDsp:
lda graphMode
eor #$80
sta graphMode
jsr SetNewMode ; (SetNewMode routine is only available in GEOS 128)

 ;--- code to initialize the screen again

 This same block can be made easier to read and maintain by using the tmbf macro.

SwitchDsp:

tmbf 7,graphMode ; Toggle the MSD bit of graphMode
jsr SetNewMode ; (SetNewMode routine is only available in GEOS 128)

 ;--- code to initialize the screen again

5. The trick adopted to adapt the horizontal dimensions to 80-columns (bit 15 set with DOUBLE_W) is not

always effective. When the value of a horizontal coordinate is doubled in 80-column mode, the 0 bit of

the resulting word is always cleared. In some cases, this can be a serious limitation: for example, when

you want to fill the screen with a pattern that extends to the right-edge of the screen.

To solve this problem the ability to add 1 to the x-coordinate was introduced in the graphic routines of

GEOS 128: bit 15 of the word continues to have the same meaning (if set to 1 the value is doubled in 80-

columns), while bit 13 gives new information, but only in the 80-column mode. Bit 13 becomes bit 0 of

the resulting word from the "doubling" operation. If for example you want to locate the side right of the

screen, the horizontal coordinate must be $A000 + 319.

Example:
LoadW x-coordinate,#319 | DOUBLE_W | ADD1_W

Note: 128 GEOS routines LdApplic and LdDeskAcc will return the error INCOMPATIBLE if these

flags in the file header block do not allow running in the currently active graphMode.

 13-6 RAM Expansions and GEOS 128

Thanks to these five tricks you should be able to easily exploit the 80-column mode of the C128. However, some

tweaks may be needed in the testing phase of the application layout (this type of verification is always advisable).

The little tricks of the trade

In this last section we report a series of small tricks of which the programmer should take into account in the

implementation of applications. In some, the case is to get around the small bugs still present in the GEOS

structure.

1. If the application can run in the GEOS 128 environment, and is capable of managing the second drive,

pay particular attention to all calls from the PutDirHead routine, and each time insert immediately

before it 'jsr EnterTurbo'. This is necessary because in the first production of GEOS 128 V1.3 there

is a bug in the 1571 disk driver: the call to EnterTurbo is missing. The result is that, in certain

circumstances, calling PutDirHead can also ruin the disk. This trick does not create incompatibility

with GEOS 64. The bug is present in GEOS 128 Configure V1.4. It was fixed no later than V2.0 of

GEOS 128 with Configure V2.0 9/8/88.

2. If the program can run desk accessories, Blackjack programs with a Date < 10/9/86 alter the content

of the word for $4C95 (builds on or after 10/9/86 do not have this issue). This address is not in the

area temporarily saved on disk. To remedy this bug, the code responsible for the desk accessories must

be preceded by and followed by the instructions PushW $4C95 and PopW $4C95. Furthermore GEOS

64 V1.0-V1.3 does not save moby2 while running desk accessories. This means sprites can easily be

enlarged in height by the DAs and then modified. Here is a practical example of how to act, both on

the application and on the desk accessory:

Note: These work arounds are not necessary as of GEOS 1.4 and above.

Note: geoWrite 2.1 still uses these workarounds to protect against older desk accessories and to allow

it to run on older versions of GEOS without issue.

Applications:
ldx CPU_DATA ; save the state of moby2 on the stack
LoadB CPU_DATA,#IO_IN
PushB moby2
stx CPU_DATA
PushW $4C95 ; save the data that Blackjack would destroy

LOAD AND RUN THE DESK ACCESSORY HERE
PopW $4C95 ; restore the word
ldx CPU_DATA
LoadB CPU_DATA,#IO_IN
PopB moby2 ; restore moby2
stx CPU_DATA

DeskAccessory: ; init code
ldx CPU_DATA ; save the state of moby2
LoadB CPU_DATA,#IO_IN
MoveB moby2,savedmoby2
LoadB moby2,#$XX ; set moby2 as needed
stx CPU_DATA

ExitCode:

ldx CPU_DATA ; restore the state of moby2
LoadB CPU_DATA,#IO_IN
MoveB savedmoby2,moby2
stx CPU_DATA

Note: Desk Accessories included with GEOS 1.4+ do not have the above code in them.

 13-7 RAM Expansions and GEOS 128

3. GEOS may not work properly if no icon has been defined. If the application does not use icons, it is

better to define a dummy one to avoid problems. You can define it to be one scan line high, one byte

wide and with the pointer to the graphic data cleared. (This is true in all versions of GEOS).

4. In GEOS 1.4+, it must never be assumed that the concatenation of directory blocks begins with sector

$12 / $01, or that the Directory Header Block is located at T/S $12 / $00, as the format is different for

1581 disks. They must always execute the GetDirHead, PutDirHead, Get1stDirEntry and

GetNxtDirEntry routines present in the current disk driver.

5. The current device must never be directly changed in curDrive or curDevice. Instead, you need to

call SetDevice to address the disk drive desired.

6. In desk accessories: It is possible a desk accessory might detect that it cannot run while it is initializing.

e.g. desk accessory requires GEOS 2.0 to run but the current OS version is 1.3. The initialization code

cannot jump directly to RstrAppl, instead use LoadW appMain,#RstrAppl and then rts back to the

MainLoop. At the end of the next MainLoop the desk accessory will be terminated and the calling

application will be restored.

7. In the dialog boxes: the DB_USR_ROUT command is executed before icons have been drawn. If the

custom routine needs to draw something over the icons, you must load appMain with the address of

another routine, and delegate it to display the drawings over the icons.

8. Never use the MoveData routine to move the contents of registers r0 - r15.

9. The dialog boxes can manage no more than eight icons at the same time. If the box must display more

than eight icons, it must manage them autonomously through the vector otherPressVec.

10. Remember that the handling of events (processes, routines pointed to by keyVector and appMain) is

active while a menu is open. The routine pointed to by otherPressVec is partially active: it analyzes

only the button releases. If the application wants to ignore these events when opening a menu (very

frequent situation) don't forget to disable them.

11. Calls to DoMenu and DoIcons move the mouse. Since generally this is not desirable, one must act as

follows:

PushW mouseXPos
PushB mouseYPos
jsr DoIcons ; or DoMenu
PopB mouseYPos
PopW mouseXPos

12. If the application interacts with RecoverVector (to restore the covered background from a menu or

dialog box) remember that the routine identified by the vector is called twice when restoring the

background underneath a dialog box that has a shadow. If the shadow pattern is 0 the recovery routine

is only called once.

13. GEOS 1.1 interrupt main does not clear the decimal mode bit in the Processor Status Register (PSR).

Since the counts are done with this bit cleared, the interrupt must never occur while decimal mode is

activated. ie: You must disable interrupts before performing decimal mode operations and reenable

interrupts after decimal mode is off. This problem was fixed in GEOS V1.2.

 13-8 RAM Expansions and GEOS 128

14. If the application turns off (blanks) the screen or writes to grcntrl1 ($D011), make sure bit 7 is always

at 0. Since accidentally, in the course of several operations, this bit can become 1, the following code

can be used to reset it:

lda grcntrl1 ; get the current value
and #%01111111 ; reset bit 7
sta grcntrl1 ; store the new value

;---(Macro version).
rmbf 7,grcntrl1 ; get current value of grcntrl1,
 ; reset bit 7 and store new value

15. When an application activates a menu with DoMenu, GEOS sets mouseFaultVec to point to an

internal handler that controls the closing of the current menu when the mouse goes beyond the edges

of the menu. This will conflict with the application if it also needs to use mouseFaultVec while having

an active menu structure. The solution to the problem is obtained with two interventions, one in the

application initialization routine and one in the service routine that the application assigns to the

mouseFaultVec vector.

First intervention. When the application wants to use mouseFaultVec and simultaneously a menu structure, the

initialization routine must, after the call in DoMenu, store the contents of the mouseFaultVec vector in an internal

vector. Once the pointer to the system handler has been saved, the application can set mouseFaultVec with the

address of the applications service handler.

Example:
Init:
 LoadW r0,#ourMenu
 jsr DoMenu
 MoveW mouseFaultVec,saveMFV
 LoadW mouseFaultVec,#MFVHandler
 ...

Second intervention. When the service routine associated with mouseFaultVec receives control, it must check

whether its execution was requested by the system as a result of the mouse overstepping one of the limits set by

the application. If it was, it can perform its functions and return control to MainLoop with an rts instruction.

Otherwise, it must hand over control to the routine whose address was stored in the internal vector by the

initialization routine.

 MFVHandler:
 lda menuNumber ; check if a menu is active
 beq 10$; if the menuNumber is 0 then menu is closed
 ldx saveMFV+1 ; menu is active. let the system routine handle this
 lda saveMFV
 jmp CallRoutine ; transfer control and let Kernal return to the Main Loop
 ;--- Change jmp to a jsr if you still need to process
 ; after menu handling is done.
 10$... ; application mouse fault handler logic starts here

 14-1 WarmStart Configuration

 WarmStart Configuration

Whenever FirstInit is called, such as when GEOS boots, the Commodore hardware is setup. This includes setting

up the VIC chip RAM bank, and the CIA chips. The following table summarizes the state of the machine.

Initial Boot Configuration

Address Value Size Comment

C64&128 clear decimal mode with cld
CPU_DDR $2F 1 init. 6510 data direction reg.
CPU_DATA $30 1 Set to ALL RAM
OS_VARS 0 $A00 Clear GEOS RAM area, Global & local, to all 0's

CPU_DATA $36 set memory map to have Kernal & I/O in

128 Only
 scr80polar $40 1 VDC BG/FG Polarity
 scr80colors $E0 1 (VDC_GRY1<<4) | VDC_BLACK
 VDC defaults VDC set to 640X200 Monochrome.
 vdcClrMode 0 1
C64&128

CIA registers

cia1ddrb 0 1 clear cia1 DDRB Initialize key scan values
cia1crb 0 1 clear cia1crb to no keys pressed
cia2crb 0 1 clear cia2crb

cia1cra $80/00 1 set 50/60hz bit PAL/NTSC.
cia2cra $80/00 1 set 50/60hz bit PAL/NTSC.
cia2pra (cia2pra| 1 Keep old serial bus data.
 #$30|#$04| (so we don't screw up fast serial bus)
 GRBANK2) set graphics chip bank select (CIA port A).

cia2ddra $3F 1 Set DDRA direction.
cia1icr $7F 1 clear interrupt sources.
cia2icr $7F 1

 Init the cia1 time of day clock
cia1crb (cia1crb & $7F) 1 set to TOD clock reads and writes.
cia1todhr %10000000|$0C Noon.
cia1todmin 0 minutes.
cia1todsec 0 seconds.
cia1tod10ths 0 and 1/10 seconds.

VIC registers
mob0xpos 0 16 initial x, y-position of sprites 0-7.
msbxpos 0 1 most significant bits of all sprites x-position.
mob0clr BLUE 1 Mouse color.
mob1clr BLUE 1 String cursor color.
mobprior $00 1 (object/background priority)0=obj.
mobmcm $00 1 (object multicolor) 1 = mem.
mobx2 %00000000 1 Disable Sprite x-double-width.
moby2 %00000000 1 Disable Sprite y-double-height.
mobenble %00000001 1 (object enable) only the mouse.
grcntrl1 ST_DEN|ST_25ROW|ST_BMM|3 (Note: need y scroll = 3). (byte)
rasreg 251 1 raster reg. (set for interrupt at bottom)

 14-2 WarmStart Configuration

grcntrl2 ST_40COL 1 Set Graphics Mode.
grmemptr (((]COLOR__MATRIX)*2)&$F0) |
 ((]SCREEN_BASE*2)&$0E) VIC Memory setup (byte)
grirq %00001111 1 Acknowledge all VIC interrupts.
grirqen %00000001 1 Enable Raster Interrupt.

Mouse and window variables
pressFlag 0 1 no presses to handle.
dispBufferOn ST_WR_FORE | 1 Write to both screen and back buffer.
 ST_WR_BACK
mouseXPos 0 2
mouseYPos 0 1
mouseOn %11100000 1 Enable Mouse/Menus/Icons.
mousePicData arrow pic 64 copy arrow picture to mouse.
msePicPtr mousePicData 2
mouseLeft 0 1 Mouse constraints.
mouseTop 0 1
mouseRight 319 2 639 in C128 80 Col Mode.
mouseBottom 199 1
maxMouseSpeed MAXIMUM_VELOCITY 1 Mouse Speed.
minMouseSpeed MINIMUM_VELOCITY 1
mouseAccel MOUSE_ACCELERATION 1
currentMode PLAINTEXT 1 Text Mode.
windowTop 0 1 Text constraints.
windowBottom 199 2
leftMargin 0 2
rightMargin 319 2 639 in C128 80 Col Mode.
inputData -1 1 (diskData current joystick direction)
COLOR_MATRIX DKGREY<<4 | LTGREY 1000 dark grey on light grey screen.
extclr BLACK 1 Border color
interleave 8 1 Disk interleave.
curDrive 8 1 Initialize disk drive with SetDevice.
curDevice 8 1 reinitialized.
numDrives 8 1 Change # of drives to 1

Time and Date
minutes 0 The following sets up initial
seconds 0 Year/Month/Day/Hour, for now, so that
year 86 the disk date stamps look reasonable.
month 9
day 20 09/20/1986
hour 12 Noon
alarmSetFlag 0 1
o_alarmCount 0 1 Internal Counter of active alarms.

Vectors
appMain NULL 2
intTopVector o_InterruptMain 2 Set Vector to Kernal internal handler
intBotVector NULL 2
keyVector NULL 2
inputVector NULL 2
otherPressVec NULL 2
RecoverVector o_RecoverRectangle 2 Kernal handler for recovering background
mouseVector NULL 2
mouseFaultVec NULL 2
StringFaultVec NULL 2
alarmTmtVector NULL 2
BRKVector o_Panic 2 Kernal internal handler for BRK
EnterDeskTop o_EnterDeskTop 2 Set Vector to Kernal internal handler

 14-3 WarmStart Configuration

selectionFlash SELECTION_DELAY 1
alphaFlag 0 1
iconSelFlag ST_FLASH 1 set default to flash
faultData 0 1

Kernal Private Variables
o_nbrProcesses 0 1 reset Kernal Private variables to 0
o_numberAsleep 0 1
o_curIconIndex 0 1

Sprite pointers
Initialize Sprite pointers to sprite picture data†

spr0pic [(spr0pic>>6) 1
spr1pic [(spr1pic>>6) 1
spr2pic [(spr2pic>>6) 1
spr3pic [(spr3pic>>6) 1
spr4pic [(spr4pic>>6) 1
spr5pic [(spr5pic>>6) 1
spr6pic [(spr6pic>>6) 1
spr7pic [(spr7pic>>6) 1

Final Steps

 Forcefully exit any running turbo code

 Restore ROM Vectors

MoveShortBlock $FD30, $0314,32 Restore the C64 vectors in page 3 from ROM

Grey the Screen: place a grey pattern all over the screen
 A000 to BF3F

Note:† For more info on how Sprite pointers work see the Commodore 64 Programmer's Reference Manual.

The video space is 16K thus needing only 14 bits to address the entire space. The sprite pictures use

63 bytes and must be on 64 byte boundaries, thus the start of each sprite picture has an address with

the low 6 bits 0. Thus 14 - 6 = 8, only one byte is needed to specify the start address of a picture

anywhere in the 16K graphics memory space.

 14-4 WarmStart Configuration

Dialog Box and Auto Exec Configuration
When a Dialog Box or Auto Execute application is loaded the current system state is saved. (See Chapter 19:

"Environment > Structures > dlgBoxRamBuf" for more information on what is saved). The following table

shows the default values applied before passing control to the Dialog Box or Auto Exec.

Mouse and window variables
currentMode PLAINTEXT 1 Plain Text Mode.
dispBufferOn ST_WR_FORE | 1 Write to both screen and back buffer.
 ST_WR_BACK
mouseOn %11100000 1 Enable Mouse/Menus/Icons.
mousePicData arrow pic 64 copy arrow picture to mouse.
windowTop 0 1 Text constraints.
windowBottom 199 2
leftMargin 0 2
rightMargin 319 2 639 in C128 80 Col Mode.
pressFlag 0 1 no presses to handle.

Vectors
appMain NULL 2
intTopVector o_InterruptMain 2 Set Vector to Kernal internal handler
intBotVector NULL 2
mouseVector NULL 2
keyVector NULL 2
inputVector NULL 2
mouseFaultVec NULL 2
otherPressVec NULL 2
StringFaultVec NULL 2
alarmTmtVector NULL
BRKVector o_Panic 2 Kernal internal handler for BRK
RecoverVector o_RecoverRectangle 2 Kernal handler for recovering background

selectionFlash SELECTION_DELAY 1
alphaFlag 0 1
iconSelFlag ST_FLASH 1 set default to flash
faultData 0 1

Kernal Private Variables
o_nbrProcesses 0 1 No Active Processes
o_numberAsleep 0 1 No Sleepers
o_curIconIndex 0 1 No Icons

Sprite pointers
Initialize Sprite pointers to sprite picture data†

spr0pic [(spr0pic>>6) 1
spr1pic [(spr1pic>>6) 1
spr2pic [(spr2pic>>6) 1
spr3pic [(spr3pic>>6) 1
spr4pic [(spr4pic>>6) 1
spr5pic [(spr5pic>>6) 1
spr6pic [(spr6pic>>6) 1
spr7pic [(spr7pic>>6) 1

 18-1 Reserved for Future Use

 Chapter 15

 Reserved for Future Use
 Chapter 16

 Reserved for Future Use
 Chapter 17

 Reserved for Future Use
 Chapter 18

 Reserved for Future Use

constants / Miscellaneous:

 19-1 Environment

 Environment

constants

Miscellaneous:

These constants should always appear first in your constants files.

TRUE = -1
FALSE = 0

C128

ADD1_W = $2000
DOUBLE_W = $8000
DOUBLE_B = $80
GR_40 = 0 ; graphMode 40-column active
GR_80 = %10000000 ; 80-column active
ARROW = $00 ; arrow pointer

Fonts

FONTLEN = $9 ; size of fontTable

Flags

CLEAR = 0
SET = 1

KEYPRESS_BIT = 7 ; other keypress
INPUT_BIT = 6 ; input device change
MOUSE_BIT = 5 ; mouse press

SET_KEYPRESS = %10000000 ; other keypress
SET_INPUTCHG = %01000000 ; input device change
SET_MOUSE = %00100000 ; mouse press

faultFlag

OFFTOP_BIT = 7 ; mouse fault up
OFFBOTTOM_BIT = 6 ; mouse fault down
OFFLEFT_BIT = 5 ; mouse fault left
OFFRIGHT_BIT = 4 ; mouse fault right
OFFMENU_BIT = 3 ; menu fault

SET_OFFTOP = %10000000 ; mouse fault up
SET_OFFBOTTOM = %01000000 ; mouse fault down
SET_OFFLEFT = %00100000 ; mouse fault left
SET_OFFRIGHT = %00010000 ; mouse fault right
SET_OFFMENU = %00001000 ; menu fault

ANY_FAULT = %11111000

Desk Accessory save foreground bit (Obsolete)
FG_SAVE = %10000000 ; save and restore foreground graphics data
CLR_SAVE = %01000000 ; save and restore color information

constants / Dialog Box:

 19-2 Environment

Dialog Box:
DEF_DB_POS = $80 ; command for default dialog box position
SET_DB_POS = 0 ; command for user-set DB position

Descriptor table commands

OK = 1 ; put up system icon for "OK", command is
 ; followed by 2 byte position indicator, x-position
 ; in bytes, y-position in pixels. Note: positions
 ; are offsets from the top left corner of the
 ; dialog box.
CANCEL = 2 ; like OK, system DB icon, position follows
YES = 3 ; like OK, system DB icon, position follows
NO = 4 ; like OK, system DB icon, position follows
OPEN = 5 ; like OK, system DB icon, position follows
DISK = 6 ; like OK, system DB icon, position follows
;FUTURE1 = 7 ; reserved for future system icons
;FUTURE2 = 8 ; reserved for future system icons
;FUTURE3 = 9 ; reserved for future system icons
;FUTURE4 = 10 ; reserved for future system icons
DBTXTSTR = 11 ; command to display a text string.
DBVARSTR = 12 ; used to put out variant strings.
DBGETSTRING = 13 ; get an ASCII string from the user.
DBSYSOPV = 14 ; any press not over an icon return to application.
DBGRPHSTR = 15 ; execute graphics string.
DBGETFILES = 16 ; get filename from user.
DBOPVEC = 17 ; user defined other press vector.
DBUSRICON = 18 ; user defined icon.
DB_USR_ROUT = 19 ; user defined routine.

Offsets into descriptor table

OFF_DB_FORM = 0 ; box form description, i.e. shadow or not
OFF_DB_TOP = 1 ; position for top of dialog box
OFF_DB_BOT = 2 ; position for bottom of dialog box
OFF_DB_LEFT = 3 ; position for left of dialog box
OFF_DB_RIGHT = 5 ; position for right of dialog box
OFF_DB_1STCMD = 7 ; 1st command in dialog box
 ; descriptor table

System Dialog Icon dimensions

SYSDBI_WIDTH = 6 ; width in bytes
SYSDBI_HEIGHT = 16 ; height in pixels
MAX_DB_ICONS = 8 ; maximum number of dialog icons
 ; this includes system icons + user icons

constants / Dialog Box:

 19-3 Environment

These equates define a standard, default, dialog box position and size as well as some standard positions within

the box for outputting text and icons.

Default Coordinates

DEF_DB_TOP = 32 ;$20 top y-coordinate of default box
DEF_DB_BOT = 127 ;$7F bottom y-coordinate of default box
DEF_DB_LEFT = 64 ;$40 left-edge of default box
DEF_DB_RIGHT = 255 ;$FF right-edge of default box

Standard Text Locations

TXT_LN_X = 16 ;$10 standard text x-start
TXT_LN_1_Y = 16 ;$10 standard text line y-offsets
TXT_LN_2_Y = 32 ;$20
TXT_LN_3_Y = 48 ;$30
TXT_LN_4_Y = 64 ;$40
TXT_LN_5_Y = 80 ;$50

Standard Icon Locations

DBI_X_0 = 1 ;$01 left-side standard icon x-position
DBI_X_1 = 9 ;$09 center standard icon x-position
DBI_X_2 = 17 ;$11 right-side standard icon x-position
DBI_Y_0 = 8 ;$08 top standard icon y-position
DBI_Y_1 = 40 ;$28 middle standard icon y-position
DBI_Y_2 = 72 ;$48 bottom standard icon y-position

Icon Y Locations for dialogs with 4 Icons on right-side

DBGF_Y_0 = 25 ;$19 OPEN
DBGF_Y_1 = 42 ;$2A DISK
DBGF_Y_2 = 59 ;$3B DRIVE
DBGF_Y_3 = 76 ;$4C CANCEL

constants / Disk:

 19-4 Environment

Disk:

BLOCKSIZE = 256 ; total bytes in block
BLKDATSIZE = 254 ; total data bytes in a block

;--- Equates for variable "driveType". High two bits of driveType have special meaning
; (only 1 may be set):
; Bit 7: if 1, then RAM DISK
; Bit 6: if 1, then Shadowed disk
DRV_NULL = 0 ; no drive present at this device address
DRV_1541 = 1 ; drive type Commodore 1541
DRV_1571 = 2 ; drive type Commodore 1571
DRV_1581 = 3 ; drive type Commodore 1581
DRV_NETWORK = 15 ; drive type for GEOS geoNet "drive"

DRIVE_A = 8
DRIVE_B = 9
DRIVE_C = 10
DRIVE_D = 11

Directory

DirHeader: curDirHead $8200

DK_NM_ID_LEN = 18 ; # of characters in disk name

;--- Offsets into a directory header structure
; = 3 ; 1571 double sided flag. $80=double sided format.
OFF_TO_BAM = 4 ; first BAM entry
OFF_DISK_NAME = 144 ; disk name string
OFF_DSK_ID = 162 ; disk ID
OFF_OP_TR_SC = 171 ; track and sector for off page directory
 ; entries. 8 files may be moved off page
OFF_GS_ID = 173 ; where GEOS ID string is located
OFF_GS_DTYPE = 189 ; GEOS disk type.
 ; 0 for normal disk
 ; 'B' for BOOT disk
 ; 'P' for Master disk
 ; zeroed on destination disk during disk copy

DirBlock

FRST_FILE_ENTRY = 2 ; first dir entry is at byte #2

DirEntry: dirEntryBuf $8400

ENTRY_SIZE = 16 ; size of filename
DIRENTRY_SIZE = 30
ST_WR_PR = $40 ; write protect bit: bit 6 of byte 0 in the
 ; directory entry

DirEntry Offsets

OFF_CFILE_TYPE = 0 ; standard Commodore file type indicator
OFF_INDEX_PTR = 1 ; index table pointer (VLIR file)
OFF_DE_TR_SC = 1 ; track for file's 1st data block
OFF_FNAME = 3 ; file name
OFF_GHDR_PTR = 19 ; track/sector info on where header block is
OFF_GSTRUC_TYPE = 21 ; GEOS file structure type
OFF_GFILE_TYPE = 22 ; GEOS file type indicator
OFF_YEAR = 23 ; year (1st byte of date stamp)
OFF_SIZE = 28 ; size of the file in blocks
OFF_NXT_FILE = 32 ; next file entry in directory structure

constants / Disk:

 19-5 Environment

low-level GEOS disk handling routines

N_TRACKS = 35 ; # of tracks available on the 1541 disk
DIR_TRACK = 18 ; track # reserved on disk for directory
DIR_1581_TRACK = 40 ; 1581 track # reserved on disk for directory
TOTAL_BLOCKS = 664 ; number of blocks on 1541 disk, not including directory
 ; track

Disk access commands

MAX_CMND_STR = 32 ; maximum length a command string would have
DIR_ACC_CHAN = 13 ; default direct access channel
REL_FILE_NUM = 9 ; logical file number & channel used for relative files
CMND_FILE_NUM = 15 ; logical file number & channel used for command files

;--- Indexes to a command buffer for setting the track and sector number for a direct access
; command.
TRACK = 9 ; offset to low-byte decimal ASCII track number
SECTOR = 12 ; offset to low-byte decimal ASCII sector number

Disk Errors:

NO_ERROR = $00 ; no error
NO_BLOCKS = $01 ; not enough blocks
INV_TRACK = $02 ; invalid track
INSUFF_SPACE = $03 ; not enough blocks on disk
FULL_DIRECTORY = $04 ; directory full
FILE_NOT_FOUND = $05 ; file not found
BAD_BAM = $06 ; bad allocation map
UNOPENED_VLIR = $07 ; unopened VLIR file (this is a non fatal error)
INV_RECORD = $08 ; invalid VLIR record
OUT_OF_RECORDS = $09 ; cannot insert/append more records
STRUCT_MISMATCH = $0A ; file structure mismatch
BFR_OVERFLOW = $0B ; buffer overflow during load
CANCEL_ERR = $0C ; deliberate cancel error
DEV_NOT_FOUND = $0D ; device not found
INCOMPATIBLE = $0E ; this error is returned when an attempt is made
 ; to load a program that can't be run on the
 ; current graphics modes under GEOS 128
HDR_NOT_THERE = $20 ; cannot find file header block
NO_SYNC = $21 ; can't find sync mark on disk
DBLK_NOT_THERE = $22 ; data block not present
DAT_CHKSUM_ERR = $23 ; data block checksum error
WR_VER_ERR = $25 ; write verify error
WR_PR_ON = $26 ; disk is write protected
HDR_CHKSUM_ERR = $27 ; checksum error in header block
DSK_ID_MISMAT = $29 ; disk ID mismatch
BYTE_DEC_ERR = $2E ; can't decode flux transitions off of disk
DOS_MISMATCH = $73 ; wrong DOS indicator on the disk

constants / Disk:

 19-6 Environment

File Types:

;--- This is the value in the "GEOS file type" byte of a directory entry that is pre-GEOS.

NOT_GEOS = 0 ; Old C64 file, without GEOS header
 ; (PRG, SEQ, USR, REL)

;--- The following are GEOS file types reserved for compatibility with old C64 files, that have
; simply had a GEOS header placed on them. Users should be able to double click on files of
; type BASIC and ASSEMBLY, whereupon they will be fast-loaded and executed from under BASIC.

BASIC = 1 ; C64 BASIC program, with a GEOS header attached.
 ; (Commodore file type PRG) to be used on programs that
 ; were executed before GEOS with:
 ; LOAD "FILE",8
 ; RUN
ASSEMBLY = 2 ; C64 ASSEMBLY program, with a GEOS header attached.
 ; (Commodore file type PRG) to be used on programs that
 ; were executed before GEOS with:
 ; LOAD "FILE",8,1
 ; SYS(Start Address)
DATA = 3 ; non-executable DATA file (PRG, SEQ, or USR)
 ; with a GEOS header attached for icon & notes ability.

;--- The following are file types for GEOS applications & system use:
; ALL files having one of these GEOS file types should be of Commodore file type USR.

SYSTEM = 4 ; GEOS system file
DESK_ACC = 5 ; GEOS desk accessory file
APPLICATION = 6 ; GEOS application file
APPL_DATA = 7 ; data file for a GEOS application
FONT = 8 ; GEOS font file
PRINTER = 9 ; GEOS printer driver
INPUT_DEVICE = 10 ; INPUT device (mouse, etc.)
DISK_DEVICE = 11 ; DISK device driver
SYSTEM_BOOT = 12 ; GEOS system boot file (for GEOS, GEOS BOOT, GEOS KERNAL)
TEMPORARY = 13 ; temporary file type, for swap files.
 ; the deskTop will automatically delete all
 ; files of this type upon opening a disk.
AUTO_EXEC = 14 ; application to automatically be loaded & run
 ; just after booting, but before deskTop runs
INPUT_128 = 15 ; 128 Input driver
NUM_FILE_TYPES = 15 ; # of file types, including NON_GEOS (=0)

GEOS file structure types

;--- Each "structure type" specifies the organization of data blocks on the disk,
; and has nothing to do with the data in the blocks.

SEQUENTIAL = 0 ; standard T/S structure (like Commodore SEQ and PRG)
VLIR = 1 ; variable-length-indexed-record file (used for fonts,
 ; documents & some programs) this is a GEOS only format

constants / Disk:

 19-7 Environment

Standard Commodore file types (supported by the old 1541 DOS)

DEL = 0 ; deleted file
SEQ = 1 ; sequential file
PRG = 2 ; program file
USR = 3 ; user file
REL = 4 ; relative file
CBM = 5 ; partition / sub-directory file,
 ; (only valid on 1581 drives). ¥

Note: ¥ GEOS only partially supports the CBM file type by handling it correctly during disk validation. See

the Commodore 1581 DISK DRIVE User's Guide for more information on using 1581 partitions and

sub-directories outside of GEOS.

constants / Disk:

 19-8 Environment

File Header Block fileHeader $8100

Offsets into a GEOS file header block

O_GHIC_WIDTH = $02 ; byte: width in bytes of file icon
O_GHIC_HEIGHT = $03 ; byte: indicates height of file icon
O_GHIC_PIC = $04 ; 64 bytes: picture data for file icon
O_GHCMDR_TYPE = $44 ; byte: Comm. file type
O_GHGEOS_TYPE = $45 ; byte: GEOS file type
O_GHSTR_TYPE = $46 ; byte: GEOS file structure type
O_GHST_ADDR = $47 ; 2 bytes: start address of file in memory
O_GHEND_ADDR = $49 ; 2 bytes: end address of file in memory
O_GHST_VEC = $4B ; 2 bytes: initialization vector if file is application
O_GHFNAME = $4D ; 20 bytes, permanent filename
O_GHCNAME = $4D ; 20 bytes, data files permanent class name

O_128_FLAGS = $60 ; 1 byte, flags to indicate if this program
 ; will run under the C128 OS in 40-column and
 ; in 80-column. These flags are valid for
 ; applications, desk accessories, and auto-exec files
 ; Bit 7: zero if runs in 40-column
 ; Bit 6: one if runs in 80-column
 ;--- Constants for 128 FLAGS

CF_40 = $00 ; 64/128 40-column mode only
CF_40_80 = $40 ; 64/128 40/80 and 80-column modes
CF_64 = $80 ; 64 Only. Does not run under GEOS 128
CF_128 = $C0 ; 128 80-column mode only

O_GH_AUTHOR = $61 ; 20 bytes: author's name (only for application's)
O_GHAPDAT = $89 ; application data
O_GHINFO_TXT = $A0 ; offset to notes that are stored with the file
 ; and edited in the deskTop "get info" box

When file is an application's data file

O_GHP_FNAME = $75 ; 20 bytes: permanent filename of parent application
;O_GHP_DISK = $61 ; 20 bytes: disk name of parent application's disk
 ; (parent application's disk name was never implemented
 ; in any GEOS application)

Font File Type Offsets (into File Header Block)

O_GHSETLEN = $61
O_GHFONTID = $80
O_GHPTSIZES = $82

constants / Graphics

 19-9 Environment

GetFile

;--- The following equates define file loading options for several of the GEOS file handling
; routines like GetFile. These bit definitions are used to set the RAM variable r0/loadOpt.

ST_LD_AT_ADDR = $01 ; "Load At Address": Load file at caller specified address
 ; instead of address file was saved from.

ST_LD_DATA = $80 ; "Load Datafile": Used when application datafile is
 ; opened from deskTop. Used to indicate to application
 ; that r2 and r3 contain information about where to find
 ; the selected datafile.

ST_PR_DATA = $40 ; "Print Datafile": Used when application datafile is
 ; selected for printing from deskTop. Used to indicate to
 ; application that r2 and r3 contain information about
 ; where to find the selected datafile.

VLIR

MAX_VLIR_RECS = 127 ; Maximum number of VLIR records

Graphics

Constants for screen size

SC_BYTE_WIDTH = 40 ; width of screen in bytes
SC_PIX_WIDTH = 320 ; width of screen in pixels
SC_PIX_HEIGHT = 200 ; height of screen in scanlines
SC_SIZE = 8000 ; size of screen memory in bytes

Bits used to set dispBufferOn flag (controls which screens get written to)

ST_WR_FORE = $80 ; write to foreground
ST_WR_BACK = $40 ; write to background
ST_WRGS_FORE = $20 ; limit GetString text entry to foreground screen
 ; this bit has no effect on anything outside of GetString

Values for graphics strings

MOVEPENTO = 1 ; move pen to x, y
LINETO = 2 ; draw line to x, y
RECTANGLETO = 3 ; draw a rectangle to x, y
NEWPATTERN = 5 ; set a new pattern
ESC_PUTSTRING = 6 ; start PutString interpretation
FRAME_RECTO = 7 ; draw frame of rectangle
PEN_X_DELTA = 8 ; move pen by signed word delta in x
PEN_Y_DELTA = 9 ; move pen by signed word delta in y
PEN_XY_DELTA = 10 ; move pen by signed word delta in x & y

Values for PutDecimal calls

SET_LEFTJUST = %10000000 ; left justified
SET_RIGHTJUST = %00000000 ; left justified
SET_SUPRESS = %01000000 ; no leading 0's
SET_NOSUPRESS = %00000000 ; leading 0's

constants / Graphics

 19-10 Environment

Screen colors

BLACK = 0
WHITE = 1
RED = 2
CYAN = 3
PURPLE = 4
GREEN = 5
BLUE = 6
YELLOW = 7
ORANGE = 8
BROWN = 9
LTRED = 10
DKGREY = 11
GREY = 12
MEDGREY = 12
LTGREEN = 13
LTBLUE = 14
LTGREY = 15

VDC Screen Colors

VDC_BLACK = $00 ; black
VDC_DKGREY = $01 ; dark grey
VDC_BLUE = $02 ; dark blue
VDC_LTBLUE = $03 ; light blue
VDC_GREEN = $04 ; dark green
VDC_LGREEN = $05 ; light green
VDC_CYAN = $06 ; dark cyan
VDC_LTCYAN = $07 ; light cyan
VDC_RED = $08 ; dark red
VDC_LTRED = $09 ; light red
VDC_PURPLE = $0A ; dark purple
VDC_LTPURPLE = $0B ; light purple
VDC_YELLOW = $0C ; dark yellow
VDC_LTYELLOW = $0D ; light yellow
VDC_LTGREY = $0E ; light grey
VDC_WHITE = $0F ; white

Values for SetColorMode

VDC_CLR0 = 0 ; monochrome
VDC_CLR1 = 1 ; 640x176 8x8 Color Cards, 16K VDC limited to 176 lines
VDC_CLR2 = 2 ; 640x200 8x8 Color Cards
VDC_CLR3 = 3 ; 640x200 8x4 Color Cards
VDC_CLR4 = 4 ; 640x200 8x2 Color Cards

constants / Hardware

 19-11 Environment

Hardware

CPU_DATA

;--- The following equates define the numbers written to the CPU_DATA register (location $0001 in
; C64 and C128). These numbers control the hardware memory map of the C64.
; Harmless to use on GEOS 128 but has no effect on RAM/ROM configuration.
; (In GEOS 128 I/O is always mapped in).

IO_IN = $35 ; 60K RAM, 4K I/O space in
RAM_64K = $30 ; 64K RAM
KRNL_BAS_IO_IN = $37 ; both Kernal and basic ROM's mapped into memory
KRNL_IO_IN = $36 ; Kernal ROM and I/O space mapped in
KRNL_CH_BAS_IN = $33 ; Kernal + basic + Char ROM

128 MMU

CIO_IN = $7E ; 60K RAM, 4K I/O
CRAM_64K = $7F ; 64K RAM
CKRNL_BAS_IO_IN = $40 ; Kernal, I/O, basic
CKRNL_IO_IN = $4E ; Kernal, I/O
CIO_INB0 = $3E ; Bank 0, 60K RAM, 4K I/O

SID

;--- Voice part offsets from voice bases sidVoc1,sidVoc2,sidVoc3

; or from sidbase+O_VOICE[2..3]
O_FREQUENCY = 0 ; Examples:
O_FRELO = 0 ;
O_FREHI = 1 ; LoadW sidbase+O_VOICE3+O_PULSEWIDTH,#$800
O_PULSEWIDTH = 2
O_PWLO = 2 ; tabReg: .byte O_SUREL,O_ATDCY,O_VCREG,O_FRELO,O_FREHI
O_PWHI = 3
O_VCREG = 4
O_ATDCY = 5 ; LoadB sidVoc2+O_ATDCY,#$34
O_SUREL = 6

;--- control offsets from sidbase
O_FREQCUTOFF = $15
O_FCLO = $15
O_FCHI = $16
O_RESFILT = $17
O_SIGVOL = $18
O_OSC3 = $1B
O_ENV3 = $1C

;voice offsets from sidbase
O_VOICE1 = 0
O_VOICE2 = 7
O_VOICE3 = $0E

constants / Hardware

 19-12 Environment

VIC Chip

GRBANK0 = %11 ; bits indicate VIC RAM is $0000 - $3FFF, 1st 16K
GRBANK1 = %10 ; bits indicate VIC RAM is $4000 - $7FFF, 2nd 16K
GRBANK2 = %01 ; bits indicate VIC RAM is $8000 - $BFFF, 3rd 16K
GRBANK3 = %00 ; bits indicate VIC RAM is $c000 - $FFFF, 4th 16K

MOUSE_SPRNUM = 0 ; sprite number used for mouse
 ; (used to set VIC)

VIC_YPOS_OFF = 50 ; position offset from 0 to position a
 ; hardware sprite at the top of the screen
 ; used to map from GEOS coordinates to hardware
 ; position coordinates.

VIC_XPOS_OFF = 24 ; As above, offset from hardware 0
 ; position to left of screen, used to map GEOS
 ; coordinates to VIC

ALARMMASK = %00000100 ; mask for the alarm bit in the cia chip
 ; interrupt control register

grcntrl1 graphics control register #1 D011

;--- ie msb raster /ECM /BMM /DEN /RSEL /y scroll bits.
ST_ECM = $40
ST_BMM = $20
ST_DEN = $10
ST_25ROW = $08

grcntrl2 graphics control resister #2 D016

;--- ie: RES/MCM/CSEL/x scroll bits
ST_MCM = $10
ST_40COL = $08 ;

grirqen Graphics chip interrupt enable register D01A

ST_RASEN = %01 ; Enable raster interrupts

constants / Hardware

 19-13 Environment

VDC

;vdccr = $D600 ; Control Register
;vdcdr = $D601 ; Data Register (R/W)

R0_HT = 0 ; Horizontal total
R1_HD = 1 ; Horizontal displayed
R2_HP = 2 ; Horizontal Sync
R3_VHW = 3 ; Vertical sync width | Horizontal sync width
R4_VT = 4 ; Vertical total
R5_VA = 5 ; Vertical total adjust
R6_VD = 6 ; Vertical characters displayed
R7_VP = 7 ; Vertical sync position
R8_IM = 8 ; Interlaced mode control
R9_CTV = 9 ; Rasterlines per character row
R10_CMS = $0A ; Cursor Mode / Cursor Start scan line
R11_CE = $0B ; Cursor end scan line

R12_DSH = $0C ; Start address of display memory in VDC RAM (word)
R13_DSL = $0D ; (GEOS default $0000)

R14_CPH = $0E ; cursor position in text mode (word)
R15_CPL = $0F

R16_LPV = $10 ; Light Pen vertical position
R17_LPH = $11 ; Light Pen horizontal position

R18_UAH = $12 ; Update address (word). Location in VDC Memory for
R19_UAL = $13 ; read/write using R31_DA and destination of block copies

R20_AAH = $14 ; Attribute start address (word)
R21_AAL = $15 ; (GEOS default $3880, but not used in monochrome mode)

R22_CGW = $16 ; Character Width
R23_CDV = $17 ; Character Height
R24_VSS = $18 ; b7: 1=Block copy
 ; 0=Block fill
 ; b6: 1=reverse video
 ; b5: Text mode blink control
 ; 1=slow
 ; 0=fast
 ; b4-0: vertical smooth scroll
R25_HSS = $19 ; b7: 1=bitmap mode
 ; 0=text mode
 ; b6: Text mode attribute control
 ; 1= attributes enabled
 ; b5: Text mode gap fill
 ; 1=semigraphic mode
 ; b4: pixel clock
 ; 1=Double horizontal pixels
 ; b3-0: Horizontal smooth scroll
R26_FBC = $1A ; Foreground color / background color
R27_AI = $1B ; Address increment per row
R28_CB = $1C ; Character base address / RAM-type
R29_UL = $1D ; Underline scan line count
R30_WC = $1E ; Block copy/fill word count
R31_DA = $1F ; Data Register: Data byte pointed to by R18_UA

R32_BAH = $20 ; Block copy source address. (word)
R33_BAL = $21 ; (Copies to R18_UA Update address)

R34_DEB = $22 ; Display enable begin
R35_DEE = $23 ; Display enable end
R36_DRR = $24 ; RAM refresh/scan Line
R37_HVS = $25 ; hsync/vsync polarity. (8568 Only)

constants / Keyboard:

 19-14 Environment

Keyboard:
KEY_QUEUE_SIZE = 16 ; size of the keyboard queue (buffer)
KEY_REPEAT_COUNT = 15 ; 1/4 second: auto-repeat time
 ; for the keyboard (maximum 254 and not 255)

KEY_F1 = 1
KEY_F2 = 2
KEY_F3 = 3
KEY_F4 = 4
KEY_F5 = 5
KEY_F6 = 6
KEY_LEFT = 8 ; BACKSPACE
KEY_TAB = 9
KEY_ENTER = 13
KEY_F7 = 14
KEY_F8 = 15
KEY_UP = 16
KEY_DOWN = 17
KEY_HOME = 18
KEY_CLEAR = 19
KEY_LARROW = 20
KEY_UPARROW = 21
KEY_STOP = 22
KEY_RUN = 23
KEY_BPS = 24
KEY_INSERT = 28
KEY_DELETE = 29
KEY_RIGHT = 30
KEY_INVALID = 31

128 Keys

KEY_NOSCRL = 7
KEY_LF = 10
KEY_HELP = 25
KEY_ALT = 26
KEY_ESC = 27

constants / Menu and Icon

 19-15 Environment

Menu and Icon

Icon:

Default delay between flashes for icons and inverted time for menus delay is in vblanks.
SELECTION_DELAY = 10 ; 1/6 of a second

MAX_ICONS = 31 ;Attempting do use more then 31 will likely
 ;cause a system crash

iconSelFlag

These equates are bit values for iconSelFlag that determine how an icon selection is indicated to the user.

If ST_FLASH is set, ST_INVERT is ineffective.
ST_NOTHING = $00 ; indicate icon should not be changed
ST_FLASH = $80 ; bit to indicate icon should flash
ST_INVERT = $40 ; bit to indicate icon should be inverted

ST_FLSH_BIT = 7 ; icon should flash
ST_INVRT_BIT = 6 ; icon should invert

Offsets into the icon structure

OFF_NM_ICNS = 0 ; number of icons in structure
OFF_IC_XMOUSE = 1 ; mouse start x-position
OFF_IC_YMOUSE = 3 ; mouse start y-position

Offsets into an icon record in icon structure

Constant declarations from HGG. Adopted for official constants in geoProgrammer 2.x+

OFF_I_PIC = 0 ; picture pointer for icon
OFF_I_X = 2 ; x-position of icon
OFF_I_Y = 3 ; y-position of icon
OFF_I_WIDTH = 4 ; width of icon
OFF_I_HEIGHT = 5 ; height of icon
OFF_I_EVENT = 6 ; pointer to service routine for selected icon
OFF_I_NEXT = 8 ; Size of Icon Record

Constant declarations from geoProgrammer 1.x. Included for backwards compatibility.

OFF_PIC_ICON = 0 ; picture pointer for icon
OFF_X_ICON_POS = 2 ; x-position of icon
OFF_Y_ICON_POS = 3 ; y-position of icon
OFF_WDTH_ICON = 4 ; width of icon
OFF_HEIGHT_ICON = 5 ; height of icon
OFF_SRV_RT_ICON = 6 ; pointer to service routine for icon
OFF_NX_ICON = 8 ; next icon in icon structure

constants / Mouse

 19-16 Environment

Menu:

MAX_M_ITEMS = 15
MAX_M_NESTING = 4
M_HEIGHT = 14

Types

HORIZONTAL = %00000000
VERTICAL = %10000000
CONSTRAINED = %01000000
UN_CONSTRAINED = %00000000

Offsets

OFF_MY_TOP = 0 ; offset to y-position of top of menu
OFF_MY_BOT = 1 ; offset to y-position of bottom of menu
OFF_MX_LEFT = 2 ; offset to x-position of left-side of menu
OFF_MX_RIGHT = 4 ; offset to x-position of right-side of menu
OFF_M_ATTRIBUTE = 6 ; offset to Alignment | Number of items
OFF_NUM_M_ITEMS = 6 ; Offset to last menu byte. (deprecated)
OFF_1ST_M_ITEM = 7 ; offset to record for 1st menu item in structure

Menu Item Offsets

OFF_TEXT_ITEM = 0 ; Pointer to null-terminated string for this menu item
OFF_TYPE_ITEM = 2 ; Selection type (sub-menu, event, dynamic sub-menu)
OFF_POINTER_ITEM = 3 ; Pointer to sub-menu data structure, event routine, or
 ; dynamic sub-menu routine, depending on selection type

Actions

SUB_MENU = $80 ; for setting byte in menu table that indicates
DYN_SUB_MENU = $40 ; whether the menu item causes action
MENU_ACTION = $00 ; or sub-menu

Mouse

Bit flags for mouseOn variable

SET_MSE_ON = %10000000
SET_MENUON = %01000000
SET_ICONSON = %00100000

MOUSEON_BIT = 7
MENUON_BIT = 6
ICONSON_BIT = 5

Default Reset Count for dblClickCount

CLICK_COUNT = 30

constants / Memory Map

 19-17 Environment

Memory Map

zpage = $00 ; start of Zero Page
APP_ZPL = $70 ; application dedicated zero page block. 16 bytes
APP_ZIO = $80 ; swappable Kernal I/O / application zpage space
APP_ZPH = $FB ; application Dedicated zero page block. 4 bytes
APP_LVAR = $0200 ; application low variable space
KERNAL_VECTORS = $031A ; Kernal vectors when ROM is switched in
APP_LRAM¥ = $0334 ; application low space
APP_RAM = $0400 ; start of application space
BACK_SCR_BASE = $6000 ; base of background screen
PRINTBASE = $7900 ; load address for print drivers
APP_VAR = $7F40 ; application variable space
OS_VARS = $8000 ; OS variable base
SPRITE_PICS = $8A00 ; base of sprite pictures
COLOR_MATRIX = $8C00 ; video color matrix
DISK_BASE = $9000 ; disk driver base address
SCREEN_BASE = $A000 ; base of foreground screen
; $BF40 ; start of C64 low OS code space
; $BF80 ; start of C128 low OS code space
OS_ROM = $C000 ; start of OS code space
OS_JUMPTAB = $C100 ; start of GEOS jump table
vicbase = $D000 ; video interface chip base address
sidbase = $D400 ; sound interface device base address
ctab = $D800 ; color table for text mode.
 ; Note: GEODEBUGGER and GEOBASIC use text mode
cia1base = $DC00 ; 1st communications interface adaptor (CIA)
cia2base = $DD00 ; second CIA chip
EXP_BASE = $DF00 ; base address of RAM-Expansion unit

MSE128_BASE = $FD00 ; start of 128 input driver
END_MSE128 = $FE80 ; end of 128 input driver

MOUSE_JMP = $FE80 ; start of mouse jump table
MOUSE_BASE = $FE80 ; start of input driver
END_MOUSE = $FFFA ; one byte past the end of the input driver
NMI_VECTOR = $FFFA ; NMI vector location
RESET_VECTOR = $FFFC ; reset vector location
IRQ_VECTOR = $FFFE ; interrupt vector location

¥Important: The APP_LRAM region is used by the debugger. See Appendix E: Memory Maps for more

information.

constants / Process:

 19-18 Environment

Process:

MAX_PROCESSES = 20 ; maximum number of processes
SLEEP_MAX = 20 ; maximum number of sleeping threads
PSIZE = 4 ; size of process table entry

Possible values for processFlags

SET_RUNABLE = %10000000 ; runnable flag
SET_BLOCKED = %01000000 ; process blocked flag
SET_FROZEN = %00100000 ; process frozen flag
SET_NOTIMER = %00010000 ; not a timed process flag

RUNABLE_BIT = 7 ; runnable flag
BLOCKED_BIT = 6 ; process blocked flag
FROZEN_BIT = 5 ; process frozen flag
NOTIMER_BIT = 4 ; not a timed process flag

pseudoregisters

r0L = $02 ; Descriptive access to low-byte of registers:
r1L = $04 ;
r2L = $06 ; To conserve symbol names, only the basename and
r3L = $08 ; the high byte name should be sent to the debugger.
r4L = $0A ;
r5L = $0C ; Example:
r6L = $0E ; Both of these will work in the debugger
r7L = $10 ; m r0
r8L = $12 ; m r0H
r9L = $14
r10L = $16 ; This will not work when not sending low-byte symbols.
r11L = $18 ; m r0L
r12L = $1A
r13L = $1C ; use m r0 instead.
r14L = $1E
r15L = $20

a0 = $FB ; Default names for user registers:
a1 = $FD ; a0-a9 conflict with actual address names in the
a2 = $70 ; debugger so they are included as constants that do
a3 = $72 ; not get exported to the .dbg file.
a4 = $74
a5 = $76 ; in the debugger refer to these by the low/high names
a6 = $78
a7 = $7A ; Example use in debugger:
a8 = $7C ; m a0L
a9 = $7E ; m a0H

 ; Even if a0-a9 were exported as symbols the following
 ; command would still fail to do as expected.
 ; m a0
 ;
 ; Will return the contents of the address $A0 instead
 ; of the address referenced by the symbol name a0.

constants / Text

 19-19 Environment

Text

Bit flags in mode

SET_UNDERLINE = %10000000
SET_BOLD = %01000000
SET_REVERSE = %00100000
SET_ITALIC = %00010000
SET_OUTLINE = %00001000
SET_SUPERSCRIPT = %00000100
SET_SUBSCRIPT = %00000010
SET_PLAINTEXT = 0

UNDERLINE_BIT = 7
BOLD_BIT = 6
REVERSE_BIT = 5
ITALIC_BIT = 4
OUTLINE_BIT = 3
SUPERSCRIPT_BIT = 2
SUBSCRIPT_BIT = 1

PutChar constants

EOF = 0 ; end of text object
NULL = 0 ; end of string
BACKSPACE = 8 ; move left a card
TAB = 9
FORWARDSPACE = 9 ; move right one card
LF = 10 ; move down a card row
HOME = 11 ; move to left top corner of screen
UPLINE = 12 ; move up a card line
PAGE_BREAK = 12 ; page break
CR = 13 ; move to beginning of next card row
ULINEON = 14 ; turn on underlining
ULINEOFF = 15 ; turn off underlining
ESC_GRAPHICS = 16 ; escape code for graphics string
ESC_RULER = 17 ; ruler escape
REV_ON = 18 ; turn on reverse video
REV_OFF = 19 ; turn off reverse video
GOTOX = 20 ; use next word as x cursor position
GOTOY = 21 ; use next byte as y cursor position
GOTOXY = 22 ; use next word as x and then the next byte as y cursor pos
NEWCARDSET = 23 ; use next two bytes as new font id, then a style byte
BOLDON = 24 ; turn on BOLD characters
ITALICON = 25 ; turn on ITALIC characters
OUTLINEON = 26 ; turn on OUTLINE characters
PLAINTEXT = 27 ; plain text mode
USELAST = 127 ; erase character. Used with GetRealSize to get the size

; of the previously printed character.
SHORTCUT = 128 ; (%10000000) Mask bit for a shortcut character. Any
 ; character read of the keyboard buffer with bit 7 set
 ; will be a shortcut key. ¥

¥Example: User enters + 'A'

 Character in keyData will be ('A' | SHORTCUT)

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-20 Environment

variables

By Name
alarmSetFlag: 851C 851C 1 FALSE No TRUE if the alarm is set for GEOS to monitor, else FALSE

alarmTmtVector: 84AD 84AD 2 NULL Yes Address of a service routine for the alarm clock time-out (ringing, graphic etc.)

that the application can use if necessary.

alphaFlag: 84B4 84B4 1 0 Yes Flag for alphanumeric string input

 0xxx xxxx if not getting text input

 11xx xxxx if getting text input

bit Description

--- --

b7: Flag indicating alphanumeric input is on

b6: Flag indicating prompt is visible

b5-0: Counter before prompt flashes

a0: a0L/a0H(+1)

a1: ...

a2:

a3:

a4:

a5:

a6:

a7:

a8:

a9:

FB
FD
70
72
74
76
78
7A
7C
7E

FB
FD
70
72
74
76
78
7A
7C
7E

2

2

2

2

2

2

2

2

2

2

None No Place holder pseudoregister names for application use. GEODEBUGGER sees

the names a0-a9 as address's. Because of this, it is recommended to provide

descriptive names of the .zsect space as needed on a per application basis.

Example:

 .zsect APP_ZPL ;(APP_ZPL=$70)

 zSysType: .block 1 ;bit flags for runtime system

 zDevApp: .block 1 ;device number of application

 zDevData: .block 1 ;device number of data file

 z0: .block 2 ;general purpose register.

 ...

appMain: 849B 849B 2 NULL Yes Vector that allows applications to include their own main loop code. The code

pointed to by appMain will run at the end of every GEOS MainLoop.

backBufPtr: — 131B† 16 None No Screen pointer where the back buffer came from. Resides in backRAM of C128.

backXBufNum: — 132B† 8 None No For each sprite, there is one byte here for how many bytes wide the correspond-

ing sprite is. Used by C128 soft sprite routines and resides in backRAM.

backYBufNum: — 1333† 8 None No For each sprite, there is one byte here for how many scanlines high the corre-

sponding sprite is. Used C128 by soft sprite routines and resides in backRAM.

bakclr0:

bakclr1:

bakclr2:

bakclr3:

D021
D022
D023
D024

D021
D022
D023
D024

1

1

1

1

DKGREY
WHITE

RED

CYAN

No Hardware registers to control text screen background colors.

 b7-4 = not used. always 1's

 b0-3 = color for text background.

bakclr(1-3) only used in multi color mode. (Not used by GEOS).

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-21 Environment

baselineOffset: 26 26 1 6 Yes Offset from top line to baseline in character set. i.e. it changes as fonts change.

Default $06 - for BSW 9 font.

bkvec: 0316 0316 2 Kernal Def No BRK instruction vector when ROMs are switched in.

bootName: C006 C006 9 -> No This is the start of the "GEOS BOOT" string.

The Gateway version of GEOS has "GATEWAY" at this location.

BRKVector: 84AF 84AF 2 System Yes Vector to the routine that is called when a BRK instruction is encountered. The

default is to vector to the operating system error dialog box routine.

c128Flag: C013 C013 1 None No Defines current machine type.

b7: 0 = C64

 1 = C128

b6-0: not used

cardDataPntr: 2C 2C 2 $D2DC

Yes Pointer to the actual card graphic data for the current font in use.

Default address is the location of the BSW 9 system font.

cia1cra: DC0E DC0E 1 None No Timer control register a.

cia1crb: DC0F DC0F 1 None No Timer control register b.

 b7: 1=Setting time sets the alarm.

cia1ddra: DC02 DC02 1 None No Data direction register a. 0=read only, 1=write only

cia1ddrb: DC03 DC03 1 None No Data direction register b. 0=read only, 1=write only

cia1icr: DC0D DC0D 1 None No Interrupt control register.

cia1pra: DC00 DC00 1 None No Peripheral data register a.

1. b7-b0: keyboard matrix columns.

control port 2:

b4: joystick fire button.

b3-b0: joystick direction.

-or- b4: mouse left button. (0=pressed)

b0: mouse right button. (0=pressed)

cia1prb: DC01 DC01 1 None No Peripheral data register b.

 b7-b0: keyboard matrix rows.

control port 1:

b4: joystick fire button.

b3-b0: joystick direction.

-or- b4: mouse left button. (0=pressed)

b0: mouse right button. (0=pressed)

cia1sdr: DC0C DC0C 1 None No Serial data register.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-22 Environment

cia1tahi:

cia1talo:

DC05
DC04

DC05
DC04

1

1

None No high byte of counter

Timer A. Programmable counter (word)

cia1tbhi:

cia1tblo:

DC07
DC06

DC07
DC06

1

1

None No high byte of counter

Timer B. Programmable counter (word)

cia1tod10ths: DC08 DC08 1 None No 10ths of second register: (R/W) (GEOS time)

 b3-b0: range (0-9)

Important: Writting or reading cia1tod10ths starts the time of day timer.

cia1todhr: DC0B DC0B 1 None No Hours – AM; PM register: (R/W) BCD (GEOS time)

 b7: 0=AM, 1=PM

 b6-b5: not used. always 0

 b4: tenths place; range (0-1)

 b3-b0: ones place; range (0-9)

Important: Writing or reading cia1todhr stops the time of day timer.

cia1todmin: DC0A DC0A 1 None No Minutes register: (R/W) BCD (GEOS time)

 b6-b4: tenths place; range (0-5)

 b3-b0: ones place; range (0-9)

cia1todsec: DC09 DC09 1 None No Seconds register. (R/W) BCD (GEOS time)

 b6-b4: tenths place; range (0-5)

 b3-b0: ones place; range (0-9)

cia2cra: DD0E DD0E 1 None No Timer control register a.

cia2crb: DD0F DD0F 1 None No Timer control register b.

cia2ddra: DD02 DD02 1 None No Data direction register a. 0=read only, 1=write only

cia2ddrb: DD03 DD03 1 None No Data direction register b. 0=read only, 1=write only

cia2icr: DD0D DD0D 1 None No Interrupt control register.

cia2pra: DD00 DD00 1 %01 No Peripheral data register a. VIC Banks

 b7-3: serial bus %00 C000-FFFF

 b2: RS232 TXD %01 8000-BFFF (GEOS default)

 b1-0: VIC bank %10 4000-7FFF

 %11 0000-3FFF

cia2prb: DD01 DD01 1 None No Peripheral data register b. Used by RS232 serial routines.

cia2sdr: DD0C DD0C 1 None No Serial data register.

cia2tahi:

cia2talo:

DD05
DD04

DD05
DD04

1

1

None No Timer a. high byte of word sized counter value.

 low byte of counter.

cia2tbhi:

cia2tblo:

DD07
DD06

DD07
DD06

1

1

None No Timer b. high byte of word sized counter value.

 low byte of counter.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-23 Environment

cia2tod10ths: DD08 DD08 1 None No 10ths of sec register: (read/write)

 b3-b0: range (0-9)

cia2todhr: DD0B DD0B 1 None No Hours – AM; PM register: (read/write BCD)

 b7: 0=AM, 1=PM

 b6-b4: tenths place; range (0-5)

 b3-b0: ones place; range (0-9)

cia2todmin: DD0A DD0A 1 None No Minutes register: (read/write BCD)

 b7-b4: tenths place; range (0-5)

 b3-b0: ones place; range (0-9)

cia2todsec: DD09 DD09 1 None No Seconds register: (read/write BCD)

 b7-b4: tenths place; range (0-5)

 b3-b0: ones place; range (0-9)

clkreg: — D030 1 %1 No C128 clock speed register:

 b3-7: = not used (always 1's)

 b2: = test bit. Should always be 0.

 b0: 0 = 1MHz; 1 = 2MHz

config: — FF00 1 CIO_IN No C128 MMU configuration register.

CPU_DATA: 01 01 1 RAM_64K No 6510 data register. Controls the hardware memory map of the C64.

CPU_DDR: 00 00 1 %101111 No 6510 data direction register.

Note3: Writing $00 to this address will disable output to CPU_DATA register.

This may cause unexpected results.

curDevice: BA BA 1 8 No Current serial device number. See curDrive for more information.

curDirHead: 8200 8200 256 None No Buffer containing header information for the disk in currently selected drive.

Structure: Directory Header

curDrive: 8489 8489 1 8 No Device number of the currently active disk drive. Allowed values are 8 – 11.

curEnable: — 1300† 1 None No This is an image of the C64 mobenble register.

curHeight: 29 29 1 9 Yes Card height in pixels of the current font in use.

curIndexTable: 2A 2A 2 $D218 Yes Pointer to the table of sizes, in bytes, of each card in of the current font.

curmobx2: — 1302† 1 None No Image of the C64 mobx2 register. Used for C128 soft sprites. In backRAM

curmoby2: — 1301† 1 None No Image of C64 moby2 register. Used for C128 soft sprites. In backRAM.

curPattern: 22 22 2 $D010 Yes Pointer to the first byte of the graphics data for the current pattern in use.

Note: Each pattern is 1 byte wide and 8 bytes high, to give an 8x8 bit pattern.

curRecord: 8496 8496 1 0 No Current record number for an open VLIR file.

Note: When a VLIR file is opened, using OpenRecordFile. curRecord is set

to 0 if there is at least 1 record in the file, or -1 if their are no records.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-24 Environment

currentMode: 2E 2E 1 0 Yes Current text drawing mode. Each bit is a flag for a drawing style. If set, that

style is active, if clear it is inactive. The bit usage and constants for

manipulating these bits are as follows.

Bit Style Constant
--- ----- --------
b7: Underline SET_UNDERLINE = %10000000
b6: Bold SET_BOLD = %01000000
b5: Reverse SET_REVERSE = %00100000
b4: Italics SET_ITALIC = %00010000
b3: Outline SET_OUTLINE = %00001000
b2: Superscript SET SUPERSCRIPT = %00000100
bl: Subscript SET_SUBSCRIPT = %00000010
b0: Unused

To Clear all flags (plain text) SET_PLAINTEXT = %00000000

Any combination of flags can be set or clear. If current mode is plaintext, all

flags are clear.

Constants that can be used within text strings themselves that affect

currentMode are:

UNDERLINEON, UNDERLINEOFF, REVERSEON, REVERSEOFF,

BOLDON, ITALICON, OUTLINEON, PLAINTEXT

curSetWidth: 27 27 2 $3C Yes Card width in pixels for the current font

curType: 88C6 88C6 1 Drv 8 type No Holds the current drive type. This value is copied from driveType for quicker

access to the current drive

b7: set if the disk is a RAM disk

b6: set if using disk shadowing

Only one of bit 6 or 7 may be set. Other constants used with curType are

DRV_NULL = 0 No drive present at this device address

DRV_1541 = 1 Drive type Commodore 1541

DRV_1571 = 2 Drive type Commodore 1571

DRV_1581 = 3 Drive type Commodore 1581

curXpos0: — 1303† 16 None No The current x-positions of the C128 soft sprites. In BackRAM

curYpos0: — 1313† 8 None No The current y-positions of the C128 soft sprites. In BackRAM

dataDiskName: 8453 8453 18 None No Holds the disk name that an application's data file is on.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-25 Environment

dataFileName: 8442 8442 17 None No Name of a data file to open. The name is passed to the parent application so

the file can be opened. (Null terminated)

dateCopy: C018 C018 3 YMD No Copy of system variables year, month, and day.

day: 8518 8518 1 20 No Holds the value for current day.

dblClickCount: 8515 8515 1 0 No Used to determine when an icon is double clicked on.

When an icon is selected, dblClickCount is loaded with a value of

CLICK_COUNT (30). dblClickCount is then decremented each interrupt. If

the value is non-zero when the icon is again selected, then the double click flag

(r0H) is passed to the service routine with a value of TRUE. If the

dblClickCount variable is zero when the icon is clicked on, then the flag is

passed with a value of FALSE.

dir2Head: 8900 8900 256 None No Second BAM block. Used by 1571 and 1581 drives.

dir3Head: 9C80 9C80 256 None No Third BAM block. Used by 1581 drive.

dirEntryBuf: 8400 8400 30 0 No Buffer used to build a file's directory entry.

Structure: Directory Entry

diskBlkBuf: 8000 8000 256 0 No General disk block buffer. Initialized to all zeros.

diskOpenFlg: 848A

848A

1

0 No This flag byte is not used by the Kernal. It is initialized to FALSE ($00) when

the entire block is cleared at startup. It is never touched again by the Kernal.

It is used by the DeskTop. The flag follows the status of the currently selected

drive. If the disk is open this byte is set to TRUE. When DeskTop closes a disk

it sets diskOpenFlg to FALSE.

Note: diskOpenFlg could be freely used by applications to perform the same

function as the DeskTop (or for any other purpose as well). But it would

be up to the application to set and maintain the value of the byte.

Note: diskOpenFlg can be used as a base for indexing into turboFlags.

Example:
 ldx curDrive
 lda diskOpenFlg,X

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-26 Environment

dispBufferOn: 2F 2F 1 $C0 Yes Routes graphic and text operations to either the foreground screen, background

buffer, or both simultaneously.

b7: 1 = draw to foreground screen buffer

b6: 1 = draw to background buffer

b5: 1 = limit GetString text entry to foreground screen

 0 = GetString text entry will use b7, b6

b4-b0: reserved for future use? should always be 0

ST_WR_FORE = %10000000 ; $80 ;b7

ST_WR_BACK = %01000000 ; $40 ;b6

ST_WRGS_FORE = %00100000 ; $20 ;b5
Default is ST_WR_FORE | ST_WR_BACK ; $C0

Use ST_WR_FORE (write to foreground) and ST_WR_BACK (write

to background) to access these bits.

Note: Dialog Boxes use (ST_WR_FORE | ST_WRGS_FORE)

Important: %00xxxxxxxx is an undefined state and will result in sending

most graphic operations to the center of the display area.

dlgBoxRamBuf: 851F 851F 417 None n/a This is the buffer for variables that are saved when desk accessories or dialog

boxes are run.

doRestFlag: — 1B54† 1 0 No Flag needed because of overlapping soft sprite problems on C128. Set to TRUE

if we see a sprite that needs to be redrawn and therefore all higher numbered

sprites need to be redrawn as well. Resides in BackRAM.

DrACurDkNm: 841E
842E

841E
842E

16

2

None No Disk name of the current disk in drive A, 16 characters padded with $A0.

2 character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

DrBCurDkNm: 8430
8440

8430
8440

16

2

None No Disk name of the current disk in drive B, 16 characters padded with $A0.

2 character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

DrCCurDkNm: 88DC
88EC

88DC
88EC

16

2

None No Disk name of the current disk in drive C, 16 characters padded with $A0.

2 character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

DrDCurDkNm: 88EE
88FE

88EE
88FE

16

2

None No Disk name of the current disk in drive D, 16 characters padded with $A0.

2 character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-27 Environment

driveData: 88BF 88BF 4 None No One byte is reserved for each disk drive, to be used by the disk driver.

Each driver may use it differently.

driveNdxType: (8486) (8486) — — — Label used for indexing driveType with drive number. lda driveNdxType,x

driveType: 848E 848E 4 Drv 8 type No There are 4 bytes at location driveType, one for each of four possible drives.

Each byte has the following format:

b7: Set if drive is RAM DISK

b6: Set if shadowed disk

(Only 1 of bit 7 or bit 6 may be set)

Constants and values used for drive types are:

Constant Value Description

---------- ---- ------------------------------
DRV_NULL = 0 ; No drive present at this device address

DRV_1541 = 1 ; Drive type Commodore 1541

DRV_1571 = 2 ; Drive type Commodore 1571

DRV_1581 = 3 ; Drive type Commodore 1581

extclr: D020 D020 1 BLACK No Exterior (border) color.

faultData: 84B6 84B6 1

0 Yes Holds Information about mouse faults. Mouse faults occur when the mouse

attempts to move outside the bounds set by mouseLeft, mouseRight,

mouseTop, and mouseBottom. A fault is also signaled when the mouse is

outside the current menu area. The bits for signaling are used as follows:

Bit Fault Constant for bit access
--- ----- -----------------------
b7: mouse fault up OFFTOP_BIT
b6: mouse fault down OFFBOTTOM_BIT
b5: mouse fault left OFFLEFT_BIT
b4: mouse fault right OFFRIGHT_BIT
b3: menu fault OFFMENU_BIT

fileHeader: 8100 8100 256 0 No Header Block buffer for a GEOS file.

VLIR routines use this for the files VLIR index table.

Structure: File Header Block

fileSize: 8499 8499 2 None No Current size (in blocks) of a file. It is pulled in from and written to the file's

directory entry.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-28 Environment

fileTrScTab: 8300 8300 256 0 No Track and sector chain for a file of maximum size of 32258 bytes.

fileWritten: 8498 8498 1 None No Flag indicating if the currently open file has been written to since the last

update of its index table and the BAM.

firstBoot: 88C5 88C5 1 0 No This flag is changed from $00 to $FF when the deskTop comes up after

booting.

fontTable: 26 26 8 Default

Font

Yes fontTable is a label for the beginning of variables for the current font in use.

These variables are baselineOffset, curSetWidth. curHeight, curIndexTable,

and cardDataPntr, currentMode is also saved/restored to saveFontTab.

For more information, see documentation on these variables.

gatewayFlag: C007 C007 1 None No The gateway version of GEOS there will be a 'A' ($41) at this location. Gateway

has a different boot string at $C006. "GATEWAY". Note: variable name

adopted from cc65 for cross source compatibility.

georambs:

georampg:

georamps:

DFFF
DE00
DFFE

DFFF
DE00
DFFE

1

$100

1

None No High 5 bits of GEORAM block select register.

GEORAM memory page.

Low 6 bits of GEORAM page select register.

graphMode: 3F 3F 1 None No Current video mode for C128.

40-Column: GR_40=$00

80-Column: GR_80=$80 (%10000000)

sample usage graphMode
 bbsf 7,graphMode, Do80ColStuff

grcntrl1: D011 D011 1 $3B No Graphics control register #1, ie: msb raster /ECM /BMM /DEN /RSEL /y

scroll bits.

 Constants defined for use with above register:

 ;b7: bit 9 of rasreg

 ST_ECM = $40 ;b6: 1=extended color text mode

 ST_BMM = $20 ;b5: 1=bitmap graphics mode

 ST_DEN = $10 ;b4: 0=blank screen to border color

 ST_25ROW = $08 ;b3: 1=25 rows, 0=24 rows

 ;b2-0: vertical fine scroll

grcntrl2: D016 D016 1 ST_40COL No Graphics control resister #2, e.g: RES/MCM/CSEL/x scroll bits

defined for use with above register:

 ST_MCM = $10

 ST_40COL = $08

grirq: D019 D019 1 n/a No Graphics chip interrupt register.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-29 Environment

grirqen: D01A D01A 1 %01 No Graphics chip interrupt enable register:

b0: enable raster interrupt in grirqen

ST_RASEN = %01

grmemptr: D018 D018 1 $38

Effective

$8C00

$A000

No Graphics memory pointer VM13-VM10|CB13-CB11. ie video matrix and

character base. Defines offset within VIC bank address as set in cia2pra.

 b7-4: Offset to video (color) matrix. %0111 $0C00 (1K pages)

 b3-1: Offset to bitmap/character image memory. %100 $2000 (2K pages)

hour: 8519 8519 1 12 No Variable for hour. 0-23

iconSelFlag: 84B5 84B5 1 0 Yes Flag bits in b7 and b6 to specify how the system should indicate icon selection

to the user. If no bits are set, then the system does nothing to indicate icon

selection, and the service routine is simply called.

The possible flags are:

 ST_FLASH=$80 ; flash the icon

 ST_INVERT=$40 ; invert the selected icon

If ST_FLASH is set, the ST_INVERT flag is ignored and the icon flashes but

is not inverted when the programmer's routine is called. If ST_INVERT is set,

and ST_FLASH is CLEAR, then the icon will be inverted when the

programmer's routine is called.

inputData: 8506 8506 4 None No This is where input drivers pass device specific information to applications

that want it.

inputDevName: 88CB 88CB 17 None No Name of the current input device, e.g. COMM MOUSE for Commodore

mouse.

inputVector: 84A5 84A5 2 NULL Yes Pointer to routine to call on input device change.

intBotVector: 849F 849F 2 NULL Yes Vector to routine to call after the operating system interrupt code has run. This

allows applications to have interrupt level routines.

interleave: 848C 848C 1 8 No Used by BlkAlloc routine as the desired interleave when selecting free blocks

for a disk chain.

intTopVector: 849D 849D 2 NULL Yes Vector to routine to call before operating system interrupt code is run. It allows

applications to interrupt level routines.

invertBuffer: — 1CED† 80 None No Buffer area used to speed up the 80-column InvertLine routine. Resides in

backRAM.

irqvec: 0314 0314 2 Kernal Def No IRQ vector when ROMs are switched in.

IRQVector: FFFE FFFE 2 $FAA2 No Interrupt request vector.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-30 Environment

isGEOS: 848B 848B 1 Disk No Flag to indicate whether the current disk is a GEOS disk.

kernalVectors: 031A 031A 26 Kernal Def No Location of kernal vectors when ROMS are switched in.

keydata: 8504 8504 1 0 No Holds the ASCII value of the current last key that was pressed. Used by

keyboard service routines.

keyreg: — D02F 1 None No C128 keyboard register for # pad & other keys:

 b7-b3: = Not Used (always 1's)

 b2-b0: = Scan Rows 8.9 and 10

keyVector: 84A3 84A3 2 NULL Yes Vector to routine to call on keypress.

Note3: The 26A1 default address listed in the original HGG is in the DeskTop

application. When an application starts, keyVector is NULL.

leftMargin: 35 35 2 0 Yes Leftmost point for writing characters. Doing a carriage return will return to

this point. If an attempt is made to write to the left of leftMargin, the routine

pointed to by StringFaultVec is called.

lpxpos: D013 D013 1 None No Light pen x-position.

lpypos: D014 D014 1 None No Light pen y-position.

maxMouseSpeed: 8501 8501 1 $7F No Maximum speed for mouse cursor.

mcmclr0: D025 D025 1 None Yes Multi-color mode color 0.

mcmclr1: D026 D026 1 None Yes Multi-color mode color 1.

menuNumber: 84B7 84B7 1 0 Yes Number of currently working menu.

minMouseSpeed: 8502 8502 1 $1E No Minimum speed for mouse cursor.

minutes: 851A 851A 1 0 No Holds the minutes for time of day clock.

mmucr: — D500 1 CIO_IN No C128 MMU Configuration register. (Mirrored by config at FF00)

mmulcra/b/c/d: — FF01 1x4 — No C128 MMU Load configuration registers a,b,c and d.

mmup0H: — D508 1 %xxxxxxx0 No C128 MMU Zero Page bank pointer.

mmup0L: — D507 1 0 No C128 MMU Zero Page page pointer.

mmup1H: — D50A 1 %xxxxxxx0 No C128 MMU Stack Page bank pointer.

mmup1L: — D509 1 1 No C128 MMU Stack Page page pointer.

mmumcr: — D505 1 $37 No C128 MMU Mode configuration register.

(b7 value follows keyboard 40/80 switch. 0=80 Cols: Switch down).

mmurcr: — D506 1 $40 No C128 MMU RAM Configuration register.

mmupcra/b/c/d: — D501 1x4 — No C128 MMU Pre configuration registers a,b,c and d.

mob0clr: D027 D027 1 None No Color of sprite 0.

mob0xpos: D000 D000 1 None Yes x-position of sprite 0.

mob0ypos: D001 D001 1 None Yes y-position of sprite 0.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-31 Environment

mob1clr: D028 D028 1 None Yes Color of sprite 1.

mob1xpos: D002 D002 1 None Yes x-position of sprite 1.

mob1ypos: D003 D003 1 None Yes y-position of sprite 1.

mob2clr: D029 D029 1 None Yes Color of sprite 2.

mob2xpos: D004 D004 1 None Yes x-position of sprite 2.

mob2ypos: D005 D005 1 None Yes y-position of sprite 2.

mob3clr: D02A D02A 1 None Yes Color of sprite 3.

mob3xpos: D006 D006 1 None Yes x-position of sprite 3.

mob3ypos: D007 D007 1 None Yes y-position of sprite 3.

mob4clr: D02B D02B 1 None Yes Color of sprite 4.

mob4xpos: D008 D008 1 None Yes x-position of sprite 4.

mob4ypos: D009 D009 1 None Yes y-position of sprite 4.

mob5clr: D02C D02C 1 None Yes Color of sprite 5.

mob5xpos: D00A D00A 1 None Yes x-position of sprite 5.

mob5ypos: D00B D00B 1 None Yes y-position of sprite 5.

mob6clr: D02D D02D 1 None Yes Color of sprite 6.

mob6xpos: D00C D00C 1 None Yes x-position of sprite 6.

mob6ypos: D00D D00D 1 None Yes y-position of sprite 6.

mob7clr: D02E D02E 1 None Yes Color of sprite 7.

mob7xpos: D00E D00E 1 None Yes x-position of sprite 7.

mob7ypos: D00F D00F 1 None Yes y-position of sprite 7.

mobbakcol: D01F D01F 1 None No Sprite to background collision register.

mobenble: D015 D015 1 None Yes Sprite enable bits.

mobmcm: D01C D01C 1 0 Yes Sprite multi-color mode select.

mobmobcol: D01E D01E 1 0 No Object to object collision register.

mobprior: D01B D01B 1 0 Yes Object to background priority.

mobx2: D01D D01D 1 0 Yes Double object size in x.

moby2: D017 D017 1 0 Yes Double object size in y.

month: 8517 8517 1 9 No Holds the month for time of day clock.

mouseAccel: 8503 8503 1 $75 No Acceleration of mouse cursor.

mouseBottom: 84B9 84B9 1 199 Yes Bottom most position for mouse cursor. Normally set to bottom of the screen.

mouseData: 8505 8505 1 None No State of mouse button: high bit set if button is released; clear if pressed.

mouseFaultVec: 84A7 84A7 2 System

Handler

Yes Vector to routine to call when mouse goes outside region defined for mouse

position or when mouse goes off of a menu.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-32 Environment

mouseLeft: 84BA 84BA 2 0 Yes Left most position for mouse.

mouseOn: 30 30 1 $E0 Yes Flag indicating that the mouse/Menu/Icon is on. Bit usage and constants for

accessing them are as follows:

Bit Mode Constant
--- --------------- ----------------------
b7: mouse on if set SET_MSE_ON =%10000000
b6: menus on if set SET_MENUON =%01000000
b5: icons on if set SET_ICONSON =%00100000
b4 – b0: not used

mousePicData: 84C1 84C1 64 Mouse Pic. No 64-byte array for the mouse sprite picture.

mouseRight: 84BC 84BC 2 40=319

80=639

Yes Right most position for mouse.

mouseSave: - 1B55† 24 None No Screen data for what is beneath mouse soft sprite. Resides in backRam.

mouseTop: 84B8 84B8 1 0 Yes Top most position for mouse.

mouseVector: 84A1 84A1 2 System

Handler

Yes Routine to call on a mouse button press.

See also: otherPressVec

mouseXPos: 3A 3A 2 None No Mouse x-position.

mouseYPos: 3C 3C 1 0 No Mouse y-position.

msbxpos: D010 D010 1 None Yes Sprite #0-7 Bit 8 of x-coordinates.

Enables byte sized x-coordinate to be > 255.

b0: -> Sprite 0

msePicPtr: 31 31 2 $84C1 Yes Pointer to the mouse graphics data. default = mousePicData

nationality: C010 C010 1 0 USA No Nationality of Kernal.

0 American 5 Swiss (Switzerland)† 10 Norwegian (Norway)†

1 German 6 Spanish† 11 Danish (Denmark)†

2 French (France & Belgium)† 7 Portuguese† 12 Swedish†

3 Dutch† 8 Finnish (Finland)†

4 Italian† 9 UK† †Not yet implemented

nmivec: 0318 0318 2 Kernal Def No NMI vector when ROMs are switched in.

NMIVector: FFFA FFFA 2 $FB24 No Non maskable interrupt vector.

numDrives: 848D 848D 1 Actual No Number of drives in the system.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-33 Environment

obj0Pointer:

obj1Pointer:

obj2Pointer:

obj3Pointer:

obj4Pointer:

obj5Pointer:

obj6Pointer:

obj7Pointer:

8FF8
8FF9
8FFA
8FFB
8FFC
8FFD
8FFE
8FFF

8FF8
8FF9
8FFA
8FFB
8FFC
8FFD
8FFE
8FFF

1

1

1

1

1

1

1

1

$28

$29

$2A

$2B

$2C

$2D

$2E

$2F

Yes Pointer to picture data for mouse cursor.

Pointer to picture data for text entry cursor.

Pointers to picture data for Sprites 2-7.

Note: Sprite pointers are always in the last 8 bytes of the video matrix area.

Pointers are an index into 64 byte pages starting the base of the current VIC

bank. Note: GEOS uses VIC bank 2 at address $8000.

To get the address of the sprite image, multiply the object pointer by 64 and add

it to the VIC bank starting address. $28*64 + $8000 = spr0pic ($8A40)

otherPressVec: 84A9 84A9 2 NULL Yes Vector to routine that is called when the mouse button is pressed and it is not on

either a menu or an icon.

potX: D419 D419 1 None No Mouse position: bits 1-6 = current x-position.

potY: D41A D41A 1 None No Mouse position: bits 1-6 = current y-position.

pressFlag: 39 39 1 0 No Flag to indicate that a new key has been pressed.

bit Constant Description

---- --------------------- ----------------

b7: KEYPRESS_BIT keyboard data is new

b6: INPUT_BIT input device direction change

b5: MOUSE_BIT mouse button data is new

PrntDiskName: 8476 8476 16+2/

17+1
None No Disk name that current printer driver is on. (Null terminated). When disk name

is 16 bytes, the null terminator overwrites the first byte of the Disk ID.

PrntFilename: 8465 8465 17 None No Name of the current printer driver. (Null terminated)

ramBase: 88C7 88C7 4 None No Starting RAM bank for each disk drive to use if the drive type is either a RAM

Disk or Shadowed Drive.

ramExpSize: 88C3 88C3 1 Actual No Number of 64K RAM banks available in RAM expansion unit.

random: 850A 850A 2 None No Calculated each interrupt to generate a random number.

random = (2*(random+1) // 65521)

Note: // is the modulus operator.

rasreg: D012 D012 1 None No Raster register.

RecoverVector: 84B1 84B1 2 See Desc Yes Pointer to routine that is called to recover the background behind menus and

dialog boxes. Normally this routine is RecoverRectangle, but the user can

supply his own routine.

resetVector: FFFC FFFC 2 $FB24 No Reset vector.

returnAddress: 3D 3D 2 None No Address to return to from in-line call.

rightMargin: 37 37 2 40=319

80=639

Yes The rightmost point for writing characters. If an attempt is made to write past

rightMargin, the routine pointed to by StringFaultVec is called.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-34 Environment

r0:

r1:

r2:

r3:

r4:

r5:

r6:

r7:

r8:

r9:

r10:

r11:

r12:

r13:

r14:

r15:

02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E
20

02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E
20

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

None No Kernal pseudoregisters:

Pseudoregisters are used when calling into the GEOS Kernal. Each call will have

a list of registers to setup. Registers have common uses across the GEOS API

but none are exclusively for only one thing. The pseudoregister r15 is never

used by the kernal and pseudoregisters r12-r14 are very rarely used. These

pseudoregisters make for very safe temporary zpage use. Always consider using

the available options in r0-r15 that do not conflict with your current Kernal

interaction as temporary storage.

savedmoby2: 88BB 88BB 1 None No Saved value of moby2 for context saving done when dialog boxes and desk

accessories run. (moby2 was left out of the original GEOS save code, so it was

put here. It remains to be compatible with older desk accessories, etc. that use it)

saveFontTab: 850C 850C 9 None No Buffer for saving the user active font table when going into menus.

scr80colors: — 88BD 1 $E0 No Screen colors for 80-column mode on the C128. Copy of reg 26 in the VDC.

scr80polar: — 88BC 1 $40 No Copy of reg 24 in the VDC for the C128. Controls reversing foreground and

background colors. This is used for making the border color match either the

background or the foreground as needed.

screencolors: 851E 851E 1 $BF No Default 40 Col screen colors.

seconds: 851B 851B 1 0 No Seconds variable for the time of day clock.

selectionFlash: 84B3 84B3 1 10 Yes Speed at which menu items and icons are flashed. Value is number of vblanks.

shiftBuf: — 1B45† 7 None No Buffer for shifting/doubling sprites. Located in backRAM.

shiftOutBuf: — 1B4C† 7 None No Buffer for shifting/doubling/oring sprites. Located in backRAM.

sidAtDcy: D405 D405 1 None No Attack / Decay.

 b7-4: attack phase duration. (0-15) (.002 to 8 seconds)

 b3-0: decay phase duration. (0-15) (.006 to 24 seconds)

sidbase: D400 D400 — — — Sound interface device base address.

sidEnv3: D41C D41C 1 None No Voice 3 Envelope generator output. (R/O)

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-35 Environment

sidFcHi:

sidFcLo:

D416
D415

D416
D415

1

1

None No Filter cutoff frequency (11 bit word). (W/O)

Word is b7-0 of high byte concatenated with b2-0 of low byte.

sidFreHi:

sidFreLo:

D401
D400

D401
D400

1

1

None No Frequency of output tone. (word)

 frequency = Hz / 0.06095 for NTSC systems

 frequency = Hz / 0.05873 for PAL systems

 tunning A4 = 440Hz / 0.06095 = 7217 = NTSC frequency of $1C31. (word)

sidOsc3: D41B D41B 1 None No Voice 3 oscillator output. (R/O) Note: The output from this register can be used

for generating random numbers.

sidPWHi:

sidPWLo:

D403
D402

D403
D402

1

1

None No Pulse width. Word sized pulse width of pulse wave. (b15-12 not used)

 b11-b0 (0-4095) represents a duty cycle percentage from 0 to 100.

 a 50% duty cycle of 2048 ($800) produces the richest pulse output.

sidResFilt: D417 D417 1 None No Filter selection and resonance control.

 b7-4: resonance. (0-15) (none -> full)

 b3: 1=external output is filtered.

 b2-0: 1=voice is filtered. (b0=voice 1;b1=voice 2;b2=voice 3)

sidSigVol: D418 D418 1 None No Volume and filter mode control.

 b7: 1=voice 3 cut off from combined output

 b6-4: low/high/band/pass filters

 b3-0: percentage of max volume. (0-15) (0-100%)

sidSuRel: D406 D406 1 None No Sustain / Release.

 b7-b4: sustain % of peak output (0-15) (0 to 100%). A sustain value of

 0 makes the sound end after decay instead of after release.

 b3-b0: release phase time. (0-15) (.006 to 24 seconds)

sidVCReg: D404 D404 1 None No Voice control. Note: Only one wave type can be active at a time (b7-4).

 b7: 1=noise

 b6: 1=pulse wave

 b5: 1=sawtooth wave

 b4: 1=triangle wave

 b3: test flag: 1 stops voice output; 0 allows voice output.

 b2: ring modulation; 1 = active.

 b1: sync flag; 1 = synchronization active.

 b0: gate flag: 1 starts attack; 0 starts release (ends the sound)

sidVoc1: D400 D400 7 None No Voice 1 registers base address.

 Access registers directly with sidFreLo – sidSuRel

 For lookup tables use offsets [O_FRELO .. O_SUREL]

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-36 Environment

sidVoc2: D407 D407 7 None No Voice 2 registers base address.

 Access directly with sidbase+O_VOICE2+ [O_FRELO..O_SUREL]

- or [sidFreLo..sidSuRel] + O_VOICE2
 For lookup tables use offsets O_VOICE2 + [O_FRELO..O_SUREL]

sidVoc3: D40E D40E 7 None No Voice 3 registers base address.

 Use same addressing access as sidVoc2 but use O_VOICE3 instead.
Example: LoadW sidbase+O_VOICE3+O_FREQUENCY,#note440

sizeFlags: — 1B53† 7 None No Height of sprite | 9-pixel flag. this is grabbed from the 64th byte of the sprite

definition. The high bit is set if the sprite is only 9 pixels wide. The rest of the

byte is a count of scan lines.

softOnes: — 1C2D† 192 None No Buffer used for putting sprite bitmaps up on screen without disturbing

background. Resides in backRAM.

softZeros: — 1B6D† 192 None No Buffer used for putting sprite bitmaps up on screen without disturbing

background. Resides in backRAM.

spr0pic: 8A00 8A00 64 Mouse Pic No Graphics data for sprite 0. This sprite holds the mouse pointer image.

spr1pic: 8A40 8A40 64 None No Used for text prompt. Populated by InitTextPrompt.

Note: If application is not using text prompts then this can be a data area for the

application.

spr2pic:

spr3pic:

spr4pic:

spr5pic:

spr6pic:

spr7pic:

8A80
8AC0
8B00
8B40
8B80
8BC0

8A80
8AC0
8B00
8B40
8B80
8BC0

64

64

64

64

64

64

None No Used for application sprite images. Note: If the application is not using these

sprites then this can be a data area for the application.

Example: Use all of sprite 1 through 7 area as a ramsect buffer.

.ramsect $8A40

 highBuf: .block 448.

sspr1back:

sspr2back:

sspr3back:

sspr4back:

sspr5back:

sspr6back:

sspr7back:

—
—
—
—
—
—
—

133B†

1461†
1587†
16AD†
17D3†
18F9†
1A1F†

294

294

294

294

294

294

294

None No Soft sprite backRAM buffers 1-7. Used to save the screen behind the sprites.

Each buffer is 7 bytes wide by 42 scanlines high (292 bytes). These buffers are

large enough to hold the largest possible sprite size (doubled in both x and y)

and include an extra byte in width to save stuff on byte boundaries.

Note: If the application is not actively using the sprites this can be an

application data area.

STATUS: 90 90 1 None No Kernal I/O status.

string: 24 24 2 None Yes Used by GEOS as a pointer to string destinations for routines such as GetString.

StringFaultVec: 84AB 84AB 2 NULL Yes Vector called when an attempt is made to write a character past leftMargin or

rightMargin.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-37 Environment

stringX: 84BE 84BE 2 None Yes The x-position for string input.

stringY: 84C0 84C0 1 None Yes The y-position for string input.

sysDBData: 851D 851D 1 None n/a Variable that is used to indicate which icon caused a return to the application

(from a dialog box). The actual data is returned to the user in r0L.

Applications can set a value in this field as a result of a dialog action. The

value will then be returned in r0L when the dialog closes.

sysFlgCopy: C012 C012 1 None No Copy of the sysRAMFlg that is saved here when going into Commodore

BASIC. See sysRAMFlg for more information.

sysRAMFlg: 88C4 88C4 1 None No If RAM expansion is installed, bank 0 is reserved for the Kernal's use. The

sysRAMFlg byte contains flags designating its usage:

b7: if 1 $0000-$78FF is used by C64 MoveData routine

 $0000-$38FF is used by C128 MoveData routine

b6: if 1 $8300-$B8FF holds disk drivers for drives A through D

b5: if 1 $7900-$7DFF is loaded with GEOS RAM area $8400-88FF by

ToBasic routine when going to BASIC.

 $7E00-$82FF is loaded with reboot code by CONFIGURE. The

reboot code is loaded by the restart code in GEOS at $C000 if this

flag is set, at $6000, instead of loading GEOS BOOT. Also, the

area $B900-$FC3F is saved for the Kernal for fast re-boot without

system disk (depending on setup file). This area should be updated

when input devices are changed (implemented in v1.3 deskTop).

b4: if 1 C128 only: $D500-DC3F holds the active print driver. See GetFile

notes for more information. Also see REU-BANK0

systemVector: — FFF8 2 Reset No Soft reset vector. Called when reset button is pressed.

turboFlags: 8492 8492 4 None No Turbo state flags for drives 8 through 11.

Flag byte layout:

 b7: set when turbo is loaded

 b6: set when turbo is active

 b5-0: not used, always zero

diskOpenFlg can be used as a base to index into this table by drive number.

Example:

 ldy curDrive
 lda diskOpenFlg,y

usedRecords: 8497 8497 1 0 No Holds the number of records in an open VLIR file.

 Address (hex) variables / By Name

Name 64 128 Size Default Saved Description

 19-38 Environment

vdccr: — D600 1 None No VDC Control Register (R/W)

Write:

 b5-b0: register number for data register to use.

Read:

 b7: STATUS

 1=data register ready

 b6: LP

 1=light pen latched

 b5: VBLANK

 1=vblank active

 b4-b3: unused/always 0

 b2-b0: H/W version

vdcdr: — D601 1 None No VDC Data Register (R/W). Registers: constants\Hardware\VDC

vdcClrMode: — 88BE 1 0 No Holds the current color mode for C128 color routines.

0 = monochrome

1 = 176x640 8x8 color. (Do not attempt to draw below Col 175)

2 = 200x640 8x8 color. 64K VDC RAM required.

3 = 200x640 8x4 color. 64K required.

4 = 200x640 8x2 color. 64K required.

version: C00F C00F 1 $20 No Holds byte indicating what version of GEOS is running.

Version number is stored in high and low nibbles of version byte.

Examples of known versions:

 $11 = Version 1.1

 $12 = Version 1.2

 $13 = Version 1.3

 $20 = Version 2.0

 $44 = Wheels version 4.4

windowBottom: 34 34 1 199 Yes Bottom line of window for text clipping.

windowTop: 33 33 1 0 Yes Top line of window for text clipping.

year: 8516 8516 1 86 No Holds the year for the time of day clock.
†Located in backRAM

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-39 Environment

By Address

zpage: Zero page base address.

CPU_DDR 00 00 1 %101111 No 6510 data direction register.

CPU_DATA 01 01 1 RAM_64K No 6510 data register. Controls the hardware memory map of the C64.

r0 02 02 2 None No Kernal pseudoregisters:

r1 04 04 2

r2 06 06 2 Pseudoregisters are used when calling into the GEOS Kernal. Each call will have

r3 08 08 2 a list of registers to setup. Registers have common uses across the GEOS API

 r4 0A 0A 2 but none are exclusively for only one thing. The pseudoregister r15 is never

 r5 0C 0C 2 used by the kernal and pseudoregisters r12-r14 are very rarely used. These

 r6 0E 0E 2 pseudoregisters make for very safe temporary zpage use. Always consider using

r7 10 10 2 the available options in r0-r15 that do not conflict with your current Kernal

 r8 12 12 2 interaction as temporary storage.

r9 14 14 2

r10 16 16 2

r11 18 18 2

r12 1A 1A 2

r13 1C 1C 2

r14 1E 1E 2

r15 20 20 2

curPattern: 22 22 2 $D010 Yes Pointer to the first byte of the graphics data for the current pattern in use.

string: 24 24 2 None Yes Pointer to string destinations for routines such as GetString.

fontTable: (9) Beginning of font variables.

baselineOffset: 26 26 1 6 Yes Offset from top line to baseline in character set.

curSetWidth: 27 27 2 $3C Yes Card width in pixels for the current font.

curHeight: 29 29 1 9 Yes Card height in pixels of the current font in use.

curIndexTable: 2A 2A 2 $D218 Yes Pointer to the table of sizes, in bytes, of each card in of the current font.

cardDataPntr: 2C 2C 2 $D2DC Yes This is a pointer to the actual card graphic data for the current font in use.

currentMode: 2E 2E 1 0 Yes Current text drawing mode.

dispBufferOn: 2F 2F 1 $C0 Yes Routes graphic and text operations between foreground and background buffers.

mouseOn: 30 30 1 $E0 Yes Flag indicating that the mouse/menu/icon is on.

msePicPtr: 31 31 2 $84C1 Yes Pointer to the mouse graphics data. default = mousePicData

windowTop: 33 33 1 0 Yes Top line of window for text clipping.

windowBottom: 34 34 1 199 Yes Bottom line of window for text clipping.

leftMargin: 35 35 2 0 Yes Leftmost point for writing characters.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-40 Environment

rightMargin: 37 37 2 319/639 Yes The rightmost point for writing characters.

pressFlag: 39 39 1 0 No Flag to indicate that a new input action has occurred.

mouseXPos: 3A 3A 2 None No Mouse x-position.

mouseYPos: 3C 3C 1 0 No Mouse y-position.

returnAddress: 3D 3D 2 None No Address to return to from in-line call.

graphMode: — 3F 1 None No Current video mode for C128. GR_40=$00 / GR_80=$80

APP_ZPL: 70 70 16 None No Application private zero page. a2-a9 when using default naming.

STATUS: 90 90 1 None No Kernal I/O status.

curDevice: BA BA 1 8 No Current serial device number.

APP_ZPH: FB FB 4 None No Application private zero page. a0-a1 when using default naming.

APP_LVAR: 0200 0200 276 None No Application variable space. Note: AppLowVar

irqvec: 0314 0314 2 Kernal Def No IRQ vector when ROMs are switched in.

bkvec: 0316 0316 2 Kernal Def No BRK instruction vector when ROMs are switched in.

nmivec: 0318 0318 2 Kernal Def No NMI vector when ROMs are switched in.

kernalVectors: 031A 031A 26 Kernal Def No Location of kernal vectors when ROMS are switched in.

APP_LRAM: 0334 0334 204 None No Optional application space. Note: Conflicts with geoDebugger.

APP_RAM: 0400 0400 23K None No Start of application space.

BACK_SCR_BASE: 6000 6000 8000 None No Base of background screen. (Lines 0-99 of VDC background screen).

PRINTBASE: 7900 7900 1600 None No Load address for print drivers.

APP_VAR: 7F40 7F40 192 None No Application variable space.

diskBlkBuf: 8000 8000 256 0 No General disk block buffer. Initialized to all zeros.

fileHeader: 8100 8100 256 0 No Header block buffer for a GEOS file.

curDirHead: 8200 8200 256 0 No Buffer containing header information for the disk in currently selected drive.

Structure: Directory Header

fileTrScTab: 8300 8300 256 0 No Track and sector chain for a file of maximum size of 32258 bytes.

dirEntryBuf: 8400 8400 30 0 No Buffer used to build a file's directory entry. Structure: Directory Entry

DrACurDkNm: 841E
842E

841E
842F

16

2

None No Disk name of the current disk in drive A, 16 characters padded with $A0.

2-character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

DrBCurDkNm: 8430
8440

8430
8440

16

2

None No Disk name of the current disk in drive B, 16 characters padded with $A0.

2-character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

dataFileName: 8442 8442 17 None No Name of a data file to open by parent application. (Null terminated)

dataDiskName: 8453 8453 16+2 None No Holds the disk name that an application's data file is on.

PrntFilename: 8465 8465 17 None No Name of the current printer driver. (Null terminated).

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-41 Environment

PrntDiskName: 8476 8476 16+2/

17+1
None No Disk name that current printer driver is on. (Null terminated). When disk name

is 16 bytes, the null terminator overwrites the first byte of the Disk ID.

driveNdxType: (8486) (8486) — — — Label used for indexing driveType with drive number. lda driveNdxType,x

— 8488 8488 1 — — Not used by GEOS. Free to use by applications.

curDrive: 8489 8489 1 8 No Device number of the currently active disk drive.

diskOpenFlg: 848A 848A 1 0 No Not used by the GEOS Kernal. Label can be used as index base into turboFlags

isGEOS: 848B 848B 1 Disk No Flag to indicate whether the current disk is a GEOS disk.

interleave: 848C 848C 1 8 No Used by BlkAlloc routine as the desired interleave.

numDrives: 848D 848D 1 Actual # No Number of drives in the system.

driveType: 848E 848E 4 — No Drive type of each of the four possible drives.

turboFlags: 8492 8492 4 None No Turbo state flags for drives 8 through 11

curRecord: 8496 8496 1 0 No Current record number for an open VLIR file.

usedRecords: 8497 8497 1 0 No Holds the number of records in an open VLIR file

fileWritten: 8498 8498 1 None No Flag indicating currently open VLIR file has been changed.

fileSize: 8499 8499 2 None No Current size (in blocks) of a file.

appMain: 849B 849B 2 NULL Yes Main loop service routine vector

intTopVector: 849D 849D 2 NULL Yes Interrupt top service routine vector.

intBotVector: 849F 849F 2 NULL Yes Interrupt bottom service routine vector.

mouseVector: 84A1 84A1 2 System Yes Mouse button press service routine vector. See also: otherPressVec

keyVector: 84A3 84A3 2 NULL Yes Vector to routine to call on keypress.

inputVector: 84A5 84A5 2 NULL Yes Input device direction change.

mouseFaultVec: 84A7 84A7 2 System Yes Mouse fault service routine vector.

otherPressVec: 84A9 84A9 2 NULL Yes Mouse button press service routine vector. (not on either a menu or an icon)

StringFaultVec: 84AB 84AB 2 NULL Yes String margin fault service routine vector.

alarmTmtVector: 84AD 84AD 2 NULL Yes Alarm clock time-out service routine vector.

BRKVector: 84AF 84AF 2 System Yes BRK instruction service routine vector. Defaults to calling Panic.

RecoverVector: 84B1 84B1 2 System Yes Background recover service routine vector.

selectionFlash: 84B3 84B3 1 10 Yes Speed at which menu items and icons are flashed. Value is number of vblanks.

alphaFlag: 84B4 84B4 1 0 Yes Flag for alphanumeric string input.

iconSelFlag: 84B5 84B5 1 0 Yes Icon selection flags.

faultData: 84B6 84B6 1 0 Yes Holds information about mouse faults.

menuNumber: 84B7 84B7 1 0 Yes Number of currently working menu

mouseTop: 84B8 84B8 1 0 Yes Top most position for mouse.

mouseBottom: 84B9 84B9 1 199 Yes Bottom most position for mouse cursor. Normally set to bottom of the screen.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-42 Environment

mouseLeft: 84BA 84BA 2 0 Yes Left most position for mouse.

mouseRight: 84BC 84BC 2 319/639 Yes Right most position for mouse.

stringX: 84BE 84BE 2 None Yes The x-position for string input.

stringY: 84C0 84C0 1 None Yes The y-position for string input.

mousePicData: 84C1 84C1 64 Mouse Pic No 64-byte array for the mouse sprite picture.

maxMouseSpeed: 8501 8501 1 $7F No Maximum speed for mouse cursor.

minMouseSpeed: 8502 8502 1 $1E No Minimum speed for mouse cursor.

mouseAccel: 8503 8503 1 $75 No Acceleration of mouse cursor.

keyData: 8504 8504 1 0 No Holds the ASCII value of the last key that was pressed.

mouseData: 8505 8505 1 None No State of mouse button: high bit set if button is released; clear if pressed.

inputData: 8506 8506 4 None No Input driver device specific information.

random: 850A 850A 2 None No Calculated each interrupt to generate a random number.

saveFontTab: 850C 850C 9 None No Buffer for saving the user active font table when going into menus.

dblClickCount: 8515 8515 1 0 No Used to determine when an icon is double clicked on.

year: 8516 8516 1 86 No Holds the year for the time of day clock.

month: 8517 8517 1 9 No Holds the month for time of day clock.

day: 8518 8518 1 20 No Current day.

hour: 8519 8519 1 12 No Current hour.

minutes: 851A 851A 1 0 No Holds the minutes for time of day clock.

seconds: 851B 851B 1 0 No Current seconds.

alarmSetFlag: 851C 851C 1 FALSE No TRUE if the alarm is set for GEOS to monitor, else FALSE.

sysDBData: 851D 851D 1 None No Icon number that caused a return to the application (from a dialog box).

screencolors: 851E 851E 1 $BF No Default 40 column screen colors.

dlgBoxRamBuf: 851F 851F 417 None n/a Dialog Box Ram buffer. Used when desk accessories or dialog boxes are run.

savedmoby2: 88BB 88BB 1 None No Used by old desk accessories/applications. Prior to version 1.3 of GEOS.
scr80polar: — 88BC 1 $40 No Copy of reg 24 in the VDC for the C128.

scr80colors: — 88BD 1 $E0 No Screen colors for 80-column mode on the C128. It is a copy of reg 26 in the VDC.

vdcClrMode: — 88BE 1 0 No Holds the current color mode for C128 color routines.

driveData: 88BF 88BF 4 None No One byte is reserved for each disk drive, to be used by the disk driver.

ramExpSize: 88C3 88C3 1 Actual No Number of 64K RAM banks available in RAM expansion unit.

sysRAMFlg: 88C4 88C4 1 None No REU Bank 0 control flags.

firstBoot: 88C5 88C5 1 $00/$FF No FALSE ($00) While system is booting. TRUE ($FF) after boot is complete.

curType: 88C6 88C6 1 Drv 8 type No Holds the current drive type.

ramBase: 88C7 88C7 4 None No Starting RAM bank for each disk drive that uses RAM banks.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-43 Environment

inputDevName: 88CB 88CB 17 None No Name of the current input device.

DrCCurDkNm: 88DC
88EC

88DC
88EC

16

2

None No Disk name of the current disk in drive C, 16 characters padded with $A0.

2-character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

DrDCurDkNm: 88EE
88FE

88EE
88FE

16

2

None No Disk name of the current disk in drive D, 16 characters padded with $A0.

2-character DiskID. (ID is always $A0A0 from a bug in all versions of GEOS)

dir2Head: 8900 8900 256 None No Second BAM block. Used by 1571 and 1581 drives.

spr0pic: 8A00 8A00 64 Mouse Pic No Graphics data for sprite 0. This sprite holds the mouse pointer image.

spr1pic: 8A40 8A40 64 None No Used for text prompt.

spr2pic:

spr3pic:

spr4pic:

spr5pic:

spr6pic:

spr7pic:

8A80
8AC0
8B00
8B40
8B80
8BC0

8A80
8AC0
8B00
8B40
8B80
8BC0

64

64

64

64

64

64

None No Used for application sprite images. If the application is not using these sprites

then this can be a data area for the application.

Example: Use all of sprite 1 through 7 area as a ramsect buffer.

.ramsect $8A40

 highBuf: .block 448.

COLOR_MATRIX: 8C00 8C00 1000 None No Foreground and background color cards for 40 column mode.

obj0Pointer:

obj1Pointer:

obj(2-7)Pointer:

8FF8
8FF9
8FFA

8FF8
8FF9
8FFA

1

1

1x6

$28

$29

$2A-$2F

Yes Pointer to the picture data for mouse cursor. ($8000+$28*64=spr0pic)

Pointer to picture data for text entry cursor. ($8000+$29*64=spr1pic)

Pointers to the picture data for sprites 2-7.

DISK_BASE: 9000 9000 4096 None No Disk driver for currently active drive.

dir3Head: 9C80 9C80 256 None No Third BAM block. Used by 1581 drive.

JmpIndX: 9D80 6 — — C128: 2 entry jump table

SCREEN_BASE: A000 A000 8000 None No Base of foreground screen. C64 & C128 in 40 column mode.

 — A040 8000 None No Lower half of VDC back screen buffer. (Lines 100-199)

 BF40 BF80 Start of C64 GEOS Kernal / Start of C128 GEOS Kernal.

bootName: C006 C006 9 -> No Start of the "GEOS BOOT" string. "GATEWAY" on Gateway version.
gatewayFlag: C007 C007 1 None No On the gateway version of GEOS there will be a 'A' at this location.

version: C00F C00F 1 $20 No Holds byte indicating what version of GEOS is running.

nationality: C010 C010 1 0 (USA) No Nationality of Kernal.

sysFlgCopy: C012 C012 1 None No Copy of the sysRAMFlg.

c128Flag: C013 C013 1 None No Defines current machine type. $80=C128 / $00 = C64.

dateCopy: C018 C018 3 YMD No Copy of system variables year, month, and day.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-44 Environment

vicbase: Video Interface Chip base address.

mob0xpos: D000 D000 1 None Yes Sprite 0 x-position.

mob0ypos: D001 D001 1 None Yes Sprite 0 y-position.

mob1xpos: D002 D002 1 None Yes Sprite 1 x-position.

mob1ypos: D003 D003 1 None Yes Sprite 1 y-position.

mob2xpos: D004 D004 1 None Yes Sprite 2 x-position.

mob2ypos: D005 D005 1 None Yes Sprite 2 y-position.

mob3xpos: D006 D006 1 None Yes Sprite 3 x-position.

mob3ypos: D007 D007 1 None Yes Sprite 3 y-position.

mob4xpos: D008 D008 1 None Yes Sprite 4 x-position.

mob4ypos: D009 D009 1 None Yes Sprite 4 y-position.

mob5xpos: D00A D00A 1 None Yes Sprite 5 x-position.

mob5ypos: D00B D00B 1 None Yes Sprite 5 y-position.

mob6xpos: D00C D00C 1 None Yes Sprite 6 x-position.

mob6ypos: D00D D00D 1 None Yes Sprite 6 y-position.

mob7xpos: D00E D00E 1 None Yes Sprite 7 x-position.

mob7ypos: D00F D00F 1 None Yes Sprite 7 y-position.

msbxpos: D010 D010 1 None Yes Bit 8 of sprite #0-7 x-coordinates.

grcntrl1: D011 D011 1 $3B No Graphics control register #1.

rasreg: D012 D012 1 None No Raster register.

lpxpos: D013 D013 1 None No Light pen x-position.

lpypos: D014 D014 1 None No Light pen y-position.

mobenble: D015 D015 1 None Yes Sprite enable bits.

grcntrl2: D016 D016 1 ST_40COL No Graphics control resister #2.
moby2: D017 D017 1 0 Yes Double object size in y.

grmemptr: D018 D018 1 %0011100x No Graphics memory pointer VM13-VM10|CB13-CB11.

grirq: D019 D019 1 — No Graphics chip interrupt register.

grirqen: D01A D01A 1 %01 No Graphics chip interrupt enable register.

mobprior: D01B D01B 1 0 Yes Object to background priority.

mobmcm: D01C D01C 1 0 Yes Sprite multi-color mode select.

mobx2: D01D D01D 1 0 Yes Double object size in x.

mobmobcol: D01E D01E 1 0 No Object to object collision register.

mobbakcol: D01F D01F 1 None No Sprite to background collision register.

extclr: D020 D020 1 BLACK No Exterior (border) color.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-45 Environment

bakclr0:

bakclr1:

bakclr2:

bakclr3:

D021
D022
D023
D024

D021
D022
D023
D024

1

1

1

1

DKGREY
WHITE

RED

CYAN

No Hardware registers to control background colors 0-3.

 b7-4: = not used. always 1's

 b0-3: = color for text background.

bakclr(1-3) only used in multi color mode. (Not used by GEOS).

mcmclr0: D025 D025 1 None Yes Multi-color mode color 0.

mcmclr1: D026 D026 1 None Yes Multi-color mode color 1.

mob0clr:

mob1clr:

mob2clr:

mob3clr:

mob4clr:

mob5clr:

mob6clr:

mob7clr:

D027
D028
D029
D02A
D02B
D02C
D02D
D02E

D027
D028
D029
D02A
D02B
D02C
D02D
D02E

1

1

1

1

1

1

1

1

None No Color of sprites 0 – 7.

keyreg: — D02F 1 None No C128 keyboard register for # pad & other keys: b2-b0 = scan rows 8,9 and 10.

clkreg: — D030 1 None No C128 clock speed register: b0 0=1MHz; 1=2MHz

sidbase: Sound interface device base address. Alternate addressing methods

sidVoc1: D400 D400 7 None No Voice 1 registers:

sidFreLo:

sidFreHi:

D400
D401

D400
D401

1

1
None No Frequency. Word sized value sidVoc1+O_FREQUENCY

 high byte sidVoc1+O_FREHI

sidPWLo:

sidPWHi:

D402
D403

D402
D403

1

1

None No Pulse width. Word sized value sidVoc1+O_PULSEWIDTH

 high byte sidVoc1+O_PWHI

sidVCReg: D404 D404 1 None No Voice control. sidVoc1+O_VCREG

sidAtDcy: D405 D405 1 None No Attack / Decay. sidVoc1+O_ATDCY

sidSuRel: D406 D406 1 None No Sustain / Release. sidVoc1+O_ATDCY

sidVoc2: D407 D407 7 None No Voice 2 registers: sidVoc2+O_FREQUENCY... etc.

sidVoc3: D40E D40E 7 None No Voice 3 registers: sidVoc3+O_FREQUENCY... etc.

sidFcLo:

sidFcHi:

D415
D416

D415
D416

1

1

None No Filter cutoff frequency. Word sized value sidbase+O_FREQCUTOFF

 high byte sidbase+O_FCHI

sidResFilt: D417 D417 1 None No Filter selection and resonance control. sidbase+O_RESFILT

sidSigVol: D418 D418 1 None No Volume and filter mode control. sidbase+O_SIGVOL

potX: D419 D419 1 None No Mouse position: bits 1-6 = current x-position.

potY: D41A D41A 1 None No Mouse position: bits 1-6 = current y-position.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-46 Environment

sidOsc3: D41B D41B 1 None No Voice 3 oscillator output. (Read Only) sidbase+O_OSC3

sidEnv3: D41C D41C 1 None No Voice 3 envelope generator output. (R/O) sidbase+O_ENV3

mmucr: — D500 1 CIO_IN No C128 MMU Configuration register. (Mirrored by config at FF00)

mmupcra/b/c/d: — D501 1x4 None No C128 MMU Pre configuration registers a,b,c and d.

mmumcr: — D505 1 $37 No C128 MMU Mode configuration register. b7 = 40/80 key switch. 0=80 columns

mmurcr: — D506 1 $40 No C128 MMU RAM Configuration register.

mmup0L: — D507 1 0 No C128 MMU Zero Page page pointer.

mmup0H: — D508 1 %xxxxxxx0 No C128 MMU Zero Page bank pointer.

mmup1L: — D509 1 1 No C128 MMU Stack Page page pointer.

mmup1H: — D50A 1 %xxxxxxx0 No C128 MMU Stack Page bank pointer.

vdccr: — D600 1 None No VDC Control Register (R/W).

vdcdr: — D601 1 None No VDC data register (R/W). Registers: constants\Hardware\VDC

ctab: D800 D800 1000 None No Character colors when in text mode. (GEODEBUGGER, GEOBASIC).

cia1base: Complex Interface Adapter 1

cia1pra: DC00 DC00 1 None No Peripheral data register a. Keyboard/Joystick/Mouse inputs.

cia1prb: DC01 DC01 1 None No Peripheral data register b. Keyboard/Joystick/Mouse inputs.

cia1ddra: DC02 DC02 1 None No Data direction reg a. 0=read only, 1=write only.

cia1ddrb: DC03 DC03 1 None No Data direction reg a. 0=read only, 1=write only.

cia1talo:

cia1tahi:

DC04
DC05

DC04
DC05

1

1

None No Timer A. Programmable counter (word)

 high byte of counter.

cia1tblo:

cia1tbhi:

DC06
DC07

DC06
DC07

1

1

None No Timer B. Programmable counter (word)

 high byte of counter.

cia1tod10ths: DC08 DC08 1 None No 10ths of second register. read/write (GEOS time)

Important: Writting or reading cia1tod10ths starts the time of day timer.

cia1todsec: DC09 DC09 1 None No Seconds register. (R/W) BCD (GEOS time)

cia1todmin: DC0A DC0A 1 None No Minutes register. (R/W) BCD (GEOS time)

cia1todhr: DC0B DC0B 1 None No Hours – AM; PM register. (R/W) BCD (GEOS time)

Important: Writing or reading cia1todhr stops the time of day timer.

cia1sdr: DC0C DC0C 1 None No Serial data register.

cia1icr: DC0D DC0D 1 None No Interrupt control register.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-47 Environment

cia1cra: DC0E DC0E 1 None No Timer control register a.

cia1crb: DC0F DC0F 1 None No Timer control register b.

cia2base: Complex Interface Adapter 2

cia2pra: DD00 DD00 1 None No Peripheral data register a.

cia2prb: DD01 DD01 1 None No Peripheral data register b. Used by RS232 serial routines.

cia2ddra: DD02 DD02 1 None No Data direction register a. 0=read only, 1=write only

cia2ddrb: DD03 DD03 1 None No Data direction register b. 0=read only, 1=write only

cia2talo:

cia2tahi:

DD04
DD05

DD04
DD05

1

1

None No Timer a. Word value

 high byte

cia2tblo:

cia2tbhi:

DD06
DD07

DD06
DD07

1

1

None No Timer b. Word value

 high byte

cia2tod10ths: DD08 DD08 1 None No 10ths of sec register. read/write. [b3-b0 range (0-9)]

cia2todsec: DD09 DD09 1 None No Seconds register. (R/W) BCD [b7-b4 Tenths (0-5);b3-b0 Ones (0-9)]

cia2todmin: DD0A DD0A 1 None No Minutes register. (R/W) BCD

cia2todhr: DD0B DD0B 1 None No Hours – AM; PM reg. (R/W) BCD

cia2sdr: DD0C DD0C 1 None No Serial data register.

cia2icr: DD0D DD0D 1 None No Interrupt control register.

cia2cra: DD0E DD0E 1 None No Timer control register a.

cia2crb: DD0F DD0F 1 None No Timer control register b.

georampg:

georamps:

georambs:

DE00
DFFE
DFFF

DE00
DFFE
DFFF

$100

1

1

N/A No GEORAM: memory page.

 b5-0: page select register.

 b4-0: block select register.

EXP_BASE: DF00 DF00 11 N/A No Commodore REU base address.

MSE128_BASE: FD00 FD00 384 Joystick No C128 input driver.

MOUSE_JMP: FE80 FE80 9/15 — No Jump table entries for C64 and C128 input driver.

MOUSE_BASE: FE80 FE80 378 Joystick No C64 input driver.

 — FE8F — — No C128 Kernal starts again after input driver jump table.

config: — FF00 1 CIO_IN No C128 MMU configuration register.

mmulcra/b/c/d: — FF01 1x4 N/A No C128 MMU Load configuration registers a,b,c and d.

END_MOUSE: FFFA — — — — Defined as one byte past the end of the C64 mouse driver.

 Address (hex) variables / By Address

Name 64 128 Size Default Saved Description

 19-48 Environment

systemVector: — FFF8 2 Reset No Soft reset vector. Called when reset button is pressed.

NMIVector: FFFA FFFA 2 FB24/FF25 No Non maskable interrupt vector. (Default: C64/C128)

resetVector: FFFC FFFC 2 FB24/FF25 No Reset vector. (Default: C64/C128)

IRQVector: FFFE FFFE 2 FAA2/FF05 No Interrupt request vector / BRK instruction handler (Default: C64/C128)

C128 backRAM:

curEnable: — 1300† 1 None No Image of the C64 mobenble register.

curmoby2: — 1301† 1 None No Image of C64 moby2 register. Used for C128 soft sprites.

curmobx2: — 1302† 1 None No Image of the C64 mobx2 register. Used for C128 soft sprites.

curXpos0: — 1303† 16 None No The current x-positions of the C128 soft sprites.

curYpos0: — 1313† 8 None No The current y-positions of the C128 soft sprites.

backBufPtr: — 131B† 16 None No Screen pointer where the back buffer came from.

backXBufNum: — 132B† 8 None No For each sprite, 1 byte for how many bytes wide the corresponding sprite is.

backYBufNum: — 1333† 8 None No For each sprite, Number of scanlines high of corresponding sprite.

sspr1back:

sspr2back:

sspr3back:

sspr4back:

sspr5back:

sspr6back:

sspr7back:

—
—
—
—
—
—
—

133B†

1461†
1587†
16AD†
17D3†
18F9†
1A1F†

294

294

294

294

294

294

294

None No Buffers for soft sprites l – 7 are used for saving the screen behind the sprites.

Each buffer is 7 bytes wide by 42 scanlines high (292 bytes). These buffers are

large enough to hold the largest possible sprite size (doubled in both x and y)

and include an extra byte in width to save stuff on byte boundaries.

Note: If an application is not actively using sprites, this can be an application

 data area.

shiftBuf: — 1B45† 7 None No Buffer for shifting/doubling sprites.

shiftOutBuf: — 1B4C† 7 None No Buffer for shifting/doubling/oring sprites.

sizeFlags: — 1B53† 7 None No Height of sprite | 9-pixel flag.

doRestFlag: — 1B54† 1 0 No Flag needed because of overlapping soft sprite problems on C128.

mouseSave: — 1B55† 24 None No Screen data for what is beneath mouse soft sprite.

softZeros: — 1B6D† 192 None No Buffer used for preserving background behind soft sprites.

softOnes: — 1C2D† 192 None No Buffer used for preserving background behind soft sprites.

invertBuffer: — 1CED† 80 None No Buffer area used to speed up the 80-column InvertLine routine.

deskAccSwap: — 2000† 24K None No Desk Accessory swap buffer. 2000-7FFF

 — A000† — No Start of Back Ram Kernal space

NMIVector: — FFFA† 2 $FF25 No Non maskable interrupt vector.

resetVector: — FFFC† 2 $FF25 No Reset vector.

IRQVector: — FFFE† 2 $FF05 No Interrupt request vector / BRK instruction handler
†Located in backRAM

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-49 Environment

structures

dlgBoxRamBuf

Dialog Box RAM buffer

This buffer is for variables that are saved when dialog boxes or desk accessories are run. Both of these actions

require the system to be able to warmstart GEOS and return to the application state after the action completes.

This ability to backup and restore the system state allows for both the Dialog Box / Desk Accessory to startup

into a known base startup, just like the application itself always starts up at this same warmstart state.

Breakdown of Dialog Box RAM buffer

dlgBoxRamBuf Expressed as a ramsect declaration:

.ramsect dlgBoxRamBuf
 dbrb_ZP: .block 23 ; Zero Page variables
 dbrb_GL: .block 38 ; Global variables
 dbrb_LC: .block 278 ; Kernal internal variables
 dbrb_SP: .block 39 ; Sprite data
 dbrb_FUTURE: .block 39 ; Filler. Current Kernals do not use all of the buffer's
 ; 417 bytes

dlgBoxRamBuf Converted to CONSTANTS:

CONSTANT Size Description

SRAM_ZPSIZE 23 Zero Page variables

SRAM_GLSIZE 38 Global variables

SRAM_LC 278 Kernal internal local variables

SRAM_SPSIZE 39 Sprite data

SRAM_FT 39 Future filler. Current Kernals do not use all of the buffer.

TOT_SRAM_SAVED

417

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-50 Environment

SRAM_ZP Zero Page variables.

SRAM_ZP $Addr Size Start of saved Zero Page area

curPattern 22 2 Pointer to the first byte of the graphics data for the current pattern in use.

string 24 2 Pointer to string destinations for routines such as GetString.

baselineOffset 26 1 Offset from top line to baseline in character set.

curSetWidth 27 2 Card width in pixels for the current font.

curHeight 29 1 Card height in pixels of the current font in use.

curIndexTable 2A 2 Pointer to the table of sizes, in bytes, of each card in of the current font.

cardDataPntr 2C 2 Pointer to the card graphic data for the current font in use.

currentMode 2E 1 Current text drawing mode. Each bit is a flag for a drawing style.

dispBufferOn 2F 1 Routes graphic and text between foreground and background buffers.

mouseOn 30 1 Mouse/Icon/Menu active bit flag.

msePicPtr 31 2 Pointer to the mouse graphics data.

windowTop 33 1 Top line of window for text clipping.

windowBottom 34 1 Bottom line of window for text clipping.

leftMargin 35 2 Leftmost point for writing characters.

rightMargin 37 2 The rightmost point for writing characters.

SRAM_ZP_END 38 End of save Zero Page area (inclusive)

SRAM_ZPSIZE 23 (SRAM_ZP_END+1) – SRAM_ZP

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-51 Environment

SRAM_GL Global Variables

Name Addr Size Description
SRAM_GL 849B Start of Saved Global RAM Area 849B-84C0

appMain 849B 2 Vector that allows applications to include their own main loop code.

intTopVector 849D 2 Vector to routine to call before operating system interrupt code is run.

intBotVector 849F 2 Vector to routine to call after the operating system interrupt code has run.

mouseVector 84A1 2 Routine to call on a mouse key press.

keyVector 84A3 2 Vector to routine to call on keypress.

inputVector 84A5 2 Pointer to routine to call on input device change.

mouseFaultVec 84A7 2 Vector too routine to call when mouse goes outside defined region.

otherPressVec 84A9 2 Vector to call when the mouse button is pressed outside of Menu/Icon.

StringFaultVec 84AB 2 String margin fault service routine vector.

alarmTmtVector 84AD 2 Service routine for the alarm clock time-out.

BRKVector 84AF 2 Vector to the routine that is called when a BRK instruction is

encountered

RecoverVector 84Bl 2 Vector to recover background behind menus and dialog boxes.

selectionFlash 84B3 1 speed at which menu items and icons are flashed.

alphaFlag 84B4 1 Flag for alphanumeric string input.

iconSelFlag 84B5 1 Flag specify how the system should indicate icon selection to the user.

faultData 84B6 1 Holds information about mouse faults.

menuNumber 84B7 1 Number of currently working menu.

mouseTop 84B8 1 Top most position for mouse.

mouseBottom 84B9 1 Bottom most position for mouse cursor.

mouseLeft 84BA 2 Left most position for mouse.

mouseRight 84BC 2 Right most position for mouse.

stringX 84BE 2 The x-position for string input.

stringY 84C0 1 The y-position for string input.

SRAM_GL_END 84C0 End of Save Global Ram area (inclusive)
SRAM_GLSIZE 38 (SRAM_GL_END+1) – SRAM_GL

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-52 Environment

SRAM_LC Kernal Internal Local Variables

SRAM_LC area is for internal Kernal Local Variables and structures. SRAM_LC is comprised of the

following:

 CONSTANT Size Description

MENU_SPACE 49 Variables and tables containing current Menu

(3 * MAX_M_NESTING) + (2 * MAX_M_ITEMS) +7

PROC_SPACE 227 Variables and tables holding processes and sleepers.

(MAX_PROCESSES * 7) + (SLEEP_MAX * 4) +7

 2 Internal variable holds pointer to current icon table.

SRAM_LC 278 2 + MENU_SPACE + PROC_SPACE

MENU_SPACE Break Down.
MENU_SPACE = (3 * MAX_M_NESTING) + (2 * MAX_M_ITEMS) +7

.ramsect
 ;--- Menu Variables 7 bytes

menuOptNumber: .block 1
menuTop: .block 1
menuBottom: .block 1
menuLeft: .block 2
menuRight: .block 2

;--- Nesting Tables ; MAX_M_NESTING = 4
 ; 3 Tables, allow for 4 menu nesting
levels
menuStackL: .block 4 ; Each level requires 3 bytes to store
menuStackH: .block 4
menuOptionTab: .block 4 ; Nest size = MAX_NEST * 3

;--- Menu Item Tables ; MAX_M_ITEMS = 15
 ; Two tables, allows for 15 menu items
menuLimitTabL: .block 15 ; Each menu item requires 2 bytes to
 ; store.
menuLimitTabH: .block 15 ; Items size = MAX_ITEMS * 2

PROC_SPACE Break Down.
PROC_SPACE = (MAX_PROCESSES * 7) + (SLEEP_MAX * 4) +7
;--- Processes
timersTab: .block 40 ; MAX_PROCESSES = 20 Processes
timersCMDs: .block 20 ;
timersRtns: .block 40 ; Each process requires 7 bytes to
store
timersVals: .block 40 ; Process size = MAX_PROCESSES * 7

;--- 2 Bytes of +7
numTimers: .block 1 ; Part of + 7
delaySP: .block 1 ;

;--- Sleepers
delayValL: .block 20 ; SLEEP_MAX = 20 sleepers
delayValH: .block 20 ; Each sleep requires 4 bytes to store
delayRtnsL: .block 20
delayRtnsH: .block 20 ; Sleep size = SLEEP_MAX * 4

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-53 Environment

;--- Internal variables falling right after process tables.
;--- Last 5 bytes of the +7
stringLen: .block 1
stringMaxLen: .block 1
tmpKeyVector: .block 2
stringMargCtrl: .block 1

SRAM_SP Sprite Data
Save the current state of all 8 sprites.

Name Addr Size Description
obj0Pointer 8FF8 8 sprite byte pointers
mob0xpos D000 16 x, y-positions of sprites
msbxpos D010 1 bit 9 of sprite x-positions.

mobenble D015 1 sprite enable bits
mobprior D01B 1 object to background priority

mobmcm D01C 1 sprite multi-color mode select.

mobx2 D01D 1 double object size in x.

mcmclr0 D025 1 multi-color mode color 0
mcmclr1 D026 1 multi-color mode color 1

mob1clr D028 7 Color of sprites 1-7
moby2 D017 1 double object size in y

SRAM_SPSIZE 39

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-54 Environment

SRAM_FT Future use filler bytes
DBRBSIZE = 417 ; Hard coded size of Dialog Box ram buffer

SRAM_FT = DBRBSIZE – (SRAM_ZPSIZE + SRAM_ZPSIZE + SRAM_LC +

SRAM_SPSIZE)

Nothing is actually done with the SRAM_FT bytes. They are just a place holder in the formula that

leads to all 417 Bytes of the buffer being accounted for.

This is the actual table used to control the population of and restoration from the dlgBoxRamBuf.

DialogCopyTab:

.word curPattern ; zero page variables

.byte 23

.word appMain ; vectors

.byte 38

.word $40 ; Internal vector

.byte 2

.word $86C0 ; Internal menu tables menuOptNumber

.byte 49

.word $86F1 ; Internal timer tables

.byte 227

.word obj0Pointer ; obj0Pointer

.byte 8

.word mob0xpos ; $D000

.byte 17

.word mobenble ; $D015

.byte 1

.word mobprior ; $D01B

.byte 3

.word mcmclr0 ; $D025

.byte 2

.word mob1clr ; $D028

.byte 7

.word moby2 ; $D017

.byte 1

.word NULL

dlgBoxRamBuf/Breakdown of Dialog Box RAM buffer

 19-55 Environment

Saved RAM Buffer Variables by Name

Name Description

alarmTmtVector Service routine for the alarm clock time-out.

alphaFlag Flag for alphanumeric string input.

appMain MainLoop service routine vector.

BRKVector Vector to the routine that is called when a BRK instruction is encountered.

baselineOffset Offset from top line to baseline in character set.

cardDataPntr This is a pointer to the actual card graphic data for the current font in use.

curHeight Card height in pixels of the current font in use.

curIndexTable Pointer to the table of sizes, in bytes, of each card in of the current font.

curPattern Pointer to the first byte of the graphics data for the current pattern in use.

currentMode Current text drawing mode. Each bit is a flag for a drawing style.

curSetWidth Card width in pixels for the current font.

dispBufferOn Routes graphic and text operations to either the foreground/background/both.

faultData Holds Information about mouse faults.

fontTable Variables for the current font in use.

iconSelFlag Flag specify how the system should indicate icon selection to the user.

inputVector Pointer to routine to call on input device change.

intBotVector Vector to routine to call after the operating system interrupt code has run.

intTopVector Vector to routine to call before operating system interrupt code is run.

keyVector Vector to routine to call on keypress.

leftMargin Leftmost point for writing characters.

menuNumber Number of currently working menu.

mouseBottom Bottom most position for mouse cursor. Normally set to bottom of the screen.

mouseFaultVec Vector too routine to call when mouse goes outside defined region.

mouseLeft Left most position for mouse.

mouseOn Mouse/Icon/Menu active bit flag.

mouseRight Right most position for mouse.

mouseTop Top most position for mouse.

mouseVector Routine to call on a mouse key press.

msePicPtr Pointer to the mouse graphics data.

otherPressVec Vector to call when the mouse button is pressed outside of Menu/Icon.

RecoverVector Vector to recover background behind menus and dialog boxes.

rightMargin The rightmost point for writing characters.

selectionFlash Speed at which menu items and icons are flashed.

string Pointer to string destinations for routines such as GetString.

StringFaultVec Vector called when an attempt is made to write a character past rightMargin.

stringX The x-position for string input.

stringY The y-position for string input.

windowTop Top line of window for text clipping.

Saved I/O by Address

Start End Description

mob0xpos msbxpos All sprite x and y-positions

mobenble Sprite enable bits for all sprites.

mobprior mobx2 Sprite background priority/color mode and x-doubling.

mcmclr0 mcmclr1 Multi color mode colors.

mob1clr mob7clr Color of all non pointer sprites. (sprites 1-7)

moby2 Sprite y-doubling.

dialog/Icons/Menus/Graphics/DIALOG

 19-56 Environment

dialog/Icons/Me nus/Graphics

DIALOG

Note2: The first entry in a DB table is a command byte defining its position. This can either be a byte

indicating a default position for the DB, DEF_DB_POS (%10000000), or a byte indicating a

user defined position, SET_DB_POS (%00000000) which must be followed by the position

information.

The position command byte is or'ed with a system pattern number to be used to fill in a shadow

box. The shadow box is a rectangle of the same dimensions as the DB and is filled with one of the

system patterns. The shadow box appears underneath the Dialog Box, Offset 1 card right and 1

card down.

Start of Default Dialog Start of Custom Size Dialog
------------------------------------- --

.byte DEF_DB_POS | pattern .byte SET_DB_POS | pattern

.byte top ; (0-199)

.byte bottom ; (0-199)

.word left ; (0-319 or 0-639)

.word right ; (0-319 or 0-639)

Note1: Standard window size: columns 64-255

rows 32-127

Note1: If the shadow pattern is zero, then no shadow is drawn.

Note3: Maximum # of dialog icons is 8. This can be worked around by drawing your own images and

detecting mouse clicks over the images with otherPressVec and IsMseInRegion.

Note: See: "Saved RAM Buffer Variables by Name" on the previous page for a list of saved global

variables and saved I/O values.

Position Commands
After the position byte (or bytes) may appear a number of icon or command bytes. Most require

position coordinates. The x and y-positions are an offset from the upper left corner of the DB.

Icon: x-position uses bytes (cards) 0-39 x_card_offset

Text: x-position uses pixels 0-255 x_offset ; byte sized field

 y-position is always in pixels 0-199 y_offset

Doubling for 40/80 mode compatibility

Location Type Doubling Required Note

Custom Size word x-coordinate Yes 80 only can use native coordinates

Icon / DBUSRICON x_card_offset No (Optional) 128 GEOS always doubles

DBTXTSTR x_offset No Would add 128 to x-position

DBUSRICON structure byte width in bytes Yes 80 only can use native width

DBGETFILES byte x_offset No Would add 128 to x-position

DBGETSTRING byte x_offset No Would add 128 to x-position

DBVARSTR byte x_offset No Would add 128 to x-position

Note: See Ch 19 constants/Dialog Box/coordinates for a list of CONSTANTS for the dialog

window, text and icon positions.

dialog/Icons/Menus/Graphics/DIALOG

 19-57 Environment

Dialog Box Icons
Icon Value Example Description Keyboard Shortcut

OK 1 .byte OK

.byte x_card_offset

.byte y_offset

Draw OK icon

 x-offset is in cards (0-39)

 y-offset in pixels (0-199)

 RETURN

Note: Shortcuts will close the dialog

box as if the icon was clicked on.

CANCEL 2 Draw CANCEL icon c

YES 3 etc... y

NO 4 n

OPEN 5 o

DISK 6 d

 7-10 Marked for future use.

Dialog Box Commands
Command Value Example Description

DBTXTSTR 11 .byte DBTXTSTR

.byte x_offset

.byte y_offset

.word textPtr

PutString textPtr at selected offsets.

 x pixel offset 0-255

 y pixel offset 0-199

textPtr contains address of null terminated string.

DBVARSTR 12 .byte DBVARSTR

.byte x_offset

.byte y_offset

.byte zPgPtr

PutString @@zPgPtr

zPgPtr is an address of a zero page ptr to a null

terminated string.

Example: .byte r15

DBGETSTRING 13 .byte DBGETSTRING

.byte x_offset

.byte y_offset

.byte zPgPtr

.byte maxChars

Read a text string typed by user into buffer.

zPgPtr points to address of a buffer that is maxChars

bytes.

Example: .byte r5

 with r5 containing address of string buffer

DBSYSOPV 14 .byte DBSYSOPV Closes DB when the mouse is pressed anywhere

other then over an icon.

DBGRPHSTR 15 .byte DBGRPHSTR

.word graphicsStrPtr

i_GraphicsString graphicsStrPtr

graphicsStrPtr contains address of a graphics string.

(1This command will end Dialog Box processing)

DBGETFILES¥

16 .byte DBGETFILES

.byte x_offset

.byte y_offset

Display the filename box inside the DB. ¥

 r7L = FILETYPE

 r5 = buffer

 r10 = File Class

DBOPVEC 17 .byte DBOPVEC

.word msePressVector

sets otherPressVec to msePressVector. Called when

mouse button pressed any place except over an icon.

DBUSRICON 18 .byte DBUSRICON

.byte x_card_offset

.byte y_offset

.word userIcon

userIcon table:

 .word ptrIconData

 .word NULL

 .byte width in bytes

 .byte height in pixels

 .word ptrIconAction

Note: (width | DOUBLE_B for 128)

DB_USR_ROUT 19 .byte DB_USR_ROUT

.word userVector

Call userVector after the DB is drawn and before the

dialog box icons have been drawn.

NULL 0 .byte NULL Ends the Dialog Box definition.

dialog/Icons/Menus/Graphics/GraphicsString

 19-58 Environment

GraphicsString

Available commands for GraphicsString:

Command Value Example Description

NULL 0 .byte NULL Ends the graphics string

MOVEPENTO 1 .byte MOVEPENTO

.word xPos

.byte yPos

Move the pen position to the absolute coordinates

(xPos, yPos)

LINETO 2 .byte LINETO

.word xPos

.byte yPos

Draw a line from the current pen position to

(xPos, yPos), which becomes new pen position.

RECTANGLETO 3 .byte RECTANGLETO

.word xPos

.byte yPos

Draw a rectangle using the pattern byte; from the

current pen position to (xPos, yPos), which

becomes new pen position.

 4 unused

NEWPATTERN 5 .byte NEWPATTERN

.byte patternNbr

Load system pattern with new pattern.

ESC_PUTSTRING 6 .byte ESC_PUTSTRING

.word xPos

.byte yPos

.byte "String",NULL

Switch to interpreting the remainder of the string

as i_PutString inline commands.

FRAME_RECTO 7 .byte FRAME_RECTO

.word xPos

.byte yPos

Frame a rectangle using a solid line. Start at the

current pen position to (xPos, yPos), which

becomes the new pen position.

PEN_X_DELTA 8 .byte PEN_X_DELTA

.word xOffset

move pen by signed word delta in xOffset

PEN_Y_DELTA 9 .byte PEN_Y_DELTA

.word yOffset

move pen by signed word delta in yOffset

PEN_XY_DELTA 10 .byte PEN_XY_DELTA

.word xOffSet

.word yOffSet

move pen by signed word delta in xOffset &

yOffset

Example: GrphcsStr1

Icon Table

Header:

Index Constant Size Description

+0 OFF_NM_ICNS byte Total number of icons in this table.

+1 OFF_IC_XMOUSE word Initial mouse x-position. If $0000, mouse position will not be altered.

+3 OFF_IC_YMOUSE byte Initial mouse y-position.

Icon Entries:

+0 OFF_I_PIC word Pointer to compacted bitmap picture data for this Icon. If set to $0000,

icon is disabled.

+2 OFF_I_X byte Card x-position for icon bitmap.

+3 OFF_I_Y byte y-position of icon bitmap.

+4 OFF_I_WIDTH byte Card width of icon bitmap.

+5 OFF_I_HEIGHT byte Pixel height of icon bitmap.

+6 OFF_I_EVENT word Pointer to icon event routine to call if this icon is selected.

disk/Menu

 19-59 Environment

Menu

M_HEIGHT=14
MAX_M_ITEMS=15

Menu/Sub-menu Header:

Menu Item: (OFF_1ST_M_ITEM)

Index Constant Size Description

+0 OFF_TEXT_ITEM word Pointer to null-terminated text string for this menu item.

+2 OFF_TYPE_ITEM byte Selection type (sub-menu, event, dynamic sub-menu).

+3 OFF_POINTER_ITEM word Pointer to sub-menu data structure, event routine, or dynamic sub-menu routine,

depending on selection type.

Types of Menu Items (for use in OFF_TYPE_ITEM byte):

Constant Value Description

SUB_MENU $80 This menu item leads to a sub-menu. The OFF_POINTER_ITEM is a pointer to the sub-menu data

structure (points to first byte of a menu/sub-menu header).

DYN_SUB_MENU $40 This menu item is a dynamic sub-menu. The OFF_POINTER_ITEM is a pointer to a dynamic sub-

menu routine that is called before the menu is actually drawn. The dynamic sub-menu routine can

do any necessary preprocessing and return with r0 containing a pointer to a sub-menu data structure

or $0000 to ignore the selection.

MENU_ACTION $00 This menu item generates an event. The OFF_POINTER_ITEM is a pointer to the event routine to

call.

Menu/Sub-menu Types (use in attribute byte OFF_M_ATTRIBUTE):

Constant Value Description

HORIZONTAL $00 Arrange menu items in this menu/sub-menu horizontally.

VERTICAL $80 Arrange menu items in this menu/sub-menu vertically.

CONSTRAINED $40 Constrain the mouse to the menu/sub-menu. If the menu is a sub-menu, the mouse can still be

moved off to the parent menu (off the top of a vertical sub-menu or off the left of a horizontal

menu).

UN_CONSTRAINED $00 Do not constrain the mouse to the menu/sub-menu. If the user moves off of the menu, GEOS

will retract it.

Bitwise breakdown of the Attribute byte (OFF_M_ATTRIBUTE):

 7 6 5 4 3 2 1 0

b7 b6 n/a b3-b0

b7 orientation: 1 = VERTICAL; 0 = HORIZONTAL

b6 constrained: 1 = CONSTRAINED; 0 = UN_CONSTRAINED

b3-b0 number of items in menu/sub-menu (up to MAX_M_ITEMS).

Two Examples of the attribute byte:
.byte (7 | VERTICAL | UN_CONSTRAINED) ; vertical, unconstrained menu with seven items

.byte (11 | HORIZONTAL | CONSTRAINED) ; horizontal, constrained menu with eleven items
disk

Index Constant Size Description

+0 OFF_MY_TOP byte Top edge of menu rectangle (y1 pixel position).

+1 OFF_MY_BOT byte Bottom edge of menu rectangle (y2 pixel position).

+2 OFF_MX_LEFT word Left edge of menu rectangle (x1 pixel position).

+4 OFF_MX_RIGHT word Right edge of menu rectangle (x2 pixel position).

+6 OFF_M_ATTRIBUTE byte Menu type bitwise-or'ed with number of items in this menu/sub-menu.

disk

 19-60 Environment

DirHeader: curDirHead $8200

Offset Constant Size Description

$03 1 1571 double sided flag. $80=double sided format.
$04 OFF_TO_BAM 140 first BAM entry
$90 OFF_DISK_NAME 16 disk name string
$A2 OFF_DSK_ID 2 disk ID
$AB OFF_OP_TR_SC 2 track and sector for off page directory
$AD OFF_GS_ID 16 GEOS ID string
$BD OFF_GS_DTYPE 1 GEOS disk type

0 = normal disk
 'B' = BOOT disk
 'P' = Master disk

Directory Entry: dirEntryBuf $8400

Offset Constant Size Description

$00 OFF_CFILE_TYPE 1 DOS file type
 Bit 7 1=file closed/normal state
 Bit 6 write protect bit

ST_WR_PR %01000000
 Bit 2-0 Commodore file type
 DEL = 0 deleted
 SEQ = 1 sequential
 PRG = 2 program
 USR = 3 user (GEOS)
 REL = 4 relative file. invalid in GEOS
 CBM = 5 1581 Partition. not supported by GEOS

$01 OFF_INDEX_PTR
OFF_DE_TR_SC

2 index table pointer (VLIR file T/S)
track/Sector for file's 1st data block

$03 OFF_FNAME 16 file name padded with hard spaces $A0
$13 OFF_GHDR_PTR 2 track/sector of GEOS header block
$15 OFF_GSTRUC_TYPE 1 GEOS file structure type

 SEQUENTIAL=0
 VLIR=1

$16 OFF_GFILE_TYPE 1 GEOS file type
 NOT_GEOS=0 C64 file no header
 BASIC=1 C64 BASIC w/header
 ASSEMBLY=2 C64 Assembly w/header
 DATA=3 C64 DATA File w/header
 SYSTEM=4 GEOS system file
 DESK_ACC=5 GEOS desk accessory
 APPLICATION=6 GEOS application
 APPL_DATA=7 GEOS data file
 FONT=8 GEOS font
 PRINTER=9 GEOS print driver
 INPUT_DEVICE=10 GEOS mouse / joystick / etc.
 DISK_DEVICE=11 GEOS disk driver
 SYSTEM_BOOT=12 GEOS boot file
 TEMPORARY=13 GEOS swap file
(The deskTop will automatically delete all
 temporary files when opening a disk)
 AUTO_EXEC=14 application to automatically be ran

just after booting, but before deskTop
runs.

 INPUT_128=15 128 input driver
$17 OFF_YEAR 5 Y/M/D/H/M
$1C OFF_SIZE 2 file size in blocks

disk

 19-61 Environment

File Header Block: fileHeader $8100

Offset Constant Size Description

Note: use GetFHdrInfo to load a file's header block into fileHeader.

$00 2 $00, $FF
When creating a file with SaveFile , this location holds a word
pointer to a buffer containing the filename

$02 O_GHIC_WIDTH 1 width in bytes of file icon

$03 O_GHIC_HEIGHT 1 height of file icon in pixels

$04 O_GHIC_PIC 64 icon data

$44 O_GHCMDR_TYPE 1 Commodore file type (b7 = 1, b6-b0 = file type)
 DEL = 0 deleted
 SEQ = 1 sequential
 PRG = 2 program
 USR = 3 user (GEOS)
 REL = 4 relative file. invalid in GEOS
 CBM = 5 1581 Partition. Not supported by GEOS

$45 O_GHGEOS_TYPE 1 GEOS file type
 NOT_GEOS = 0 C64 file no header
 BASIC = 1 C64 BASIC w/header
 ASSEMBLY = 2 C64 assembly w/header
 DATA = 3 C64 data file w/header
 SYSTEM = 4 GEOS system file
 DESK_ACC = 5 GEOS desk accessory
 APPLICATION = 6 GEOS application
 APPL_DATA = 7 GEOS data file
 FONT = 8 GEOS font
 PRINTER = 9 GEOS print driver
 INPUT_DEVICE = 10 GEOS mouse etc.
 DISK_DEVICE = 11 GEOS DISK driver
 SYSTEM_BOOT = 12 GEOS boot file
 TEMPORARY = 13 GEOS swap file
 AUTO_EXEC = 14 application ran while booting
 INPUT_128 = 15 128 input driver

$46 O_GHSTR_TYPE 1 GEOS file structure type (0=SEQUENTIAL, 1=VLIR)
$47 O_GHST_ADDR 2 start address of file
$49 O_GHEND_ADDR 2 end address of file

(Only valid for desk accessories)
$4B O_GHST_VEC 2 application initialization vector
$4D O_GHFNAME

O_GHCNAME
12

4
3

permanent filename (for all but APPL_DATA files)
permanent class name (for APPL_DATA files)
version string. Example: V1.0 or extended version V1.000
normally 3 zeros. First 2 bytes may be used for extended version.

$60 O_128_FLAGS 1 OS compatibility flag
Constant b7 b6
CF_40 = $00 0 0 64/128 40-column mode only
CF_40_80 = $40 0 1 64/128 40 and 80-column modes
CF_64 = $80 1 0 64 only (does not run under GEOS 128)
CF_128 = $C0 1 1 128 80-column mode only (does not run under

GEOS 64)
$61

O_GH_AUTHOR
O_GHP_DISK

20 application author's name (only if application)
disk name of parent application's disk (only if data file) (This
was never implemented and included here only for completeness)

$75 O_GHP_FNAME 20 parent application's permanent filename (only if Data File)
$89 O_GHAPDAT 23 data area for application use
$A0 O_GHINFO_TXT 96 notes that are stored with the file and edited in the deskTop "get

info" box. null terminated

disk

 19-62 Environment

File Header Block

Fonts use the data area of the file header block from $61 to $9F in a different way:

Offset Constant Size Description

Disk Errors:

GEOS I/O Routines return errors in the x-register:

Constant Dec Hex Description

NO_ERROR 0 $00 No error occurred

NO_BLOCKS 1 $01 Not enough blocks on disk

INV_TRACKS 2 $02 Invalid track or sector

INSUFF_SPACE 3 $03 Disk full, insufficient space

FULL_DIRECTORY 4 $04 Directory is full

FILE_NOT_FOUND 5 $05 File not found

BAD_BAM 6 $06 Bad allocation map

 (attempt to deallocate an unallocated block, or the reverse)

UNOPENED_VLIR 7 $07 VLIR file not open

INV_RECORD 8 $08 VLIR record does not exist (This is a non fatal error)

OUT_OF_RECORDS 9 $09 Out of records: Too many VLIR chains

STRUCT_MISMATCH 10 $0A GEOS structure mismatch: File is not a VLIR file

BFR_OVERFLOW 11 $0B Buffer overflow: ReadRecord max read size exceeded

CANCEL_ERR 12 $0C Deliberate cancel error

DEV_NOT_FOUND 13 $0D Device not found

INCOMPATIBLE 14 $0E Incompatible 40/80

HDR_NOT_THERE 32 $20 Disk block read error: No header block sync character

NO_SYNC 33 $21 Unformatted or missing disk

DBLK_NOT_THERE 34 $22 No data Block found

DAT_CHKSUM_ERR 35 $23 Data block checksum error

WR_VER_ERR 37 $25 Write verify error

WR_PR_ON 38 $26 Write protect on

HDR_CHKSUM_ERR 39 $27 Disk block write: Header checksum error

DSK_ID_MISMAT 41 $29 Disk ID mismatch

BYTE_DEC_ERR 46 $2E Drive speed read error

DOS_MISMATCH 115 $73 Wrong DOS indicator

$61 O_GHSETLEN 30 VLIR size (word) of each point size. 15 words
$80 O_GHFONTID 2 Font style ID (word)
$82 O_GHPTSIZES 30 list of Character Set IDs. 15 words

structures/Keyboard

 19-63 Environment

GEOS Input Control Codes keyData

Code Constant Description / common action

$00 N/A Cannot be created by a keyboard sequence in GEOS

$01 KEY_F1 Function key F1

$02 KEY_F2 Function key F2

$03 KEY_F3 Function key F3

$04 KEY_F4 Function key F4

$05 KEY_F5 Function key F5

$06 KEY_F6 Function key F6

$07 KEY_NOSCRL¥╪ Pause/resume scrolling

$08

KEY_LEFT or

BACKSPACE

Move cursor left one character in geoWrite. Other applications may delete the previous character.

$09 KEY_TAB* geoWrite uses to represent a tab

$0A KEY_LF¥╪

$0B N/A ╪ unused

$0C N/A ╪ unused

$0D

KEY_ENTER

Carriage return: move current cursor position down one line and over to the left-margin (value in

leftMargin). Mirror behavior of OK button in dialogs.

$0E KEY_F7 Function key F7

$0F KEY_F8 Function key F8

$10 KEY_UP Up arrow

$11 KEY_DOWN Move down a line

$12 KEY_HOME╪ Move cursor to top of current page

$13 KEY_CLEAR╪ Clear edit field

$14 KEY_LARROW Used in geoWrite with for previous page.

$15 KEY_UPARROW╪ This keystroke is always translated to ^ (or |) and will never appear in keyData as $15

$16 KEY_STOP Used by geoProgrammer for interrupting a process

$17 KEY_RUN

$18 KEY_BPS╪ British pound symbol

$19 KEY_HELP¥╪ Display context relative information to the user

$1A KEY_ALT¥╪

$1B KEY_ESC¥╪ Mirror behavior of CANCEL button in dialogs

$1C KEY_INSERT Delete the previous character. (geoWrite mirrors the function of the delete key)

$1D KEY_DELETE Delete the previous character

$1E KEY_RIGHT Move cursor right one character in geoWrite. geoPaint mirrors function of KEY_LEFT

$1F KEY_INVALID Unexpected scan code lookup result

Special key: RESTORE The restore key generates a NMI. The restore key will never generate a keypress event.

 __ + keypress combinations have bit 7 set in keyData.

 Example: User presses __+'A' and keyData will contain 'A' | SHORTCUT ($C1)

Notes: Control codes $01-1A can be created with the keyboard combinations CONTROL + A-Z

╪Not used by Berkeley applications ¥C128 keyboard only

*C64: Tab = CONTROL + I

 C128: Tab = TAB key or Tab = CONTROL + I

KEY_QUEUE_SIZE = 16 ; size of the keyboard queue (buffer)
KEY_REPEAT_COUNT = 15 ; 1/4 second: auto-repeat time

structures/Keyboard

 19-64 Environment

GEOS Text Escape Character Codes

Code Constant Description

†should never be sent to a GEOS text routine unless the application is running under a future version of GEOS that explicitly supports

this character code.

¥For use with PutString; not directly supported by PutChar.

*C64: Tab = CONTROL + I.

 C128: Tab = TAB key or Tab = CONTROL + I.

$00 NULL String termination character

$01 † unused

$02 † unused

$03 † unused

$04 † unused

$05 † unused

$06 † unused

$07 † unused

$08 BACKSPACE Erase the previous character

$09

FORWARDSPACE

TAB*

Not implemented in GEOS 64 or GEOS 128

geoWrite uses to represent a tab (use TAB constant)

$0A LF Line feed: Move current printing position down one line (value in curHeight)

$0B HOME Move current printing position to upper-left screen corner

$0C

UPLINE

PAGE_BREAK

Move current printing position up one line (value in curHeight)

geoWrite uses for page-break

$0D

CR

Carriage return: move current printing position down one line and over to the left-margin (value in

leftMargin)

$0E ULINEON Begin underlining

$0F ULINEOFF End underlining

$10

ESC_GRAPHICS¥

Escape code for graphics string. Remainder of this string is treated as input to the GraphicsString

routine.

$11

ESC_RULER

Unimplemented. This escape code is ignored by GEOS text routines. This escape code is used by

geoWrite to represent a ruler escape.

$12 REV_ON Begin reverse video printing (white on black)

$13 REV_OFF End reverse video printing

$14

GOTOX¥

Change the x-coordinate of the current printing position to the word value stored in the following two

bytes

$15 GOTOY¥ Change the y-coordinate of the current printing position to the byte value in the following byte

$16

GOTOXY¥

Change the x-coordinate of the current printing position to the word value stored in the following two

bytes and change the y-coordinate to the value in the third byte.

$17

NEWCARDSET ¥

Unimplemented. This does nothing but skip over the following three bytes

geoWrite uses for font changes.

$18 BOLDON Begin boldface printing

$19 ITALICON Begin italicized printing

$1A OUTLINEON Begin outlined printing

$1B PLAINTEXT Begin plain text printing (turns off all type style attributes)

$1C † unused

$1D † unused

$1E † unused

$1F † unused

structures/Keyboard

 19-65 Environment

GEOS ASCII Character Codes

 Code Character Code Character Code Character

$20 32 space $41 65 A $61 97 a

$21 33 ! $42 66 B $62 98 b

$22 34 " $43 67 C $63 99 c

$23 35 # $44 68 D $64 100 d

$24 36 $ $45 69 E $65 101 e

$25 37 % $46 70 F $66 102 f

$26 38 & $47 71 G $67 103 g

$27 39 ' $48 72 H $68 104 h

$28 40 ($49 73 I $69 105 i

$29 41) $4A 74 J $6A 106 j

$2A 42 * $4B 75 K $6B 107 k

$2B 43 + $4C 76 L $6C 108 l

$2C 44 , $4D 77 M $6D 109 m

$2D 45 - $4E 78 N $6E 110 n

$2E 46 . $4F 79 O $6F 111 o

$2F 47 / $50 80 P $70 112 p

$30 48 0 $51 81 Q $71 113 q

$31 49 1 $52 82 R $72 114 r

$32 50 2 $53 83 S $73 115 s

$33 51 3 $54 84 T $74 116 t

$34 52 4 $55 85 U $75 117 u

$35 53 5 $56 86 V $76 118 v

$36 54 6 $57 87 W $77 119 w

$37 55 7 $58 88 X $78 120 x

$38 56 8 $59 89 Y $79 121 y

$39 57 9 $5A 90 Z $7A 122 z

$3A 58 : $5B 91 [$7B 123 {

$3B 59 ; $5C 92 \ $7C 124 |

$3C 60 < $5D 93] $7D 125 }

$3D 61 = $5E 94 ^ $7E 126 ~

$3E 62 > $5F 95 _ $7F 127 USELAST†

$3F 63 ? $60 96 ` $80 128 ¥

$40 64 @

†deletion character. Use USELAST with GetRealSize to get the size of the last printed character in order to erase it from the screen.
¥SHORTCUT symbol included in BSW system fonts. Note: Shortcut key codes in keyData have bit 7 set.

Special keys: TAB CONTROL I ; C128 can also use the TAB key

 underline: _ - ; Valid character for use in labels

 vertical bar | ; Logical OR

 tilde ~ * ; One's complement / negate

 open brace { [; Same behavior as (

 close brace }] ; Same behavior as)

 backslash \ /

 grave accent ` @

 circumflex ^ ; Bitwise XOR

structures/Memory Map

 19-66 Environment

Memory Map

Address (Hex) Size Description

00 zpage. See "Zero Page" In Appendix E: Memory Maps for full details

6510 Data direction register

01 6510 I/O register

02-21 32 pseudoregisters r0-r15

70-7F 16 application .zsect space (placeholder names a2-a9)

80-FA 123 Kernal .zsect (applications can use this as .zsect space while using SwZp)

FB-FE 4 application .zsect space (placeholder names a0-a1)

100-1FF 256 6510 stack

200-313 276 APP_LVAR

334-3FF 200 AppLowRAM

400-5FFF $5C00 Application program and data

6000-7F3F
(7900)

$1F40
$640

Background screen RAM

(Load address for print drivers)

7F40-7FFF 192 Application RAM

8000-80FF 256 diskBlkBuf General disk block buffer

8100-81FF 256 fileHeader File header block buffer

 track/sector table for VLIR files

8200-82FF 256 curDirHead Disk header

8300-83FF 256 fileTrScTab File track and sector chain

8400-841E 30 dirEntryBuf Directory entry

841E-849A Disk Variables

849B-84B2 Vectors application controlled Kernal vectors

84B3-851C Kernal Variables

88BB-888F Upper Kernal Variables

8900-89FF 256 dir2Head 2nd BAM for 1571/1581 drives

8A00-8BFF Sprite picture data. (See OsVars in Appendix E: for more details)

8C00-8FE7 Video color matrix

8FF8-8FFF Sprite pointers

9000-9FFF Disk driver

A000-BF3F Foreground screen RAM or second half of background screen in 80 col

BF40-BFFF GEOS tables

C000-CFFF
D000-DFFF
E000-XXXX

$1000
$1000

4k GEOS Kernal code, always resident

4k GEOS Kernal code or I/O space

8k GEOS Kernal code, always resident. Stops at start of input driver

D000 vicbase Video Interface Chip base address

D400 sidbase Sound Interface Device

D600 VDC Registers C128 80 column screen control

DC00 cia1base Complex Interface Adapter

DD00 cia2base Complex Interface Adapter #2

DF00 REU Area

FD00-FE7F 384 C128 input driver

FE80-FFF8
FE89-FFF9

9
369

Input driver jump table (C64, C128)

C64 input driver

FFFA-FFFF 6510 NMI, IRQ, and reset vectors

 20-i GEOS Kernal 2.0

 GEOS Kernal 2.0

Alphabetical Listings of Routines

Name Addr Description Category Page

AccessCache C2EF C128 Provides a mechanism for disk drivers to cache up to 21 blocks. memory 20-148

AllocateBlock 9048 Mark a disk block as in-use. disk mid-level 20-6

AppendRecord C289 Insert a new VLIR record after the current record. disk VLIR 20-73

BBMult C160 Byte by byte (single-precision) unsigned multiply. math 20-136

Bell n/a 1000 Hz Bell sound. utility 20-214

BitmapClip C2AA Display a compacted bitmap, clipping to a sub-window. graphics 20-85

BitmapUp C142 Display a compacted bitmap without clipping. graphics 20-87

BitOtherClip C2C5 BitmapClip with data coming from elsewhere (e.g., disk). graphics 20-88

BldGDirEntry C1F3 Build a GEOS directory entry in memory. disk mid-level 20-7

BlkAlloc C1FC Allocate space on disk. disk mid-level 20-8

BlockProcess C10C Block process from running. Does not freeze timer. process 20-185

Bmult C163 Byte by word unsigned multiply. math 20-137

BootGEOS C000 Reboot GEOS. Requires only 128 bytes at $C000. internal 20-127

CalcBlksFree C1DB Calculate total number of free disk blocks. disk mid-level 20-10

GetScanLine C13C Calculate scanline address. graphics 20-95

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. utility 20-215

ChangeDiskDevice C2BC Change disk drive device number. disk very low-level 20-11

ChkDkGEOS C1DE Check if a disk is GEOS format. disk mid-level 20-12

ClearMouseMode C19C Stop input device monitoring. mouse/sprite 20-167

ClearRam C178 Clear memory to $00. memory 20-149

CloseRecordFile C277 Close/Save currently open VLIR file. disk VLIR 20-74

CmpFString C26E Compare two fixed-length strings. memory 20-150

CmpString C26B Compare two null-terminated strings. memory 20-151

ColorCard C2F8 C128 Get or Set a Color Card. In 40 or 80-column mode. graphics 20-90

ColorRectangle C26B C128 Draw a Color rectangle on the 80-column Screen. graphics 20-91

CopyFString C268 Copy a fixed-length string. memory 20-152

CopyString C265 Copy a null-terminated string. memory 20-153

CRC C20E Cyclic Redundancy Check calculation. utility 20-216

Dabs C16F Double-precision signed absolute value. memory 20-138

Ddec C175 Double-precision unsigned decrement. math 20-139

Ddiv C169 Double-precision unsigned division. math 20-140

Alphabetical Listings of Routines

 20-ii GEOS Kernal 2.0

Name Addr Description Category Page

DeleteFile C238 Delete file. disk high-level 20-13

DeleteRecord C283 Delete current VLIR record. disk VLIR 20-75

DisablSprite C1D5 Disable sprite. sprite 20-194

DMult C166 Double-precision unsigned multiply. math 20-142

Dnegate C172 Double-precision signed negation. math 20-143

DoBOp C2EC C128 Back-RAM memory move/swap/verify primitive. memory 20-154

DoDlgBox C256 Display and begin interaction w/dialog box. dialog box 20-2

DoIcons C15A Display and begin interaction with icons. icon/menu 20-113

DoInlineReturn C2A4 Return from inline subroutine. utility 20-217

DoMenu C151 Display and begin interaction with menus. icon/menu 20-114

DoneWithIO C25F Restore system after serial I/O. disk very low-level 20-14

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. icon/menu 20-116

DoRAMOp C2D4 Primitive for communicating with REU (RAM-Expansion Unit). memory 20-155

DrawLine C130 Draw, clear, or recover line between two endpoints. graphics 20-92

DrawPoint C133 Draw, clear, or recover a single screen point. graphics 20-93

DrawSprite C1C6 Define sprite image. sprite 20-195

DSdiv C16C Double-precision signed division. math 20-144

DShiftLeft C15D Double-precision left shift (zeros shifted in). math 20-145

DShiftRight C262 Double-precision right shift (zeros shifted in). math 20-146

EnableProcess C109 Make a process runnable immediately. process 20-186

EnablSprite C1D2 Enable sprite. sprite 20-196

EnterDeskTop C22C Leave application and return to GEOS deskTop. disk high-level 20-15

EnterTurbo C214 Activate disk turbo on current drive. disk very low-level 20-16

ExitTurbo C232 Deactivate disk turbo on current drive. disk very low-level 20-17

FastDelFile C244 Quick file delete (requires full track/sector list). disk mid-level 20-18

FetchRAM C2CB Transfer data from RAM-Expansion Unit. memory 20-156

FillRam C17B Fill memory with a particular byte. memory 20-157

FindBAMBit C2AD Get allocation status of particular disk block. disk mid-level 20-19

FindFile C20B Search for a particular file. disk high-level 20-20

FindFTypes C23B Find all files of a particular GEOS type. disk high-level 20-21

FirstInit C271 Initialize GEOS variables. internal 20-128

FollowChain C205 Follow chain of sectors, building track/sector table. disk mid-level 20-23

FrameRectangle C127 Draw an outline in a pattern. graphics 20-94

FreeBlock C2B9 Mark a disk block as not-in-use in BAM. disk mid-level 20-24

FreeFile C226 Free all blocks associated with a file. disk mid-level 20-25

Alphabetical Listings of Routines

 20-iii GEOS Kernal 2.0

Name Addr Description Category Page

FreezeProcess C112 Pause a process countdown timer. process 20-187

Get1stDirEntry 9030 Get first directory entry. disk mid-level 20-26

GetBlock C1E4 Read single disk block into memory. disk low-level 20-27

GetBufBlock 903C Read single disk block into diskBlkBuf disk low-level 20-28

GetCharWidth C1C9 Calculate width of char without style attributes. text 20-199

GetDimensions 790C Get CBM printer page dimensions. print driver 20-176

GetDirHead C247 Read directory header into memory. disk mid-level 20-29

GetFHdrInfo C229 Read a GEOS file header into fileHeader. disk mid-level 20-30

GetFile C208 Load GEOS file. disk high-level 20-31

GetFreeDirBlk C1F6 Find an empty directory slot. disk mid-level 20-34

GetNextChar C2A7 Get next character from keyboard queue. text 20-200

GetNxtDirEntry 9033 Get directory entry other than first. disk mid-level 20-36

GetOffPageTrSc 9036 Get track and sector of off-page directory. disk mid-level 20-37

GetPtrCurDkNm C298 Return pointer to current disk name. disk mid-level 20-38

GetRandom C187 Calculate new random number. utility 20-218

GetRealSize C1B1 Calculate actual character size with attributes. text 20-201

GetScanLine C13C Calculate scanline address. graphics 20-95

GetSerialNumber C196 Return GEOS serial number. internal 20-129

GetString C1BA Get string input from user. text 20-202

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. icon/menu 20-117

GraphicsString C136 Execute a string of graphics commands. graphics 20-96

HideOnlyMouse C2F2 Temporarily remove 128 soft-sprite mouse pointer. mouse/sprite 20-168

HorizontalLine C118 Draw a horizontal line in a pattern. graphics 20-98

i_BitmapUp C1AB Inline BitmapUp. graphics 20-87

i_FillRam C1B4 Inline FillRam. memory 20-157

i_FrameRectangle C1A2 Inline FrameRectangle. graphics 20-94

i_GraphicsString C1A8 Inline GraphicsString. graphics 20-96

i_ImprintRectangle C253 Inline ImprintRectangle. graphics 20-100

i_MoveData C1B7 Inline MoveData. memory 20-160

i_PutString C1AE Inline PutString. text 20-210

i_RecoverRectangle C1A5 Inline RecoverRectangle. graphics 20-105

i_Rectangle C19F Inline Rectangle. graphics 20-106

ImprintRectangle C250 Imprint rectangular area to background buffer. graphics 20-100

InitForIO C25C Prepare system for serial I/O. disk very low-level 20-39

InitForPrint 7900 Initialize printer (once per document). print driver 20-177

Alphabetical Listings of Routines

 20-iv GEOS Kernal 2.0

Name Addr Description Category Page

InitMouse FE80 Initialize input device. input driver 20-122

InitProcesses C103 Initialize processes. process 20-188

InitRam C181 Initialize memory areas from table. memory 20-158

InitTextPrompt C1C0 Initialize text prompt. text 20-204

InsertRecord C286 Insert new VLIR record in front of current record. disk VLIR 20-76

InterruptMain C100 Main interrupt level processing. internal 20-130

InvertLine C11B Invert the pixels on a horizontal screen line. graphics 20-99

InvertRectangle C12A Invert the pixels in a rectangular screen area. graphics 20-101

IsMseInRegion C2B3 Check if mouse is within a screen region. mouse/sprite 20-169

LdApplic C21D Load GEOS application. disk mid-level 20-40

LdDeskAcc C217 Load GEOS desk accessory. disk mid-level 20-42

LdFile C211 Load GEOS data file. disk mid-level 20-44

LoadCharSet C1CC Load and activate a new font. text 20-205

MainLoop C1C3 GEOS MainLoop processing. internal 20-131

MouseOff C18D Disable mouse pointer and GEOS mouse tracking. mouse/sprite 20-170

MouseUp C18A Enable mouse pointer and GEOS mouse tracking. mouse/sprite 20-171

MoveBData C2E3 128 BackRAM memory move routine. memory 20-159

MoveData C17E Intelligent memory block move. memory 20-160

NewDisk C1E1 Initialize a drive. disk mid-level 20-45

NextRecord C27A Make next VLIR the current record. disk VLIR 20-77

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. graphics 20-102

NxtBlkAlloc C24D Version of BlkAlloc that starts at a specific block. disk mid-level 20-46

OpenDisk C2A1 Open disk in current drive. disk high-level 20-48

OpenRecordFile C274 Open VLIR file on current disk. disk VLIR 20-78

Panic C2C2 System-error dialog box. internal 20-132

PointRecord C280 Make specific VLIR record the current record. disk VLIR 20-79

PosSprite C1CF Position sprite. sprite 20-197

PreviousRecord C27D Make previous VLIR record the current record. disk VLIR 20-80

PrintASCII 790F Send ASCII data to printer. print driver 20-178

PrintBuffer 7906 Send graphics data to printer. print driver 20-179

PromptOff C29E Turn off text prompt. text/keyboard 20-206

PromptOn C29B Turn on text prompt. text/keyboard 20-207

PurgeTurbo C235 Remove disk turbo from current drive. disk very low-level 20-49

PutBlock C1E7 Write single disk block from memory. disk low-level 20-50

PutBufBlock 903F Write single disk block from diskBlkBuf. disk low-level 20-51

Alphabetical Listings of Routines

 20-v GEOS Kernal 2.0

Name Addr Description Category Page

PutChar C145 Display a single character to screen. text 20-208

PutDecimal C184 Format and display an unsigned double-precision nbr. text 20-209

PutDirHead C24A Write directory header to disk. disk mid-level 20-52

PutString C148 Print string of characters to screen. text 20-210

ReadBlock C21A Get disk block primitive. disk very low-level 20-53

ReadByte C2B6 Read a File 1 byte at a time. disk mid-level 20-54

ReadFile C1FF Read chained list of blocks into memory. disk mid-level 20-55

ReadLink 904B Read track/sector link. disk very low-level 20-57

ReadRecord C28C Read current VLIR record into memory. disk VLIR 20-81

RecoverAllMenus C157 Recover all menus from background buffer. icon/menu 20-118

RecoverLine C11E Recover horizontal screen line from background buffer. graphics 20-104

RecoverMenu C154 Recover single menu from background buffer. icon/menu 20-119

RecoverRectangle C12D Recover rectangular screen area from background buffer. graphics 20-105

Rectangle C124 Draw a filled rectangle. graphics 20-106

ReDoMenu C193 Reactivate menus at the current level. icon/menu 20-120

RenameFile C259 Rename GEOS disk file. disk mid-level 20-58

Reset 03E4 C128 Soft reset handler. Located in BackRAM internal 20-133

ResetHandle C003 Internal Bootstrap entry point. internal 20-134

RestartProcess C106 Unblock, unfreeze, and restart process. process 20-189

RstrAppl C23E Leave desk accessory and return to calling application. disk mid-level 20-59

RstrFrmDialog C2BF Exits from a dialog box. dialog box 20-2

SaveFile C1ED Save Memory to create a GEOS file. disk high-level 20-60

SetColorMode C2F5 Change GEOS 128 80-column Color Mode. graphics 20-107

SetDevice C2B0 Establish communication with a new serial device. disk high-level 20-62

SetGDirEntry C1F0 Create and save a new GEOS directory entry. disk mid-level 20-63

SetGEOSDisk C1EA Convert normal CBM disk into GEOS format disk. disk high-level 20-65

SetMouse FD09 C128 Reset input device scanning circuitry. input driver 20-123

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. mouse/sprite 20-172

SetNewMode C2DD Change GEOS 128 graphics mode (40/80 switch). graphics 20-108

SetNextFree C292 Search for nearby free disk block and allocate it. disk mid-level 20-66

SetNLQ 7915 Begin near-letter quality printing. print driver 20-180

SetPattern C139 Set current fill pattern. graphics 20-109

Sleep C199 Put current subroutine to sleep for a specified time. process 20-190

SlowMouse FE83 Reset mouse velocity variables. input driver 20-124

SmallPutChar C202 Fast character print routine. text 20-211

Alphabetical Listings of Routines

 20-vi GEOS Kernal 2.0

Name Addr Description Category Page

StartAppl C22F Warmstart GEOS and start application in memory. disk mid-level 20-68

StartASCII 7912 Begin ASCII mode printing. print driver 20-181

StartMouseMode C14E Start monitoring input device. mouse/sprite 20-173

StartPrint 7903 Begin graphics mode printing. print driver 20-182

StashRAM C2C8 Transfer memory to RAM-Expansion Unit. memory 20-161

StopPrint 7909 End page of printer output. print driver 20-183

SwapBData C2E6 128 memory swap between front/backRAM. memory 20-162

SwapRAM C2CE RAM-Expansion Unit memory swap. memory 20-163

TempHideMouse C2D7 Hide soft-sprites before direct screen access. mouse/sprite 20-174

TestPoint C13F Test status of single screen point (on or off?). graphics 20-110

ToBasic C241 Pass Control to Commodore BASIC. utility 20-219

UnblockProcess C10F Unblock a blocked process, allowing it to run again. process 20-191

UnfreezeProcess C115 Unpause a frozen process timer. process 20-192

UpdateMouse FE86 Update mouse variables from input device. input driver 20-125

UpdateRecordFile C295 Update currently open VLIR file without closing. disk VLIR 20-82

UseSystemFont C14B Use default system font (BSW 9). text 20-212

VerifyBData C2E9 128 BackRAM verify. memory 20-164

VerifyRAM C2D1 RAM-Expansion Unit verify. memory 20-165

VerticalLine C121 Draw a vertical line in a pattern. graphics 20-111

VerWriteBlock C223 Disk block verify primitive. disk very low-level 20-69

WriteBlock C220 Write disk block primitive. disk very low-level 20-70

WriteFile C1F9 Write chained list of blocks to disk. disk mid-level 20-71

WriteRecord C28F Write current VLIR record to disk. disk VLIR 20-83

Alphabetical List of Routines by Category

 20-vii GEOS Kernal 2.0

Name Addr Description Category Page

DoDlgBox C256 Display and begin interaction w/dialog box. dialog box 20-3

RstrFrmDialog C2BF Exits from a dialog box. 20-2

ChangeDiskDevice C2BC Change disk drive device number. disk very low-level 20-11

DoneWithIO C25F Restore system after serial I/O. 20-14

EnterTurbo C214 Activate disk turbo on current drive. 20-16

ExitTurbo C232 Deactivate disk turbo on current drive. 20-17

InitForIO C25C Prepare system for serial I/O. 20-39

PurgeTurbo C235 Remove disk turbo from current drive. 20-49

ReadBlock C21A Get disk block primitive. 20-53

ReadLink 904B Read track/sector link. 20-57

VerWriteBlock C223 Disk block verify primitive. 20-69

WriteBlock C220 Write disk block primitive. 20-70

GetBlock C1E4 Read single disk block into memory. disk low-level 20-27

GetBufBlock 903C Read single disk block into diskBlkBuf. 20-28

PutBlock C1E7 Write single disk block from memory. 20-50

PutBufBlock 903F Write single disk block from diskBlkBuf. 20-51

AllocateBlock 9048 Mark a disk block as in-use. disk mid-level 20-6

BldGDirEntry C1F3 Build a GEOS directory entry in memory. 20-7

BlkAlloc C1FC Allocate space on disk. 20-8

CalcBlksFree C1DB Calculate total number of free disk blocks. 20-10

ChkDkGEOS C1DE Check if a disk is GEOS format. 20-12

FastDelFile C244 Quick file delete (requires full track/sector list). 20-18

FindBAMBit C2AD Get allocation status of particular disk block. 20-19

FollowChain C205 Follow chain of sectors, building track/sector table. 20-23

FreeBlock C2B9 Mark a disk block as not-in-use in BAM. 20-24

FreeFile C226 Free all blocks associated with a file. 20-25

Get1stDirEntry 9030 Get first directory entry. 20-26

GetDirHead C247 Read directory header into memory. 20-29

GetFHdrInfo C229 Read a GEOS file header into fileHeader. 20-30

GetFreeDirBlk C1F6 Find an empty directory slot. 20-34

GetNxtDirEntry 9033 Get directory entry other than first. 20-36

GetOffPageTrSc 9036 Get track and sector of off-page directory. 20-37

Alphabetical List of Routines by Category

 20-viii GEOS Kernal 2.0

Name Addr Description Category Page

LdApplic C21D Load GEOS application. 20-40

LdDeskAcc C217 Load GEOS desk accessory. 20-42

LdFile C211 Load GEOS data file. 20-44

NewDisk C1E1 Initialize a drive. 20-45

NxtBlkAlloc C24D Version of BlkAlloc that starts at a specific block. 20-46

PutDirHead C24A Write directory header to disk. 20-52

ReadByte C2B6 Read a File 1 byte at a time. 20-54

ReadFile C1FF Read chained list of blocks into memory. 20-55

SetGDirEntry C1F0 Create and save a new GEOS directory entry. 20-63

SetNextFree C292 Search for nearby free disk block and allocate it. 20-66

StartAppl C22F Warmstart GEOS and start application in memory. 20-68

WriteFile C1F9 Write chained list of blocks to disk. 20-71

DeleteFile C238 Delete file. disk high-level 20-13

EnterDeskTop C22C Leave application and return to GEOS deskTop. 20-15

FindFile C20B Search for a particular file. 20-20

FindFTypes C23B Find all files of a particular GEOS type. 20-21

GetFile C208 Load GEOS file. 20-31

GetPtrCurDkNm C298 Return pointer to current disk name. 20-38

OpenDisk C2A1 Open disk in current drive. 20-48

RenameFile C259 GEOS disk file. 20-58

RstrAppl C23E Leave desk accessory and return to calling application. 20-59

SaveFile C1ED Save Memory to create a GEOS file. 20-60

SetDevice C2B0 Establish communication with a new serial device. 20-62

SetGEOSDisk C1EA Convert normal CBM disk into GEOS format disk. 20-65

AppendRecord C289 Insert a new VLIR record after the current record. disk VLIR 20-73

CloseRecordFile C277 Close/Save currently open VLIR file. 20-74

DeleteRecord C283 Delete current VLIR record. 20-75

InsertRecord C286 Insert new VLIR record in front of current record. 20-76

NextRecord C27A Make next VLIR the current record. 20-77

OpenRecordFile C274 Open VLIR file on current disk. 20-78

PointRecord C280 Make specific VLIR record the current record. 20-79

PreviousRecord C27D Make previous VLIR record the current record. 20-80

ReadRecord C28C Read current VLIR record into memory. 20-81

Alphabetical List of Routines by Category

 20-ix GEOS Kernal 2.0

Name Addr Description Category Page

UpdateRecordFile C295 Update currently open VLIR file without closing. 20-82

WriteRecord C28F Write current VLIR record to disk. 20-83

BitmapClip C2AA Display a compacted bitmap, clipping to a sub-window. graphics 20-85

BitmapUp C142 Display a compacted bitmap without clipping. 20-87

i_BitmapUp C1AB Inline BitmapUp. 20-87

BitOtherClip C2C5 BitmapClip with data coming from elsewhere (e.g., disk). 20-88

ColorCard C2F8 C128 Get or Set a Color Card. In 40 or 80-column mode. 20-90

ColorRectangle C2FB C128 Draw a Color rectangle on the 80-column Screen. 20-91

DrawLine C130 Draw, clear, or recover line between two endpoints. 20-92

DrawPoint C133 Draw, clear, or recover a single screen point. 20-93

FrameRectangle C127 Draw a rectangular frame (outline). 20-94

i_FrameRectangle C1A2 Inline FrameRectangle. 20-94

GetScanLine C13C Calculate scanline address. 20-95

GraphicsString C136 Execute a string of graphics commands. 20-96

i_GraphicsString C1A8 Process a graphic command table / inline. 20-96

HorizontalLine C118 Draw a horizontal line in a pattern. 20-98

InvertLine C11B Invert the pixels on a horizontal screen line. 20-99

ImprintRectangle C250 Imprint rectangular area to background buffer. 20-100

i_ImprintRectangle C253 Inline ImprintRectangle. 20-100

InvertRectangle C12A Invert the pixels in a rectangular screen area. 20-101

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. 20-102

RecoverLine C11E Recover horizontal screen line from background buffer. 20-104

Rectangle C124 Draw a filled rectangle. 20-106

i_Rectangle C19F Inline Rectangle. 20-106

RecoverRectangle C12D Recover rectangular screen area from background buffer. 20-105

i_RecoverRectangle C1A5 Inline RecoverRectangle. 20-105

SetColorMode C2F5 Change GEOS 128 80-column Color Mode. 20-107

SetNewMode C2DD Change GEOS 128 graphics mode (40/80 switch). 20-108

SetPattern C139 Set current fill pattern. 20-109

TestPoint C13F Test status of single screen point (on or off?). 20-110

VerticalLine C121 Draw a vertical line in a pattern. 20-111

DoIcons C15A Display and begin interaction with icons. icon/menu 20-113

DoMenu C151 Display and begin interaction with menus. 20-114

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. 20-116

Alphabetical List of Routines by Category

 20-x GEOS Kernal 2.0

Name Addr Description Category Page

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. 20-117

RecoverAllMenus C157 Recover all menus from background buffer. 20-118

RecoverMenu C154 Recover single menu from background buffer. 20-119

ReDoMenu C193 Reactivate menus at the current level. 20-120

InitMouse FE80 Initialize input device. input driver 20-122

SetMouse FD09 C128 Reset input device scanning circuitry. 20-123

SlowMouse FE83 Reset mouse velocity variables. 20-124

UpdateMouse FE86 Update mouse variables from input device. 20-125

BootGEOS C000 Reboot GEOS. Requires only 128 bytes at $C000. internal 20-127

FirstInit C271 Initialize GEOS variables. 20-128

GetSerialNumber C196 Return GEOS serial number. 20-129

InterruptMain C100 Main interrupt level processing. 20-130

MainLoop C1C3 GEOS MainLoop processing. 20-131

Panic C2C2 System-error dialog box. 20-132

Reset 03E4 C128 Reset handler located in BackRAM 20-133

ResetHandle C003 internal Bootstrap entry point. 20-134

BBMult C160 Byte by byte (single-precision) unsigned multiply. math 20-136

Bmult C163 Byte by word unsigned multiply. 20-137

Dabs C16F Double-precision signed absolute value. 20-138

Ddec C175 Double-precision unsigned decrement. 20-139

Ddiv C169 Double-precision unsigned division. 20-140

DMult C166 Double-precision unsigned multiply. 20-142

Dnegate C172 Double-precision signed negation. 20-143

DSdiv C16C Double-precision signed division. 20-144

DShiftLeft C15D Double-precision left shift (zeros shifted in). 20-145

DShiftRight C262 Double-precision right shift (zeros shifted in). 20-146

AccessCache C2EF C128 Provides a mechanism for disk drivers to cache up to 21 blocks. memory 20-148

ClearRam C178 Clear memory to $00. 20-149

CmpFString C26E Compare two fixed-length strings. 20-150

CmpString C26B Compare two null-terminated strings. 20-151

CopyFString C268 Copy a fixed-length string. 20-152

Alphabetical List of Routines by Category

 20-xi GEOS Kernal 2.0

Name Addr Description Category Page

CopyString C265 Copy a null-terminated string. 20-153

DoBOp C2EC C128 Back-RAM memory move/swap/verify primitive. 20-154

DoRAMOp C2D4 Primitive for communicating with REU (RAM-Expansion Unit). 20-155

FetchRAM C2CB Transfer data from RAM-Expansion Unit. 20-156

FillRam C17B Fill memory with a particular byte. 20-157

i_FillRam C1B4 Inline FillRam. 20-157

i_MoveData C1B7 Inline MoveData. 20-160

InitRam C181 Initialize memory areas from table. 20-158

MoveBData C2E3 C128 BackRAM memory move routine. 20-159

MoveData C17E Intelligent memory block move. 20-160

StashRAM C2C8 Transfer memory to RAM-Expansion Unit. 20-161

SwapBData C2E6 128 memory swap between front/backRAM. 20-162

SwapRAM C2CE Swap memory with an REU memory block. 20-163

VerifyBData C2E9 128 BackRAM verify. 20-164

VerifyRAM C2D1 RAM-Expansion Unit verify. 20-165

ClearMouseMode C19C Stop input device monitoring. mouse/sprite 20-167

HideOnlyMouse C2F2 (128) Temporarily remove soft-sprite mouse pointer. 20-168

IsMseInRegion C2B3 Check if mouse is inside a window. 20-169

MouseOff C18D Disable mouse pointer and GEOS mouse tracking. 20-170

MouseUp C18A Enable mouse pointer and GEOS mouse tracking. 20-171

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. 20-172

StartMouseMode C14E Start monitoring input device. 20-173

TempHideMouse C2D7 Hide soft-sprites before direct screen access. 20-174

GetDimensions 790C Get CBM printer page dimensions. print driver 20-176

InitForPrint 7900 Initialize printer (once per document). 20-177

PrintASCII 790F Send ASCII data to printer. 20-178

PrintBuffer 7906 Send graphics data to printer. 20-179

SetNLQ 7915 Begin near-letter quality printing. 20-180

StartASCII 7912 Begin ASCII mode printing. 20-181

StartPrint 7903 Begin graphics mode printing. 20-182

StopPrint 7909 End page of printer output. 20-183

BlockProcess C10C Block process from running. Does not freeze timer. process 20-185

Alphabetical List of Routines by Category

 20-xii GEOS Kernal 2.0

Name Addr Description Category Page

EnableProcess C109 Make a process runnable immediately. 20-186

FreezeProcess C112 Pause a process countdown timer. 20-187

InitProcesses C103 Initialize processes. 20-188

RestartProcess C106 Unblock, unfreeze, and restart process. 20-189

Sleep C199 Put current routine to sleep for a specified time. 20-190

UnblockProcess C10F Unblock a blocked process, allowing it to run again. 20-191

UnfreezeProcess C115 Unpause a frozen process timer. 20-192

DisablSprite C1D5 Disable sprite. sprite 20-194

DrawSprite C1C6 Define sprite image. 20-195

EnablSprite C1D2 Enable sprite. 20-196

PosSprite C1CF Position sprite. 20-197

GetCharWidth C1C9 Calculate width of char without style attributes. text 20-199

GetNextChar C2A7 Get next character from keyboard queue. 20-200

GetRealSize C1B1 Calculate actual character size with attributes. 20-201

GetString C1BA Get string input from user. 20-202

InitTextPrompt C1C0 Initialize text prompt. 20-204

LoadCharSet C1CC Load and begin using a new font. 20-205

PromptOff C29E Turn off text prompt. 20-206

PromptOn C29B Turn on text prompt. 20-207

PutChar C145 Display a single character to screen. 20-208

PutDecimal C184 Format and display an unsigned double-precision nbr. 20-209

PutString C148 Print string of characters to screen. 20-210

i_PutString C1AE Inline PutString. 20-210

SmallPutChar C202 Fast character print routine. 20-211

UseSystemFont C14B Use default system font (BSW 9). 20-212

Bell n/a 1000 Hz Bell sound. utility 20-214

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. 20-215

CRC C20E Cyclic Redundancy Check calculation. 20-216

DoInlineReturn C2A4 Return from inline subroutine. 20-217

GetRandom C187 Calculate new random number. 20-218

ToBasic C241 Pass Control to Commodore BASIC. 20-219

 20-1 GEOS Kernal 2.0

dialog box

Name Addr Description Page

DoDlgBox C256 Display and begin interaction w/dialog box. 20-3

RstrFrmDialog C2BF Exits from a dialog box. 20-2

dialog box

 20-2 GEOS Kernal 2.0

DoDlgBox: (C64, C128) C256

Function: Initializes, displays, and begins interaction with a dialog box.

Parameters: r0 DIALOG — pointer to dialog box definition (word).

r5-r10 can be used to send parameters to a dialog box.

When using DBGETFILES

r5 BUFFER ptr to buffer to store returned filename (word).

r7L FILETYPE GEOS file type to search for (byte). (NULL for all)

r10 PERMNAME ptr to permanent name to search for (word). (NULL for all)

Wheels: When using DBGETFILES and bit 7 of r7L is set.

r5 FILTER ptr to Filter Procedure (word).

called once for every file before adding to the list of files.

r7L FILETYPE GEOS file type to search for (byte). (NULL for all)

r10 PERMNAME ptr to permanent name to search for (word). (NULL for all)

Returns: r0L return code: typically, the number of the system icon clicked on to exit.

Note: returns when dialog box exits through RstrFrmDialog.

Destroys: n/a.

Description: DoDlgBox saves off the current state of the system, places GEOS in a near warm start state,

displays the dialog box according to the definition table (whose address is passed in r0), and

begins tracking the user's interaction with the dialog box. When the dialog box finishes, the

original system state is restored, and control is returned to the application.

Simple dialog boxes will typically contain a few lines of text and one or two system icons (such

as OK and CANCEL). When the user clicks on one of these icons, the GEOS system icon routine

exits the dialog box with an internal call to RstrFrmDialog, passing the number of the system

icon selected in sysDBData. RstrFrmDialog restores the system state and copies sysDBData to

r0L.

More complex dialog boxes will have application-defined icons and routines that get called. These

routines, themselves, can choose to load a value into sysDBData and call RstrFrmDialog.

Note: Part of the system context saved within DoDlgBox is the current stack pointer. Dialog boxes

cannot be nested. DoDlgBox is not reentrant. That is, a dialog box should never call DoDlgBox†.

Note3: dispBufferOn defaults to (ST_WR_FORE | ST_WRGS_FORE) while in a Dialog Box.

Note3: †It is possible to overcome the limitations noted here. See Chapter 8 Dialog Box > Removing Limitations.

Structure: DIALOG.

Example:

See also: RstrFrmDialog.

dialog box

 20-3 GEOS Kernal 2.0

RstrFrmDialog: (C64, C128) C2BF

Function: Exits from a dialog box, restoring the system to the state prior to the call to DoDlgBox.

Parameters: none.

Returns: Returns to point where DoDlgBox was called. System context is restored. r0L contains

sysDBData return value.

Destroys: assume a, x, y, r0H-r15.

Description: RstrFrmDialog allows a custom dialog box routine to exit from the dialog box. RstrFrmDialog

is typically called internally by the GEOS system icon dialog box routines. However, it may be

called by any dialog box routine to force an immediate exit.

RstrFrmDialog first restores the GEOS system state (context restore) and then calls indirectly

through RecoverVector to remove the dialog box rectangle from the screen. The routine in

RecoverVector is called with the r2-r4 loaded for a call to RecoverRectangle. By default

RecoverVector points to RecoverRectangle, which will automatically recover the foreground

screen from the background buffer. However, if the application is using background buffer for

data, it will need to intercept the recover by placing the address of its own recover routine in

RecoverVector. If there is no shadow on the dialog box, then RecoverVector is only called

through once with r2-r4 holding the coordinates of the dialog box rectangle. However, if the

dialog box has a shadow, then RecoverVector will be called through two times: first for the

patterned shadow rectangle and second for the dialog box rectangle. The application may want to

special-case these two recovers when recovering.

Note: RstrFrmDialog restores the sp register to the value it contained at the call to DoDlgBox just

before returning. This allows RstrFrmDialog to be called with an arbitrary amount of data on

top of the stack (as would be the case if called from within a subroutine). GEOS will restore the

stack pointer properly.

Structure: DIALOG.

Example:

See also: DoDlgBox, RecoverRectangle.

All disk routines by name

 Name Description Category Page

 20-4 GEOS Kernal 2.0

disk

AllocateBlock Mark a disk block as in-use. mid-level 20-6

BldGDirEntry Build a GEOS directory entry in memory. mid-level 20-7

BlkAlloc Allocate space on disk. mid-level 20-8

CalcBlksFree Calculate total number of free disk blocks. mid-level 20-10

ChangeDiskDevice Change disk drive device number. very Low level 20-11

ChkDkGEOS Check if a disk is GEOS format. mid-level 20-12

DeleteFile Delete file. high-level 20-13

DoneWithIO Restore system after serial I/O. very Low level 20-14

EnterDeskTop Leave application and return to GEOS deskTop. high-level 20-15

EnterTurbo Activate disk turbo on current drive. very Low level 20-16

ExitTurbo Deactivate disk turbo on current drive. very Low level 20-17

FastDelFile Quick file delete (requires full track/sector list). mid-level 20-18

FindBAMBit Get allocation status of particular disk block. mid-level 20-19

FindFile Search for a particular file. high-level 20-20

FindFTypes Find all files of a particular GEOS type. high-level 20-21

FreeBlock Mark a disk block as not-in-use in BAM. mid-level 20-24

FreeFile Free all blocks associated with a file. mid-level 20-25

FollowChain Follow chain of sectors, building track/sector table. mid-level 20-23

Get1stDirEntry Get first directory entry. mid-level 20-26

GetBlock Read single disk block into memory. low-level 20-27

GetBufBlock Read single disk block into diskBlkBuf. low-level 20-28

GetDirHead Read directory header into memory. mid-level 20-29

GetFHdrInfo Read a GEOS file header into fileHeader. mid-level 20-30

GetFile Load GEOS file. high-level 20-31

GetFreeDirBlk Find an empty directory slot. mid-level 20-34

GetNxtDirEntry Get directory entry other than first. mid-level 20-36

GetOffPageTrSc Get track and sector of off-page directory. mid-level 20-37

GetPtrCurDkNm Return pointer to current disk name. high-level 20-38

InitForIO Prepare system for serial I/O. very Low level 20-39

LdApplic Load GEOS application. mid-level 20-40

LdDeskAcc Load GEOS desk accessory. mid-level 20-42

LdFile Load GEOS data file. mid-level 20-44

NewDisk Initialize a drive. mid-level 20-45

NxtBlkAlloc Version of BlkAlloc that starts at a specific block. mid-level 20-46

OpenDisk Open disk in current drive. high-level 20-48

PurgeTurbo Remove disk turbo from current drive. very Low level 20-49

PutBlock Write single disk block from memory. low-level 20-50

PutBufBlock Write single disk block from diskBlkBuf. low-level 20-51

PutDirHead Write directory header to disk. mid-level 20-52

ReadBlock Get disk block primitive. very Low level 20-53

ReadByte Read a file 1 byte at a time. mid-level 20-54

ReadFile Read chained list of blocks into memory. mid-level 20-55

ReadLink Read track/sector link. very Low level 20-57

RenameFile GEOS disk file. high-level 20-58

RstrAppl Leave desk accessory and return to calling application. high-level 20-59

SaveFile Save memory to create a GEOS file. high-level 20-60

SetDevice Establish communication with a new serial device. high-level 20-62

SetGDirEntry Create and save a new GEOS directory entry. mid-level 20-63

All disk routines by name

 Name Description Category Page

 20-5 GEOS Kernal 2.0

SetGEOSDisk Convert normal CBM disk into GEOS format disk. high-level 20-65

SetNextFree Search for nearby free disk block and allocate it. mid-level 20-66

StartAppl Warmstart GEOS and start application in memory. mid-level 20-68

VerWriteBlock Disk block verify primitive. very Low level 20-69

WriteBlock Write disk block primitive. very Low level 20-70

WriteFile Write chained list of blocks to disk. mid-level 20-71

disk

 20-6 GEOS Kernal 2.0

AllocateBlock: (C64, C128) mid-level 9048

Function: Allocate a disk block, marking it as in use.

Parameters: r6L TRACK — track number of block (byte).

r6H SECTOR — sector number of block (byte).

Uses: curDrive device number of the active drive.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

BAD_BAM

r6 unchanged.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r7, r8H.

Description: AllocateBlock allocates a single block on this disk by setting the appropriate flag in the block

allocation map (BAM).

If the sector is already allocated then a BAD_BAM error is returned. AllocateBlock does not

automatically write out the BAM. See PutDirHead for more information on writing out the

BAM. The Commodore 1541 device drivers do not have a jump table entry for AllocateBlock.

All other device drivers, however, do. The NewAllocateBlock subroutine will properly allocate

a block on any device, including the 1541.

Example: NewAllocateBlock.

See also: SetNextFree, BlkAlloc, FreeBlock.

2

disk

 20-7 GEOS Kernal 2.0

BldGDirEntry: (C64, C128) mid-level C1F3

Function: Builds a directory entry in memory for a GEOS file using the information in a file header.

Parameters: r2 NUMBLOCKS — number of blocks in file (word).

r6 TSTABLE — pointer to a track/sector list of unused blocks (unused but allocated in

the BAM), usually a pointer to fileTrScTab; BlkAlloc can be used to build such a list

(word).

r9 FILEHDR — pointer to GEOS file header (word).

Uses: curDrive device number of the active drive.

Returns: r6 pointer to first non-reserved block in track/sector table (BldGDirEntry reserves one block

for the file header and a second block for the index table if the file is a VLIR file).

Alters: dirEntryBuf contains newly-built directory entry.

Destroys: a, x, y, r1H.

Description: Given a GEOS file header, BldGDirEntry will build a system specific directory entry suitable

for writing to an empty directory slot.

Most applications create new files by calling SaveFile. SaveFile calls SetGDirEntry, which calls

BldGDirEntry as part of its normal processing.

Example: MySetGDirEntry.

See also: SetGDirEntry.

2

disk

 20-8 GEOS Kernal 2.0

BlkAlloc: (C64, C128) mid-level C1FC

Function: Allocate enough disk blocks to hold a specified number of bytes.

Parameters: r2 BYTES — number of bytes to allocate space for (word). Commodore version can

allocate up to 32,258 bytes (127 Commodore blocks).

r6 TSTABLE — pointer to buffer for building out track and sector table of allocated blocks,

usually points to fileTrScTab (word).

Uses: curDrive device number of the active drive.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

interleave† desired physical sector interleave (usually 8); used by SetNextFree. Applications

need not set this explicitly — will be set automatically by internal GEOS routines.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r2 number of blocks allocated to hold BYTES amount of data.

r3L track of last allocated block.

r3H sector of last allocated block.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r4-r8.

Description: BlkAlloc allocates enough blocks on the disk for BYTES amount of data. The GEOS SaveFile

and WriteRecord routines call BlkAlloc to allocate multiple blocks prior to calling WriteFile.

Most applications do not call BlkAlloc directly, but rely, instead, on the higher-level SaveFile

and WriteRecord.

BlkAlloc calculates the number of blocks needed to store BYTES amount of data, taking any

standard overhead into account (such as the two-byte track/sector link required in each

Commodore block), then calls CalcBlksFree to ensure that enough free blocks exist on the disk.

If there are not enough free blocks to accommodate the data, BlkAlloc returns an

INSUFF_SPACE error without allocating any blocks. Otherwise, BlkAlloc calls SetNextFree to

allocate the proper number of unused blocks.

BlkAlloc builds out a track and sector table in the buffer pointed to by TSTABLE. The 256 bytes

at fileTrScTab are usually used for this purpose. When BlkAlloc returns, the table contains a

two-byte entry for each block that was allocated: the first byte is the track and the second byte is

the sector. The last entry in the table has its first byte set to $00, indicating the end of the table.

The second byte of the last entry is an index to the last byte in the last block. This track/sector list

can be passed directly to WriteFile for use in writing data to the blocks.

BlkAlloc disk

 20-9 GEOS Kernal 2.0

BlkAlloc does not automatically write out the BAM. See PutDirHead for more information on

writing out the BAM. BlkAlloc does not allocate blocks on the directory track. Refer to

GetFreeDirBlk for more information on allocating directory blocks.

Note: For more information on the scheme used to allocate successive blocks, refer to SetNextFree.

Example: GrabSomeBlocks.

See also: NxtBlkAlloc, SetNextFree, GetFreeDirBlk, FreeBlock.

disk

 20-10 GEOS Kernal 2.0

CalcBlksFree: (C64, C128) mid-level C1DB

Function: Calculate total number of free blocks on disk.

Parameters: r5 DIRHEAD — address of directory header, should always point to curDirHead (word).

Uses: curDrive device number of the active drive.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: r4 number of free blocks.

r5 unchanged.

r3 in GEOS v1.3 and later: total number of available blocks on empty disk. This is useful

because v1.3 and later support disk devices other than the 1541. GEOS versions earlier

than v1.3 leave r3 unchanged.

Destroys: a, y.

Description: CalcBlksFree calculates the number of free blocks available on the disk. An application can call

CalcBlksFree, for example, to tell the user the amount of free space available on a particular

disk. GEOS disk routines that allocate multiple blocks at once, such as BlkAlloc, call

CalcBlksFree to ensure enough free space exists on the disk to prevent a surprise

INSUFF_SPACE error, midway through the allocation. (This is why it is usually not necessary

to check for sufficient space before saving a file or a VLIR record—the higher-level GEOS disk

routines handle this checking automatically).

CalcBlksFree looks at the BAM in memory and counts the number of unallocated blocks. The

BAM is stored in the directory header and the directory header is stored in the buffer at

curDirHead. Calling CalcBlksFree requires first loading r5 with the address of curDirHead.

 LoadW r5,#curDirHead
 jsr CalcBlksFree

When checking the total number of blocks (both allocated and free) on a particular disk device,

call CalcBlksFree with r3 loaded with the number of blocks on a 1541 disk device. On GEOS

v1.3 and above, this number is changed to reflect the actual number of blocks in the device. On

previous versions of GEOS, r3 comes back unchanged.

N1541_BLOCKS = 664 ; total number of blocks on 1541 devices

LoadW r3,#N1541_BLOCKS ; assume 1541 block count for v1.2 Kernal’s
LoadW r5,#curDirHead ; point to the directory header
jsr CalcBlksFree ; r3 comes back with total number of blocks
 ; on this device

Example: CheckDiskSpace.

See also: NxtBlkAlloc, SetNextFree, GetFreeDirBlk, FreeBlock.

disk

 20-11 GEOS Kernal 2.0

ChangeDiskDevice: (C64, C128) very low-level C2BC

Function: Instruct a drive to change its serial device number.

Parameters: a NEWDEVNUM — new device number to give current drive.

Uses: curDrive drive whose device number will change.

Returns: x error ($00 = no error).

Alters: curDrive NEWDEVNUM

curDevice NEWDEVNUM

Destroys: a, y.

Description: ChangeDiskDevice requests the turbo software to change the serial device number of the current

drive. Most applications have no need to call this routine, as it is in the realm of low-level disk

utilities. ChangeDiskDevice is used primarily by the deskTop and Configure programs to add,

rearrange, and remove drives.

Be aware that changing the device number merely instructs the turbo software in the drive to

monitor a different serial bus address. Many internal GEOS variables and disk drivers expect the

original device number to remain unchanged.

Note: If ChangeDiskDevice is used on a RAMdisk, curDrive and curDevice both change. However,

because of the nature of the RAMdisk driver, the RAMdisk does not respond as this new device.

Example:

See also: SetDevice.

disk

 20-12 GEOS Kernal 2.0

ChkDkGEOS: (C64, C128) mid-level C1DE

Function: Check Commodore disk for GEOS format.

Parameters: r5 DIRHEAD — address of directory header, should always point to curDirHead (word).

Returns: a TRUE/FALSE matching isGEOS.

st set according to value in isGEOS.

GEOS Disk z flag=0 bne GEOSDisk

 n flag=1 bmi GEOSDisk

Non-GEOS Disk z flag=1 beq nonGEOSDisk

 n flag=0 bpl nonGEOSDisk

Alters: isGEOS set to TRUE if disk is a GEOS disk, otherwise set to FALSE.

Destroys: a, y.

Description: ChkDkGEOS checks the directory header for the version string that flags it as a GEOS disk (at

OFF_GEOS_ID). The primary difference between a GEOS disk and a standard Commodore disk

is the addition of the off-page directory and the possibility of GEOS files on the disk. GEOS files

have an additional file header block that holds the icon image and other information, such as the

author’s name and permanent name string. To convert a non-GEOS disk into a GEOS disk, use

SetGEOSDisk.

OpenDisk automatically calls ChkDkGEOS. As long as OpenDisk is used before reading a new

disk, applications should have no need to call ChkDkGEOS

Example:

 ProcDisk:
 jsr GetDirHead ; read in the directory header
 txa ; check status
 bne 99$; exit on error
 LoadW r5,#curDirHead ; point to directory header
 jsr ChkDkGEOS ; check for GEOS disk
 beq 50$; if not a GEOS disk, branch
 ;--- code here to handle GEOS disk
 bra 90$; jump to exit
50$
 ;--- code here to handle non-GEOS disk
90$
 clc ; success exit
 rts
99$
 sec ; error exit
 rts

See also: SetGEOSDisk.

disk

 20-13 GEOS Kernal 2.0

DeleteFile: (C64, C128) high-level C238

Function: Delete a GEOS file by deleting its directory entry and freeing all its blocks. Works on both

sequential and VLIR files.

Parameters: r0 FILENAME — pointer to null-terminated name of file to delete (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Alters: diskBlkBuf used for temporary block storage.

dirEntryBuf deleted directory entry.

fileHeader temporary storage of index table when deleting a VLIR file.

Written to Disk:

curDirHead BAM updated to reflect newly freed blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r1-r2, r4-r9.

Description: Given a null-terminated filename, DeleteFile will remove it from the current directory by deleting

its directory entry and calling FreeFile to free all the blocks in the file.

DeleteFile first calls FindFile to get the directory entry and ensure the file does in fact exist. If

the file specified with FILENAME is not found, a FILE_NOT_FOUND error is returned.

The directory entry is deleted by setting its OFF_CFILE_TYPE byte to $00.

DeleteFile final step is to call PutDirHead to write the changes in the BAM to disk.

Example:

See also: FreeFile, FreeBlock.

disk

 20-14 GEOS Kernal 2.0

DoneWithIO: (C64, C128) very low-level C25F

Function: Restore system after I/O across the serial bus.

Parameters: none.

Returns: nothing.

Destroys: a, y.

Description: DoneWithIO restores the state of the system after a call to InitForIO. It restores the interrupt

status, turns sprite DMA back on, returns the 128 to its original clock speed, and switches out the

ROM and I/O banks if appropriate (only on C64).

Disk and printer routines access the serial bus between calls to InitForIO and DoneWithIO.

Example: MyPutBlock.

See also: InitForIO.

disk

 20-15 GEOS Kernal 2.0

EnterDeskTop: (C64, C128) high-level C22C

Function: Standard application exit to GEOS deskTop.

Parameters: none.

Returns: never returns to application.

Description: An application calls EnterDeskTop when it wants to exit to the GEOS deskTop. EnterDeskTop

takes no parameters and looks for a copy of the file DESK TOP on each drive. Later versions of

GEOS are only compatible with the correspondingly later revision of the deskTop and will check

the version number in the permanent name string of the DESK TOP file to ensure that it is in fact

a newer version. If after all drives are searched no valid copy of the deskTop is found,

EnterDeskTop will prompt the user to insert a disk with a copy of the deskTop on it.

Note: EnterDeskTop will first search a RAMdisk for a copy of the deskTop to ensure the fastest loading

time.

Example:

See also: RstrAppl, GetFile.

disk

 20-16 GEOS Kernal 2.0

EnterTurbo: (C64, C128) very low-level C214

Function: Activate disk drive turbo mode.

Parameters: none.

Uses: curDrive device number of the active drive.

 curType v1.3+: checks disk type because not all use turbo software.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: EnterTurbo activates the turbo software in the current drive. If the turbo software has not yet

been downloaded to the drive, EnterTurbo will download it. The turbo software allows GEOS

to perform high-speed serial disk access.

EnterTurbo treats different drive types appropriately. A RAMdisk, for example, does not use

turbo code so EnterTurbo will not attempt to download the turbo software.

The very-low level GEOS read/write routines, such as ReadBlock, WriteBlock,

VerWriteBlock, and ReadLink, expect the turbo software to be active. Call EnterTurbo before

calling one of these routines.

Example: MyPutBlock.

See also: WriteBlock, ExitTurbo, PurgeTurbo.

disk

 20-17 GEOS Kernal 2.0

ExitTurbo: (C64, C128) very low-level C232

Function: Deactivate disk drive turbo mode.

Parameters: none.

Uses: curDrive device number of the active drive.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: ExitTurbo deactivates the turbo software in the current drive so that the serial bus may access

another device. SetDevice automatically calls this before changing devices.

Note: If the turbo software has not been downloaded or is already inactive, ExitTurbo will do nothing.

Example:

See also: EnterTurbo, PurgeTurbo.

disk

 20-18 GEOS Kernal 2.0

FastDelFile: (C64, C128) mid-level C244

Function: Special version of DeleteFile that quickly deletes a sequential file when the track/sector table is

available.

Parameters: r0 FILENAME — pointer to null-terminated file name (word).

r3 TSTABLE — pointer to track and sector table of file, usually points to fileTrScTab

(word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead BAM updated to reflect newly freed blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Destroys: a, y, r1, r3-r8.

Description: FastDelFile quickly deletes a sequential file by taking advantage of an already existing

track/sector table. It first removes the directory entry determined by FILENAME and calls

FreeBlock for each block in a track/sector table at TSTABLE. The track/sector table is in the

standard format, such as that returned from ReadFile, where every two-byte entry constitutes a

track and sector. A track number of $00 terminates the table.

FastDelFile is fast because it does not need to follow the chain of sectors to delete the individual

blocks. It can do most of the deletion by manipulating the BAM in memory then writing it out

with a call to PutDirHead when done.

FastDelFile will not properly delete VLIR files without considerable work on the application's

part. Because there is no easy way to build a track/sector table that contains all the blocks in all

the records of a VLIR file, it is best to use DeleteFile or FreeFile for deleting VLIR files or

DeleteRecord for deleting a single record.

FastDelFile calls GetDirHead before freeing any blocks. This will overwrite any BAM and

directory header in memory.

Note: FastDelFile can be used to remove a directory entry without actually freeing any blocks in the

file by passing a dummy track/sector table, where the first byte (track number) is $00 signifying

the end of the table: See Example DeleteDirEntry.

Since FastDelFile deletes a block at a time until a track number of $00 is found, it is capable of

deleting files with chains larger than 127 blocks, which is the standard GEOS limit imposed by

the size of fileTrScTab.

Examples: DeleteDirEntry, ReadAndDelete.

See also: FreeFile, DeleteFile.

disk

 20-19 GEOS Kernal 2.0

FindBAMBit: (C64, C128) mid-level C2AD

Function: Get disk block allocation status.

Parameters: r6L TRACK — track number of block (byte).

r6H SECTOR — sector number of block (byte).

Uses: curDrive device number of the active drive.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only)

dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: st z flag reflects allocation status (1 = free; 0 = allocated).

r6 unchanged

1541 drives only:

x offset from curDirHead for BAM byte.

r8H mask for isolating BAM bit.

a BAM byte masked with r8H.

r7H offset from curDirHead of byte that holds free blocks on track total.

Destroys: non-1541 drives:

a, y, r7H, r8H.

1541 drives:

y (a, r7H, and r8H all contain useful values).

Description: FindBAMBit accesses the BAM of the current disk (in curDirHead) and returns the allocation

status of a particular block. If the BAM bit is zero, then the block is in-use; if the BAM bit is one,

then the block is free. FindBAMBit returns with the z flag set to reflect the status of the BAM so

that a subsequent bne or beq branch instructions can test the status of a block after calling

FindBAMBit.

 bne BlockIsFree ; branch if block is free

- or –
 beq BlockInUse ; branch if block is in-use

Note: FindBAMBit will return the allocation status of a block on any disk device, even those with large

or multiple BAMs (such as the 1571 and 1581 disk drives). Only the 1541 driver, however, will

return useful information in a, x, r7H, and r8H. For an example of using these extra 1541 return

values, refer to AllocateBlock.

Examples:
LoadB r6L,#TRACK ; get track and sector number
LoadB r6H,#SECTOR
jsr FindBAMBit ; get allocation status
beq BlockInUse ; branch if already in use

See also: AllocateBlock, FreeBlock, GetDirHead. PutDirHead.

disk

 20-20 GEOS Kernal 2.0

FindFile: (C64, C128) high-level C20B

Function: Search for a particular file in the current directory.

Parameters: r6 FILENAME — pointer to null-terminated name of file of a maximum of ENTRY_SIZE

(16) bytes (not counting null terminator). (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 FILE_NOT_FOUND

r1 track/sector of directory block containing entry.

r5 Pointer to directory entry within diskBlkBuf.

Alters: dirEntryBuf directory entry of file if found.

diskBlkBuf contains directory block where FILENAME found.

Destroys: a, y, r4, r6.

Description: Given a null-terminated filename, FindFile searches through the current directory and returns the

directory entry in dirEntryBuf. If the file specified with FILENAME is not found, a

FILE_NOT_FOUND error is returned.

Since GEOS 2.0 does not support a hierarchical file system, the current directory is actually the

entire disk. The directory entry is deleted by setting its OFF_CFILE_TYPE byte to $00.

Example: LoadBASIC.

See also: Get1stDirEntry, GetNxtDirEntry, FindFTypes.

disk

 20-21 GEOS Kernal 2.0

FindFTypes: (C64, C128) high-level C23B

Function: Builds a list of files of a particular GEOS type from the current directory.

Used By: DBGETFILES dialog box routine.

Parameters: r6 BUFFER — pointer to buffer for building-out file list; allow ENTRY_SIZE+1

bytes for each entry in the list (word).

r7L FILETYPE — GEOS file type to search for (byte).

r7H MAXFILES — maximum number of filenames to return, usually used to prevent

overwriting buffer (byte).

r10 PERMNAME — pointer to permanent name string to match or $0000 to ignore

permanent name string (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r7H decremented once for each file name.

Alters: diskBlkBuf used as temporary buffer for directory blocks.

Destroys: a, y, r0-r2L, r4, r6.

Description: FindFTypes build a list of files that match a particular GEOS file type and, optionally, a specific

permanent name string.

The data area at BUFFER, where the list is built-out, must be large enough to accommodate

MAXFILES filenames of ENTRY_SIZE+1 bytes each.

FindFTypes first clears enough of the area at BUFFER to hold MAXFILES filenames then calls

Get1stDirEntry and GetNxtDirEntry to go through each directory entry in the current directory.

When the GEOS file type of a directory entry matches the FILETYPE parameter, FindFTypes

goes on to check for a matching permanent name string.

If the PERMNAME parameter is $0000, then this check is bypassed and the filename is added to

the list. If the PERMNAME parameter is non-zero, the null terminated string it points to is

checked, character-by-character, against the permanent name string in the file's header block.

Although the permanent name string in the GEOS file header is 16 characters long, the

comparison only extends to the character before the null-terminator in the string at PERMNAME.

Since permanent name strings typically end with Vx.x, where x.x is a version number (e.g., 2.1),

a shorter string can be passed so that the specific version number is ignored. For example, a

program called geoQuiz version 1.3 might use "geoQuiz V1.3" as the permanent name string it

gives its data files. When geoQuiz version 3.0 goes searching for its data files, it can pass a

PERMNAME string of "geoQuiz V" so data files for all versions of the program will be added to

the list.

FindFTypes disk

 20-22 GEOS Kernal 2.0

When a match is found, the filename is copied into the list at BUFFER. The filenames are placed

in the buffer as they are found (the same order they appear on the pages of the deskTop notepad).

With a small buffer, matching files on higher-numbered pages may never get added to the list.

Note: Since GEOS does not support a hierarchical file system, the "current directory" is actually the

entire disk. The filenames appear in the list null terminated even though they are padded with

$A0 in the directory.

Example:

See also: FindFile, Get1stDirEntry, GetNxtDirEntry.

disk

 20-23 GEOS Kernal 2.0

FollowChain: (C64, C128) mid-level C205

Function: Follow a chain of Commodore disk blocks, building out a track/sector table.

Parameters: r1L START_TR — track number of starting block (byte).

r1H START_SC — sector number of starting block (byte).

r3 TSTABLE — pointer to buffer for building out track and sector table of chain,

usually points to fileTrScTab (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r3 unchanged.

track/sector built-out in buffer pointed to by TSTABLE.

Alters: diskBlkBuf used for temporary block storage.

Destroys: a, y, r1, r4.

Description: FollowChain constructs a track/sector table for a list of chained blocks on the disk. It starts with

the block passed in START_TR and START_SC and follows the links until it encounters the last

block in the chain. Each block (including the first block at START_TR, START_SC) becomes a

part of the track/sector table.

Commodore disk blocks are linked together with track/sector pointers. The first two bytes of each

block represent a track/sector pointer to the next block in the chain. Each sequential file and VLIR

record on the disk is actually a chained list of blocks. FollowChain follows these track/sector

links, adding each to the list at TSTABLE until it encounters a track pointer of $00, which

terminates the chain. FollowChain adds this last track pointer ($00) and its corresponding sector

pointer (which is actually an index to the last valid byte in the block) to the track/sector table and

returns to the caller.

FollowChain builds a standard track/sector table compatible with routines such as WriteFile and

FastDelFile.

Examples:
LoadB r1L,#START_TR ; start track
LoadB r1H,#START_SC ; and sector
LoadW r3,#fileTrScTab ; buffer for table
jsr FollowChain ; get allocation status
txa ; set status flags
bne HandleError ; branch if error

See also: FastDelFile, WriteFile, ReadLink.

disk

 20-24 GEOS Kernal 2.0

FreeBlock: (C64, C128) mid-level C2B9

Function: Free an allocated disk block.

Parameters: r6L TRACK — track number of block to free (byte).

r6H SECTOR — sector number of block to free (byte).

Uses: curDrive device number of the active drive.

curDirHead must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Returns: x error ($00 = no error).

BAD_BAM if block already free.

r6L, r6H unchanged.

Alters: curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r7, r8H.

Description: FreeBlock tries to free (deallocate) the block number passed in r6. If the block is already free,

then FreeBlock returns a BAD_BAM error.

Note: FreeBlock was not added to the GEOS jump table until v1.3, but it can be accessed directly under

GEOS v1.2. The following routine will check the GEOS version number and act correctly under

GEOS v1.2 and later. (See Example: MyFreeBlock).

Example: MyFreeBlock.

See also: FreeFile, AllocateBlock.

disk

 20-25 GEOS Kernal 2.0

FreeFile: (C64, C128) mid-level C226

Function: Free all the blocks in a GEOS file (sequential or VLIR) without deleting the directory entry. The

GEOS file header and any index blocks are also deleted.

Parameters: r9 DIRENTRY — pointer to directory entry of file being freed, usually points to

dirEntryBuf (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Alters: diskBlkBuf used for temporary block storage.

curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

fileHeader temporary storage of the index table when deleting a VLIR file.
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r1-r2, r4-r8.

Description: Given a valid directory entry, FreeFile will delete (free) all blocks associated with the file. The

GEOS file header and any index blocks associated with the file are also be freed. The directory

entry on the disk, however, is left intact.

The directory entry is a standard GEOS data structure returned by routines such as FindFile,

Get1stDirEntry and GetNxtDirEntry. FreeFile is called automatically by DeleteFile.

FreeFile calls GetDirHead to get the current directory header and BAM into memory. It then

checks at OFF_GHDR_PTR in the directory entry for a GEOS file header block, which it then

frees.

If the file is a sequential file, FreeFile walks the chain pointed at by the OFF_DE_TR_SC

track/sector pointer in the directory header and frees all the blocks in the chain. FreeFile then

calls PutDirHead to write out the new BAM.

If the file is a VLIR file, the index table (the block pointed to by OFF_INDEX_PTR) is first read

into fileHeader then marked as free in the BAM. FreeFile then goes through each record. If the

record has data in it, FreeFile walks through the chain, freeing all the blocks in the record.

FreeFile finishes by calling PutDirHead to write out the new BAM.

When using Get1stDirEntry and GetNxtDirEntry, do not pass FreeFile a pointer into

diskBlkBuf. Copy the full directory entry (DIRENTRY_SIZE = 30 bytes) from diskBlkBuf to

another buffer (such as dirEntryBuf) and pass FreeFile the pointer to that buffer. Otherwise

when FreeFile uses diskBlkBuf it will corrupt the directory entry.

Since FreeFile deletes a block at a time as it follows the chains, it is capable of deleting files with

chains larger than 127 blocks, which is the standard GEOS limit imposed by the size of

fileTrScTab.

Example:

See also: DeleteFile, FreeBlock.

disk

 20-26 GEOS Kernal 2.0

Get1stDirEntry: (C64, C128) mid-level 9030

Function: Loads in the first directory block of the current directory and returns a pointer to the first

directory entry within this block.

Parameters: none.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r5 pointer to first directory entry within diskBlkBuf.

Alters: diskBlkBuf directory block.

Destroys: a, y, r1, r4.

Description: Get1stDirEntry reads in the first directory block of the current directory and returns with r5

pointing to the first directory entry. Get1stDirEntry is called by routines like FindFTypes and

FindFile.

To get a pointer to subsequent directory entries, call GetNxtDirEntry.

Since GEOS does not support a hierarchical file system, the "current directory" is actually the

entire disk.

Get1stDirEntry did not appear in the jump table until version 1.3. An application running under

version 1.2 can access Get1stDirEntry by calling directly into the Kernal. The following

subroutine will work on GEOS v1.2 and later:

;**
; MyGet1stDirEntry — Call instead of Get1stDirEntry
; to work on GEOS v1.2 and later
;**
;--- EQUATE: v1.2 entry point directly into Kernal.
;--- Must do a version check before calling.

o_Get1stDirEntry = $C9F7 ; exact entry point

MyGet1stDirEntry:
 lda version ; check version number
 cmp #$13
 bcc 10$; branch < v1.3
 jmp Get1stDirEntry ; direct call
10$
 jmp o_Get1stDirEntry ; go through jump table

Example:

See also: GetNxtDirEntry, FindFTypes.

disk

 20-27 GEOS Kernal 2.0

GetBlock: (C64, C128) low-level C1E4

Function: General purpose routine to get a block from current disk.

Parameters: r4 BUFFER — address of buffer to place block; must be at least BLOCKSIZE bytes (word).

r1L TRACK — track number (byte).

r1H SECTOR — sector number on track (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r1, r4 unchanged.

Destroys: a, y.

Description: GetBlock reads a block from the disk into BUFFER. GetBlock is useful for implementing disk

utility programs and new file structures.

GetBlock is a higher-level version of ReadBlock. It calls InitForIO, EnterTurbo, ReadBlock,

and DoneWithIO. If an application needs to read many blocks at once, ReadBlock may offer a

faster solution. If the disk is shadowed, GetBlock will read from the shadow memory, resulting

in a faster transfer.

Note3: The original Hitchhikers Guide to GEOS stated the 1581 driver had a bug that destroyed r1 and

r4. GEOS 64 Version 1.5 (First 64 version with 1581 support) and above do not have this

problem. GEOS 128 1.3 with CONFIGURE 1.4 (Earliest version locatable at this time) does not

have this problem. It is possible a CONFIGURE 1.3 on the 128 exists that does have this problem.

This bug warning can be safely ignored.

Example:

See also: PutBlock, ReadBlock, GetBufBlock.

disk

 20-28 GEOS Kernal 2.0

GetBufBlock: (C64, C128) low-level 903C

Function: General purpose routine to get a block from the current disk into diskBlkBuf.

Parameters: r1L TRACK — track number (byte).

r1H SECTOR — sector number on track (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r1 unchanged.

r4 address of diskBlkBuf.

Alters: diskBlkBuf contains block read from disk.

Destroys: a, y.

Description: GetBufBlock loads r4 with the address of diskBlkBuf and calls GetBlock to read a block from

the disk into diskBlkBuf. GetBufBlock is useful for setting r4 with the common location of

diskBlkBuf when reading a single block.

See GetBlock for more information.

Example:
 Function: Delete file from directory page.
 Uses: r1L TRACK – track number of directory page.
 r1H SECTOR – sector number of directory page.
 r5 pointer to current directory entry.
 Uses: diskBlkBuf contains page from the directory track pointed to by r1.
 Returns: x error ($00 = no error).
 r1,r5 unchanged.
 r4 address of diskBlkBuf.
 Destroys: a, y, r0,r2-r3,r6-r9.

DelTemp:
 PushW r5 ; save r5 and r1
 PushW r1
 jsr GetName ; extract name from directory entry
 ; returns r0=address of null terminated name
 jsr DeleteFile ; delete the file
 bxne HandleError ; on error: branch to handler
 PopW r1 ; restore r1 and r5
 PopW r5
 ; save 8 bytes by not doing LoadW r4,#diskBlkBuf
 jmp GetBufBlock ; read updated directory page into diskBlkBuf

See also: GetBlock, PutBlock, PutBufBlock, WriteBlock, BlkAlloc.

disk

 20-29 GEOS Kernal 2.0

GetDirHead: (C64, C128) mid-level C247

Function: Read directory header from disk. GEOS also reads in the BAM.

Parameters: none.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r4 pointer to curDirHead.

Alters: curDirHead contains directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r1.

Description: GetDirHead reads the full directory header (256 bytes) into the buffer at curDirHead. This block

also includes the BAM (block allocation map) for the entire disk.

GEOS disks, like the standard Commodore disks upon which they are based, have one directory

header. The directory header occupies one full block on the disk. The Commodore directory

header contains information about the disk, such as the location of the directory blocks, the disk

name, and the GEOS version string (if a GEOS disk). The Commodore directory header also

contains the disk BAM, which flags particular sectors as used or unused.

GetDirHead calls GetBlock to read in the directory header block into the buffer at curDirHead.

The directory header block contains the directory header and the disk BAM (block allocation

map). Typically, applications don't call GetDirHead because the most up-to-date directory

header is almost always in memory (at curDirHead), OpenDisk calls GetDirHead to get it there

initially. Other GEOS routines update it in memory, some calling PutDirHead to bring the disk

version up to date.

Because Commodore disks store the BAM information in the directory header it is important that

the BAM in memory not get overwritten by an outdated BAM on the disk. An application that

manipulates the BAM in memory (or calls GEOS routines that do so), must be careful to write

the BAM back out (with PutDirHead) before calling any other routine that might overwrite the

copy in memory. GetDirHead is called by routines such as OpenDisk, SetGEOSDisk, and

OpenRecordFile, etc.

Example:

See also: PutDirHead.

disk

 20-30 GEOS Kernal 2.0

GetFHdrInfo: (C64, C128) mid-level C229

Function: Loads the GEOS file header for a particular directory entry.

Parameters: r9 DIRENTRY— pointer to directory entry of file, usually points to dirEntryBuf (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r7 load address copied from the O_GHST_ADDR word of the GEOS file header.

r1 track/sector copied from bytes +1 and +2 of the directory entry (DIRENTRY). This is the

track/sector of the first data block of a sequential file (OFF_DE_TR_SC) or the index

table block of a VLIR file (OFF_INDEX_PTR).

Alters: fileHeader contains 256-byte GEOS file header.

fileTrScTab track/sector of header added to first two bytes of this table; a subsequent call to

ReadFile or similar routine will augment this table beginning with the third byte

(fileTrScTab+2) so as not to disrupt this value.

Destroys: a, y, r4.

Description: Given a valid directory entry, GetFHdrInfo will load the GEOS file header into the buffer at

fileHeader.

The directory entry is a standard GEOS data structure returned by routines such as FindFile,

Get1stDirEntry and GetNxtDirEntry. GetFHdrInfo is called by routines such as LdFile just

prior to calling ReadFile (to load in a sequential file or record zero of a VLIR).

GetFHdrInfo gets the block number (Commodore track/sector) of the GEOS file header by

looking at the OFF_GHDR_PTR word in the directory entry.

Example:

See also:

disk

 20-31 GEOS Kernal 2.0

GetFile: (C64, C128) high-level C208

Function: General-purpose file routine that can load an application, desk accessory, or data file.

Parameters: r6 FILENAME — pointer to null-terminated filename (word).

When loading an application:

r0L LOAD_OPT:

bit 0: 0 load at address specified in file header; application will be started

automatically.

1 load at address in r7; application will not be started automatically.

bit 7: 0 not passing a data file.

 1 r2 and r3 contain pointers to disk and data file names.

bit 6: 0 not printing data file.

 1 printing data file; application should print file and exit.

r7 LOAD_ADDR — optional load address, only used if bit 0 of LOAD_OPT is set (word).

r2 DATA_DISK — only valid if bit 7 or bit 6 of LOAD_OPT is set: pointer to name of the

disk that contains the data file, usually a pointer to one of the DrXCurDkNm buffers

(word).

r3 DATA_FILE — only valid if bit 7 or bit 6 of LOAD_OPT is set: pointer to name of the

data file (word).

When loading a desk accessory:

r10L RECVR_OPTS — no longer used; set to $00 (see below for explanation) (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: When loading an application:

only returns if alternate load address or disk error.

x error ($00 = no error).

r0, r2, r3, and r7 unchanged.

When loading a desk accessory:

returns when desk accessory exits with a call to RstrAppl.

x error ($00 = no error).

When loading a data file:

x error ($00 = no error).

Passes: When loading an application:

warmstarts GEOS and passes the following to the application:

r0L as originally passed to GetFile.

r2 points to dataDiskName. (r2 as originally passed to GetFile is used to copy the name.)

r3 points to dataFileName. (r3 as originally passed to GetFile is used to copy the name.)

dataDiskName contains name of data disk if bit 7 or 6 of r0L is set.

dataFileName contains name of data file if bit 7 or 6 of r0L is set.

GetFile disk

 20-32 GEOS Kernal 2.0

When loading a desk accessory:

warmstarts GEOS and passes the following:

r10L as originally passed to GetFile.

When loading a data file:

not applicable.

Alters: When loading an application:

GEOS brought to a warmstart state.

Destroys: a, x, y, r0-r10 (only applies to loading a data file).

Description: GetFile is the preferred method of loading most GEOS files, whether a data file, application, or

desk accessory. (The only exception to this is a VLIR file, which is better handled with the VLIR

routines such as OpenRecordFile and ReadRecord). Most applications will use GetFile to load

and execute desk accessories when the user clicks on an item in the GEOS menu. Some applications

will use GetFile to load other applications. The GEOS deskTop, in fact, is just another application

like any other. Depending on the user's choice of actions — open an application, open an

application's data file, print an application's data file — the deskTop sets LOAD_OPT,

DATA_DISK, DATA_FILE appropriately and calls GetFile.

GetFile first calls FindFile to locate the file at FILENAME, then checks the GEOS file type in the

directory entry. If the file is type DESK_ACC, then GetFile calls LdDeskAcc. If the file is type

APPLICATION or type AUTO_EXEC, GetFile calls LdApplic. All other file types are loaded

with the generic LdFile.

The following GEOS constants can be used to set the LOAD_OPT parameter when loading an

application:

ST_LD_AT_ADDR $01 Load at address: load application at the address passed in r7 as

opposed to the address in the file header.

ST_LD_DATA $80 Load data file: application is being passed the name of a data file

to load.

ST_PR_DATA $40 Print data file: application is being passed the name of a data file

to print.

Note3: C128: When b4 in sysRAMFlg is set, the print driver header block and the print driver are cached

in an internal Kernal cache.

 The following example will let GetFile load the print driver from this cache instead of from disk.

If the driver is not available in cache (sysRAMFlg (b4=0)) then the driver will load normally from

the current disk.

 Example:
 bbeq PrntFilename,99$; If printer name is not set, then error out
 LoadW r6,#PrntFilename ; r6 must point to the PrntFilename variable
 LoadB r0L,#0 ; All load options must be reset.
 jsr GetFile ; If b4 is set in sysRAMFlg , GetFile loads driver from

; cache, else it loads it from disk.

GetFile disk

 20-33 GEOS Kernal 2.0

C128 : If the flags in the file header block do not allow running in the currently active graphMode; an

INCOMPATIBLE error is returned.

Note: The RECVR_OPTS flag used when loading desk accessories originally carried the following

significance:

bit 7: 1 force desk accessory to save foreground screen area and restore it on return to

application.

0 not necessary for desk accessory to save foreground.

bit 6: 1 force desk accessory to save color memory and restore it on return to

application.

0 not necessary for desk accessory to save color memory.

The application should always set r10L to $00 and bear the burden of saving and restoring the

foreground screen and the color memory. (Color memory only applicable to GEOS 64 and GEOS

128 in 40-column mode).

See LdDeskAcc Note for more information.

Example:

See also: LdFile, LdDeskAcc, LdApplic.

disk

 20-34 GEOS Kernal 2.0

GetFreeDirBlk: (C64, C128) mid-level C1F6

Function: Search the current directory for an empty slot for a new directory entry. Allocates another

directory block if necessary.

Parameters: r10L DIRPAGE — directory page to begin searching for free slot; each directory page holds

eight files and corresponds to one notepad page on the GEOS deskTop. The first page is

page one (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

interleave† desired physical sector interleave (usually 8); Applications need not set this

explicitly — will be set automatically by internal GEOS routines. Only used when

new directory block is allocated.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

FULL_DIRECTORY.

r10L page number of empty directory slot.

r1 block (track/sector) number of directory block in diskBlkBuf.

y index to empty directory slot in diskBlkBuf.

Alters: curDirHead contains directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, r0, r3, r5, r7-r8.

Description: GetFreeDirBlk searches the current directory looking for an empty slot for a new directory entry.

A single directory page has eight directory slots, and these eight slots correspond to the eight

possible files that can be displayed on a single GEOS deskTop notepad page.

GetFreeDirBlk starts searching for an empty slot beginning with page number DIRPAGE. If

GetFreeDirBlk reaches the last directory entry without finding an empty slot, it will try to

allocate a new directory block. If DIRPAGE doesn't yet exist, empty pages are added to the

directory structure until the requested page is reached.

$01 will most often be passed as the DIRPAGE starting page number, so that all possible directory

slots will be searched, starting with the first page. If higher numbers are used, GetFreeDirBlk

won't find empty directory slots on lower pages and extra directory blocks may be allocated

needlessly.

GetFreeDirBlk is called by SetGDirEntry before writing out the directory entry for a new

GEOS file.

GetFreeDirBlk disk

 20-35 GEOS Kernal 2.0

Since GEOS 2.0 does not support a hierarchical file system, the "current directory" is actually the

entire disk. A directory page corresponds exactly to a single sector on the directory track. There

is a maximum of 18 directory sectors (pages) on a Commodore disk. If this 18th page is exceeded,

GetFreeDirBlk will return a FULL_DIRECTORY error.

GetFreeDirBlk allocates blocks by calling SetNextFree to allocate sectors on the directory track.

SetNextFree will special-case the directory track allocations. Refer to SetNextFree for more

information.

Note: GetFreeDirBlk does not automatically write out the BAM. See PutDirHead for more

information on writing out the BAM.

Example: MySetGDirEntry.

See also: AllocateBlock, FreeBlock, BlkAlloc.

disk

 20-36 GEOS Kernal 2.0

GetNxtDirEntry: (C64, C128) mid-level 9033

Function: Given a pointer to a directory entry returned by Get1stDirEntry or GetNxtDirEntry, returns a

pointer to the next directory entry.

Parameters: r5 CURDIRENTRY— pointer to current directory entry as returned from Get1stDirEntry

or GetNxtDirEntry; will always be a pointer into diskBlkBuf (word).

Uses: curDrive device number of the active drive.

diskBlkBuf must be unaltered from previous call to Get1stDirEntry or GetNxtDirEntry.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r5 pointer to next directory entry within diskBlkBuf.

y non-zero if end of directory reached.

Alters: diskBlkBuf directory block.

Destroys: a, r1, r4.

Description: GetNxtDirEntry increments r5 to point to the next directory entry in diskBlkBuf. If diskBlkBuf

is exceeded, the next directory block is read in and r5 is returned with an index into this new

block. Before calling GetNxtDirEntry for the first time, call Get1stDirEntry.

GetNxtDirEntry did not appear in the jump table until version 1.3. An application running under

version 1.2 can access GetNxtDirEntry by calling directly into the Kernal. The following

subroutine will work on GEOS v1.2 and later:

;**
; MyGetNxtDirEntry — Call instead of GetNxtDirEntry
; to work on GEOS v1.2 and later
;**
;--- EQUATE: v1.2 entry point directly into Kernal.
;--- Must do a version check before calling.

_GetNxtDirEntry = $CA10 ; exact entry point

MyGetNxtDirEntry:
 CmpB version,#$13 ; check version number
 bcc 10$; branch < v1.3
 jmp GetNxtDirEntry ; go through jump table
10$
 jmp _GetNxtDirEntry ; direct call

Example:

See also: GetlstDirEntry, FindFTypes.

disk

 20-37 GEOS Kernal 2.0

GetOffPageTrSc: (C64, C128) mid-level 9036

Function: Get track and sector of off-page directory.

Parameters: none.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

y $FF if the disk is not a GEOS disk and therefore has no off-page directory block, otherwise

$00.

r1L track of off-page directory.

r1H sector of off-page directory.

r4 pointer to curDirHead.

Destroys: a, y, r5.

Description: GEOS disks have an extra directory block somewhere on the disk called the off-page directory.

The GEOS deskTop uses the off-page directory block to keep track of file icons that have been

dragged off of the notepad and onto the border area of the deskTop. The off-page directory holds

up to eight directory entries.

GetOffPageTrSc reads the directory header into the buffer at curDirHead and calls

ChkDkGEOS to ensure that the disk is a GEOS disk. If the disk is not a GEOS disk, it returns

with $FF in the y register. Otherwise, GetOffPageTrSc copies the off-page track/sector from the

OFF_OP_TR_SC word in the directory header to r1 and returns $00 in y.

Example:
;--- Put off-page block into diskBlkBuf
 jsr GetOffPageTrSc ; get off-page directory block
 bxne 99$; exit on error
 tya ; check for GEOS disk
 tax ; put in x in case error
 bne 99$;
 LoadW r4,#diskBlkBuf ; get off-page block
 jsr GetBlock ; return with error status in x
99$
 rts

See also: PutDirHead.

disk

 20-38 GEOS Kernal 2.0

GetPtrCurDkNm: (C64, C128) high-level C298

Function: Get pointer to the current disk name.

Parameters: x PTR — zero page address to place pointer (byte pointer to a word variable).

Uses: curDrive device number of the active drive.

Returns: x error ($00 = no error).

zero page word at $00,x (PTR) contains a pointer to the current disk name.

Destroys: a, y.

Description: GetPtrCurDkNm returns an address that points to the name of the current disk. Disk names are

stored in the DrXCurDkNm variables, where x designates the drive (A, B, C, or D). If drive A

is the current drive then GetPtrCurDkNm would return the address of DrACurDkNm. If drive

B is the current drive then GetPtrCurDkNm would return the address of DrBCurDkNm. And

so on.

Although the locations of the DrXCurDkNm buffers are at fixed memory locations, they are not

contiguous in memory. It is easier to call GetPtrCurDkNm than hardcode the addresses into the

application. This will also ensure upward compatibility with future versions of GEOS that might

support more drives.

C64: Versions of GEOS before v1.3 only support two disk drives and therefore only have two disk

name buffers allocated (DrACurDkNm and DrBCurDkNm). GEOS v1.3 and later support

additional drives C and D. GetPtrCurDkNm will return the proper pointer values in any version

of GEOS as long as numDrives does not exceed the number of disk name buffers. Trying to get

a pointer to DrDCurDkNm under GEOS v1.2 will return an invalid pointer because the buffer

does not exist.

C64 & C128: Commodore disk names are always a fixed-length 16-character string. If the name is less than 16

characters, the string is padded with $A0.

Example:

See also:

disk

 20-39 GEOS Kernal 2.0

InitForIO: (C64, C128) very low-level C25C

Function: Prepare for I/O across the serial bus.

Parameters: none.

Returns: nothing.

Destroys: a, y.

Description: InitForIO prepares the system to perform I/O across the Commodore serial bus. It disables

interrupts, turns sprite DMA off, slows the 128 down to l MHz, switches in the ROM and I/O

banks if necessary, and performs any other initialization needed for fast serial transfer.

Call InitForIO before directly accessing the serial port (e.g., in a printer driver) or before using

ReadBlock, WriteBlock, VerWriteBlock, or ReadLink. To restore the system to its previous

state, call DoneWithIO.

Example: MyPutBlock.

See also: DoneWithIO, SetDevice.

disk

 20-40 GEOS Kernal 2.0

LdApplic: (C64, C128) mid-level C21D

Function: Load and (optionally) run a GEOS application, passing it the standard application startup flags

as if was launched from the deskTop.

Parameters: r9 DIRENTRY— pointer to directory entry of file, usually points to dirEntryBuf (word).

r0L LOAD_OPT: (byte).

bit 0: 0 load at address specified in file header; application will be started automatically.

1 load at address in r7; application will not be started automatically.

bit 7: 0 not passing a data file.

1 r2 and r3 contain pointers to disk and data file names.

bit 6: 0 not printing data file.

1 printing data file; application should print file and exit.

r7 LOAD_ADDR — optional load address, only used if bit 0 of LOAD_OPT is set (word).

r2 DATA_DISK — only valid if bit 7 or bit 6 of LOAD_OPT is set: pointer to name of the

disk that contains the data file, usually a pointer to one of the DrXCurDkNm buffers

(word).

r3 DATA_FILE — only valid if bit 7 of LOAD_OPT is set: pointer to name of the data file

(word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: only returns if alternate load address or disk error.

x error ($00 = no error).

Passes: usually doesn't return, but warmstarts GEOS and passes the following:

r0 as originally passed to LdApplic.

r2 as originally passed to LdApplic. (use dataDiskName).

r3 as originally passed to LdApplic. (use dataFileName).

Alters: GEOS brought to a warmstart state.

dataDiskName contains name of data disk if bit 7 of r0L is set.

dataFileName contains name of data file if bit 6 of r0L is set.

Destroys: a, x, y, r0-r15.

Description: LdApplic is a mid-level application loading routine called by the higher level GetFile. Given a

directory entry of a GEOS application file, LdApplic will attempt to load it into memory and

optionally run it. LdApplic calls LdFile to load the application into memory: a sequential file is

loaded entirely into memory but only record zero of a VLIR file is loaded. Based on the status of

bit 0 of LOAD_OPT, optionally runs the application by calling it through StartAppl.

Most applications will not call LdApplic directly but will go indirectly through GetFile.

C128 : If the flags in the file header block do not allow running in the currently active graphMode; an

INCOMPATIBLE error is returned.

LdApplic disk

 20-41 GEOS Kernal 2.0

Note: Only in extremely odd cases will an alternate load address be specified for an application. Loading

an application at another location is not particularly useful because it will most likely not run at

an address other than its specific load address. When LdApplic returns to the caller, it does so

before calling StartAppl to warmstart GEOS.

Example:

See also: GetFile, LdDeskAcc, StartAppl.

disk

 20-42 GEOS Kernal 2.0

LdDeskAcc: (C64, C128) mid-level C217

Function: Load and run a GEOS desk accessory.

Parameters: r9 DIRENTRY — pointer to directory entry of file, usually points to dirEntryBuf (word).

r10L RECVR_OPTS — always set to $00 (see note below for explanation) (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: returns when desk accessory exits with a call to RstrAppl.

x error ($00 = no error).

 BFR_OVERFLOW

Passes: warmstarts GEOS and passes the following to the desk accessory:

r10L as originally passed to LdDeskAcc (should be $00; see below).

Alters: nothing directly; desk accessory may alter some buffers that are not saved.

Destroys: a, x, y, r0-r15.

Description: LdDeskAcc is a mid-level desk accessory loading routine called by the higher level GetFile.

Given a directory entry of a GEOS desk accessory file, LdDeskAcc will attempt to load it into

memory and run it. When the user closes the desk accessory, control returns to the calling

application.

LdDeskAcc first loads in the desk accessory's file header to get the start and ending load address.

Under GEOS 64 it will then save out the area of memory between these two addresses to a file

on the current disk named "SWAP FILE". The GEOS 128 version saves this area to the 24K desk

accessory swap area in backRAM. Desk accessories larger than 24K cannot be used under GEOS

128 (to date, there are none); a BFR_OVERFLOW error is returned.

After saving the overlay area, the dialog box and desk accessory save-variables are copied to a

special area of memory, the current stack pointer is remembered, and the desk accessory is loaded

and executed. When the desk accessory calls RstrAppl to return to the application, this whole

process is reversed to return the system to a state similar to the one it was in before the desk

accessory was called. The "SWAP FILE" file is deleted.

Most applications will not call LdDeskAcc directly, but will go indirectly through GetFile.

C64 : GEOS versions 1.3 and above have a GEOS file type called TEMPORARY. When the deskTop

first opens a disk, it deletes all files of this type. The "SWAP FILE" is a TEMPORARY file.

C128 : If the flags in the file header block do not allow running in the currently active graphMode; an

INCOMPATIBLE error is returned.

LdDeskAcc disk

 20-43 GEOS Kernal 2.0

Note: The RECVR_OPTS flag originally carried the following significance:

bit 7: 1 force desk accessory to save foreground screen area and restore it on return

to application.

0 not necessary for desk accessory to save foreground.

bit 6: 1 force desk accessory to save color memory and restore it on return to

application.

0 not necessary for desk accessory to color memory.

Note: It was found that the extra code necessary to make desk accessories save the foreground screen

and color memory provided no real benefit because this context save can just as easily be

accomplished from within the application itself. The RECVR_OPTS flag is set to $00 by all

Berkeley Softworks applications, and desk accessories can safely assume that this will always be

the case. (In fact, future versions of GEOS may force r10L to $00 before calling desk accessories

just to enforce this standard!).

The application should always set r10L to $00 and bear the burden of saving and restoring the

foreground screen and the color memory. (Color memory only applicable to GEOS 64 and GEOS

128 in 40-column mode).

Example:

See also: GetFile, LdApplic, RstrAppl, RstrFrmDialog.

disk

 20-44 GEOS Kernal 2.0

LdFile: (C64, C128) mid-level C211

Function: Given a directory entry, loads a sequential file or record zero of a VLIR record.

Parameters: r9 DIRENTRY— pointer to directory entry of file, usually points to dirEntryBuf (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r7 pointer to last byte read in plus one.

Alters: fileHeader contains 256-byte GEOS file header.

fileTrScTab track/sector of header in first two bytes of this table (fileTrScTab+0 and

fileTrScTab+1); As the file is loaded, the track/sector pointer to each block is

added to the file track/sector table starting at fileTrScTab+2 and fileTrScTab+3.

Destroys: Not listed in the source material. LdFile is listed as being in an unusable state so this is to be

expected. Assume the same as GetFile: a, x, y, r0-r10.

Description: LdFile is a mid-level file handling routine called by the higher level GetFile. Given a directory

entry of a sequential file, LdFile will load it into memory. Given the directory entry of a VLIR

file, LdFile will load its record zero into memory.

Most applications will not call LdFile directly, but will go indirectly through GetFile.

All versions of LdFile to date under GEOS are unusable because the load variables loadOpt and

loadAddr are local to the Kernal and inaccessible to applications. Fortunately this is not a problem

because applications can always go through GetFile to achieve the same effect.

Note3: There is a situation where LdFile is the only option. If you need to load an application without it

executing automatically, LdFile will perform this function perfectly fine. If you attempt to do this

with GetFile using "r0L LOAD_OPT: 1; load at address in r7; application will not be started

automatically". The file will be loaded; then instead of returning to the caller; GetFile does a jmp

EnterDeskTop so that the application never regains control.

Note3: The GetFile routine Destroys: a, x, y, r0-r10. LdFile is the core of GetFile so this is a safe

assumption for LdFile as well.

Example:

See also: GetFile, LdApplic, LdDeskAcc.

disk

 20-45 GEOS Kernal 2.0

NewDisk: (C64, C128) mid-level C1E1

Function: Tell the turbo software that a new disk has been inserted into the drive.

Parameters: r1L TRACK — used to set drive head position (byte).

r1H SECTOR — used to set drive head position (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y, r0-r3.

Description: NewDisk informs the disk drive turbo software that a new disk has been inserted into the drive.

It first calls EnterTurbo then sends an initialize command to the turbo code. If the disk is

shadowed, the shadow memory is also cleared.

NewDisk gets called automatically when OpenDisk opens a new disk. An application that does

not deal with anything but the low-level disk routines might want to call NewDisk instead of

OpenDisk to avoid the unnecessary overhead associated with reading the directory header and

initializing internal file-level variables.

Note: NewDisk has no effect on a RAMdisk. Also, some early versions of the 1541 turbo code leave

the disk in the drive spinning after it is first loaded. A call to NewDisk during the application's

initialization will stop the disk.

Note1: NewDisk also positions the head over the TRACK and SECTOR.

Calls2: EnterTurbo, InitForIO, DoneWithIO.

Example:

See also: OpenDisk, SetDevice.

disk

 20-46 GEOS Kernal 2.0

NxtBlkAlloc: (C64, C128) mid-level C24D

Function: Special version of BlkAlloc that begins allocating from a specific block on the disk.

Parameters: r2 BYTES — number of bytes to allocate space for. Can allocate up to 32,258 bytes

(127 blocks) (word).

r3L START_TR — start allocating from this track (byte).

r3H START_SC — start allocating from this sector (byte).

r6 TSTABLE — pointer to buffer for building out track and sector table of the newly

allocated blocks (word). usually, a position within fileTrScTab.

Uses: curDrive device number of the active drive.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

interleave† desired physical sector interleave (usually 8); used by SetNextFree. Applications

need not set this explicitly — will be set automatically by internal GEOS routines.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r2 number of blocks allocated to hold BYTES amount of data.

r3L track of last allocated block.

r3H sector of last allocated block.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r4-r8.

Description: NxtBlkAlloc begins allocating blocks from a specific block on the disk, allowing a chain of

blocks to be appended to a previous chain while still maintaining the sector interleave.

NxtBlkAlloc is essentially a special version of BlkAlloc that starts allocating blocks from an

arbitrary block on the disk rather than from a fixed block. NxtBlkAlloc is otherwise identical to

BlkAlloc.

Use NxtBlkAlloc for appending more blocks to a list of blocks just allocated with BlkAlloc, thus

circumventing the 32,258-byte barrier. Point TSTABLE at the last entry in a track/sector table (the

terminator bytes which we can overwrite), load the BYTES parameter with the number of bytes

left, and call NxtBlkAlloc. The START_TR and START_SC parameters in r3L and r3H will

contain the correct values on return from BlkAlloc. NxtBlkAlloc will allocate enough additional

blocks to hold BYTES amount of data, appending them in the track/sector table automatically.

This combined list of track and sectors can then be passed directly to WriteFile to write data to

the full chain of blocks.

NxtBlkAlloc disk

 20-47 GEOS Kernal 2.0

NxtBlkAlloc does not automatically write out the BAM. See PutDirHead for more information

on writing out the BAM. Also, the START_TR parameter should not be track number of the

directory track. Refer to GetFreeDirBlk for more information on allocating blocks on the

directory track.

Note: For more information on the scheme used to allocate successive blocks, refer to SetNextFree.

Example:

See also: BlkAlloc, SetNextFree, AllocateBlock, FreeBlock.

disk

 20-48 GEOS Kernal 2.0

OpenDisk: (C64, C128) high-level C2A1

Function: Open the disk in the current drive.

Parameters: none.

Uses: curDrive device number of the active drive.

driveType type of drive to open (for shadowing information).

Calls2: NewDisk, GetDirHead, ChkDkGEOS, GetPtrCurDkNm.

Returns: x error ($00 = no error).

r5 pointer to disk name buffer as returned from GetPtrCurDkNm. This is a pointer to one

of the DrXCurDkNm arrays.

Alters: DrxCurDkNm current disk name array contains disk name.

curDirHead current directory header.

isGEOS set to TRUE if disk is a GEOS disk, otherwise set to FALSE.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r0-r4.

Description: OpenDisk initiates access to the disk in the current drive. OpenDisk is meant to be called after a

new disk has been inserted into the disk drive. It prepares the drive and disk variables for dealing

with a new disk. An application will usually call OpenDisk immediately after calling SetDevice.

Note: Because GEOS uses the same allocation and file buffers for each drive, it is important to close all

files and update the BAM if necessary (use PutDirHead) before accessing another disk.

OpenDisk first calls NewDisk to tell the disk drive a new disk has been inserted (if the disk is

shadowed, the shadow memory is also cleared). GetDirHead is then called to load the disk's

header block and BAM into curDirHead. With a valid header block in memory, ChkDkGEOS

is called to check for the GEOS I.D. string and set the isGEOS flag to TRUE if the disk is a

GEOS disk. Finally, OpenDisk copies the disk name string from curDirHead to the disk name

buffer returned by GetPtrCurDkNm.

Note: This routine calls GetDirHead which loads in the BAM from disk. PutDirHead should be called

prior to this routine if the BAM has been modified by freeing or allocating blocks.

Example: KeyTrap.

See also: SetDevice, NewDisk.

disk

 20-49 GEOS Kernal 2.0

PurgeTurbo: (C64, C128) very low-level C235

Function: Completely deactivate and remove disk drive turbo code from current drive, returning to standard

Commodore DOS mode.

Parameters: none.

Uses: curDrive device number of the active drive.

Returns: x error ($00 = no error).

Destroys: a, y, r0-r3.

Description: PurgeTurbo deactivates and removes the turbo software from the current drive, returning control

of the device to the disk drive's internal ROM software. This allows access to normal Commodore

DOS routines. An application may want to access the Commodore DOS to perform disk functions

not offered by the GEOS Kernal such as formatting.

Example:

See also: EnterTurbo, ExitTurbo.

disk

 20-50 GEOS Kernal 2.0

PutBlock: (C64, C128) low-level C1E7

Function: General purpose routine to write a block to disk with verify.

Parameters: r4 BUFFER — address of buffer to get block from (word).

r1L TRACK — valid track number (byte).

r1H SECTOR — valid sector on track (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r1, r4 unchanged.

Destroys: a, y.

Description: PutBlock writes a block from BUFFER to the disk. PutBlock is useful for implementing disk

utility programs and new file structures.

PutBlock is a higher-level version of WriteBlock. It calls InitForIO, EnterTurbo, ReadBlock,

and DoneWithIO. If an application needs to write many blocks at once, WriteBlock may offer

a faster solution. If the disk is shadowed, PutBlock will also write the data to the shadow memory.

Note3: PutBlock does no boundary check on the buffer. If the buffer is less than BLOCKSIZE ($100)

bytes, PutBlock will write the buffer and the memory contents that are after the buffer. This

normally will not cause any problems as the size of data in the data block is stored in offset 1 of

the block when the block is not full.

Example:

See also: GetBlock, WriteBlock, BlkAlloc.

disk

 20-51 GEOS Kernal 2.0

PutBufBlock: (C64, C128) low-level 903F

Function: General purpose routine to write a block from diskBlkBuf to disk with verify.

Parameters: r1L TRACK — valid track number (byte).

r1H SECTOR — valid sector on track (byte).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r1 unchanged.

 r4 address of diskBlkBuf.

Destroys: a, y.

Description: PutBufBlock loads r4 with the address of diskBlkBuf and calls PutBlock to write a block from

diskBlkBuf to the disk. PutBufBlock is useful for setting r4 with the common location of

diskBlkBuf when writing a single block.

See PutBlock for more information.

Example:

See also: PutBlock, GetBlock, GetBufBlock, WriteBlock, BlkAlloc.

disk

 20-52 GEOS Kernal 2.0

PutDirHead: (C64, C128) mid-level C24A

Function: Write directory header to disk. GEOS also writes out the BAM.

Parameters: none.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r4 pointer to curDirHead.

Destroys: a, y, r1.

Description: PutDirHead writes the directory header to disk from the buffer at curDirHead. GEOS writes

out the full directory header block, including the BAM (block allocation map).

GEOS disks, like the standard Commodore disks upon which they are based, have one directory

header. The directory header occupies one full block on the disk. The Commodore directory

header contains information about the disk, such as the location of the directory blocks, the disk

name, and the GEOS version string (if a GEOS disk). The Commodore directory header also

contains the disk BAM, which flags particular sectors as used or unused.

PutDirHead calls PutBlock to write out the directory header block from the buffer at

curDirHead. The directory header block contains the directory header and the disk BAM (block

allocation map). Applications that are working with the mid- and low-level GEOS disk routines

may need to call PutDirHead to update the BAM on the disk with the BAM in memory. Many

useful, mid-level GEOS routine's, such as BlkAlloc, only update the BAM in memory (for speed

and ease of error recovery). When a new file is written to disk, GEOS allocates the blocks in the

in-memory BAM, writes the blocks out using the track sector table, then, as the last operation,

calls PutDirHead to write the new BAM to the disk. An application that uses the mid-level GEOS

routines to build its own specialized disk file functions will need to keep track of the status of the

BAM in memory, writing it to disk as necessary.

It is important that the BAM in memory not get overwritten by an outdated BAM on the disk. An

application that manipulates the BAM in memory (or calls GEOS routines that do so), must be

careful to write out the new BAM before calling a routine that might overwrite it. Routines that

call GetDirHead include OpenDisk, SetGEOSDisk, and OpenRecordFile.

GEOS VLIR routines set the global variable fileWritten to TRUE to signal that the VLIR file

has been written to and that the BAM in memory is more recent than the BAM on the disk.

CloseRecordFile checks this flag. If fileWritten is TRUE, CloseRecordFile calls PutDirHead

to write out the new BAM.

Example:

See also: GetDirHead.

disk

 20-53 GEOS Kernal 2.0

ReadBlock: (C64, C128) very low-level C21A

Function: Very low-level read block from disk.

Parameters: r1L TRACK — valid track number (byte).

r1H SECTOR — valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes to read block into (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: ReadBlock reads the block at the specified TRACK and SECTOR into BUFFER. If the disk is

shadowed, ReadBlock will read from the shadow memory. ReadBlock is a pared down version

of GetBlock. It expects the application to have already called EnterTurbo and InitForIO. By

removing this overhead from GetBlock, multiple sector reads can be accomplished without the

redundant initialization. This is exactly what happens in many of the higher-level disk routines

that read multiple blocks at once, such as ReadFile.

ReadBlock is useful for multiple-sector disk operations where speed is an issue and the standard

GEOS routines don't offer a decent solution. ReadBlock can function as the foundation of

specialized, high-speed disk routines.

Example: MyGetBlock.

See also: GetBlock, WriteBlock, VerWriteBlock.

disk

 20-54 GEOS Kernal 2.0

ReadByte: (C64, C128) mid-level C2B6

Function: Special version of ReadFile that allows reading a chained list of blocks a byte at a time.

Parameters: on initial call only:

r1 START_TRSC — track/sector of first data block (word).

r4 BLOCKBUF — pointer to temporary buffer of BLOCKSIZE bytes for use by

ReadByte, usually a pointer to diskBlkBuf (word).

r5L EOD — end of data (EOD) index for BLOCKBUF. $00 (byte).

must be set to $00.

r5H NDX — index to current byte in BLOCKBUF (byte).

must be set to $00.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: a byte returned

x error ($00 = no error).

 BFR_OVERFLOW

r1, r4, r5 contain internal values that must be preserved between calls to ReadByte.

Destroys: y.

Description: ReadByte allows a chain of blocks on the disk to be read a byte at a time. The first time ReadByte

is called, r1, r4, and r5 must contain the proper parameters. When ReadByte returns without an

error, the a-register will contain a single byte of data from the chain. To read another byte, call

ReadByte again. Between calls to ReadByte, the application must preserve r1, r4, r5, and the

data area pointed to by BLOCKBUF.

ReadByte loads a block into BLOCKBUF and returns a single byte from the buffer at each call.

After returning the last byte in the buffer, ReadByte loads in the next block in the chain and starts

again from the beginning of BLOCKBUF. This process continues until there are no more bytes in

the file. A BFR_OVERFLOW error is then returned.

ReadByte is especially useful for displaying very large bitmaps with BitOtherClip

Note: Reading a chain a byte at a time involves finding the first data block and passing its track/sector

to ReadFile. The track/sector of the first data block in a sequential file is returned in r1 by

GetFHdrInfo. The first data block of a VLIR record is contained in the VLIR's index table.

Example:
 MoveW startTS,r1 ; set initial track and sector
 LoadW r4,#diskBlkBuf ; set location of work buffer
 LdNull r5 ; initialize r5L and r5H data indexes
 10$
 jsr ReadByte ; read next byte. byte is returned in a-register
 cpx #00 ; if x != 0 then exit
 bne $98 ; (normal exit is x = #BFR_OVERFLOW)
 ;--- process byte in a-register here (must preserve r1, r4 and r5)
 bra 10$; loop back to get next byte

See also: OpenDisk, SetDevice.

disk

 20-55 GEOS Kernal 2.0

ReadFile: (C64, C128) mid-level C1FF

Function: Read a chained list of blocks into memory.

Parameters: r7 BUFFER — pointer to buffer where data will be read into (word).

r2 BUFSIZE — size of buffer. Can read up to 32,258 bytes (127 blocks) (word).

r1 START_TRSC — track/sector of first data block (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 BFR_OVERFLOW

r7 pointer to last byte read into BUFFER plus one.

r1 if BFR_OVERFLOW error returned, contains the track/sector of the block that, had it

been copied from diskBlkBuf to the application's buffer space, would have exceeded the

size of BUFFER. The process of copying any extra data from diskBlkBuf to the end of

BUFFER is left to the application. The data starts at diskBlkBuf+2. If no error, then r1 is

destroyed.

r2 unused bytes remaining in BUFFER.

r5L byte index into fileTrScTab of last entry (last entry = fileTrScTab plus value in r5).

Alters: fileTrScTab As the chain is followed, the track/sector pointer to each block is added to the file

track/sector table. The track and sector of the first data block is added at

fileTrScTab+2 and fileTrScTab+3, respectively, because the first two bytes

(fileTrScTab+0 and fileTrScTab+1) are reserved for the GEOS file header

track/sector.

 diskBlkBuf Each block is read into diskBlkBuf before copying to BUFFER.

Destroys: y, (r1), r3-r4 (see above for r1).

Description: ReadFile reads a chain of blocks from the disk into memory at BUFFER. Although the name

implies that it reads "files" into memory, it actually reads a chain of blocks and doesn't care

whether this chain is a sequential file or a VLIR record — ReadFile merely reads blocks until it

encounters the end of the chain or overflows the memory buffer.

ReadFile can be used to load VLIR records from an unopened VLIR file. geoWrite, for example,

loads different fonts while another VLIR file is open by looking at all the font file index tables

and remembering the index information for records that contain font data. When a VLIR

document file is open, geoWrite can load a different font by passing one of these saved values in

r1 to ReadFile. ReadFile will load the font into memory without disturbing the opened VLIR

file.

For reading a file when only the filename is known, use the high-level GetFile.

ReadFile disk

 20-56 GEOS Kernal 2.0

Note: The Commodore filing system links blocks together with track/sector links: each block has a two-

byte track/sector forward-pointer to the next sector in the chain (or $00/$FF to signal the end).

Reading a chain involves passing the first track/sector to ReadFile. The first block contains a

pointer to the next block, and so on. The whole chain can be followed by reading successive

blocks.

ReadFile reads each 256-byte block into diskBlkBuf and copies the BLKDATSIZE (254) data

bytes (possibly less in the last block of the chain) to the BUFFER area and copies the two-byte

track/sector pointer to fileTrScTab. This process is repeated until the last block is copied into the

buffer or when there is more data in diskBlkBuf than there is room left in BUFFER.

When there is more data in diskBlkBuf than there is room left in BUFFER, ReadFile returns

with a BFR_OVERFLOW error without copying any data into BUFFER. The application can

copy data, starting at diskBlkBuf +2, to fill the remainder of BUFFER manually.

Because of the limited size of fileTrScTab (256 bytes), ReadFile cannot load more than 127

blocks of data. (256 total bytes divided by two bytes per track/sector minus two bytes for the

GEOS file header equals 127). 127 blocks can hold 127 * BLKDATSIZE (254) = 32,258 bytes

of data.

Example:

See also: GetFile, WriteFile, ReadRecord.

disk

 20-57 GEOS Kernal 2.0

ReadLink: (C64, C128) very low-level 904B

Function: Read link (first two bytes) from a disk block.

Parameters: r1L TRACK — track number (byte).

r1H SECTOR — sector on track (byte).

r4 BUFFER — address of buffer of at least BLOCKSIZE bytes, usually points to

diskBlkBuf (word).

Uses: curDrive device number of the active drive.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: ReadLink returns the track/sector link from a disk block as the first two bytes in BUFFER. The

remainder of BUFFER (BLOCKSIZE-2 bytes) may or may not be altered.

ReadLink is useful for following a multiple-sector chain in order to build a track/sector table. It

is mainly of use on 1581 disk drives, which walk through a chain significantly faster when only

the links are read. Routines such as DeleteFile and FollowChain will automatically take

advantage of this capability of 1581 drives.

Note: Disk drives that do not offer any speed increase through ReadLink will simply perform a

ReadBlock.

Important: Does not work in C64 1541/RAM 1541 drivers prior to GEOS 1.5/CONFIGURE 1.6.

Use ReadBlock instead with 1541 drives if C64 OS version is less than 1.5.

Example:

See also: ReadBlock, FollowChain.

disk

 20-58 GEOS Kernal 2.0

RenameFile: (C64, C128) high-level C259

Function: Renames a file that is in the current directory.

Parameters: r6 OLDNAME — pointer to null-terminated name of file as it appears on the disk (word).

r0 NEWNAME — pointer to new null-terminated name (word).

Uses: curDrive device number of the active drive.

driveType type of drive to open (for shadowing information),

Returns: x error ($00 = no error).

Alters: diskBlkBuf used for temporary block storage.

dirEntryBuf old directory entry.

curDirHead BAM updated to reflect newly freed blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r4-r6.

Description: RenameFile searches the current directory for OLDNAME and changes the name string in the

directory entry to NEWNAME.

RenameFile first calls FindFile to get the directory entry and ensure the OLDNAME does in fact

exist. (If it doesn't exist, a FILE_NOT_FOUND error is returned).

The directory entry is read in, the new file name is copied over the old file name, and the directory

entry is rewritten. The date stamp of the file is not changed.

When using Get1stDirEntry and GetNxtDirEntry to establish the old file name, do not pass

RenameFile a pointer into diskBlkBuf. Copy the file name from diskBlkBuf to another buffer

(such as dirEntryBuf) and pass RenameFile the pointer to that buffer. Otherwise, when FindFile

uses diskBlkBuf it will corrupt the file name.

Note3: This Routine calls FindFile which loads the BAM in from disk. It is important to close all VLIR

files and update the BAM if necessary (use PutDirHead) before using RenameFile.

Example:

See also: FreeFile, FreeBlock.

disk

 20-59 GEOS Kernal 2.0

RstrAppl: (C64, C128) high-level C23E

Function: Standard desk accessory return to application.

Parameters: none.

Uses: curDrive device number of the active drive.

Returns: never returns to desk accessory.

Description: A desk accessory calls RstrAppl when it wants to return control to the application that called it.

RstrAppl loads the swapped area of memory from the "SWAP FILE", restores the saved state of

the system from the internal buffer, resets the stack pointer to its original position, and returns

control to the application.

It is the job of the desk accessory to ensure that if the current drive (curDrive) is changed that it

be returned to its original value so that RstrAppl can find the "SWAP FILE".

Note: If a disk error occurs when reading in the "SWAP FILE", the remainder of the context switch

(restoring the state of the system, etc.) is bypassed and control is immediately returned to the

caller of the desk accessory. The application will have only a moderate chance to recover,

however, because the area of memory that the desk accessory overlayed may very well include

the area where the jsr to GetFile or LdDeskAcc resides. The return, therefore, may end up in the

middle of desk accessory code.

Example:

See also: StartAppl, GetFile.

disk

 20-60 GEOS Kernal 2.0

SaveFile: (C64, C128) high-level C1ED

Function: General purpose save file routine that will create a GEOS sequential file and save a region of

memory to it or create an empty GEOS VLIR file.

Parameters: r9 FILEHDR — pointer to GEOS file header for file (word).

r10L DIRPAGE — directory page to begin searching for an empty directory slot (byte).

Uses: curDrive device number of the active drive.

year, month, day,

hours, minutes for date-stamping file.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

interleave desired physical sector interleave (usually 8).

Returns: x error ($00 = no error).

r1 track and sector of last block written.

r9 unchanged.

r6 pointer to fileTrScTab.

Alters: dirEntryBuf contains newly-built directory entry.

diskBlkBuf contains contents of last block written.

fileHeader builds 256-byte GEOS file header.

fileTrScTab $00-$01 contain T/S of file header.

end of table is marked with track=$00.

curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r1-r8.

Description: SaveFile is the most general-purpose write data type routine in GEOS. It creates a new file, either

sequential or VLIR. If the file is a sequential file, it will write out the range of memory specified

in the header to disk. If the file is a VLIR file, it will create an empty file (just a file header and

an index table; all records in the index table are marked as unused).

Not only does the file header pointed to by FILEHDR act as a prototype for the file, it also holds

all the information needed to create the file. This includes the file type (SEQ or VLIR) and other

pertinent information, such as the start and end address, which are used when creating a sequential

file. The file header pointed to by FILEHDR has one element, however, that is changed before it

is written to disk: the first word of the fileHeader points to a null-terminated filename string.

SaveFile patches this word in its own copy in fileHeader before it is written to disk.

SaveFile calls SetGDirEntry and BlkAlloc to construct the file, then calls WriteFile to put the

data into it. After the file is written, the BAM is written to disk using PutDirHead.

Note: SaveFile sets the byte at fileHeader+O_GHINFO_TXT to NULL.

SaveFile disk

 20-61 GEOS Kernal 2.0

Note3: If the start and end addresses are equal, no data blocks are written causing an empty

SEQUENTIAL file’s directory entry to have a start T/S of 00/FF. This is not a normal valid state

for a SEQUENTIAL file and should have at least one block added to it.

Note3: Required offsets into GEOS File Header to set:

Offset Constant Size Description

$00 word Pointer to filename

$44 O_GHCMDR_TYPE byte DOS file type

$45 O_GHGEOS_TYPE byte GEOS file type

$46 O_GHSTR_TYPE byte GEOS file structure type

(SEQUENTIAL or VLIR)

$47 O_GHST_ADDR word Memory to save; start address

 note: (Set to $0000 when creating a VLIR)

$49 O_GHEND_ADDR word Memory to save; end address

 note: (Set to -1 or $FFFF when creating a

VLIR)

Example:

See also: GetFile, OpenRecordFile.

disk

 20-62 GEOS Kernal 2.0

SetDevice: (C64, C128) high-level C2B0

Function: Establish communication with a new peripheral.

Parameters: a DEVNUM — 8,9,10,11 (DRIVE_A through DRIVE_D) for disk drives, PRINTER

for serial printer, or any other valid serial device bus address.

Uses: curDevice currently active device.

Returns: x error ($00 = no error).

Alters: curDevice new current device number.

curDrive new current drive number if device is a disk drive.

curType GEOS v1.3 and later: current drive type (copied from driveType table).

Destroys: a, y.

Description: SetDevice changes the active device and is used primarily to switch from one disk drive to

another. SetDevice also allows a printer driver to gain access to the serial bus by using a

DEVNUM value of PRINTER.

Each I/O device has an associated device number that distinguishes its I/O from other devices. At

any given time only one device is active. The active device is called the current device and to

change the current device an application calls SetDevice.

SetDevice is designed to switch between serial bus devices, DEVNUM reflects the architecture

of serial bus: disk drives are numbered 8 through 11 and the printer is numbered 4. However, not

all I/O devices are actual serial bus peripherals. A RAMdisk, for example, uses a special device

driver to make a cartridge port RAM-Expansion Unit emulate a Commodore disk drive.

SetDevice switches between these devices just as if they were daisy chained off of the serial bus.

GEOS up through v1.2 supports two disk devices, DRIVE_A and DRIVE_B. GEOS v1.3 and

later supports up to four disk devices, DRIVE_A through DRIVE_D. DeskTop only supports 3

devices.

Note: SetDevice calls ExitTurbo so that the old device is no longer actively sensing the serial bus, then

installs the new device driver as necessary to make the new device (DEVNUM) the current device.

With more than one type of device attached (e.g., a 1541 and a 1571), GEOS must switch the

device drivers, making the driver for the selected device active. GEOS stores inactive device

drivers in the Commodore 128 backRAM and in special system areas in an REU. GEOS

applications must use SetDevice to change the active device. An application should never directly

modify curDrive or curDevice.

Example: KeyTrap.

See also: OpenDisk, ChangeDiskDevice.

disk

 20-63 GEOS Kernal 2.0

SetGDirEntry: (C64, C128) mid-level C1F0

Function: Builds a system specific directory entry from a GEOS file header, date-stamps it, and writes it

out to the current directory.

Parameters: r10L DIRPAGE — directory page to begin searching for free slot; each directory page

holds eight files and corresponds to one notepad page on the GEOS deskTop. The first

page is page one (byte).

r2 NUMBLOCKS — number of blocks in file (word).

r6 TSTABLE — pointer to a track/sector list of unused blocks (unused but allocated in

the BAM), usually a pointer to fileTrScTab; BlkAlloc can be used to build such a list

(word).

r9 FILEHDR — pointer to GEOS file header (word).

Uses: curDrive device number of the active drive.

year, month, day, hour, minutes for date-stamping file.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

interleave† desired physical sector interleave (usually 8). applications need not set this

explicitly — will be set automatically by internal GEOS routines. Only used when

new directory block is allocated.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r6 pointer to first non-reserved block in track/sector table (SetGDirEntry reserves one block

for the file header and a second block for the index table if the file is a VLIR file).

Alters: dirEntryBuf contains newly-built directory entry.

diskBlkBuf used for temporary storage of the directory block.

curDirHead2 updated Directory Header.

Destroys: a, y, r1, r3-r5, r7-r8.

Description: SetGDirEntry calls BldGDirEntry to build a system specific directory entry from the GEOS

file header, date-stamps the directory entry, calls GetFreeDirBlk to find an empty directory slot,

and writes the new directory entry out to disk.

Most applications will create new files by calling SaveFile. SaveFile calls SetGDirEntry as part

of its normal processing.

SetGDirEntry disk

 20-64 GEOS Kernal 2.0

Note3: Required offsets into GEOS File Header to set:

Offset Constant Size Description

$00 word Pointer to filename

$44 O_GHCMDR_TYPE byte DOS file type

$45 O_GHGEOS_TYPE byte GEOS file type

$46 O_GHSTR_TYPE byte GEOS file structure type

(SEQUENTIAL or VLIR)

Example:

See also: GetFile, OpenRecordFile.

disk

 20-65 GEOS Kernal 2.0

SetGEOSDisk: (C64, C128) high-level C1EA

Function: Convert Commodore disk to GEOS format.

Calls2: GetDirHead, CalcBlksFree, SetNextFree, PutDirHead.

Parameters: none.

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 INSUFF_SPACE

Alters: curDirHead directory header is read from disk.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r0L, r1, r4-r5.

Description: SetGEOSDisk converts a standard Commodore disk into GEOS format by writing the GEOS ID

string to the directory header (at OFF_GEOS_ID) and creating an off-page directory block. An

application can call SetGEOSDisk after OpenDisk returns the isGEOS flag set to FALSE.

Typically, the user is prompted before the conversion.

SetGEOSDisk expects the disk to have been previously opened with OpenDisk. It first calls

GetDirHead to read the directory header into memory then calls CalcBlksFree to see if there is

a block available for the off-page directory (if there isn't, an INSUFF_SPACE error is returned).

SetNextFree is then called to allocate the off-page directory block. The off-page directory block

is written with empty directory entries and a pointer to it is placed in the directory header (at

OFF_OP_TR_SC). Finally, PutDirHead is called to write out the new BAM and directory

header.

Example:

See also: ChkDkGEOS.

disk

 20-66 GEOS Kernal 2.0

SetNextFree: (C64, C128) mid-level C292

Function: Search for a nearby free block and allocate it.

Parameters: r3L START_TR — start searching from this track (byte).

r3H START_SC — start searching from this sector (byte).

Uses: curDrive device number of the active drive.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

interleave† desired physical sector interleave (usually 8). applications

need not set this explicitly — will be set automatically by internal GEOS routines.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 INSUFF_SPACE

r3L track of allocated block.

r3H sector of allocated block.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r6-r7, r8H.

Description: Given the current track/sector as passed in r3L/r3H, SetNextFree searches for the next free block

on the disk. The "next" free block is not necessarily adjacent to the previous block because

SetNextFree may interleave the blocks. Proper interleaving allows the drive to read and write

data as fast as possible because it minimizes the time the drive spends waiting for a block to spin

under the read/write head. It means, however, that sequential data blocks may not occupy adjacent

blocks on the disk. As long as an application is using the standard GEOS file structures, this

interleaving should not be apparent.

After determining the ideal sector from any interleave calculations, SetNextFree tries to allocate

the block if it is unused. If the block is used, SetNextFree picks another nearby sector (jumping

to another track if necessary) and tries again. This process continues until a block is actually

allocated or the end of the disk is reached, whichever comes first. If the end of the disk is reached,

an INSUFF_SPACE error is returned.

Notice that SetNextFree only searches for free blocks starting with the current block and

searching towards the end of the disk. It does not backup to check other areas of the disk because

it assumes, they have already been filled. (Actually, SetNextFree will backtrack as far back as

beginning of the current track but will not go to any previous tracks). Usually this is a safe

assumption because SetNextFree is called by BlkAlloc, which always begins searching for free

blocks from the beginning of the disk.

SetNextFree disk

 20-67 GEOS Kernal 2.0

It is conceivable, however, that an application might want to implement an Append2Record

function (or something of that sort), which would append a block of data to an already existing

VLIR record without deleting, reallocating, and then rewriting the record like WriteRecord.

In order to maintain any interleave from the last block in the record to the new block, the

Append2Record routine would pass the track and sector of the last block in the record to

SetNextFree. SetNextFree will start searching from this block. If a free block cannot be found,

an INSUFF_SPACE error is returned. Since SetNextFree only searched from the current block

to the end of the disk, the possibility exists that a free block lies somewhere on a previous, still

unchecked disk area. The following alternative to SetNextFree will circumvent this problem:

(See Example: MySetNextFree).

Note: SetNextFree uses the value in interleave to establish the ideal next sector. A good interleave

will arrange successive sectors so as to minimize the time the drive spends stepping the read/write

head and waiting for the desired sector to spin around. The value in interleave is usually set by

the Configure program and internally by GEOS disk routines. The application will usually not

need to worry about the value in interleave.

Because Commodore disks store the directory on special tracks, SetNextFree will automatically

skip over these special tracks unless r3L is started on one of these tracks, in which case

SetNextFree assumes that this was intentional and a block on the directory track is allocated.

(This is exactly how GetFreeDirBlk operates).

The directory blocks for various drives can be determined by the following constants:

1581 DIR_1581_TRACK $28 (one track)

1541 DIR_TRACK $12 (one track)

1571 DIR_TRACK

DIR_TRACK+N_TRACKS

$12

$12+$23

(two tracks)

SetNextFree does not automatically write out the BAM. See PutDirHead for more information

on writing out the BAM.

Example: MySetNextFree.

See also: GetFile, OpenRecordFile.

disk

 20-68 GEOS Kernal 2.0

StartAppl: (C64, C128) mid-level C22F

Function: Warmstart GEOS and start an application that is already loaded into memory.

Parameters: These are all passed on to the application being started.

r7 START_ADDR — start address of application (word).

r0L OPTIONS: (byte).

bit 7: 0 not passing a data file.

1 r2 and r3 contain pointers to disk and data file names.

bit 6: 0 not printing data file.

1 printing data file; application should print file and exit.

r2 DATA_DISK — only valid if bit 7 or bit 6 of OPTIONS is set: pointer to name of the disk

that contains the data file, usually a pointer to one of the DrXCurDkNm buffers (word).

r3 DATA_FILE — only valid if bit 7 of OPTIONS is set: pointer to name of the data file

(word).

Returns: never returns.

Passes: warmstarts GEOS and passes the following to the application at START_ADDR:

r0 as originally passed to StartAppl.

r2 as originally passed to StartAppl (use dataDiskName).

r3 as originally passed to StartAppl (use dataFileName).

dataDiskName contains name of data disk if bit 7 of r0L is set.

dataFileName contains name of data file if bit 6 of r0L is set.

Alters: GEOS brought to a warmstart state.

Destroys: n/a.

Description: StartAppl warmstarts GEOS and jsr's to START_ADDR as if the application had been loaded

from the deskTop. GetFile and LdApplic call StartAppl automatically when loading an

application.

StartAppl is useful for bringing an application back to its startup state. It completely warmstarts

GEOS, resetting variables, initializing tables, clearing the processor stack, and executing the

application's initialization code with a jsr from MainLoop.

Example:

See also: LdApplic, GetFile.

disk

 20-69 GEOS Kernal 2.0

VerWriteBlock: (C64, C128) very low-level C223

Function: Very low-level verify block on disk.

Parameters: r1L TRACK — track number (byte).

r1H SECTOR — valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes that contains data that should be

on this sector (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: VerWriteBlock verifies the validity of a recently written block. If the block does not verify, the

block is rewritten by calling WriteBlock. VerWriteBlock is a low-level disk routine and expects

the application to have already called EnterTurbo and InitForIO.

VerWriteBlock can be used to accelerate the verifies that accompany multiple sector writes by

first writing all the sectors and then verifying them. This is often faster than verifying a sector

immediately after writing it because when writing sequential sectors, the GEOS turbo code will

catch the sector interleave. If a sector is written and then immediately verified, the turbo code

will need to wait for the disk to make one complete revolution before the newly-written sector

will again pass under the read/write head. By writing all the sectors first and catching the

interleave, then verifying all the sectors (again, catching the interleave), the dead time when the

turbo code is waiting for the disk to spin around is minimized. Many of the higher-level disk

routines that write multiple blocks do just this.

VerWriteBlock is useful for multiple-sector disk operations where speed is an issue and the

standard GEOS routines don't offer a decent solution. VerWriteBlock can function as the

foundation of specialized, high-speed disk routines.

VerWriteBlock does not always do a byte-by-byte compare with the data in BUFFER. Some

devices, such as the Commodore 1541, can do a cyclic redundancy check on the data in the block,

and this internal checksum is sufficient evidence of a good write. Other devices, such as RAM-

Expansion Units, have built-in byte-by-byte verifies.

Example: MyPutBlock.

See also: WriteBlock, PutBlock.

disk

 20-70 GEOS Kernal 2.0

WriteBlock: (C64, C128) very low-level C220

Function: Very low-level write block to disk.

Parameters: r1L TRACK — valid track number (byte).

r1H SECTOR — valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes that contains data to write out

(word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y.

Description: WriteBlock writes the block at BUFFER to the specified TRACK and SECTOR. If the disk is

shadowed, WriteBlock will also write the data to the shadow memory. WriteBlock is a pared

down version of PutBlock. It expects the application to have already called EnterTurbo and

InitForIO, and it does not verify the data after writing it.

WriteBlock can be used to accelerate multiple-sector writes and their accompanying verifies by

writing all the sectors first and then verifying them. This is often faster than verifying a sector

immediately after writing it because when writing sequential sectors, the GEOS turbo code will

catch the sector interleave. If a sector is written and then immediately verified, the turbo code

will need to wait for the disk to make one complete revolution before the newly written sector

will again pass under the read/write head. By writing all the sectors first and catching the

interleave, then verifying all the sectors (again, catching the interleave), the dead time when the

turbo code is waiting for the disk to spin around is minimized. Many of the higher-level disk

routines that write multiple blocks do just this.

WriteBlock is useful for multiple-sector disk operations where speed is an issue and the standard

GEOS routines don't offer a decent solution. WriteBlock can function as the foundation of

specialized, high-speed disk routines.

Example: MyPutBlock.

See also: PutBlock, ReadBlock, VerWriteBlock.

disk

 20-71 GEOS Kernal 2.0

WriteFile: (C64, C128) mid-level C1F9

Function: Write data to a chained list of disk blocks.

Parameters: r7 DATA — pointer to start of data (word).

r6 TSTABLE — pointer to a track/sector list of blocks to write data to (unused but allocated

in the BAM), usually a pointer to fileTrScTab+2; BlkAlloc can be used to build such a list

(word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y, r1-r2, r4, r6-r7.

Description: WriteFile writes data from memory to disk. The disk blocks are verified, and any blocks that

don't verify are rewritten.

Although the name "WriteFile" implies that it writes "files", it actually writes a chain of blocks

and doesn't care if this chain is an entire sequential file or merely a VLIR record.

Note: WriteFile uses the track/sector table at TSTABLE as a list of linked blocks that comprise the

chain. The end of the chain is marked with a track/sector pointer of $00,$FF. WriteFile copies

the next BLKDATSIZE (254) bytes from the data area to diskBlkBuf+2, looks two-bytes ahead

in the TSTABLE for the pointer to the next track/sector, and copies those two-bytes to

diskBlkBuf+0 and diskBlkBuf+1. WriteFile then writes this block to disk. This is repeated until

the end of the chain is reached.

WriteFile does not flush the BAM (it does not alter it either — it assumes the blocks in the

track/sector table have already been allocated). See BlkAlloc, SetNextFree, and AllocateBlock

for information on allocating blocks. See PutDirHead for more information on writing out the

BAM.

Example:

See also: SaveFile, WriteRecord, ReadFile.

disk

 20-72 GEOS Kernal 2.0

VLIR

AppendRecord C289 Insert a new VLIR record after the current record. 20-73

CloseRecordFile C277 Close/Save currently open VLIR file. 20-74

DeleteRecord C283 Delete current VLIR record. 20-75

InsertRecord C286 Insert new VLIR record in front of current record. 20-76

NextRecord C27A Make next VLIR the current record. 20-77

OpenRecordFile C274 Open VLIR file on current disk. 20-78

PointRecord C280 Make specific VLIR record the current record. 20-79

PreviousRecord C27D Make previous VLIR record the current record. 20-80

ReadRecord C28C Read current VLIR record into memory. 20-81

UpdateRecordFile C295 Update currently open VLIR file without closing. 20-82

WriteRecord C28F Write current VLIR record to disk. 20-83

 disk \ VLIR

 20-73 GEOS Kernal 2.0

AppendRecord: (C64, C128) C289

Function: Adds an empty record after the current record in the index table, moving all subsequent records

down one slot to make room.

Parameters: none.

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, assumes record just opened (or updated) and reads BAM into memory.

curRecord current record number.

fileHeader VLIR index table.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

OUT_OF_REC0RDS

Alters: curRecord new record number.

usedRecords incremented by one.

fileWritten† set to TRUE to indicate the file has been altered since last updated.

fileHeader new record added to index table.

curDirHead directory header read in if fileWritten is FALSE on call.

Destroys: a, y, r0L, r1L, r4.

Description: AppendRecord inserts an empty VLIR record following the current record in the index table of

an open VLIR file, moving all subsequent records down in the record list. The new record

becomes the current record. A VLIR file can have up to MAX_VLIR_RECS records (127). If

adding a record exceeds this value, then an OUT_OF_RECORDS error is returned.

A record added with AppendRecord occupies no disk space until data is written to it. The new

record is marked as empty in the VLIR index table ($00 $FF). When a VLIR file is first created

by SaveFile, all records are marked as unused ($00 $00). Some applications call AppendRecord

repeatedly after creating a new file until an OUT_OF_RECORDS error is returned This marks

all the records as used and prepares them to accept data with calls to WriteRecord.

Note: AppendRecord does not write the VLIR index table out to the disk. Call CloseRecordFile or

UpdateRecordFile to save the index table when all modifications are complete.

Note: An empty record is marked with $00 $FF in the VLIR index table (stored in the buffer at

fileHeader). An unused record is marked with $00 $00. Use PointRecord to check the status of

a particular record (unused, empty, or filled).

Example: SaveRecord.

See also: InsertRecord, DeleteRecord, PointRecord.

disk \ VLIR

 20-74 GEOS Kernal 2.0

CloseRecordFile: (C64, C128) C277

Function: Close the current VLIR file (updating it in the process) so that another may be opened.

Parameters: none.

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, no updating occurs because file has not been written to.

fileHeader VLIR index table stored in this buffer.

fileSize total number of disk blocks used in file (includes index block, GEOS file header,

and all records).

dirEntryBuf directory entry of VLIR file.

year, month, day, hours, minutes for date-stamping file.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten† set to FALSE to indicate the file hasn't been altered since last updated.

diskBlkBuf used for temporary storage of the directory block.

Note: When making manual changes to the VLIR, setting fileWritten to TRUE will cause

CloseRecordFile to write the changes to disk.

Destroys: a, y, r1, r4, r5.

Description: CloseRecordFile first calls UpdateRecordFile then closes the VLIR file so that another may be

opened.

Because GEOS stores the BAM in global memory, the application must be careful not to corrupt

it before the VLIR file is updated or closed. For more information, refer to UpdateRecordFile.

Example: SaveRecord.

See also: OpenRecordFile, UpdateRecordFile.

disk \ VLIR

 20-75 GEOS Kernal 2.0

DeleteRecord: (C64, C128) C283

Function: Removes the current VLIR record from the record list, moving all subsequent records upward to

fill the slot and freeing all the data blocks associated with the record.

Parameters: none.

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, assumes record just opened (or updated) and reads BAM into memory.

curRecord current record number.

fileHeader VLIR index table stored in this buffer.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead current directory header/BAM.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: curRecord only changed if deleting the last record in the table, in which case it becomes the

new last record.

fileWritten† set to TRUE to indicate the file has been altered since last updated.

fileHeader record marked as empty ($00 $FF).

fileSize decremented to reflect any deleted record blocks.

curDirHead current directory header/BAM modified to free blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r0-r9.

Description: DeleteRecord removes the current record from the record list by moving all subsequent records

upward to fill the current record's slot. Any data blocks associated with the record are freed.

DeleteRecord does not update the BAM and VLIR file information on the disk. Call

CloseRecordFile or UpdateRecordFile to update the file when done modifying.

Example:

See also: AppendRecord, InsertRecord.

disk \ VLIR

 20-76 GEOS Kernal 2.0

InsertRecord: (C64, C128) C286

Function: Adds an empty record before the current record in the index table, moving all subsequent records

(including the current record) downward.

Parameters: none.

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, assumes record just opened (or updated) and reads BAM into memory.

curRecord current record number.

fileHeader VLIR index table.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error)

OUT_OF_RECORDS.

Alters: curRecord new record becomes the current record.

fileWritten† set to TRUE to indicate the file has been altered since last updated.

fileHeader new record added to index table.

usedRecords number of records in file that are currently in use.

Destroys: a, y, r0L.

Description: InsertRecord attempts to insert an empty VLIR record in front of the current record in the index

table of an open VLIR file, moving all subsequent records downward in the record list. The new

record becomes the current record. A VLIR file can have a maximum of MAX_VLIR_RECS

(127) records. If adding a record will exceed this value, an OUT_OF_RECORDS error is

returned. In the index table, the new record is marked as used but empty ($00, $FF) .

InsertRecord does not update the VLIR file information on disk. Call CloseRecordFile or

UpdateRecordFile to update the file when done modifying.

Example: SaveRecord.

See also: ReadRecord, WriteRecord, CloseRecordFile, UpdateRecordFile.

disk \ VLIR

 20-77 GEOS Kernal 2.0

NextRecord: (C64, C128) C27A

Function: Makes the next record the current record.

Parameters: none.

Uses: fileHeader index table checked to establish whether record exists.

Returns: x error ($00 = no error)

INV_RECORD.

y track of first data block. If no error, then a value of value of $00 here means the record is

allocated but not in use (has no data blocks).

a new current record number.

r1L Track of first data block in record.

r1H Sector of first data block in record.

Alters: curRecord new record number.

Destroys: nothing.

Description: NextRecord makes the current record plus one the new current record. A subsequent call to

ReadRecord or WriteRecord will operate with this record.

If the record does not exist, then NextRecord returns an INV_RECORD (invalid record) error.

Example: SaveRecord.

See also: PreviousRecord, PointRecord.

disk \ VLIR

 20-78 GEOS Kernal 2.0

OpenRecordFile: (C64, C128) C274

Function: Open an existing VLIR file for access.

Parameters: r0 FILENAME — pointer to null-terminated name of file (word).

Uses: curDrive device number of the active drive.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

STRUCT_MISMATCH

r1L track of VLIR index block.

r1H sector of VLIR index block.

r5 pointer into diskBlkBuf to start of directory entry.

Alters: fileHeader buffer contains VLIR index table.

usedRecords number of records in file that are currently in use.

curRecord current record set to 1 by default or -1 ($FF) if there are no records in the file.

fileWritten† set to FALSE to indicate VLIR file has not been written to.

fileSize total number of disk blocks used in file (includes index block, GEOS file header,

and all records).

dirEntryBuf directory entry of VLIR file.
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a, y, r1, r4-r6.

Description: Before accessing the data in a VLIR file, an application must call OpenRecordFile.

OpenRecordFile searches the current directory for FILENAME and, if it finds it, loads the index

table into fileHeader. OpenRecordFile initializes the GEOS VLIR variables (both local and

global) to allow other VLIR routines such as WriteRecord and ReadRecord to access the file.

Only one VLIR file may be open at a time. A previously opened VLIR file should be closed

before opening another.

If an application passes a FILENAME of a non-VLIR file, OpenRecordFile will return a

STRUCT_MISMATCH error.

Note: An application can create an empty VLIR file with SaveFile.

Note: GEOS up to 2.0 does not support a hierarchical file system, the "current directory" is actually

the entire disk.

Note:3 This routine calls GetDirHead which loads in the BAM from disk. PutDirHead should be called

prior to this routine if the BAM has been modified by freeing or allocating blocks.

Example: SaveRecord.

See also: ReadRecord, WriteRecord, CloseRecordFile, UpdateRecordFile.

disk \ VLIR

 20-79 GEOS Kernal 2.0

PointRecord: (C64, C128) C280

Function: Make a particular record the current record.

Parameters: a RECORD — record number to make current.

Uses: fileHeader index table checked to establish whether record exists.

usedRecords number of currently used records in the VLIR file.

Returns: x error ($00 = no error).

 INV_RECORD

y track of VLIR record. If no error, then a value of value of $00 here means record is

allocated but not in use (has no data blocks).

a new current record number.

r1L track of VLIR record.

r1H sector of VLIR record.

Note: r1 $0000 record is not allocated.

 $FF00 record is allocated but not in use (has no data blocks); this information is

already flagged in y.

 other track/sector of first data block in record.

Alters: curRecord new record number.

Destroys: nothing.

Description: PointRecord makes RECORD the current record so that a subsequent call to ReadRecord or

WriteRecord will operate with RECORD. VLIR records are numbered zero through

MAX_VLIR_RECS-1.

If the record does not exist (you pass a record number that is larger than the number of currently

used records), then PointRecord returns an INV_RECORD (invalid record) error.

Example: SaveRecord.

See also: NextRecord, PreviousRecord.

disk \ VLIR

 20-80 GEOS Kernal 2.0

PreviousRecord: (C64, C128) C27D

Function: Makes the previous record the current record.

Parameters: none.

Uses: fileHeader index table checked to establish whether record exists.

Returns: x error ($00 = no error).

INV_RECORD

y track of VLIR record. If no error, then a value of $00 here means record is allocated but

not in use (has no data blocks).

a new current record number.

r1L track of VLIR record.

r1H sector of VLIR record.

Alters: curRecord new record number.

Destroys: nothing.

Description: PreviousRecord makes the current record minus one the new current record. A subsequent call

to ReadRecord or WriteRecord will operate with this record.

If the record does not exist, then PreviousRecord returns an INV_RECORD (invalid record)

error.

Example: SaveRecord.

See also: NextRecord, PointRecord.

disk \ VLIR

 20-81 GEOS Kernal 2.0

ReadRecord: (C64, C128) C28C

Function: Read in the current VLIR record.

Parameters: r7 BUFFER — pointer to start buffer where data will be read into (word).

r2 BUFSIZE — size of buffer: Commodore version can read up to 32,258 bytes (127 blocks)

(word).

Uses: curDrive device number of the active drive.

curRecord current record number.

fileHeader VLIR index table. Table holds track / sector of first block of each record.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 BFR_OVERFLOW

a $00 = empty record, no data read.

 $FF = record contained data.

r7 pointer to last byte read into BUFFER plus one if not an empty record, otherwise

unchanged.

r1 if BFR_OVERFLOW error returned, contains the track/sector of the block that, had it

been copied from diskBlkBuf to the application's buffer space, would have exceeded the

size of BUFFER. The process of copying any extra data from diskBlkBuf to the end of

BUFFER is left to the application. The data starts at diskBlkBuf+2. If no error, then r1 is

destroyed.

r2 unused bytes remaining in BUFFER.

r5L byte index into fileTrScTab of last entry (last entry = fileTrScTab plus value in r5).

Alters: fileTrScTab As the chain of blocks in the record is followed, the track/sector pointer of each

block is added to the file track/sector table. The track and sector of the first block

in the record is added at fileTrScTab+2 and fileTrScTab+3. Refer to ReadFile

for more information.

 diskBlkBuf Each block is read into diskBlkBuf before copying to BUFFER.

Destroys: y, (r1), r3-r4 (see above for r1).

Description: ReadRecord reads the current record into memory at BUFFER. If the record contains more than

BUFSIZE bytes of data, then a BFR_OVERFLOW error is returned.

ReadRecord calls ReadFile to load the chain of blocks into memory.

Example:

See also: WriteRecord, ReadFile.

disk \ VLIR

 20-82 GEOS Kernal 2.0

UpdateRecordFile: (C64, C128) C295

Function: Update the disk copy of the VLIR index table, BAM and other VLIR information such as the

file's time/date-stamp. This update only takes place if the file has changed since opened or last

updated.

Parameters: none.

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, no updating occurs because file has not been written to.

fileHeader VLIR index table stored in this buffer.

fileSize total number of disk blocks used in file (includes index block, GEOS file header,

and all records).

dirEntryBuf directory entry of VLIR file.

year, month, day, hours, minutes for date-stamping file.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten set to FALSE to indicate that file hasn't been altered since last updated.

Destroys: a, y, r1, r4, r5.

Description: UpdateRecordFile checks the fileWritten flag. If the flag is TRUE, which indicates the file has

been altered since it was last updated, UpdateRecordFile writes the various tables kept in

memory out to disk (e.g., index table, BAM) and time/date-stamps the directory entry. If the

fileWritten flag is FALSE, it does nothing.

UpdateRecordFile writes out the index block, adds the time/date-stamp and fileSize information

to the directory entry, and writes out the new BAM with a call to PutDirHead.

Because GEOS stores the BAM in global memory, the application must be careful not to corrupt

it before the VLIR file is updated. If the fileWritten flag is TRUE and the BAM is reread from

disk, the old copy (on disk) will overwrite the current copy in memory. In the normal use of VLIR

disk routines, where a file is opened, altered, then closed before any other disk routines are

executed, no conflicts will arise.

Example:

See also: CloseRecordFile, OpenRecordFile.

disk \ VLIR

 20-83 GEOS Kernal 2.0

WriteRecord: (C64, C128) C28F

Function: Write data to the current VLIR record.

Parameters: r2 BYTES — data bytes to write to record. Can write up to 32,258 bytes (127 blocks).

r7 RECDATA — pointer to start of record data (word).

Uses: curDrive device number of the active drive.

fileWritten† if FALSE, assumes record just opened (or updated) and reads BAM into memory.

curRecord current record number.

fileHeader VLIR index table stored in this buffer.

curType GEOS 64 v1.3 and later for detecting REU shadowing.

curDirHead BAM updated to reflect newly allocated block.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten† set to TRUE to indicate that file has been altered since last updated.

fileHeader index table adjusted to point to new chain of blocks for current record.

fileSize adjusted to reflect new size of file.

fileTrScTab contains track/sector table for record as returned from BlkAlloc. The track and

sector of the first block in the record is at fileTrScTab+0 and fileTrScTab+1. The

end of the table is marked with a track value of $00.

curDirHead BAM updated to reflect newly freed and allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only).

dir3Head† (BAM for 1581 drive only).

Destroys: a, y, r0-r9.

Description: WriteRecord writes data to the current record. All blocks previously associated with the record

are freed. BlkAlloc is then used to allocate enough new blocks to hold BYTES amount of data.

The data is then written to the chain of sectors by calling WriteFile. The fileSize variable is

updated to reflect the new size of the file.

WriteRecord does not write the BAM and internal VLIR file information to disk. Call

CloseRecordFile or UpdateRecordFile when done to update the disk with this information.

Note: WriteRecord correctly handles the case where the number of bytes to write (BYTES, r2) is zero.

The record is freed and marked as allocated but not in use.

Example:

See also: ReadRecord, WriteFile.

 20-84 GEOS Kernal 2.0

graphics

Name Addr Description Page

BitmapClip C2AA Display a compacted bitmap, clipping to a sub-window. 20-85

BitmapUp C142 Display a compacted bitmap without clipping. 20-87

i_BitmapUp C1AB Inline BitmapUp. 20-87

BitOtherClip C2C5 BitmapClip with data coming from elsewhere (e.g., disk) 20-88

ColorCard C2F8 C128 Get or Set a Color Card. In 40 or 80-column mode. 20-90

ColorRectangle C2F8 C128 Draw a Color rectangle on the 80-column Screen. 20-91

DrawLine C130 Draw, clear, or recover line between two endpoints. 20-92

DrawPoint C133 Draw, clear, or recover a single screen point. 20-93

FrameRectangle C127 Draw a rectangular frame (outline). 20-94

i_FrameRectangle C1A2 Inline FrameRectangle. 20-94

GetScanLine C13C Calculate scanline address. 20-95

GraphicsString C136 Execute a string of graphics commands. 20-96

i_GraphicsString C1A8 Process a graphic command table / inline 20-96

HorizontalLine C118 Draw a horizontal line in a pattern 20-98

InvertLine C11B Invert the pixels on a horizontal screen line. 20-99

ImprintRectangle C250 Imprint rectangular area to background buffer. 20-100

i_ImprintRectangle C253 Inline ImprintRectangle. 20-100

InvertRectangle C12A Invert the pixels in a rectangular screen area. 20-101

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. 20-102

RecoverLine C11E Recover horizontal screen line from background buffer. 20-104

Rectangle C124 Draw a filled rectangle. 20-106

i_Rectangle C19F Inline Rectangle. 20-106

RecoverRectangle C12D Recover rectangular screen area from background buffer. 20-105

i_RecoverRectangle C1A5 Inline RecoverRectangle. 20-105

SetColorMode C2F5 Change GEOS 128 80-column Color Mode 20-107

SetNewMode C2DD Change GEOS 128 graphics mode (40/80 switch). 20-108

SetPattern C139 Set current fill pattern. 20-109

TestPoint C13F Test status of single screen point (on or off?). 20-110

VerticalLine C121 Draw a vertical line in a pattern. 20-111

graphics

 20-85 GEOS Kernal 2.0

BitmapClip: (C64, C128) C2AA

Function: Place a rectangular subset of a compacted bitmap on the screen.

Parameters: r0 DATA — pointer to the compacted bitmap data (word).

r1L XPOS — x card coordinate: pixel position / 8 (byte).

r1H YPOS — y-coordinate (byte).

r2L W_WIDTH — width in cards: pixel width / 8 (byte).

r2H W_HEIGHT — height in pixels (byte).

r11L DX1 — delta-x1: offset of left-edge of clipping window in cards from

left-edge of full bitmap (byte).

r11H DX2 — delta-x2: offset of right-edge of clipping window in cards from

right-edge of full bitmap (byte).

r12 DY1 — delta-y1: offset of top-edge of clipping window in pixels from

top-edge of full bitmap (word).

where the upper-left corner of the clipped bitmap is placed at (XPOS*8, YPOS). The lower-right

corner is at (XPOS*8+W_WIDTH*8, YPOS+W_HEIGHT).

Uses: dispBufferOn:

bit 7 — write to foreground screen if set.

bit 6 — write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r0-r12.

Description: BitmapClip uncompacts a rectangular area of a full bitmap, clipping (ignoring) any data that

exists outside of the desired area. The rectangular subset is called the clipping window.

C128: Under GEOS 128, OR’ing DOUBLE_B into the XPOS and W_WIDTH parameters automatically

doubles the x-position and the width of the bitmap (respectively) when running in 80-column

mode.

BitmapClip in the first release of GEOS 128 does not call TempHideMouse to disable the sprites

and does not properly double the width when drawing to the 80-column screen. On Kernal's where

the release byte is greater than $01, these problems have been fixed. †

Note3: † There is no supporting documentation or sample code to identify the location of the "release"

Kernal variable. BitmapClip problems were fixed in the version of GEOS 128 1.3 that included

CONFIGURE 1.4.

BitmapClip graphics

 20-86 GEOS Kernal 2.0

The following diagram illustrates the eight BitmapClip parameters:

C64, C128: No checks are made to determine if the data, dimensions, or positions are valid. Be careful to pass

accurate values. Do not pass a value of $00 for either the W_WIDTH or W_HEIGHT parameters,

and pay special attention to the fact that XPOS, W_WIDTH, DX1, and DX2 are specified in cards

(groups of eight pixels horizontally), not in individual pixels.

Note: It may be helpful to think of DY1 as the number of scanlines in the bitmap to skip initially, to

think of W_HEIGHT as the number of scanlines to display, to think of DX1 as the number of

cards to skip at the beginning of each scanline, to think of W_WIDTH as the number of cards to

display, and to think of DX2 as the number of cards to skip at the end of each scanline.

Example: DisplayImage.

clipping window

full compacted bitmap
eight-pixel

boundaries

DX2

(in cards)
W_WIDTH

(in cards)

DX1

(in cards)

W_HEIGHT

(in pixels)

DY1

(in pixels)

See also: BitmapUp, BitOtherClip.

graphics

 20-87 GEOS Kernal 2.0

BitmapUp:, i_BitmapUp (C64, C128) C142, C1AB

Function: Place a compacted bitmap onto the screen.

Parameters: Normal:

r0 DATA — pointer to the compacted bitmap data (word).

r1L XPOS — x-card-coordinate: pixel position / 8 (byte).

r1H YPOS — y-coordinate (byte).

r2L WIDTH — width in cards: pixel width / 8 (byte).

r2H HEIGHT — height in pixels (byte).

Inline:

data appears immediately after the jsr i_BitmapUp.

.word DATA — pointer to the compacted bitmap data.

.byte XPOS — x-card-coordinate: pixel position / 8.

.byte YPOS — y-coordinate.

.byte WIDTH — width in cards: pixel width / 8.

.byte HEIGHT — height in pixels.

where the upper-left corner of the bitmap is placed at (XPOS*8, YPOS). The lower-right corner

is at (XPOS*8+WIDTH*8, YPOS+HEIGHT).

Uses: dispBufferOn:

bit 7 — write to foreground screen if set.

bit 6 — write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r0-r9L.

Description: BitmapUp uncompacts a GEOS compacted bitmap according to the width and height information

and places it at the specified screen position. No checks are made to determine if the data,

dimensions, or positions are valid, and bitmaps which exceed the screen edge will not be clipped.

Be careful to pass accurate values. Do not pass a $00 for the WIDTH or the HEIGHT parameter,

and pay special attention to the fact that both the x-position and the width are specified in cards

(groups of eight pixels horizontally), not in pixels.

128: Under GEOS 128, OR’ing DOUBLE_B into the XPOS and WIDTH parameters will automatically

double the x-position and the width (respectively) in 80-column mode. The first release of GEOS

128 did not properly remove the sprites before placing the bitmap on the screen. The easiest way

to correct for this is to always precede a call to BitmapUp with a call to TempHideMouse. The

redundant call to TempHideMouse when running under later releases is minimal compared to

the number of cycles it takes to decompact and draw the bitmap.

jsr TempHideMouse ; correct for bug in release 1 of GEOS 128
jsr BitmapUp ; then put up the bitmap

Example: ShowBitmap.

See also: BitmapClip, BitOtherClip.

graphics

 20-88 GEOS Kernal 2.0

BitOtherClip: (C64, C128) C2C5

Function: Special version of BitmapClip that allows the compacted bitmap data to come from a source

other than memory (e.g., from disk).

Parameters: r0 BUFFER — pointer to a 134-byte buffer area (word).

 Note: Set by SYNC before first byte is retrieved. Does not need to be pre loaded.

r1L XPOS — x-card-coordinate: pixel position /8 (byte).

r1H YPOS — y-coordinate (byte).

r2L WIDTH — width in cards: pixel width/8 (byte).

r2H HEIGHT — height in pixels (byte).

r11L DX1 — delta-x1: offset of left-edge of clipping window in cards from left-edge of

full bitmap (byte).

r11H DX2 — delta-x2: offset of right-edge of clipping window in cards from right-edge

of full bitmap (byte).

r12 DY1 — delta-y1: offset of top-edge of clipping window in pixels from top-edge of

full bitmap (word).

r13 APPINPUT — pointer to application-defined input routine (word). Called each time a byte

from a compacted bitmap is needed; data byte is returned via BUFFER.

ldy #0 and then sta (r0),y.
r14 SYNC — pointer to synchronization routine (word). Called before each bitmap

packet is decompressed. Due to improvements in BitOtherClip, this

routine need only consist of reloading r0 with the BUFFER address.

where the upper-left corner of the bitmap is placed at (XPOS * 8, YPOS). The lower-right corner

is at (XPOS * 8+WIDTH*8, YPOS+HEIGHT).

Uses: dispBufferOn:

bit 7 — write to foreground screen if set.

bit 6 — write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r0-r12 and the 134-byte BUFFER pointed at by r0.

Description: BitOtherClip allows the application to decompress and display a bitmap without storing the

compressed bitmap in memory. Call BitOtherClip with the address of an input routine

(APPINPUT). Each time BitOtherClip needs another byte, it calls this routine. The APPINPUT

routine is expected to read data from the disk or some other device and return a single byte each

time it is called.

The basic width, height, position, and clipping window parameters are the same as those for

BitmapClip. Refer to the documentation of that routine for more information.

BitOtherClip calls the user-supplied APPINPUT routine until it has enough bytes to form one

bitmap packet. APPINPUT must preserve r0-r13 and set the data byte in the BUFFER. A typical

APPINPUT routine saves any pseudoregisters (r0-r13) it might destroy, calls ReadByte to get a

byte from a disk file, places the byte in the BitOtherClip buffer (pointed at by r0), then returns,

as illustrated in the example: AppInput.

BitOtherClip graphics

 20-89 GEOS Kernal 2.0

When BitOtherClip detects a complete packet, it uncompacts the data from the buffer to the

screen. After the bitmap packet has been uncompacted, BitOtherClip calls the SYNC routine

supplied by the caller. The SYNC routine prepares the bitmap buffer for the next packet by

reloading r0 with the address of BUFFER and performing an rts.

Sync:
 LoadW r0,#clipBuffer ; reset the pointer
 rts ; exit

128: Under GEOS 128, OR’ing DOUBLE_B into the XPOS and WIDTH parameters will automatically

double the x-position and the width (respectively) in 80-column mode.

Note: Do not pass a value of $00 for either the WIDTH or HEIGHT parameters.

Warning: BitOtherClip is unable to handle big count compression. This is from a bug that exists in all

versions of the GEOS Kernal. The result of the bug can be either screen corruption or getting

stuck in an endless loop.

Example: BitOtherClip Example.

See also:

graphics

 20-90 GEOS Kernal 2.0

ColorCard: (C128) C2F8

Function: Get or set a color card. In 40 or 80-column mode.

Parameters: r3 X1 — x-coordinate of screen pixel (word).

r11L Y1 — y-coordinate of screen pixel (byte).

st carry MODE:

C Operation

1 set color attribute with COLOR value in a.

0 get color attribute and return value in a.

 When Setting:

 a COLOR — new color to change color card attribute to.

Uses: graphMode GRMODE — determines which Screen attributes to use.

When GRMODE = GR_80:

vdcClrMode contains the value of the current VDC color mode.

Returns: When Getting:

a color card attribute at requested location.

When Setting:

nothing.

Destroys: a, x, y, r5.

Description: ColorCard will set, or read a single color card. Setting a color card sets its byte value to COLOR.

Reading an attribute gets its value and returns the color card byte in a.

The color card offset is calculated and added to the attribute base address to get the final address

of the color card byte. Note: (X1 must already be normalized prior to calling ColorCard).

 Example:

 color card address = attribute base + (X1 / 8) + (Y1 / (Color Card Height)).

 Note: color card height is determined by the color mode in vdcClrMode.

The color card is retrieved from the COLOR_MATRIX in 40-column mode, or from the VDC's

attributes in 80-column mode.

The carry (c) flag in the processor status register (s) is used to pass MODE to ColorCard. The

following can be used before the call to set or clear this flag appropriately:

• Use sec to set carry (c) flag in order to set a new color card.

• Use clc clear the carry (c) flag in order to get a color card.

 Example:
 .macro SetColorCard color
 lda #[color
 sec
 jsr ColorCard
 .endm

Example:

See also: ColorRectangle, SetColorMode.

graphics

 20-91 GEOS Kernal 2.0

ColorRectangle: (C128) C2FB

Function: Draw a color rectangle on the 80-column screen.

Parameters: a FBCOLOR — foreground and background color to draw. (byte).

b7-b4: foreground color.

b3-b0: background color.

r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Calls: ColorCard.

Returns: nothing.

Destroys: a, x, y, r11L.

Description: ColorRectangle draws a color rectangle on the screen as determined by FBCOLOR and the

coordinates of the upper-left and lower-right corners. (The rectangle is NOT filled with the current

fill pattern). ColorRectangle draws using FBCOLOR to set Foreground and Background color

cards in the VDC Attributes.

The color card width is 8 pixels, and are aligned on horizontal byte boundaries. The current

vdcClrMode determines the height of the color card. In 8x8 mode each color card covers a matrix

8 pixels wide by 8 rows high. 8x4 is 4 rows high and 8x2 is 2 rows.

Since the color cards are at fixed aligned boundaries there is more resolution in the passed

coordinates then can actually be used. All x-coordinates are divided by 8 to compute the offset into

the attributes. Passing a value of 32 as an x-coordinate and passing 33 will yield the same results

on the screen. This works the same way with the y-coordinate but varies by the color card

resolution set by vdcClrMode.

ColorRectangle operates by calling ColorCard in a loop, changing the attribute for every color

card for every set of lines that fall in boundaries of the current color card height.

128: ColorRectangle does not normalize x-coordinates. Normal use is to call Rectangle first to draw

the foreground image. Then call ColorRectangle using the now normalized x-coordinates.

Otherwise you can call NormalizeX for X1 and X2.

Example:

See also: SetColorMode.

graphics

 20-92 GEOS Kernal 2.0

DrawLine: (C64, C128) C130

Function: Draw, clear, or recover a line defined by two arbitrary endpoints.

Parameters: r3 X1 — x-coordinate of pixel (word).

r11L Y1 — y-coordinate of pixel (byte).

r4 X2 — x-coordinate of second endpoint (word).

r11H Y2 — y-coordinate of second pixel (byte).

st MODE:

N C Operation

1 x recover pixel from background screen to foreground.

0 1 set pixel using dispBufferOn.

0 0 clear pixel using dispBufferOn.

where (X1, Y1) and (X2, Y2) are the two endpoints of the line.

Uses: when setting or clearing pixels (not recovering):

dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Destroys: a, x, y, r3-13.

Description: DrawLine will set, clear, or recover the pixels which comprise the line between two arbitrary

endpoints. Setting a pixel sets its bit value to one, clearing a pixel sets its bit value to zero, and

recovering a pixel copies the bit value from the background buffer to foreground screen.

DrawLine uses the Bresenham DDA (Digital Differential Analyzer) algorithm to determine the

proper points to draw. The line will be drawn correctly regardless of which endpoint is used for

(X1, Y1) and which is used for (X2, Y2). In fact, the line is reversible: the same line will be drawn

even if the endpoints are swapped.

The carry (c) flag and sign (n) flag in the processor status register (s) are used to pass information

to DrawLine. The following tricks can be used to set or clear these flags appropriately:

• Use sec and clc to set or clear the carry (c) flag.

• Use lda #[-1 to set the sign (n) flag.

• Use lda #0 to clear the sign (n) flag.

Note: Calculates each pixel position on the line and calls DrawPoint repeatedly.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: TestPoint, DrawLine.

graphics

 20-93 GEOS Kernal 2.0

DrawPoint: (C64, C128) C133

Function: Set, clear, or recover a single screen point (pixel).

Parameters: r3 X1 — x-coordinate of pixel (word).

r11L Y1 — y-coordinate of pixel (byte).

st MODE:

N C Operation

1 x recover pixel from background screen to foreground.

0 1 set pixel using dispBufferOn.

0 0 clear pixel using dispBufferOn.

where (X1, Y1) is the coordinate of the point.

Uses: when setting or clearing pixels (not recovering):

dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Destroys: a, x, y, r5-r6.

Description: DrawPoint will set, clear, or recover a single pixel. Setting a pixel sets its bit value to one,

clearing a pixel sets its bit value to zero, and recovering a pixel copies the bit value from the

background buffer to foreground screen.

The carry (c) flag and sign (n) flag in the processor status register (s) are used to pass information

to DrawPoint. The following tricks can be used to set or clear these flags appropriately:

• Use sec and clc to set or clear the carry (c) flag.

• Use lda #[-1 to set the sign (n) flag.

• Use lda #0 to clear the sign (n) flag.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: TestPoint, DrawLine.

graphics

 20-94 GEOS Kernal 2.0

FrameRectangle:, i_FrameRectangle (C64, C128) C127, C1A2

Function: Draw a rectangular frame (one-pixel thickness).

Parameters: Normal:

a eight-bit line pattern.

r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

Inline:

data appears immediately after the jsr i_FrameRectangle.

.byte Y1 — y-coordinate of top corners.

.byte Y2 — y-coordinate of bottom corners.

.word X1 — x-coordinate of left corners.

.word X2 — x-coordinate of right corners.

.byte PATTERN — eight-bit line pattern.

where (X1, Y1) is the upper-left corner of the frame and (X2, Y2) is the lower-right corner.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Destroys: a, x, y, r5-r9, r11.

Description: FrameRectangle draws a one-pixel rectangular frame on the screen as determined by the

coordinates of the upper-left and lower-right corners. The horizontal and vertical lines which

comprise the frame are drawn with the specified line pattern.

FrameRectangle operates by calling HorizontalLine and VerticalLine with the desired line-

pattern. As with these two routines, the line pattern is drawn as if aligned on an eight-pixel

boundary. The values of the corner pixels will be determined by the vertical sides because they

are drawn after the horizontal sides.

Because all GEOS coordinates are inclusive, framing a filled rectangle requires either calling

FrameRectangle after calling Rectangle (and thereby overwriting the perimeter of the filled

area) or calling FrameRectangle with (X1-1,Y1-1) and (X2+1,Y2+1) as the corner points.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: Rectangle, ImprintRectangle, RecoverRectangle, InvertRectangle.

graphics

 20-95 GEOS Kernal 2.0

GetScanLine: (C64, C128) C13C

Function: Calculate the memory address of a particular screen line.

Parameters: x YCOORD — y-coordinate of line.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: x unchanged.

addresses in r5 and r6 based on dispBufferOn status:

bit 7 bit 6 returns

1 1 r5 = foreground; r6 = background.

0 1 r5, r6 = background.

1 0 r5, r6 = foreground.

0 0 error: r5, r6 = address of screen center.

Destroys: a.

Description: GetScanLine calculates the address of the first byte of a particular screen line. The routine always

places addresses in both r5 and r6, depending on the value in dispBufferOn. This allows an

application to automatically manage both foreground screen and background buffer writes

according to the bits set in dispBufferOn by merely doing any screen stores twice, indirectly off

both r5 and r6 as in:

Note: this code is 40-column mode specific (see notes below for 128 80-column mode).

ldy xPos ; byte index into current line
lda grByte ; graphics byte to store
sta (r5),y ; store using both indexes
sta (r6),y

128: When GEOS 128 is operating in 80-column mode, all foreground writes are sent through the VDC

chip to its local RAM. In this case, the address of the foreground screen byte is actually an index

into VDC RAM for the particular scanline. For background writes, the address of the background

screen byte is an absolute address in main memory (be aware, though, that the background screen

is broken into two parts and is not a contiguous chunk of memory).

 In 40-column mode, GetScanLine operates as it does under GEOS 64.

Example:

See also:

graphics

 20-96 GEOS Kernal 2.0

GraphicsString:, i_GraphicsString (C64, C128) C136, C1A8

Function: Execute a string of graphics commands.

Parameters: Normal:

r0 GRSTRING — pointer to null-terminated graphic string (word).

Inline:

data appears immediately after the jsr i_GraphicsString.

.byte GRSTRING — null-terminated graphics string data.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r0-r13.

Description: When GEOS was first being developed, it was found that it was common for an application to call

a large number of graphic routines to set up various screen displays — clearing the screen, drawing

boxes and window borders, etc. A shorthand method for doing this was therefore developed.

GraphicsString allows the application to create a string of graphic commands to be executed in

turn, thereby grouping the calls in a convenient format and saving any space that would have been

taken up by parameter loading and jsr's.

 GraphicsString introduces the concept of a pen position, an (x, y) coordinate on the screen used

as the base for the graphics operation. For example, the GraphicsString LINETO command has

only two parameters — an x- and a y-position. The line is drawn from the current pen position to

the (x, y) point. The ending point of the line then becomes the new pen position. In this way, a

series of connected lines can be drawn by supplying the successive endpoints. The pen-position is

in an unknown state when GraphicsString is called. A MOVEPENTO command should be issued

to set the initial pen position.

 In the GraphicsString commands, an x-position is always a word value and a y-position is always

a byte value. However, delta-values — values which specify a change in the current pen x- or

y-position — are two's complement signed words. Note that even though the high-byte of the delta

y-position is required, it is not used in GEOS 2.0/Wheels 4.4, but it is possible it could be used in

future versions.

 Code from the Kernal to show this behavior:
;--- on entry r0 points to the data after the PEN_Y_DELTA command
Pen_Y_Delta:

 ldy #0
lda (r0),y ; get low-byte of y-delta
iny ; (point y to high-byte of delta word)
add penYPos ; add low-byte of y-delta to current pen position
sta penYPos ; save result
;--- (don't do anything with high-byte of delta word)
iny ; point y to next command byte

 AddYW r0 ; add y to r0 so r0 now points to the next command byte
90$
 rts ; exit

GraphicsString:, i_GraphicsString graphics

 20-97 GEOS Kernal 2.0

 The available GraphicsString commands are:

Command No. Example Description
NULL 0 .byte NULL Graphics string terminator byte.
MOVEPENTO 1 .byte MOVEPENTO

.word x

.byte y

Make the current pen position the (x, y)

coordinate specified.

LINETO 2 .byte LINETO
.word x
.byte y

Draw a line from the current pen position to

the (x, y) position specified. (x, y) becomes the

current pen position.
RECTANGLETO 3 .byte RECTANGLETO

.word x

.byte y

Draw a rectangle using the pattern byte from

the current pen position to opposing corner (x,

y) specified.
PENFILL 4 n/a Not Currently Implemented.
NEWPATTERN 5 .byte NEWPATTERN

.byte ptrn
Change the current pattern to ptrn; see

SetPattern
ESC_PUTSTRING 6 .byte ESC_PUTSTRING

.word x

.byte y

.byte "String",NULL

The remainder of the string is treated as input

to the PutString command, where (x, y) is the

coordinate where the string is placed.

FRAME_RECTO 7 .byte FRAME_RECTO
.word x
.byte y

Frame a solid rectangle. Start at the current pen

position to (x, y), which becomes the new pen

position.
PEN_X_DELTA 8 .byte PEN_X_DELTA

.word dx
add the signed value of dx to the pen's current

x-position.
PEN_Y_DELTA 9 .byte PEN_Y_DELTA

.word dy
add the signed value of dy to the pen's current

y-position.
PEN_XY_DELTA 10 .byte PEN_XY_DELTA

.word dx

.word dy

add the signed values of dx and dy to the pen's

current x- and y-position.

Note: Any lines or rectangle frames are drawn with the solid bit-pattern (%11111111).

Note: When using ESC_PUTSTRING, note that PutString will not return to GetString when it

encounters a null. The null actually marks the end of the whole string. To resume graphics string

processing, use the PutString ESC_GRAPHICS escape.

Example: GrphcsStr1.

See also: PutString.

graphics

 20-98 GEOS Kernal 2.0

HorizontalLine: (C64, C128) C118

Function: Draw a horizontal line with a repeating bit-pattern.

Parameters: a PATTERN — eight-bit repeating pattern to use (not a GEOS pattern number).

r3 X1 — x-coordinate of leftmost endpoint (word).

r4 X2 — x-coordinate of rightmost endpoint (word).

r11L Y1 — y-coordinate of line (byte).

where (X1, Y1) and (X2, Y1) define the endpoints of the horizontal line.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: r11L unchanged.

Destroys: a, x, y, r5-r8, r11H.

Description: HorizontalLine sets and clears pixels on a single horizontal line according to the eight-bit

repeating pattern. Wherever a 1-bit occurs in the pattern byte, a pixel is set, and wherever a 0-bit

occurs, a pixel is cleared.

Bits in the pattern byte are used left-to-right where bit 7 is at the left. A bit pattern of %11110000

would create a horizontal line like:

The pattern byte is always drawn as if aligned to a card boundary. If the endpoints of a line do not

coincide with card boundaries, then bits are masked off the appropriate ends. The effect of this is

that a pattern is always aligned to specific pixels, regardless of the endpoints, and that adjacent

lines drawn in the same pattern will align.

Note: To draw patterned horizontal lines using the 8x8 GEOS patterns, draw rectangles of one-pixel

height by calling the GEOS Rectangle routine with identical y-coordinate.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: VerticalLine, InvertLine, RecoverLine, DrawLine.

graphics

 20-99 GEOS Kernal 2.0

InvertLine: (C64, C128) C11B

Function: Invert the pixels on a horizontal line.

Parameters: r3 X1 — x-coordinate of leftmost endpoint (word).

r4 X2 — x-coordinate of rightmost endpoint (word).

r11L Y1 — y-coordinate of line (byte).

where (X1, Y1) and (X2, Y1) define the endpoints of the line to invert.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r5-r8.

Description: InvertLine inverts the pixel state of all pixels which fall on the horizontal line whose coordinates

are passed in the GEOS registers. Set pixels become clear, and clear pixels become set.

Note: If dispBufferOn is set to invert on the foreground and the background screen, both the foreground

and the background screen will get the inverted foreground pixels. GEOS assumes both screens

contain the same image.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: VerticalLine, HorizontalLine, RecoverLine, DrawLine.

graphics

 20-100 GEOS Kernal 2.0

ImprintRectangle:, i_ImprintRectangle (C64, C128) C250, C253

Function: Imprints the pixels within a rectangular region from the foreground screen to the background

buffer.

Parameters: Normal:

r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

Inline:

data appears immediately after the jsr i_ImprintRectangle.

.byte Y1 — y-coordinate of top corners.

.byte Y2 — y-coordinate of bottom corners.

.word X1 — x-coordinate of left corners.

.word X2 — x-coordinate of right corners.

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Returns: nothing.

Destroys: a, x, y, r5-r8, r11L.

Description: ImprintRectangle copies the pixels within a rectangular region from the foreground screen to

the background buffer by calling ImprintLine in a loop. A subsequent call to RecoverRectangle

with the same parameters will restore the rectangle to the foreground screen.

Note: The flags in dispBufferOn are ignored; the pixels are always copied to the background buffer

regardless of the value in this variable.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Note3: ImprintLine is an internal Kernal routine. It does not have a jump table entry.

Example:

See also: RecoverRectangle, Rectangle, InvertRectangle.

graphics

 20-101 GEOS Kernal 2.0

InvertRectangle: (C64, C128) C12A

Function: Inverts the pixels within a rectangular region.

Parameters: r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: nothing.

Destroys: a, x, y, r5-r8, r11.

Description: InvertRectangle inverts all the pixels within the rectangular area as determined by the

coordinates of the upper-left and lower-right corners. All set pixels become clear and clear pixels

become set.

InvertRectangle operates by calling InvertLine in a loop.

InvertRectangle is handy to use for indicating a selected object (as GEOS does with icons) or

for flashing an area by inverting a rectangle twice, first inverting the area and then inverting it

back to its original state.

Note: If dispBufferOn is set to invert on the foreground and the background screen, both the foreground

and the background screen will get the inverted foreground pixels. GEOS assumes both screens

contain the same image.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: Rectangle, ImprintRectangle, RecoverRectangle, FrameRectangle.

graphics

 20-102 GEOS Kernal 2.0

NormalizeX: (C128) C2E0

Function: Adjust an x-coordinate to compensate for the higher-resolution 80-column mode.

Parameters: x GEOSREG — zero page address of word-length GEOS register which contains the word-

length x-coordinate to adjust.

Returns: x unchanged.

register passed as GEOSREG parameter contains the adjusted x-coordinate.

Destroys: a.

Description: NormalizeX is used by nearly every GEOS 128 routine that writes to the screen. It adjusts an

x-coordinate (two's complement signed word) based on the graphics mode (40- or 80-column)

and the status of the special bits in the coordinate. NormalizeX allows an application to run in

both 40- and 80-column modes with a minimum of programming effort. If the proper bits in a 40-

column coordinate is set, NormalizeX will automatically double the value when in 80-column

mode.

Since GEOS graphics operations automatically call NormalizeX to adjust the coordinates, most

applications will not need to call it directly.

Bit 15 of the coordinate specifies doubling. Bit 13 adds one to a doubled coordinate (allowing

odd-pixel addressing). Bit 14 is a pseudo-sign bit. Use the DOUBLE_W and ADD1_W constants

to access these bits.

If the coordinate might be negative, the DOUBLE_W and ADD1_W constants should be

exclusive-OR'ed into the x-position so that the sign is preserved. However, if the coordinate is

guaranteed to be a positive number, the constants may simply be OR'ed in.

The GEOSREG parameter is an actual zero page address. Usually this will be a GEOS register

(r0-r15) or an application's register (a0-a9). If, for example, an application had a value in r9

which it wanted normalized, it would first exclusive-or in the special bits, then call NormalizeX

in the following manner:

ldx #r9 ; load x with address of r9
jsr NormalizeX ; normalize the value in r9

The following breakdown of the word-length x-coordinate illustrates how the special bits affect

the adjustment process.

b15 b14 b13 x-pixel coordinate (b0-b12)

b0-12 x-coordinate in pixels (two's comp. number).

b13 add one to doubled x-coordinate (flag).

b14 x-coordinate sign-extension from b12 (pseudo sign-bit).

b15 double x-coordinate (flag).

NormalizeX graphics

 20-103 GEOS Kernal 2.0

If in 40-column mode, then the special bits are ignored and the x-coordinate is returned to its

original state (the state it was in before any special constants were exclusive-or'ed in).

If in 80-column mode, then the following applies:

b15 b14 b13 Effect

0 0 n x value changed (normal positive).

1 1 n x value changed (normal negative).

0 1 n x=x*2-n (double negative).

1 0 n x=x*2+n (double positive).

Note: For more information, Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter

Graphics Routines for more information.

Example:

See also:

graphics

 20-104 GEOS Kernal 2.0

RecoverLine: (C64, C128) C11E

Function: Recovers a horizontal line from the background buffer to the foreground screen.

Parameters: r3 X1 — x-coordinate of leftmost endpoint (word).

r4 X2 — x-coordinate of rightmost endpoint (word).

r11L Y1 — y-coordinate of line (byte).

where (X1, Y1) and (X2, Y1) define the endpoints of the line to recover.

Returns: r3, r4, and r11L unchanged.

Destroys: a, x, y, r5-r8.

Description: RecoverLine recovers the pixels which fall on the horizontal line whose coordinates are passed

in the GEOS registers. The pixel values are copied from the background buffer to the foreground

screen.

Note: The flags in dispBufferOn are ignored; the pixels are always copied to the foreground screen

regardless of the value in this variable.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: HorizontalLine, InvertLine, VerticalLine, DrawLine.

graphics

 20-105 GEOS Kernal 2.0

RecoverRectangle:, i_RecoverRectangle (C64, C128) C12D, C1A5

Function: Recovers the pixels within a rectangular region from the background buffer to the foreground

screen.

Parameters: Normal:

r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

Inline:

data appears immediately after the jsr i_RecoverRectangle.

.byte Y1 — y-coordinate of top corners.

.byte Y2 — y-coordinate of bottom corners.

.word X1 — x-coordinate of left corners.

.word X2 — x-coordinate of right corners.

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Returns: r2, r3, and r4 unchanged.

Destroys: a, x, y, r5-r8, r11.

Description: RecoverRectangle copies the pixels within a rectangular region from the background buffer to

the foreground screen by calling RecoverLine in a loop.

Note: The flags in dispBufferOn are ignored; the pixels are always copied to the foreground screen

regardless of the value in this variable.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: FrameRectangle, ImprintRectangle, RecoverRectangle, InvertRectangle.

See also: ImprintRectangle, Rectangle, InvertRectangle.

graphics

 20-106 GEOS Kernal 2.0

Rectangle:, i_Rectangle (C64, C128) C124, C19F

Function: Draw a rectangle in the current fill pattern.

Parameters: Normal:

r2L Y1 — y-coordinate of top corners (byte).

r2H Y2 — y-coordinate of bottom corners (byte).

r3 X1 — x-coordinate of left corners (word).

r4 X2 — x-coordinate of right corners (word).

Inline:

data appears immediately after the jsr i_Rectangle.

.byte Y1 — y-coordinate of top corners.

.byte Y2 — y-coordinate of bottom corners.

.word X1 — x-coordinate of left corners.

.word X2 — x-coordinate of right corners.

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Destroys: a, x, y, r5-r8, r11.

Description: Rectangle draws a filled rectangle on the screen as determined by the coordinates of the upper-

left and lower-right corners. The rectangle is filled with the current 8x8 (card-sized) fill pattern.

The 8x8 pattern within the rectangle is drawn as if it were aligned to a card boundary: that is, the

bit-pattern is synchronized with (0, 0), and, since the patterns are 8x8, they are aligned with every

eighth pixel thereafter. This allows the patterns in adjacent or overlapping rectangles to line-up

regardless of the actual pixel positions.

Rectangle operates by calling HorizontalLine in a loop, changing the bit-pattern byte after every

line based on the current 8x8 fill pattern.

Because all GEOS coordinates are inclusive, framing a filled rectangle requires either calling

FrameRectangle after calling Rectangle (and thereby overwriting the perimeter of the filled area)

or calling FrameRectangle with (X1-1, Y1-1) and (X2+1, Y2+1) as the corner points.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

Example:

See also: FrameRectangle, SetPattern, ImprintRectangle, RecoverRectangle, InvertRectangle.

graphics

 20-107 GEOS Kernal 2.0

SetColorMode: (C128) C2F5

Function: Change GEOS 128 80-column Color Mode.

Parameters: a CLRMODE — New Color Mode to change to.

Uses: graphMode GRMODE — Must be GR_80 for the new mode to be set.

Alters: vdcClrMode Contains the value of the current Color Mode.

Returns: nothing.

Destroys: a, x, y, r0.

Description: SetColorMode Sets up the VDC for the desired graphic mode. CLRMODE Must be in the

following list of valid modes.

Constant

Value

Resolution

Color Mode

Attribute
Address

RAM

VDC_CLR0 0 640 x 200 monochrome* n/a 16K

VDC_CLR1¥ 1 640 x 176 8x8 color v3880 16K

VDC_CLR2† 2 640 x 200 8x8 color v4000 64K

VDC_CLR3† 3 640 x 200 8x4 color v4000 64K

VDC_CLR4† 4 640 x 200 8x2 color v4000 64K

 After changing to modes 1-4, the application should set all the color cards for the screen using

ColorRectangle.

Note:* GEOS default color mode.

Note: ¥ Attempting to draw to rows > 175 will corrupt the attribute area. The application is responsible

for maintaining a valid y-coordinate (0-175). Use mouseBottom to windowBottom to constrain

the mouse and text output, setting them both to a value <= 175. Note: Graphics routines are not

constrained by the reduced resolution of this color mode. They will attempt to draw to any row

up to 199 as they normally would.

Note: † These modes require 64K of VDC RAM. GEOS does not check to see if the RAM is actually

available. The application is responsible for confirming the amount of VDC RAM available to

the system prior to changing modes.

Note: vdcClrMode should not be directly set by the application.

Example:

See also:

graphics

 20-108 GEOS Kernal 2.0

SetNewMode: (C128) C2DD

Function: Changes GEOS 128 from 40-column mode to 80-column mode, or vice-versa.

Parameters: none.

Uses: graphMode GRMODE — new graphics mode to change to:

40-Column: GR_40.

80-Column: GR_80.

Returns: nothing.

Destroys: a, x, y, r0.

Description: SetNewMode the Operating mode of the Commodore 128.

40-column mode (graphMode == GR_40)

1: 8510 clock speed is slowed down to 1MHz because VIC chip cannot operate at 2Mhz.

2: rightMargin is set to 319.

3: UseSystemFont is called to begin using the 40-column font.

4: 40-column VIC screen is enabled.

5: 80-column VDC is set to black on black, effectively disabling it.

80-column mode (graphMode == GR_80)

1: 8510 clock speed is raised to 2Mhz.

2: rightMargin is set to 639.

3: UseSystemFont is called to begin using the 80-column font.

4: 40-column VIC screen is disabled.

5: 80-column VDC screen is enabled.

Note3: The original guide states r0-r15 are destroyed when this routine is called. This was not accurate.

Example: ChangeMode.

See also:

graphics

 20-109 GEOS Kernal 2.0

SetPattern: (C64, C128) C139

Function: Set the current fill pattern.

Parameters: a GEOS system pattern number (must be between 0 and 31) (byte).

Returns: nothing.

Alters: curPattern Contains an address pointing to the eight-byte pattern.

Destroys: a.

Description: SetPattern sets the current fill pattern. There are 34 system patterns (numbered 0-33) in GEOS;

Unfortunately, SetPattern will only work correctly with patterns numbered 0-31. To access

higher number patterns, call SetPattern with a value of 31 and add 8 to curPattern in order to

access pattern 32, add 16 to access pattern 33, and so on.

Example:

See also:

graphics

 20-110 GEOS Kernal 2.0

TestPoint: (C64, C128) C13F

Function: Test and return the value of a single point (pixel).

Parameters: r3 X1 — x-coordinate of pixel (word).

r11L Y1 — y-coordinate of pixel (byte).

where (X1, Y1) is the coordinate of the point to test.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

(if both bit 6 and bit 7 are set, then only the pixel in the background screen is tested).

Returns: r3L, r11L unchanged.

Destroys: a, x, y, r5-r6.

Description: TestPoint will test a pixel in cither the foreground screen or the background buffer (or both

simultaneously) and return the pixel's status by either setting or clearing the carry (x) flag

accordingly. The jsr TestPoint is usually followed immediately by a bcc or bcs so that a set or

clear pixel may be handled appropriately.

C128: Under GEOS 128, OR’ing DOUBLE_W into the X1 will automatically double the x-position in

80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled x-position. (Refer

to "GEOS 128 X-position and Bitmap Doubling" in chapter 2 Graphics Routines for more

information).

Example:

See also: DrawPoint.

graphics

 20-111 GEOS Kernal 2.0

VerticalLine: (C64, C128) C121

Function: Draw a vertical line with a repeating bit-pattern.

Parameters: a eight-bit repeating pattern to use (not a GEOS pattern number).

r4 X1 — x-coordinate of line (word).

r3L Y1 — y-coordinate of topmost endpoint (byte).

r3H Y2 — y-coordinate of bottommost endpoint (byte).

where (X1, Y1) and (X1, Y2) define the endpoints of the vertical line.

Uses: dispBufferOn:

bit 7: write to foreground screen if set.

bit 6: write to background screen if set.

Returns: r3L, r3H, r4 unchanged.

Destroys: a, x, y, r5-r8L.

Description: VerticalLine sets and clears pixels on a single vertical line according to the eight-bit repeating

pattern. Wherever a 1-bit occurs in the pattern byte, a pixel is set, and wherever a 0-bit occurs, a

pixel is cleared.

Bits in the pattern byte are used top-to-bottom, where bit 7 is at the top. A bit pattern of

%11110000 would create a vertical line like:

The pattern byte is always drawn as if aligned to a card boundary. If the endpoints of a line do

not coincide with card boundaries, then bits are masked off the appropriate ends. The effect of

this is that a pattern is always aligned to specific pixels, regardless of the endpoints, and that

adjacent lines drawn in the same pattern align.

Note: To draw patterned vertical lines using the 8x8 GEOS patterns, draw rectangles of one-pixel width

by calling the GEOS Rectangle routine with identical x-coordinates.

Example:

See also: HorizontalLine.

 20-112 GEOS Kernal 2.0

icon/menu

Name Addr Description Page

DoIcons C15A Display and begin interaction with icons. 20-113

DoMenu C151 Display and begin interaction with menus. 20-114

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. 20-116

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. 20-117

RecoverAllMenus C157 Recover all menus from background buffer. 20-118

RecoverMenu C154 Recover single menu from background buffer. 20-119

ReDoMenu C193 Reactivate menus at the current level. 20-120

icon/menu

 20-113 GEOS Kernal 2.0

DoIcons: (C64, C128) C15A

Function: Display and activate an icon table.

Parameters: r0 ICONTABLE — pointer to the icon table to use.

Uses: dispBufferOn:

bit 7: draw icons to foreground screen if set.

bit 6: draw icons to background screen if set.

Destroys: a, x, y, r0-r15.

Description: DoIcons takes an ICONTABLE, draws the enabled icons (those whose OFF_I_PIC word is

non-zero) and instructs MainLoop to begin tracking the user's interaction with the icons. This

routine is the only way to install icons. Every application must install at least one icon, even if

only a dummy icon.

If DoIcons is called while another icon table is active, the new icons will take precedence. The

old icons are not erased from the screen before the new ones are displayed.

DoIcons is a complex routine which affects a lot of system variables and tables. The following is

an outline of its major actions:

1: All enabled icons in the table are drawn to the foreground screen and/or the background buffer

based on the value in dispBufferOn.

2: StartMouseMode is called. If the OFF_IC_XMOUSE word of the icon table header is

non-zero, then StartMouseMode loads mouseXPosition and mouseYposition with the

values in the OFF_IC_XMOUSE and the OFF_IC_YMOUSE parameters of the icon table

header (see StartMouseMode for more information).

3: faultData is cleared to $00, indicating no faults.

4: If the MOUSEON_BIT of mouseOn is clear, then the MENUON_BIT is forced to one. This

is because GEOS assumes that it is in a power-up state and that mouse tracking should be

fully enabled. If the MOUSEON_BIT bit is set, GEOS leaves the menu-scan alone, assuming

that the current state of the MENUON_BIT is valid.

5: The ICONSON_BIT and MOUSEON_BIT bits of mouseOn are set thereby enabling icon-

scanning.

When an icon event handler is given control, r0L contains the number of the icon clicked on

(beginning with zero) and r0H contains TRUE if the event is a double-click or FALSE if the

event is a single click.

Note: The maximum number of icons in ICONTABLE is 31 (MAX_ICONS).

Example: IconsUp.

See also: DoMenu.

icon/menu

 20-114 GEOS Kernal 2.0

DoMenu: (C64, C128) C151

Function: Display and activate a menu structure.

Parameters: r0 MENU — pointer to the menu structure to display.

a POINTER_OVER — which menu item (numbered starting with zero) to center the pointer

over.

Destroys: a, x, y, r0-r13.

Description: DoMenu draws the main menu (the first menu in the menu structure) and instructs MainLoop to

begin tracking the user's interaction with the menu. This routine is the only way to install a menu.

If DoMenu is called while another menu structure is active, the new menu will take precedence.

The old menu is not erased from the screen before the new menu is displayed. If the new menu is

smaller (or at a different position) than the old menu, parts of the old menu may be left on the

screen. A typical way to avoid this is to erase the old menu with a call to Rectangle, passing the

positions of the main menu rectangle and drawing in a white pattern. However, a more elegant

solution involves calling GotoFirstMenu, which will erase any extant menus by recovering from

the background buffer.

DoMenu is a complex routine which affects a lot of system variables and tables. The following

is an outline of its major actions:

1: Menu level 0 (main menu) is drawn to the foreground screen.

2: StartMouseMode is called. mouseXPos and mouseYPos are set so that the pointer is

centered over the selection number passed in a. Under GEOS 64 and GEOS 128, DoMenu

always forces the mouse to a new position. If you do not want the mouse moved, surround the

call to DoMenu with code to save and restore the mouse positions. The following code

fragment will install menus without moving the mouse.

DoMenu2:
 php ; save processor status register
 sei ; disable interrupts around call
 PushW mouseXPos ; save mouse x
 PushB mouseYPos ; save mouse y
 lda #0 ; dummy menu value
 jsr DoMenu ; install menus (mouse will move)
 PopB mouseYPos ; restore original mouse y
 PopW mouseXPos ; restore original mouse x
 plp ; restore interrupts to their saved state
 rts

3: SlowMouse is called. With a joystick this will kill all accumulated speed in the pointer,

requiring the user to reaccelerate. With a proportional mouse, this will have no effect.

4: faultData is cleared to $00, indicating no faults.

DoMenu icon/menu

 20-115 GEOS Kernal 2.0

5: If the MOUSEON_BIT of mouseOn is clear, then the ICONSON_BIT is forced to one. This

is because GEOS assumes that it is in a power-up state and that mouse tracking should be

fully enabled. If the MOUSEON_BIT bit is set, GEOS leaves the icon-scan alone, assuming

that the ICONSON_BIT is valid.

6: The MENUON_BIT and MOUSEON_BIT bits of mouseOn are set, thereby enabling menu-

scanning.

7: The mouse fault variables (mouseTop, mouseBottom, mouseLeft, and mouseRight) are set

to the full screen dimensions.

Example:

See also: DoIcons, GotoFirstMenu, DoPreviousMenu, ReDoMenu.

icon/menu

 20-116 GEOS Kernal 2.0

DoPreviousMenu: (C64, C128) C190

Function: Retracts the current sub-menu and reactivates menus at the previous level.

Parameters: none.

Destroys: assume a, x, y, r0-r15.

Description: DoPreviousMenu is used by a menu event handler to instruct GEOS to back up one level of

menus, erasing the current menu from the foreground screen and making the parent menu active

when control is returned to MainLoop. menuNumber is decremented.

When using DoPreviousMenu, if the parent menu (the one which will be given control) is of

type UN_CONSTRAINED, then the mouse must be manually repositioned over the parent menu.

This can be done by loading mouseXPos and mouseYPos with values calculated from the menu

structure. If the parent menu is of type CONSTRAINED, then the mouse is automatically

positioned over the selection in the parent menu which led to the sub-menu.

Note: DoPreviousMenu may be called repeatedly to back up more than one level.

Do not call DoPreviousMenu when the menu is at level 0 (menuNumber = $00). The effects

may be disastrous.

Example:

See also: DoMenu, GotoFirstMenu, ReDoMenu, RecoverMenu.

icon/menu

 20-117 GEOS Kernal 2.0

GotoFirstMenu: (C64, C128) C1BD

Function: Retracts the current sub-menu and reactivates menus at the previous level.

Parameters: none.

Destroys: assume a, x, y, r0-r15.

Description: GotoFirstMenu is used by a menu event handler to instruct GEOS to back up to the main menu

level, erasing the current menu and any parent menus (except the main menu) from the foreground

screen, making the main menu active when control is returned to MainLoop. menuNumber is

set to $00.

GotoFirstMenu can be called from a menu event routine at any menu level, including main menu

level. It operates by checking for level zero and calling DoPreviousMenu in a loop.

Example:

See also: DoMenu, DoPreviousMenu, ReDoMenu, RecoverAllMenus.

icon/menu

 20-118 GEOS Kernal 2.0

RecoverAllMenus: (C64, C128) C157

Function: Removes all menus (including the main menu) from the foreground screen by recovering from

the background buffer.

Parameters: none.

Destroys: assume a, x, y, r0-r15.

Description: RecoverAllMenus is a very low-level menu routine which recovers the area obscured by the

opened menus from the background buffer. Usually, this routine is only called internally by the

higher-level menu routines. It is of little use in most applications and is included in the jump table

mainly for historical reasons.

RecoverAllMenus operates by loading the proper GEOS registers with the coordinates of the

menu rectangles and calling the routine whose address is in RecoverVector (normally

RecoverRectangle) repeatedly.

Example:

See also: DoPreviousMenu, ReDoMenu, GotoFirstMenu, RecoverMenu.

icon/menu

 20-119 GEOS Kernal 2.0

RecoverMenu: (C64, C128) C154

Function: Removes the current menu from the foreground screen by recovering from the background buffer.

Parameters: none.

Destroys: assume a, x, y, r0-r15.

Description: RecoverMenu is a very low-level menu routine which recovers the rectangular area obscured by

the current menu. Usually this routine is only called internally by the higher-level menu routines

such as DoPreviousMenu. It is of little use in most applications and is included in the jump table

mainly for historical reasons.

RecoverMenu operates by loading the proper GEOS registers with the coordinates of the current

menu's rectangle and calling the routine pointed to by RecoverVector (normally

RecoverRectangle).

Example:

See also: DoMenu.

icon/menu

 20-120 GEOS Kernal 2.0

ReDoMenu: (C64, C128) C193

Function: Reactivate menus at the current level.

Parameters: none.

Destroys: assume a, x, y, r0-r15.

Description: ReDoMenu is used by the application's menu event handler to instruct GEOS to leave all menus

(including the current menu) open when control is returned to MainLoop. menuNumber is

unchanged. Keeping the current menu open allows another selection to be made immediately.

ReDoMenu will redraw the current menu. If menu event routine changes the text in the menu

(adding a selection asterisk, for example), a call to ReDoMenu will redraw the menu with the

new text while leaving the menu open for another selection.

Example:

See also: DoMenu, GotoFirstMenu, DoPreviousMenu.

 20-121 GEOS Kernal 2.0

input driver

Name Addr Description Page

InitMouse FE80 Initialize input device. 20-122

SetMouse FD09 C128 Reset input device scanning circuitry. 20-123

SlowMouse FE83 Reset mouse velocity variables. 20-124

UpdateMouse FE86 Update mouse variables from input device. 20-125

input driver

 20-122 GEOS Kernal 2.0

InitMouse: (C64, C128) FE80

Function: Initialize the input device.

Parameters: none.

Returns: nothing.

Alters: mouseXPos initialized (typically 8).

mouseYPos initialized (typically 8).

mouseData initialized (typically reflects a released button).

pressFlag initialized (typically set to $00).

Destroys: assume a, x, y, r0-r15.

Description: GEOS calls InitMouse after first loading an input driver. The input driver is expected to initialize

itself and begin tracking the input device. An application should never need to call InitMouse.

Example:

See also: SlowMouse, UpdateMouse, SetMouse, StartMouseMode, MouseUp.

input driver

 20-123 GEOS Kernal 2.0

SetMouse: (C128) FE89

Function: Input device scan reset.

Parameters: none.

Returns: nothing.

Destroys: assume a, x, y, r0-r15.

Description: GEOS 128 calls SetMouse during Interrupt Level, immediately after the keyboard is scanned for

a new key, to reset the pot (potentiometer) scanning lines so that they will recharge with the new

value. It is primarily of use with the Commodore 1351 mouse, which requires having the pot lines

reset regularly. Other input drivers will have a SetMouse routine that merely performs an rts. An

application should never need to call SetMouse.

Example:

See also: SlowMouse, UpdateMouse, InitMouse.

input driver

 20-124 GEOS Kernal 2.0

SlowMouse: (C64, C128) FE83

Function: Kills any accumulated speed in a non-proportional input device.

Parameters: none.

Returns: nothing.

Alters: internal input-driver speed variables, if any.

Destroys: assume a, x, y, r0-r15.

Description: Input drivers for non-proportional input devices, such as a joystick, will often internally associate

a speed and velocity with movement. This way the pointer can speed up when the user is trying

to move large distances. SlowMouse will tell the input driver to kill any accumulated speed,

effectively stopping the pointer at a specific location and forcing it to regain momentum.

Depending on the input driver, SlowMouse may or may not have an effect on the pointer's

movement The standard mouse driver, for example, simply performs an rts but some other input

driver may actually copy the value in minMouseSpeed to its own internal speed variable.

GEOS calls SlowMouse when it drops menus down. A driver that has velocity variables should

adjust the current speed so that the pointer does not immediately jump off the menu. An

application may want to call SlowMouse when the user is required to make precise movements.

Example:

See also: UpdateMouse, InitMouse, SetMouse.

input driver

 20-125 GEOS Kernal 2.0

UpdateMouse: (C64, C128) FE86

Function: Update the mouse variables based on any changes in the state of the input device.

Parameters: none.

Returns: nothing.

Alters: mouseXPos mouse x-position.

mouseYPos mouse y-position.

mouseData state of mouse button: high bit set if button is released; clear if pressed.

pressFlag MOUSE_BIT and INPUT_BIT set appropriately.

inputData depends on device

Destroys: assume a, x, y, r0-r15.

Description: GEOS calls UpdateMouse at Interrupt Level to update the GEOS mouse variables with the actual

state of the input device. An application should never need to call UpdateMouse.

A typical input driver's UpdateMouse routine will scan the device hardware and update

mouseXPos and mouseYPos with new positions if the coordinates have changed It will also

update mouseData with the current state of the input button (high-bit set if released; cleared if

pressed) and set MOUSE_BIT in pressFlag if the button state has changed since the last call to

UpdateMouse.

The four byte inputData field, which was originally for device-dependent information, has

adopted the following standard offsets:

inputData+0 (byte) 8-position device direction (joystick direction; mouse drivers convert a

moving mouse to an appropriate direction):

inputData+1 (byte) current speed (Commodore joystick drivers only).

Standard GEOS input drivers should set the INPUT_BIT of pressFlag if inputData+0 has

changed since the last time UpdateMouse was called. Because most GEOS applications leave

inputVector set to its default $0000 value, setting this bit will usually have no effect.

Example:

See also: SlowMouse, InitMouse, SetMouse.

-1 0 4

6

2

1

5 7

3

 20-126 GEOS Kernal 2.0

internal

Name Addr Description Page

BootGEOS C000 Reboot GEOS. Requires only 128 bytes at $C000. 20-127

FirstInit C271 Initialize GEOS variables. 20-128

GetSerialNumber C196 Return GEOS serial number. 20-129

InterruptMain C100 Main interrupt level processing. 20-130

MainLoop C1C3 GEOS MainLoop processing. 20-131

Panic C2C2 System-error dialog box. 20-132

Reset 03E4 C128 Reset handler located in BackRAM 20-133

ResetHandle C003 internal Bootstrap entry point. 20-134

internal

 20-127 GEOS Kernal 2.0

BootGEOS: (C64, C128) C000

Function: Restart GEOS from a non-GEOS application.

Parameters: none.

Returns: does not return.

Destroys: n/a.

Description: BootGEOS provides a method for a non-GEOS application to run in the GEOS environment—

starting up from the deskTop and returning to GEOS when done. The non-GEOS application need

only preserve the area of memory between BootGEOS and BootGEOS+$7F. The rest of the

GEOS Kernal may be overwritten. To reboot GEOS, simply jmp BootGEOS, which completely

reloads the operating system (either from disk in a "boot" procedure or from a RAM-Expansion

Unit in a "rboot" procedure) and returns to the GEOS deskTop.

A program can check to see if it was loaded by GEOS by checking the memory starting at

bootName for the ASCII (not CBMASCII) string "GEOSBOOT". If loaded by GEOS, the

program can check bit 5 of sysFlgCopy, if this bit is clear, ask the user to insert their GEOS boot

disk before continuing, otherwise a boot disk is not needed because GEOS will rboot from the

RAM expansion unit. To return to GEOS on a Commodore 64, set CPU_DATA to

KRNL_BAS_IO_IN ($37) and then jump to BootGEOS. To return to GEOS on a Commodore

128 see the following examples:

;--- C128 must first setup the system configuration before jumping to BootGEOS
; Note: Code must reside below $4000 in the low Common ram area.

.psect $1BFE ; any valid location in bottom 16K
 GoGEOS:

 rmbf 0,config ; map in I/O so mmurcr can be set
 setbit mmurcr,#%00110000,#%01000111 ; set Common ram on for bottom 16K
 ; and VIC in bank 1
 LoadB config,#CIO_IN ; activate bank 1 memory
 jmp BootGEOS ; reboot GEOS

Example: RoadTrip.

See also: FirstInit, StartAppl, GetFile, EnterDeskTop.

internal

 20-128 GEOS Kernal 2.0

FirstInit: (C64, C128) C271

Function: Simulates portions of the GEOS cold start procedure without actually rebooting GEOS or

destroying the application in memory.

Parameters: none.

Returns: GEOS variables and system hardware in a cold start state; stack and application space unaffected.

Destroys: a, x, y, r0-r2.

Description: FirstInit is part of the GEOS cold start procedure. It initializes nearly all GEOS variables and

data structures (both global and local), including those which are usually only done once, when

GEOS is first booted, such as setting the configuration variables to a default, power-up state.

GEOS calls this routine internally. Applications will not find it especially useful.

Note: The GEOS font variables are not reset by FirstInit; a call to UseSystemFont may be necessary.

Example:

See also: StartAppl, FirstInit.

internal

 20-129 GEOS Kernal 2.0

GetSerialNumber: (C64, C128) C196

Function: Return the 16-bit serial number or pointer to the serial string for the current GEOS Kernal.

Parameters: none.

Returns: r0 16-bit serial number.

Destroys: a.

Description: GetSerialNumber gives an application access to an unencrypted copy of the GEOS serial number

or serial string for comparison purposes. You cannot change the actual serial string or number by

altering this copy.

Example:

See also:

internal

 20-130 GEOS Kernal 2.0

InterruptMain: (C64, C128) C100

Function: Main Interrupt Level processing.

Parameters: none.

Returns: nothing.

Destroys: a, x, y, r0-r15.

Description: InterruptMain is the main GEOS interrupt level processing loop and that means different things

on different systems.

Note: InterruptMain is a subset of the full interrupt level process. InterruptMain is typically called

through the intTopVector. An application could conceivably jsr InterruptMain to "catch up"

on some system updating if interrupts have been disabled for a considerable period of time.

InterruptMain is not re-entrant, so it is important that interrupts be disabled around the catch-

up calls.

Example:

See also: MainLoop.

internal

 20-131 GEOS Kernal 2.0

MainLoop: (C64, C128) C1C3

Function: Direct entry into the GEOS MainLoop.

Parameters: nothing.

Returns: n/a.

Destroys: n/a.

Description: Although the term "MainLoop" usually refers to GEOS MainLoop Level processing, it also

represents an entry in the GEOS jump table. By performing a jmp MainLoop, the application

would be returning to the top of the MainLoop Level without letting it run through its normal

course of events. The application is expected to return to MainLoop Level with an rts, not with

a call to MainLoop. Hence, this jump table entry is not terribly useful to applications and is

primarily used internally by GEOS.

The MainLoop jump table entry is perhaps useful when debugging. The system could,

conceivably, be returned to a "known state" by resetting the stack pointer and executing a jmp

MainLoop. Of course, there is no guarantee that this will work.

Example:
ldx #$FF ; reset stack pointer
txs
jmp MainLoop ; try to get back to normal.

See also: InterruptMain.

internal

 20-132 GEOS Kernal 2.0

Panic: (C64, C128) C2C2

Function: Display "system error" dialog box.

Parameters: C64

 top word on stack is the system error address+2.

C128

top eight bytes on stack are unused, next word on stack is the system error address+2.

Returns: Never returns.

Description: Panic puts up a system error dialog box. It is usually not called directly by an application. Usually,

the global GEOS variable BRKVector will contain the address of this routine. When GEOS

encounters a brk (opcode: $00) instruction in memory, it jumps indirectly through BRKVector

with system-specific status values on the stack. This usually results in a system error dialog box.

The hex address in the dialog box is the address of the offending brk instruction.

An application that patches into BRKVector processes brk instructions on its own may need to

simulate the normal GEOS course of events by performing a jmp Panic.

Although this is not a typical use, an application can use Panic as a means of communicating fatal

error messages. This may be useful in a beta-test version of a software product, for example.

Example: FatalError.

See also: InterruptMain.

internal

 20-133 GEOS Kernal 2.0

Reset: (C128) 03E4

Function: Internal handler used during the C128 reset process.

Parameters: none.

Returns: does not return.

Description: Reset is only used during the C128 reset process. Normally activated by the reset switch. It is not

useful to applications and is documented here only because it is part of the GEOS Kernal. Reset

is located in BackRAM.

 Reset:
 LoadB config,#CIO_IN
 jmp BootGEOS

Example:

See also: BootGEOS.

internal

 20-134 GEOS Kernal 2.0

ResetHandle: (C64, C128) C003

Function: Internal routine used during the GEOS boot process.

Parameters: none.

Returns: does not return.

Description: ResetHandle is only used during the GEOS boot process. It is not useful to applications and is

documented here only because it exists in the jump table.

Example:

See also: BootGEOS.

 20-135 GEOS Kernal 2.0

math

Name Addr Description Page

BBMult C160 Byte by byte (single-precision) unsigned multiply. 20-136

BMult C163 Byte by word unsigned multiply. 20-137

Dabs C16F Double-precision signed absolute value. 20-138

Ddec C175 Double-precision unsigned decrement. 20-139

Ddiv C169 Double-precision unsigned division. 20-140

DMult C166 Double-precision unsigned multiply. 20-142

Dnegate C172 Double-precision signed negation. 20-143

DSdiv C16C Double-precision signed division. 20-144

DShiftLeft C15D Double-precision left shift (zeros shifted in). 20-145

DShiftRight C262 Double-precision right shift (zeros shifted in). 20-146

math

 20-136 GEOS Kernal 2.0

BBMult: (C64, C128) C160

Function: Unsigned byte-by-byte multiply: multiplies two unsigned byte operands to produce an unsigned

word result.

Parameters: x OPERAND1 — zero page address of single-byte multiplicand in the low-byte of a word

variable (byte pointer to a word variable).

y OPERAND2 — zero page address of the byte multiplier (byte pointer to a byte

variable).

 Note: result = OPERAND1(byte) * OPERAND2(byte).

Returns: x, y, byte pointed to by OPERAND2 unchanged.

word pointed to by OPERAND1 contains the word result.

Destroys: a, r7L, r8.

Description: BBMult is an unsigned byte-by-byte multiplication routine that multiplies two bytes to produce

a 16-bit word result (low/high order). The byte in OPERAND1 is multiplied by the byte in

0PERAND2 and the result is stored as a word back in OPERAND1. Note OPERAND1 starts out

as a byte parameter but becomes a word result with the high-byte at OPERAND1+1.

Note: Because r7 and r8 are destroyed in the multiplication process, they cannot be used to hold either

operand.

 No overflow can occur when multiplying two bytes because the result always fits in a word

($FF*$FF = $FE01).

Example: 8BitMultiply.

See also: BMult, DMult, Ddiv, DSdiv.

math

 20-137 GEOS Kernal 2.0

BMult: (C64, C128) C163

Function: Unsigned word-by-byte multiply: multiplies an unsigned word and an unsigned byte to produce

an unsigned word result.

Parameters: x OPERAND1 — zero page address of word multiplicand (byte pointer to word variable).

y OPERAND2 — zero page address of multiplier (byte pointer to a word variable — use a

word variable; only the low-byte is used in the multiplication process, but the high-byte

of the word is destroyed).

Note: result = OPERAND1(word) * OPERAND2(byte).

Returns: x, y unchanged.

word pointed to by OPERAND2 has its high-byte set to $00, and its low-byte unchanged.

word pointed to by OPERAND1 contains the word result.

Destroys: a, r6-r8.

Description: BMult is an unsigned word-by-byte multiplication routine that multiplies the word at one zero

page address by the byte at another to produce a 16-bit word result. BMult operates by clearing

the high-byte of OPERAND2 and calling DMult. The result is stored as a word back in

OPERAND1.

Note: r6, r7 and r8 are destroyed in the multiplication process, they cannot be used to hold the operands.

Overflow in the result (beyond 16-bits) is ignored.

Example: 16x8Multiply, ConvToUnits.

See also: BMult, DMult, Ddiv, DSdiv.

math

 20-138 GEOS Kernal 2.0

Dabs: (C64, C128) C16F

Function: Compute absolute value of a two's-complement signed word.

Parameters: x OPERAND — zero page address of word to operate on (byte pointer to a word

variable).

Returns: x, y unchanged.

word pointed to by OPERAND contains the absolute value result.

Destroys: a.

Description: Dabs takes a signed word at a zero page address and returns its absolute value. The address of the

word (OPERAND) is passed in x. The absolute value of OPERAND is returned in OPERAND.

The equation involved is: if (value < 0) then value = -value.

Example: DSmult.

See also: DNegate.

math

 20-139 GEOS Kernal 2.0

Ddec: (C64, C128) C175

Function: Decrement a word.

Parameters: x OPERAND — zero page address of word to decrement (byte pointer to a word

variable).

Returns: x, y unchanged.

st z flag is set if resulting word is $0000.

zero page word pointed to by OPERAND contains the decremented word.

Destroys: a.

Description: Ddec is a double-precision routine that decrements a 16-bit zero page word. The absolute address

of the word is passed in x. If the result of the decrement is zero, then the z flag in the status register

is set and can be tested with a subsequent beq or bne. Ddec is useful for loops which require a

two-byte counter.

Note3: The macro DecW should be used in cases where speed is more important than code size. Inner

loops should always use DecW if space allows. Ddec should be used when space is at a premium

as it costs only 5 bytes to use. The Kernal uses Ddec in CRC because space in the Kernal is more

valuable than the speed of the CRC procedure that is not normally ever used in an inner loop. See

Example: DdecvsDecW.

Example: Kernal_CRC, DdecvsDecW, DecCounter, DecZW.

See also:

math

 20-140 GEOS Kernal 2.0

Ddiv: (C64, C128) C169

Function: Unsigned word-by-word (double-precision) division: divides one unsigned word by another to

produce an unsigned word result.

Parameters: x OPERAND1 — zero page address of word dividend (byte pointer to a word variable).

y OPERAND2 — zero page address of word divisor (byte pointer to a word variable).

Note: result = OPERAND1 (word) / OPERAND2(word).

Returns: x, y, word pointed to by OPERAND2 unchanged.

word pointed to by OPERAND1 contains the result.

r8 contains the fractional remainder (word).

Destroys: a, r9.

Description: Ddiv is an unsigned word-by-word division routine that divides the word at one zero page address

(the dividend) by the word at another (the divisor) to produce a 16-bit word result and a 16-bit

word fractional remainder The word in OPERAND1 is divided by the word in OPERAND2 and

the result is stored as a word back in OPERAND1. The remainder is returned in r8.

Note: Because r8 and r9 are used in the division process, they cannot be used to hold operands.

If the divisor (OPERAND2) is greater than the dividend (OPERAND1), then the fractional result

will be returned as $0000 and OPERAND1 will be returned in r8.

Although dividing by zero is an undefined mathematical operation, Ddiv makes no attempt to

flag this as an error condition and will simply return incorrect results. If the divisor might be zero,

the application should check for this situation before dividing as in:

 zpage = $00
 ;--- Example use of the validated Ddiv wrapper.
 ldx #r0 ; point x to dividend
 ldy #r1 ; point y to divisor
 jsr DdivValidated ; call our validated Ddiv routine
 bmi 99$; branch on divide by zero error
 ...

 DdivValidated:

 lda zpage,y ; get low-byte of divisor
 ora zpage+1,y ; get high-byte of divisor
 bne 10$; if either non-zero, go divide
 jmp DivideByZero ; else, flag error
10$
 jmp Ddiv

There is no possibility of overflow (a result which cannot fit in 16 bits).

Example: ConvToUnits, CheckDiskSpace, NewDdiv.

See also: DSdiv, DMult, BBMult, BMult.

math

 20-141 GEOS Kernal 2.0

DivideBySeven: (Apple)

Function: Divide a byte value by 7.

Parameters: r0L OPERAND1 — byte to divide by 7.

Returns: a result.

Destroys: a.

Description: Bonus code page: Commodore GEOS has no DivideBySeven in the Kernal like Apple GEOS

does, so here is a block to do a similar operation on an 8-bit value.

 DvBy7:
 lda r0L
 lsr
 lsr
 lsr
 adc r0L
 ror
 lsr
 lsr
 adc r0L
 ror
 lsr
 lsr
 rts

Example:

See also:

math

 20-142 GEOS Kernal 2.0

DMult: (C64, C128) C166

Function: Unsigned word-by-word (double-precision) multiply: multiplies two unsigned words to produce

an unsigned word result.

Parameters: x OPERAND1 — zero page address of word multiplicand (byte pointer to a word

variable).

y OPERAND2 — zero page address of word multiplier (byte pointer to a word variable).

Note: results OPERAND1 (word) * OPERAND2(word).

Returns: x, y, word pointed to by OPERAND2 unchanged.

 word pointed to by OPERAND1 contains the word result.

Destroys: a, r6-r8.

Description: DMult is an unsigned word-by-word multiplication routine that multiplies the word at one zero

page address by the word at another to produce a 16-bit word result (all stored in low/high order).

The word in OPERAND1 is multiplied by the word in OPERAND2 and the result is stored as a

word back in OPERAND1.

Note: Because r6, r7 and r8 are destroyed in the multiplication process, they cannot be used to hold the

operands.

r7 contains the top 8 bits of a 24bit result. Overflow in the result beyond 24-bits is ignored.

Example: DSmult.

See also: Bmult, BBMult, Ddiv, DSdiv.

math

 20-143 GEOS Kernal 2.0

Dnegate: (C64, C128) C172

Function: Negate a signed word (two's complement sign-switch).

Parameters: x OPERAND — zero page address of word to operate on (byte pointer to a word

variable).

Returns: x, y unchanged.

Destroys: a.

Description: Dnegate negates a zero page word. The absolute address of the word OPERAND) is passed in x.

The absolute value of OPERAND is returned in OPERAND.

The operation of this routine is: value = (value ^ $FFFF) + 1.

Example: DSmult, NewSDSdiv.

See also: Dabs.

math

 20-144 GEOS Kernal 2.0

DSdiv: (C64, C128) C16C

Function: Signed word-by-word (double-precision) division: divides one two's complement word by

another to produce a signed word result.

Parameters: x OPERAND1 — zero page address of signed word dividend (byte pointer to a word

variable).

y OPERAND2 — zero page address of signed word divisor (byte pointer to a word

variable).

Returns: x, y unchanged.

r8 the fractional remainder (word).

word pointed to by OPERAND2 equals its absolute value.

word pointed to by OPERAND1 contains the word result.

Destroys: a, r9.

Description: DSdiv is a signed, two's complement word-by-word division routine that divides the word in one

zero page pseudoregister (the dividend) by the word in another (the divisor) to produce a 16-bit

word signed result and a 16-bit word fractional remainder. The word in OPERAND1 is divided

by the word in OPERAND2 and the result is stored as a word back in OPERAND1 with the

remainder in r8.

The remainder is always positive regardless of the sign of the dividend. This will cause problems

with some mathematical operations that expect a signed remainder. The following code fragment

will fix this problem:

See Example: NewSDSdiv.

Note: Because r8 and r9 are used in the division process, they cannot be used as the operands.

Although dividing by zero is an undefined mathematical operation, DSdiv makes no attempt to

flag this as an error condition and simply returns incorrect results. If the divisor might be zero,

the application should check for this situation before dividing:

 zpage = $00
 ...
 ldx #r0 ; point x to dividend
 ldy #r1 ; point y to divisor
 lda zpage,y ; get low-byte of divisor
 ora zpage+1,y ; get high-byte of divisor
 bne 10$; if either non-zero, go divide
 jmp DivideByZero ; else, flag error
 10$
 jmp DSdiv ; divide

Example: NewDSdiv, NewSDSdiv.

math

 20-145 GEOS Kernal 2.0

DShiftLeft: (C64, C128) C15D

Function: Arithmetically left-shift a zero page word.

Parameters: x OPERAND — address of the zero page word to shift (byte pointer to a word variable).

y COUNT — number of times to shift the word left (byte).

Returns: a, x unchanged.

y #$FF.

st c (carry flag) is set with last bit shifted out of word.

zero page address pointed to by OPERAND contains the shifted word.

Destroys: nothing.

Description: DShiftLeft is a double-precision math routine that arithmetically left-shifts a 16-bit zero page

word (low/high order). The address of the word is passed in x and the number of times to shift

the word is passed in y. Zeros are shifted into the low-order bit.

 An arithmetic left-shift is useful for quickly multiplying a value by a power of two. One left-shift

will multiply by two, two left-shifts will multiply by four, three left-shifts will multiply by eight,

and so on: value = value * 2count.

Note: If a COUNT of $00 is specified, the word will not be shifted.

 Carry Flag <- High-byte <- Low-byte

C 7-6-5-4-3-2-1-0 7-6-5-4-3-2-1-0 <- 0

Example:

See also: Ddiv, DMult, BBMult, BMult.

See also: DShiftRight.

math

 20-146 GEOS Kernal 2.0

DShiftRight: (C64, C128) C262

Function: Arithmetically right-shift a zero page word.

Parameters: x OPERAND — address of the zero page word to shift (byte pointer to a word variable).

y COUNT — number of times to shift the word right (byte).

Returns: a, x unchanged.

y #$FF

st c (carry flag) is set with last bit shifted out of word.

zero page address pointed to by OPERAND contains the shifted word.

Destroys: nothing.

Description: DShiftRight is a double-precision math routine that arithmetically right-shifts a 16-bit zero page

word (low/high order). The address of the word is passed in x and the number of times to shift

the word is passed in y. Zeros are shifted into the high-order bit.

An arithmetic right-shift is useful for quickly dividing a value by a power of two. One right-shift

will divide by two, two right-shifts will divide by four, three right-shifts will divide by eight, and

so on: value = value / 2count.

Note: If a COUNT of $00 is specified, the word will not be shifted.

High-byte -> Low-byte -> Carry Flag

0 -> 7-6-5-4-3-2-1-0 7-6-5-4-3-2-1-0 C

Example: MseToCardPos, ConvToUnits.

See also: DShiftLeft.

 20-147 GEOS Kernal 2.0

memory

Name Addr Description Page

AccessCache C2EF C128 Provides a mechanism for disk drivers to cache up to 21 blocks. 20-148

ClearRam C178 Clear memory to $00. 20-149

CmpFString C26E Compare two fixed-length strings. 20-150

CmpString C26B Compare two null-terminated strings. 20-151

CopyFString C268 Copy a fixed-length string. 20-152

CopyString C265 Copy a null-terminated string. 20-153

DoBOp C2EC C128 backRAM memory move/swap/verify primitive. 20-154

DoRAMOp C2D4 Primitive for communicating with REU (RAM-Expansion Unit). 20-155

FetchRAM C2CB Transfer data from RAM-Expansion Unit. 20-156

FillRam C17B Fill memory with a particular byte. 20-157

i_FillRam C1B4 Inline FillRam. 20-157

i_MoveData C1B7 Inline MoveData. 20-160

InitRam C181 Initialize memory areas from table. 20-158

MoveBData C2E3 128 backRAM memory move routine. 20-159

MoveData C17E Intelligent memory block move. 20-160

StashRAM C2C8 Transfer memory to RAM-Expansion Unit. 20-161

SwapBData C2E6 128 swap memory between front/backRAM. 20-162

SwapRAM C2CE Swap memory with an REU memory block. 20-163

VerifyBData C2E9 128 backRAM verify. 20-164

VerifyRAM C2D1 RAM-Expansion Unit verify. 20-165

memory

 20-148 GEOS Kernal 2.0

AccessCache: (C128) C2EF

Function: Provides a mechanism for disk drivers to cache up to 21 blocks.

Parameters: r1H BLOCK — block number (0-20) (byte).

 r4 BUFFER — address of block buffer; must be at least BLOCKSIZE bytes (word).

y MODE — operation mode:

b0 b1 Description

0 0 Save block at BUFFER to cache.

0 1 Read block from cache and write to BUFFER.

1 0 Swap block at BUFFER with block in cache.

1 1 verify (compare) BUFFER against contents of cache.

 -1 Erase cache. (MODE=$FF)

Note: the MODE parameter closely matches the low nibble of the DoRAMOp CMD parameter.

Calls: DoBOp.

Returns: When saving:

 nothing.

When reading:

 contents of cache block written to BUFFER

Z=1 block data on cache is not valid. (block has not been written to cache since the last erase).

Z=0 block data on cache is valid.

When verifying:

a, y $00 if data matches.

$FF if mismatch.

Destroys: a, x, y.

Description: AccessCache provides disk drivers with the ability to maintain a cache of 21 blocks. The cache

is large enough to hold a full track on a 1541 or 1571 drive. The 1541, 1571 and 1581 disk drivers

use the cache to speed up access to directory blocks. Drivers reset the cache every time a new

disk is detected and every time the active device is changed.

Note: Verify has an oddity where it returns the error status in the y and a-registers. the x-register is

always $00 regardless of the outcome of the verify.

Note: Erase Cache erases the first 2 bytes of every block in the cache. The remaining bytes of the

blocks are left unchanged.

Note: AccessCache appears in the jump table in Wheels 4.4 but performs no function. It immediately

does an rts.

Example:

See also:

memory

 20-149 GEOS Kernal 2.0

ClearRam: (C64, C128) C178

Function: Clear a region of memory to $00.

Parameters: r0 COUNT — number of bytes to clear (0 - 64K) (word).

 r1 ADDR — address of area to clear (word).

Returns: nothing.

Destroys: a, y, r0, r1, r2L.

Description: ClearRam clears COUNT bytes starting at ADDR to ADDR+COUNT. It useful for initializing

ramsect variables and data sections.

Note: Do not use ClearRam to initialize r0-r2L. Also, for when space is at a premium, it actually takes

fewer bytes to call i_FillRam with a fill value of $00.

Note1: ClearRam sets r2L to $00 and calls FillRam.

Example: InitBuffers.

See also: FillRam, InitRam.

memory

 20-150 GEOS Kernal 2.0

CmpFString: (C64, C128) C26E

Function: Compare two fixed-length strings.

Parameters: x SOURCE — zero page address of pointer to source string (byte pointer to a word

pointer).

y DEST — zero page address of pointer to destination string (byte pointer to a word

pointer).

a LEN — length of strings (1-255). A LEN value of $00 will cause CmpFString to

function exactly like CmpString, expecting a null terminated source string.

Returns: st status register flags reflect the result of the comparison.

Destroys: a, x, y.

Description: CmpFString compares the fixed-length string pointed to by SOURCE to the string of the same

length pointed to by DEST.

CmpFString with a LEN value of $00 causes the routine to act exactly like CmpString.

CmpFString compares each character in the strings until there is a non-matching pair. The result

of the comparison between the non-matching pair is passed back in the processor status register

(st). If the strings match, the z flag is set. This allows the application to test the result of a string

comparison with standard test and branch operations:

bne branch if strings don't match.

beq branch if strings match.

bcs branch if source string is greater than or equal to DEST string.

bcc branch if source string is less than DEST string.

Note: The strings may contain internal NULL's. These will not terminate the comparison.

Example: Find.

See also: CmpString, CopyFString.

memory

 20-151 GEOS Kernal 2.0

CmpString: (C64, C128) C26B

Function: Compare two null-terminated strings.

Parameters: x SOURCE — zero page address of pointer to source null terminated string

 (byte pointer to a word pointer).

 y DEST — zero page address of pointer to destination null terminated string

 (byte pointer to a word pointer).

Returns: st status register flags reflect the result of the comparison.

Destroys: a, x, y.

Description: CmpString compares the null-terminated source string pointed to by SOURCE to the destination

string pointed to by DEST. The strings are compared a byte at a time until either a mismatch is

found or a null is encountered in both strings.

CmpString compares each character in the strings until there is a non-matching pair. The result

of the comparison between the non-matching pair is passed back in the processor status register

(st). If the strings match, the z flag is set. This allows the application to test the result of a string

comparison with standard test and branch operations:

bne branch if strings don't match.

beq branch if strings match.

bcs branch if SOURCE string is greater than or equal to DEST string.

bgt branch if SOURCE string is greater than DEST string.

bcc branch if SOURCE string is less than DEST string.

ble branch if SOURCE string is less than or equal to DEST string.

Note: CmpString cannot compare strings longer than 256 bytes (including the null). The compare

process is aborted after 256 bytes.

Example: Find2.

See also: CmpFString, CopyString.

memory

 20-152 GEOS Kernal 2.0

CopyFString: (C64, C128) C268

Function: Copy a fixed-length string.

Parameters: x SOURCE — zero page address of pointer to source string

 (byte pointer to a word pointer).

y DEST — zero page address of pointer to destination buffer

 (byte pointer to a word pointer).

a LEN — length of strings (1-255)

Returns: Buffer pointed to by DEST contains copy of SOURCE string.

Destroys: a, x, y.

Description: CopyFString copies a fixed-length string pointed to by SOURCE to the buffer pointed to by

DEST. If the SOURCE and DEST areas overlap, the DEST address must be less than the SOURCE

address for the copy to work properly.

Note: Because the LEN parameter is a one-byte value, CopyFString cannot copy a string longer than

255 bytes. A LEN value of $00 causes CopyFString to act exactly like CopyString.

Note: The SOURCE string may contain internal NULL's. These will not terminate the copy operation.

Example: CopyBuffer.

See also: CopyString, CmpString, MoveData.

memory

 20-153 GEOS Kernal 2.0

CopyString: (C64, C128) C265

Function: Copy a null-terminated string.

Parameters: x SOURCE — zero page address of pointer to a NULL terminated source string

 (byte pointer to a word pointer).

y DEST — zero page address of pointer to destination buffer

 (byte pointer to a word pointer).

Returns: Buffer pointed to by DEST contains copy of SOURCE string, including the terminating NULL.

Destroys: a, x, y.

Description: CopyString copies a null terminated string pointed to by SOURCE to the buffer pointed to by

DEST. All Characters in the string are copied, including the null-terminator. If the SOURCE and

DEST areas overlap, the DEST address must be less than the SOURCE address for the copy to

work properly.

Note: CopyString cannot copy more than 256 bytes. The copy process is aborted after 256 bytes.

Example: CopyBuffer, CopyStr.

; Kernal code for CopyString and CopyFString
_CopyString:
 lda #0 ; load flag for null terminated copy
_CopyFString:
 stx cpyset+1 ; set zero page source
 sty cpyset+3 ; set zero page destination
 tax ; set copy flag (0=NULL Terminated)
 ldy #0 ; set index to start of string
cpyset:
10$ MoveB "(0),Y","(0),Y" ; move byte from SOURCE to DEST
 bne 20$; if NULL and X=0 (NULL terminated copy)
 bxeq 90$; then exit.
20$ iny ; if y has wrapped around
 beq 90$; then exit
 bxeq 10$; if null terminated copy then get next char
 dex ; if fixed length not reached
 bne 10$; then get next char
90$ rts

See also: CopyFString, CmpString, MoveData.

memory

 20-154 GEOS Kernal 2.0

DoBOp: (C128) C2EC

Function: Back-RAM memory move/swap/verify primitive.

Parameters: r0 ADDR1 — address of first block in application memory (word).

r1 ADDR2 — address of second block in application memory (word).

r2 COUNT — number of bytes to operate on (word).

r3L A1BANK — ADDR1 bank: 0 = frontRAM; 1 = backRAM (byte).

r3H A2BANK — ADDR2 bank: 0 = frontRAM; 1 = backRAM (byte).

y MODE — operation mode:

b1 b0 Description

0 0 move from memory at ADDR1 to memory at ADDR2.

0 1 move from memory at ADDR2 to memory at ADDR1.

1 0 swap memory at ADDR1 with memory at ADDR2.

1 1 verify (compare) memory at ADDR1 against memory at ADDR2.

Note: the DoBOp MODE parameter closely matches the low nibble of the DoRAMOp CMD

parameter.

Returns: r0-r3 unchanged.

When verifying:

x $00 if data matches.

$FF if mismatch.

DEV_NOT_FOUND if bank or REU not available.

when MODE=1:

Values in r0 and r1 are swapped on return. This is so DoBOp can put the source addr and dest

address in the correct order for its call to MoveBData.

Destroys: a, x, y.

Description: DoBOp is a generalized memory primitive for dealing with both memory banks on the

Commodore 128. It is used by MoveBData, SwapBData, and VerifyBData.

Note: DoBOp should only be used on designated application areas of memory. When moving memory

within the same bank the destination address must be less than source address. When swapping

memory within the same bank, ADDR1 must be less than ADDR2.

Important3: Using MODE 1 will cause the address' in r0 and r1 to be swapped. If an application is not

expecting this behavior, unexpected results may occur as a result of the swapped register contents.

Example:

See also: MoveBData, SwapBData, VerifyBData, DoRAMOp.

memory

 20-155 GEOS Kernal 2.0

DoRAMOp: (C64 v1.3+, C128) C2D4

Function: Primitive for communicating with REU (RAM-Expansion Unit) devices.

Parameters: r0 CBMSRC — address in Main Memory (word).

r1 REUDEST — address in REU bank (word).

r2 COUNT — number of bytes to operate with (word).

r3L REUBANK — REU bank number to use (byte).

y CMD — command to send to REU (byte).

Returns: r0-r3L unchanged.

x error code: $00 (no error) or

DEV_NOT_FOUND if bank or REU not available.

a REU status byte AND'ed with $60. ($40 = success).

Destroys: y.

Description: DoRAMOp is a very low-level routine for communicating with a RAM-Expansion Unit on a C64

or C128. This routine is a "use at your own risk" GEOS primitive.

DoRAMOp operates with the with the RAM-Expansion Unit directly and handles all the

necessary communication protocols and clock-speed save/restore (if necessary).

The CMD parameter is stuffed into the REC Command Register (EXP_BASE+$01). Although

DoRAMOp does no error checking on this parameter, it expects the high-nibble to be %1001

(transfer with current configuration and disable FF00 decoding). The lower nibble can be one of

the following:

b1 b0 Description

0 0 Transfer from Commodore to REU.

0 1 Transfer from REU to Commodore.

1 0 Swap.

1 1 Verify.
Note: the low nibble of the DoRAMOp CMD parameter closely matches the DoBOp MODE

parameter.

Note: On a Commodore 128, if the VIC chip is mapped to frontRAM (with the MMU VIC bank

pointer), the REU will read/write using frontRAM. Similarly, if the VIC chip is mapped to

backRAM, the REU will read/write using backRAM. The REU ignores the standard bank

selection controls on the 8510. GEOS 128 defaults with the VIC mapped to frontRAM.

For more information on the Commodore REU devices, refer to the Commodore 1764 RAM

Expansion Module User's Guide or the 1700/1750 RAM Expansion Module User's Guide.

Example:

See also: StashRAM, FetchRAM, SwapRAM, VerifyRAM, DoBOp.

memory

 20-156 GEOS Kernal 2.0

FetchRAM: (C64 v1.3+, C128) C2CB

Function: Primitive for transferring data from an REU.

Parameters: r0 CBMDEST — address in Main Memory to start writing (word).

r1 REUSRC — address in REU bank to start reading (word).

r2 COUNT — number of bytes to fetch (word).

r3L REUBANK — REU bank number to fetch from (byte).

Returns: r0-r3L unchanged.

x error code: $00 (no error) or

DEV_NOT_FOUND if bank or REU not available.

a REU status byte AND'ed with $60 ($40 = success).

Destroys: y.

Description: FetchRAM moves a block of data from a REU BANK into Commodore memory. This routine is

a "use at your own risk" GEOS primitive.

FetchRAM uses the DoRAMOp primitive by calling it with a CMD parameter of %10010001.

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: StashRAM, SwapRAM, VerifyRAM, DoRAMOp, MoveBData.

memory

 20-157 GEOS Kernal 2.0

FillRam:, i_FillRam: (C64, C128) C17B, C1B4

Function: Fills a region of memory with a repeating byte value.

Parameters: Normal:

r0 COUNT — number of bytes to clear (0 - 64K) (word).

r1 ADDR — address of area to clear (word).

r2L FILL — byte value to fill with (byte).

Inline:

data appears immediately after the jsr i_FillRam.

.word COUNT — number of bytes to clear (0 - 64K) (word).

.word ADDR — address of area to clear (word).

.byte FILL — byte value to fill with (byte).

Returns: r2L unchanged.

Destroys: a, y, r0, r1.

Description: FillRam fills COUNT bytes starting at ADDR with the FILL byte. This routine is useful for

initializing a block of memory to any desired value.

Note: Do not use FillRam to initialize r0-r2L.

Example: InitBuffers.

See also: ClearRam, InitRam.

memory

 20-158 GEOS Kernal 2.0

InitRam: (C64, C128) C181

Function: Table driven initialization for variable space and other memory areas.

Parameters: r0 TABLE —address of initialization table (word).

Returns: nothing.

Destroys: a, x, y, r0-r2L.

Description: InitRam uses a table of data to initialize blocks of memory to preset values. It is useful for setting

groups of variables to specific values. It is especially good at initializing a group of noncontiguous

variables in a "two bytes here, three bytes there" fashion.

The initialization table that is pointed to by the TABLE parameter is a data structure made up from

the following repeating pattern:

.word address ; start address of this block

.byte count ; number of bytes to initialize

.byte byte1,byte2,...byteN ; count bytes of data

.word address ; start address of next block

The table is made of blocks that follow the above pattern, count bytes starting at address are

initialized with the next count bytes in the table. (A count value of $00 is treated as 256). To end

the table, use:

.word NULL ; end table

where InitRam expects the next address parameter.

Note: Do not use InitRam to initialize r0-r2L.

Example:

See also: FillRam, ClearRam.

memory

 20-159 GEOS Kernal 2.0

MoveBData: (C128) C2E3

Function: Special version of MoveData that will move data within either frontRAM or backRAM (or

from one bank to the other).

Parameters: r0 SOURCE — address of source block in memory (word).

r1 DEST — address of destination block in memory (word).

r2 COUNT — number of bytes to move (word).

r3L SRCBANK — source bank: 0 = backRAM; 1 = frontRAM (byte).

r3H DSTBANK — destination bank: 0 = backRAM; 1 = frontRAM (byte).

Returns: r0-r3 unchanged.

Destroys: a, x, y.

Description: MoveBData is a block move routine that allows data to be moved in either frontRAM, backRAM,

or between front and back (bank 1, the front bank, is the normal GEOS application area). If the

SOURCE and DEST areas are in the same bank and overlap, the DEST address must be less than

the SOURCE address for the copy to work properly.

MoveBData is especially useful for copying data from frontRAM to backRAM or from

backRAM to frontRAM.

MoveBData uses the DoBOp primitive by calling it with a MODE parameter of $00.

Note: MoveBData should only be used to move data within the designated application areas of memory.

MoveBData is significantly slower than MoveData and should be avoided if the move will occur

entirely within frontRAM.

Example:

See also: MoveBData, SwapBData, VerifyBData, DoBOp.

memory

 20-160 GEOS Kernal 2.0

MoveData:, i_MoveData: (C64, C128) C17E, C1B7

Function: Moves a block of data from one area to another.

Parameters: Normal:

r0 SOURCE — address of source block in memory (word).

r1 DEST — address of destination block in memory (word).

r2 COUNT — number of bytes to move (word).

Inline:

data appears immediately after the jsr i_MoveData.

.word SOURCE

.word DEST

.word COUNT

Returns: r0, r1, r2 unchanged.

Destroys: a, y.

Description: MoveData will move data from one area of memory to another. The source and destination blocks

can overlap in either direction, which makes this routine ideal for scrolling, insertion sorts, and

other applications that need to move arbitrarily large areas of memory around. The move is

actually a copy in the sense that the source data remains unaltered unless the destination area

overlaps it.

64 & 128: If the DMA MoveData option in the Configure program is enabled (GEOS v1.3 and later),

MoveData will use part of bank 0 of the installed RAM-Expansion Unit for an ultrafast move

operation. An application that calls MoveData in the normal manner will automatically take

advantage of this selection. An application that relies upon a slower MoveData (for timing or

other reasons) can disable the DMA-move by temporarily clearing bit 7 of sysRAMFlg. This bit

can also be used to read the status of the DMA-move configuration.

64: Due to insufficient error checking in GEOS, do not attempt to move more than 30,976 ($7900)

bytes at one time when the DMA-move option is enabled. Break the move up into multiple calls

to MoveData.

128: MoveData should only be used to move data within the standard frontRAM application space.

Use MoveBData to move memory within backRAM or between frontRAM and backRAM.

GEOS 128 2.0 will use DMA-move only when the following conditions are met:

1. bit 7 of sysRAMFlg is set.

2. r2 is less than $3900 bytes. ($5800 bytes in GEOS 128 1.4).

3. r0 and r1 are greater than $1FF.

Because the RAM-Expansion Unit DMA follows the VIC chip bank select, an application that is

displaying a 40-column screen from backRAM must either disable DMA-moves or temporarily

switch the VIC chip to frontRAM before the MoveData call.

Note: Do not use MoveData on r0-r6.

Example:

See also: MoveBData, CopyString.

memory

 20-161 GEOS Kernal 2.0

StashRAM: (C64 v1.3+, C128) C2C8

Function: Primitive for transferring data to an REU.

Parameters: r0 CBMSRC — address in Main Memory to start reading (word).

r1 REUDEST — address in REU bank to stash data (word).

r2 COUNT — number of bytes to stash (word).

r3L REUBANK — REU bank number to stash to (byte).

Returns: r0-r3L unchanged.

x error code: $00 (no error) or

DEV_NOT_FOUND if bank or REU not available.

a REU status byte AND'ed with $60 ($40 = success).

Destroys: y.

Description: StashRAM moves a block of data from Commodore memory into an REU bank. This routine is

a "use at your own risk" low-level GEOS primitive.

StashRAM uses the DoRAMOp primitive by calling it with a CMD parameter of %10010000.

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: SwapRAM, FetchRAM, VerifyRAM, DoRAMOp, MoveBData.

memory

 20-162 GEOS Kernal 2.0

SwapBData: (C128) C2E6

Function: Swaps two regions of memory within either frontRAM or backRAM (or between one bank and

the other).

Parameters: r0 ADDR1 — address of first block in application memory (word).

r1 ADDR2 — address of second block in application memory (word).

r2 COUNT — number of bytes to swap (word).

r3L A1BANK — ADDR1 bank: 0 = frontRAM; 1 = backRAM (byte).

r3H A2BANK — ADDR2 bank: 0 = frontRAM; 1 = backRAM (byte).

Returns: r0-r3 unchanged.

Destroys: a, x, y.

Description: SwapBData is a block swap routine that allows data to be swapped in either frontRAM,

backRAM, or between front and back. If the ADDR1 and ADDR2 areas are in the same bank and

overlap, ADDR2. must be less than ADDR1.

SwapBData is especially useful for swapping data from frontRAM to backRAM or from

backRAM to frontRAM.

SwapBData uses the DoBOp primitive by calling it with a MODE parameter of $02.

Note: SwapBData should only be used to swap data within the designated application areas of memory.

Example:

See also: MoveBData, VerifyBData, DoBOp.

memory

 20-163 GEOS Kernal 2.0

SwapRAM: (C64 v1.3+, C128) C2CE

Function: Primitive for swapping data between Commodore memory and an REU.

Parameters: r0 CBMADDR — address in Commodore to swap (word).

r1 REUADDR — address in REU to swap (word).

r2 COUNT — number of bytes to swap (word).

r3L REUBANK — REU bank number to fetch from (byte).

Returns: r0-r3 unchanged.

x error code: $00 (no error) or

DEV_NOT_FOUND if bank or REU not available.

a REU status byte AND'ed with $60 ($40 = successful swap).

Destroys: y.

Description: SwapRAM swaps a block of data in an REU bank with a block of data in Commodore memory.

This routine is a "use at your own risk" low-level GEOS primitive.

SwapRAM uses the DoRAMOp primitive by calling it with a CMD parameter of %10010010.

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: StashRAM, FetchRAM, VerifyRAM, DoRAMOp, SwapBData.

memory

 20-164 GEOS Kernal 2.0

VerifyBData: (C128) C2E9

Function: Compares (verifies) two regions of memory against each other. The regions may either be in

frontRAM or backRAM (or one in front and the other in back).

Parameters: r0 ADDR1 — address of first block in application memory (word).

r1 ADDR2 — address of second block in application memory (word).

r2 COUNT — number of bytes to swap (word).

r3L A1BANK — ADDR1 bank: 0 = frontRAM; 1 = backRAM (byte).

r3H A2BANK — ADDR2 bank: 0 = frontRAM; 1 = backRAM (byte).

Returns: r0-r3 unchanged.

x $00 if data matches;

$FF if mismatch.

Destroys: a, y.

Description: VerifyBData is a block verify routine that allows the data in one region of memory to be

compared to the data in another region in memory. The regions may be in either frontRAM,

backRAM, or in frontRAM and backRAM. The ADDR1 and ADDR2 areas may overlap even if

they are in the same bank.

VerifyBData uses the DoBOp primitive by calling it with a MODE parameter of $03.

Note: VerifyBData should only be used to compare data within the designated application areas of

memory.

Example:

See also: MoveBData, SwapBData, DoBOp.

memory

 20-165 GEOS Kernal 2.0

VerifyRAM: (C64 v1.3+, C128) C2D1

Function: Verify (compare) data in main memory with data in an REU.

Parameters: r0 CBMADDR — address in Commodore to start (word).

r1 REUADDR — address in REU bank to start (word).

r2 COUNT — number of bytes to verify (word).

r3L REUBANK — REU bank number to verify with (byte).

Returns: r0-r3L unchanged.

x error code: $00 (no error) or

DEV_NOT_FOUND if bank or REU not available.

a REU status byte AND'ed with $60: $40 = data match

$20 = data mismatch

Destroys: y.

Description: VerifyRAM Compares a block of data in Commodore memory with a block of data in an REU

bank to Verify the contents match. If bit 5 of the a-register is set, there was a failed comparison

during validation. This routine is a "use at your own risk" low-level GEOS primitive.

VerifyRAM uses the DoRAMOp primitive by calling it with a CMD parameter of %10010011.

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: SwapRAM, FetchRAM, StashRAM, DoRAMOp, VerifyBData.

 20-166 GEOS Kernal 2.0

mouse/sprite

Name Addr Description Page

ClearMouseMode C19C Stop input device monitoring. 20-167

HideOnlyMouse C2F2 (128) Temporarily remove soft-sprite mouse pointer. 20-168

IsMseInRegion C2B3 Check if mouse is inside a window. 20-169

MouseOff C18D Disable mouse pointer and GEOS mouse tracking. 20-170

MouseUp C18A Enable mouse pointer and GEOS mouse tracking. 20-171

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. 20-172

StartMouseMode C14E Start monitoring input device. 20-173

TempHideMouse C2D7 Hide soft-sprites before direct screen access. 20-174

mouse/sprite

 20-167 GEOS Kernal 2.0

ClearMouseMode: (C64, C128) C19C

Function: Stop monitoring the input device.

Parameters: nothing.

Returns: nothing.

Destroys: a, x, y, r3L.

Alters: mouseOn set to $00, totally disabling all mouse tracking.

mobenble sprite #0 bit cleared by DisablSprite.

Description: ClearMouseMode instructs GEOS to totally disable its monitoring of the input device. It clears

mouseOn to reset mouse tracking to its cleared state and calls DisablSprite. Applications will

normally not have a need to call this routine. It is the functional opposite of StartMouseMode.

Example:

See also: StartMouseMode, MouseOff.

mouse/sprite

 20-168 GEOS Kernal 2.0

HideOnlyMouse: (C128) C2F2

Function: Temporarily removes the soft-sprite mouse pointer from the graphics screen.

Parameters: nothing.

Returns: nothing.

Uses: graphMode Current video mode for C128

Destroys: a, x, y, r1-r6.

Description: HideOnlyMouse temporarily removes the mouse-pointer soft-sprite. It does not affect any of the

other sprites. This can be used as an alternative to TempHideMouse when only the mouse pointer

need be hidden. The mouse pointer will remain hidden until the next pass through MainLoop.

Any subsequent calls to TempHideMouse before passing through MainLoop again will not

erase any sprites.

In 40-column mode (when bit 7 of graphMode is zero), HideOnlyMouse exits immediately

without affecting the hardware sprites. Also, be aware that any subsequent GEOS graphic

operation will hide any visible sprites by calling TempHideMouse, so this routine is not

especially useful if using GEOS graphics routines.

Example:

See also: TempHideMouse.

mouse/sprite

 20-169 GEOS Kernal 2.0

IsMseInRegion: (C64, C128) C2B3

Function: Checks to see if the mouse is within a specified rectangular region of the screen.

Parameters: r3 X1 — x-coordinate of upper-left (word).

r2L Y1 — y-coordinate of upper-left (byte).

r4 X2 — x-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

where (X1, Y1) is the upper-left corner of the rectangle and (X2, Y2) is the lower-right corner.

Returns: a TRUE if in region, FALSE if not in region.

st result of loading TRUE or FALSE into the a-register.

Destroys: nothing.

Description: IsMseInRegion tests the position of the mouse against the boundaries of a rectangular region

(passed in the same GEOS registers as the Rectangle routine). It returns TRUE if the mouse is

within the region (inclusive) and FALSE if the mouse is outside the region. Because the st register

reflects the result of loading TRUE or FALSE into the accumulator, the call can be followed by

a branch instruction that tests the result, such as:

bmi InRegion ; branch if mouse was in region

 -or-

bpl NotInRegion ; branch if mouse not in region

Note: Interrupts should always be disabled around a call to IsMseInRegion. If the php-sei-plp method

is used, be aware that the plp will reset the st flags. If this is troublesome, it may warrant creating

a new version of IsMseInRegion that does its own interrupt disable and leaves the values in the

st register intact: See NewIsMseInRegion.

128: Under GEOS 128, OR’ing DOUBLE_W into the X1 and X2 parameters will automatically double

the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics

Routines for more information).

 On return from IsMseInRegion, X1 and X2 are normalized in r3 and r4.

 Example:

 ...
 LoadW r4,#200 | DOUBLE_W
 jsr IsMseInRegion
 ;--- r4 = 400

Example: NewIsMseInRegion.

See also: HorizontalLine.

mouse/sprite

 20-170 GEOS Kernal 2.0

MouseOff: (C64, C128) C18D

Function: Temporarily disables the mouse pointer and GEOS mouse tracking.

Parameters: nothing.

Returns: nothing.

Modifies: mobenble sprite #0 bit cleared by DisablSprite.

 mouseOn clears the MOUSEON_BIT.

Destroys: a.

Description: MouseOff temporarily disables the mouse cursor and GEOS mouse tracking by clearing the

proper bit in mouseOn and calling DisablSprite. Applications can call MouseOff temporarily

disable the mouse. The mouse can be reenabled to its previous state by calling MouseUp.

Example:

See also: MouseUp, ClearMouseMode.

mouse/sprite

 20-171 GEOS Kernal 2.0

MouseUp: (C64, C128) C18A

Function: Reenables the mouse pointer and GEOS mouse tracking.

Parameters: nothing.

Returns: nothing.

Modifies: mobenble sprite #0 bit cleared by DisablSprite.

mouseOn sets the MOUSEON_BIT.

Destroys: a.

Description: MouseUp reenables the mouse cursor and GEOS mouse tracking after a call to MouseOff by

setting the proper bits in mouseOn and mobenble.

Note: StartMouseMode calls this routine.

Example:

See also: MouseOff, ClearMouseMode.

mouse/sprite

 20-172 GEOS Kernal 2.0

SetMsePic: (C128) C2DA

Function: Uploads and pre-shifts a new mouse picture for the software sprite handler.

Parameters: r0 MSEPIC — pointer to 32 bytes of mouse sprite image data or one of the following

special codes: (word).

ARROW ($0000).

Returns: nothing.

Destroys: a, x, y, r0-r15.

Description: The software sprite routines used by GEOS 128 in 80-column mode treat the mouse sprite (sprite

#0) differently than the other sprites. Sprite #0 is optimized and hardcoded to provide reasonable

mouse-response while minimizing the flicker typically associated with erasing and redrawing a

fastmoving object. The mouse sprite is limited to a 16x8 pixel image. The image includes a mask

of the same size and both are stored in a pre-shifted form within internal GEOS buffers. For these

reasons, a new mouse picture must be installed with SetMsePic (as opposed to a normal

DrawSprite). SetMsePic pre-shifts the image data and lets the soft-sprite mouse routine know of

the new image.

SetMsePic accepts one parameter: a pointer to the mask and image data or a constant value for

one of the predefined shapes. If a user-defined shape is used, the data that MSEPIC points to is in

the following format:

16 bytes 16x8 "cookie cutter" mask. Before drawing the software mouse sprite,

GEOS and's this mask onto the foreground screen. Any zero bits in the mask,

clear the corresponding pixels. One bits do not affect the screen.

16 bytes 16x8 sprite image. After clearing pixels with the mask data, the sprite image

is or'ed into the area. Any one bits in the sprite image set the corresponding

pixels. Zero bits do not affect the screen.

GEOS treats the each 16-byte field as 8 rows of 16 bits (two bytes per row).

Note: SetMsePic calls HideOnlyMouse.

Note3: ARROW = $0000.

Example: ArrowUp.

See also: TempHideMouse, HideOnlyMouse, DrawSprite.

mouse/sprite

 20-173 GEOS Kernal 2.0

StartMouseMode: (C64, C128) C14E

Function: Instructs GEOS to start or restart its monitoring of the input device (usually a mouse but

depending on the input driver may be a joystick or other device).

Parameters: r11 MOUSEX — x-position to start mouse at (word). If this parameter is $0000, then the

mouse position is not changed and the mouse velocity is not altered.

y MOUSEY — y-position to start mouse at (byte).

st carry flag: 0 = same as setting MOUSEX to $0000.

1 = no effect.

Alters: mouseVector loaded with address of SystemMouseService.

mouseFaultVec loaded with address of SystemFaultService.

faultData $00

mouseXPos

mouseYPos

mouseOn MOUSEON_BIT set by MouseUp.

mobenble sprite #0 bit set by MouseUp.

Destroys: a, x, y, r0-r15.

Description: StartMouseMode Instructs GEOS to start or restart its monitoring of the input device. Most

normal GEOS applications will not need to call this routine because it is called internally by both

DoMenu and DoIcons. If an application is not using icons nor menus, it should call

StartMouseMode during its initialization.

StartMouseMode does the following:

1: If the carry flag is set and the MOUSEX parameter is non-zero, then MOUSEX is copied into

mouseXPos, MOUSEY is copied into mouseYPos, and the input driver SlowMouse routine

is called. If running under GEOS 128, MOUSEX is first passed through NormalizeX before

getting loaded into mouseXPos.

2: The address of the internal SystemMouseService routine is loaded into mouseVector and

the address of the internal SystemFaultService routine is loaded into mouseFaultVec.

3: A $00 is stored into faultData, clearing any mouse faults.

4: MouseUp is called to enable the mouse.

If the mouse will be repositioned, then disable interrupts around the call to StartMouseMode.

Example: MouseInit.

See also: ClearMouseMode, MouseUp, MouseOff, SlowMouse, DoMenu, DoIcons,

TempHideMouse, HideOnlyMouse.

mouse/sprite

 20-174 GEOS Kernal 2.0

TempHideMouse: (C128) C2D7

Function: Temporarily removes soft-sprites and the mouse pointer from the graphics screen.

Parameters: nothing.

Uses: graphMode.

Destroys: a, x.

Description: TempHideMouse temporarily removes all soft-sprites (mouse pointer and sprites 2-7) unless

they are already removed. This routine is called by all GEOS graphics routines prior to drawing

to the graphics screen so that software sprites don't interfere with the graphic operations. An

application that needs to do direct screen access should call this routine prior to modifying screen

memory.

The sprites will remain hidden until the next pass through MainLoop.

Note: In 40-column mode (bit 7 of graphMode is zero), TempHideMouse exits immediately without

affecting the hardware sprites.

Example:

See also: HideOnlyMouse.

 20-175 GEOS Kernal 2.0

print driver

Name Addr Description Page

GetDimensions 790C Get CBM printer page dimensions. 20-176

InitForPrint 7900 Initialize printer (once per document). 20-177

PrintASCII 790F Send ASCII data to printer. 20-178

PrintBuffer 7906 Send graphics data to printer. 20-179

SetNLQ 7915 Begin near-letter quality printing. 20-180

StartASCII 7912 Begin ASCII mode printing. 20-181

StartPrint 7903 Begin graphics mode printing. 20-182

StopPrint 7909 End page of printer output. 20-183

Note: C128 caches the active print driver. See GetFile notes to see how to load the driver from cache

instead of from disk.

print driver

 20-176 GEOS Kernal 2.0

GetDimensions: (C64, C128) 790C

Function: Get printer resolution.

Parameters: none.

Returns: a $00 = printer has graphics and text modes;

$FF = printer only has text modes (e.g., daisy wheel printers).

x PGWIDTH — page width in cards: number of 8x8 cards that will fit horizontally on a

page (1-80, standard value is 80 but some printers only handle 60, 72, or 75).

y PGHEIGHT — page height in cards: number of 8x8 cards that will fit vertically on a page

(1-255, usually 94).

The width and height return values are typically based on an 8.5" x 11" page with a 0.25" margin

on all sides, leaving an 8" x 10.5" usable print area.

Destroys: nothing.

Description: GetDimensions returns the printable page size in cards. At each call to PrintBuffer, the printer

driver will expect at least PGWIDTH cards of graphic data in the 640-byte print buffer. To print

an entire page, the application will need to call PrintBuffer PGHEIGHT times.

Most dot-matrix printers have a horizontal resolution of 80 dots-per-inch and an eight-inch print

width. Eight inches at 80 dpi gives 640 addressable dots per printed line, and 640/8 equals 80

cards per line. GEOS assumes an 80-dpi output device.

Drivers for printers with a different horizontal resolution will usually return a PGWIDTH value

that reflects some even multiple of the dpi. For example, a lower resolution 72 dpi printer can

only fit 72*8 = 560 dots per line, and 560 dots reduces to 72 cards. PGWIDTH in this case would

come back as 72.

A 300-dpi laser printer, however, can accommodate 2,400 dots on an eight-inch line. To scale 80

dpi data to 300 dpi, each pixel is expanded to four times its normal width. If the printer driver

tried to print the full 640 possible dots at this expanded width, it would lose the last 160 dots

because the printer itself can only handle 2,400 dots in an eight-inch space and 640*4 = 2,560.

To alleviate this problem the printer driver truncates the width at the card boundary nearest to

2,400 dots, which happens to be 75 cards. Hence, in this case, PGWIDTH would come back as

75.

The size, PGHEIGHT, reflects the number of card rows to send through PrintBuffer to fill a full-

page. If more rows are sent, then (depending on the printer and the driver) the printing will usually

continue onto the next page (printing over the perforation on z-fold paper). The application will

usually keep an internal card-row counter and call StopPrint to advance to the next page.

Note: It is not necessary to call GetDimensions when printing ASCII text. GEOS printer drivers always

assume 80-columns by 66 lines.

Example:

See also: StartPrint, StartASCII.

print driver

 20-177 GEOS Kernal 2.0

InitForPrint: (C64, C128) 7900

Function: Initialize printer. Perform once per document.

Parameters: none.

Returns: nothing.

Destroys: assume a, x, y, r0-r15.

Description: InitForPrint performs any initialization necessary to prepare the printer for a GEOS document.

Often this involves resetting the printer to bring it into a default state as well as suppressing

automatic margins and perforation skipping. InitForPrint does not do any initialization specific

to graphic or ASCII printing.

InitForPrint is also used to set the printer baud rate for serial printers.

Example:

See also: StartPrint, StartASCII.

print driver

 20-178 GEOS Kernal 2.0

PrintASCII: (C64, C128) 790F

Function: Send ASCII string to the printer.

Parameters: r0 PRINTDATA — pointer to null-terminated ASCII string (word).

r1 WORKBUF — pointer to a 640-byte work buffer for use by the printer driver (word).

This is the same buffer that was established in StartASCII and must stay intact throughout

the entire page.

Returns: nothing.

Destroys: assume a, x, y, r0-r15.

Description: PrintASCII sends a null-terminated ASCII string to the printer. The application must call

StartASCII before sending ASCII data to the printer with PrintASCII. It is the job of the

application to keep track of the number of possible lines per page and call StopPrint to form feed

when necessary (or desired).

In order to begin printing on the next line, the string must contain a CR character to signify a

carriage return. A NULL character marks the end of the string.

The data passed in PRINTDATA is in regular ASCII format (not Commodore ASCII). The text is

printed using the printer's standard character set. Some printer drivers allow switching the printer

into high-quality print mode with SetNLQ. GEOS printer drivers are set to print 80 characters per

line and 66 lines per page.

Example:

See also: StartPrint, StartASCII.

print driver

 20-179 GEOS Kernal 2.0

PrintBuffer: (C64, C128) 7906

Function: Print one cardrow (eight lines) of graphics data.

Parameters: r0 PRINTDATA — pointer to 640-bytes of graphic data in Commodore card format (8x8

pixel blocks). This is one row of 80 cards, which amounts to eight lines of printer data

(word).

r1 WORKBUF — pointer to the 1,920-byte work buffer established with StartPrint

(word).

r2 COLRDATA — pointer to 80 bytes of Commodore card color data (40-column screen

format) for the cardrow; pass $0000 for normal black and white printing (word).

Returns: nothing.

Destroys: a, x, y, r0-r15.

Description: PrintBuffer prints eight lines of graphic data on the printer. The maximum width of each line is

determined by the capabilities of the printer and its driver. 640 dots per line is standard, but some

printers and drivers handle less. The application can determine the capabilities of the printer with

a call to GetDimensions.

The application must call StartPrint before sending graphic data to PrintBuffer. It is also the

job of the application to keep track of the number of possible cardrows per page and call

StopPrint to form feed when necessary.

The data passed in PRINTDATA is in Commodore card format, where data is stacked into 8x8-

pixel blocks. Graphic printer data can be built-up directly on the 40-column graphics screen using

GEOS routines and sent directly to the printer (calculating the address using GetScanLine).

Because one printer cardrow is equivalent to two screen cardrows the full 640-dot printer cardrow

can be created using two sequential screen cardrows. The sequential memory organization of the

40-column screen wraps the end of one screen cardrow around to the beginning of the next screen

cardrow. In the 80-column mode of GEOS 128, one screen line is equivalent to one printer line.

However, the data must first be converted from linear bitmap format into card format (a simple

operation). Also, since the foreground screen can only be accessed indirectly through the VDC

chip, the printer data is usually built-up in the background screen buffer.

Example:

See also: PrintASCII, StartPrint, StopPrint, InitForPrint.

print driver

 20-180 GEOS Kernal 2.0

SetNLQ: (C64, C128) 7915

Function: Enter high-quality printing mode.

Parameters: r1 WORKBUF — pointer to a 640-byte work buffer for use by the printer driver (word).

Returns: nothing.

Destroys: assume a, x, y, r0-r15.

Description: SetNLQ sends the appropriate control codes to place the printer into high-quality print mode (as

opposed to the default draft mode). SetNLQ is called after StartASCII has been called to enable

text output.

Example:

See also: StartASCII, PrintASCII.

print driver

 20-181 GEOS Kernal 2.0

StartASCII: (C64, C128) 7912

Function: Enable ASCII text mode printing.

Parameters: r1 WORKBUF — pointer to a 640-byte work buffer for use by the printer driver.(word).

PrintASCII uses this work area as an intermediate buffer; the buffer must stay intact

throughout the entire page.

Returns: x STATUS — printer error code; $00 = no error.

Destroys: assume a, y, r0-r15.

Description: StartASCII enables ASCII text mode printing. An application calls StartASCII at the beginning

of each page. It assumes that InitForPrint has already been called to initialize the printer.

StartASCII takes control of the serial bus by opening a fake Commodore file structure and

requests the printer (device 4) to enter listen mode. It then sends the proper control sequences to

place the printer into text mode.

Example:

See also: PrintASCII, StopPrint, StartPrint.

print driver

 20-182 GEOS Kernal 2.0

StartPrint: (C64, C128) 7903

Function: Enable graphics-mode printing.

Parameters: r1 WORKBUF — pointer to a 1,920-byte work buffer for use by the printer driver.(word).

PrintBuffer uses this work area as an intermediate buffer; this buffer must stay intact

throughout the entire page.

Returns: x STATUS — printer error code; $00 = no error.

Destroys: a, y, r0-r15.

Description: StartPrint enables graphic printing. An application calls StartPrint at the beginning of each

page. It assumes that InitForPrint has already been called to initialize the printer.

StartPrint takes control of the serial bus by opening a fake Commodore file structure and

requests the printer (device 4) to enter listen mode. It then sends the proper control sequences to

place the printer into graphics mode.

Example:

See also: StopPrint, StartASCII.

print driver

 20-183 GEOS Kernal 2.0

StopPrint: (C64, C128) 7909

Function: Flush output buffer and form feed the printer (called at the end of each page).

Parameters: r0 TEMPBUF — pointer to a 640-byte area of memory that can be set to $00 (word).

r1 WORKBUF — pointer to a 1,920-byte work buffer used by PrintBuffer (word).

Returns: x STATUS — printer error code; $00 = no error.

Destroys: assume a, x, y, r0-r15.

Description: StopPrint instructs the printer driver to flush any internal buffers and end the page.

StopPrint ends both graphic and ASCII printing.

Note: GEOS printer drivers always form feed when StopPrint is called.

Example:

See also: StartPrint, StartASCII.

 20-184 GEOS Kernal 2.0

process

Name Addr Description Page

BlockProcess C10C Block process from running. Does not freeze timer. 20-185

EnableProcess C109 Make a process runnable immediately. 20-186

FreezeProcess C112 Pause a process countdown timer. 20-187

InitProcesses C103 Initialize processes. 20-188

RestartProcess C106 Unblock, unfreeze, and restart process. 20-189

Sleep C199 Put current routine to sleep for a specified time. 20-190

UnblockProcess C10F Unblock a blocked process, allowing it to run again. 20-191

UnfreezeProcess C115 Unpause a frozen process timer. 20-192

process

 20-185 GEOS Kernal 2.0

BlockProcess: (C64, C128) C10C

Function: Block a processes event.

Parameters: x PROCESS — process to block (0 to n-1, where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: BlockProcess causes MainLoop to ignore the runnable flag of a particular process so that if a

process timer reaches zero (causing the process to become runnable) no process event is generated

until the process is subsequently unblocked with a call to UnblockProcess. BlockProcess stops

the process the MainLoop level. Refer to FreezeProcess to stop the process at the Interrupt

Level.

BlockProcess does not stop the countdown timer, which continues to decrement at Interrupt Level

(assuming the process is not frozen). When the timer reaches zero, the runnable flag is set and the

timer is restarted. As long as the process is blocked, though, MainLoop ignores this runnable flag

and, therefore, never generates an event. When a blocked process is later unblocked, MainLoop

checks the runnable flag. If the runnable flag was set during the time the process was blocked,

this pending event generates a call to the appropriate service routine. Only one event is generated

when a process is unblocked, even if the timer reached zero more than once.

Note: If a process is already blocked, a redundant call to BlockProcess has no effect.

Example:
SuspendClock:
 ldx #CLOCK_PROCESS ; x <- process number of the clock
 jmp BlockProcess ; block that particular process

See also: UnblockProcess, FreezeProcess.

process

 20-186 GEOS Kernal 2.0

EnableProcess: (C64, C128) C109

Function: Makes a process runnable immediately.

Parameters: x PROCESS — process to enable (0 - n-1, where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: EnableProcess forces a process to become runnable on the next pass through MainLoop,

independent of its timer value.

EnableProcess merely sets the runnable flag in the process table. When MainLoop encounters

an unblocked process with this flag set, it will attempt to generate an event just as if the timer had

decremented to zero.

EnableProcess has no privileged status and cannot override a blocked process. However, because

it doesn't depend on or affect the current timer value, the process can become runnable even with

a frozen timer.

EnableProcess is useful for making sure a process runs at least once, regardless of the initialized

value of the countdown timer. It is also useful for creating application-defined events which run

off of MainLoop: a special process can be reserved in the data structure but never started with

RestartProcess. Any time the desired event-state is detected, a call to EnableProcess will

generate an event on the next pass through MainLoop. EnableProcess can be called from

Interrupt Level, which allows a condition to be detected at Interrupt Level but processed during

MainLoop.

Example:

See also: InitProcesses, RestartProcess, UnfreezeProcess, UnblockProcess.

process

 20-187 GEOS Kernal 2.0

FreezeProcess: (C64, C128) C112

Function: Freeze a process's countdown timer at its current value.

Parameters: x PROCESS — process to freeze (0 to n-1, where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: FreezeProcess halts a process's countdown timer so that it is no longer decremented every vblank.

Because a frozen timer will never reach zero, the process will not become runnable except through

a call to EnableProcess. When a process is unfrozen with UnfreezeProcess, its timer again

begins counting from the point where it was frozen.

Note: If a process is already frozen, a redundant call to FreezeProcess has no effect.

Example:

See also: UnfreezeProcess, BlockProcess.

process

 20-188 GEOS Kernal 2.0

InitProcesses: (C64, C128) C103

Function: Initialize and install a process data structure.

Parameters: a NUM_PROC — number of processes in table (byte).

r0 PTABLE — pointer to process data structure to use (word).

Returns: r0 unchanged.

Destroys: a, x, y, r1.

Description: InitProcesses installs and initializes a process data structure. All processes begin as frozen, so

their timers arc not decremented during vblank. Processes can be started individually with

RestartProcess after the call to InitProcesses.

InitProcesses copies the process data structure into an internal area of memory hidden from the

application. GEOS maintains the processes within this internal area, keeping track of the event

routine addresses, the timer initialization values (used to reload the timers after they time-out),

the current value of the timer, and the state of each process (i.e., frozen, blocked, runnable). The

application's copy of the process data structure is no longer needed because GEOS remembers

this information until a subsequent call to InitProcesses.

Note: Although processes are numbered starting with zero, NUM_PROC should be the actual number

of processes in the table. To initialize a process table with four processes, pass a NUM_PROC

value of $04. When referring to those processes (i.e., when calling routines such as

UnblockProcess), use the values $00-$03. Do not call InitProcesses with a NUM_PROC value

of $00 or a NUM_PROC value greater than MAX_PROCESSES (the maximum number of

processes allowable).

To disable process handling, merely freeze all processes or call InitProcesses with a dummy

process data structure.

 Process Table record structure:

Index Constant Size Description

+0 OFF_P_EVENT word Pointer to event routine that is called when this process

times-out.

+2 OFF_P_TIMER word Timer initialization value: number of vblanks to wait

between one event trigger and the next.

Note3: MAX_PROCESSES = 20.

Example:

See also: Sleep, RestartProcess.

process

 20-189 GEOS Kernal 2.0

RestartProcess: (C64, C128) C106

Function: Reset a process's timer to its starting value then unblock and unfreeze the process.

Parameters: x PROCESS — process to restart (0 - n-1 where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: RestartProcess sets a process's countdown timer to its initialization value then unblocks and

unfreezes it. Use RestartProcess to initially start a process after a call to InitProcesses or to

rewind a process to the beginning of its cycle.

Note: RestartProcess clears the runnable flag associated with the process, thereby losing any pending

call to the process.

RestartProcess should always be used to start a process for the first time because InitProcesses

leaves the value of the countdown timer in an unknown state.

Example:

See also: InitProcesses, EnableProcess, UnfreezeProcess, UnblockProcess.

process

 20-190 GEOS Kernal 2.0

Sleep: (C64, C128) C199

Function: Pause execution of a subroutine ("go to sleep") for a given time interval.

Parameters: r0 DELAY — number of vblanks to sleep (word).

Returns: nothing: does not return directly to caller (see description below).

Destroys: a, x, y.

Description: Sleep stops executing the current subroutine, forcing an early rts to the routine one level lower,

putting the current routine "to sleep". At Interrupt Level, the DELAY value associated with each

sleeping routine is decremented. When the associated DELAY value reaches zero, MainLoop

removes the sleeping routine from the sleep table and performs a jsr to the instruction following

the original jsr Sleep, expecting a subsequent rts to return control back to MainLoop. For

example, in the normal course of events, MainLoop might call an icon event service routine (after

an icon is clicked on). This service routine can perform a jsr Sleep. Sleep will force an early rts,

which, in this case, happens to return control to MainLoop. When the routine awakes (after

DELAY vblanks have occurred), MainLoop performs a jsr to the instruction that follows the

original jsr Sleep. When this wake-up jsr occurs, it occurs at some later time the contents of the

processor registers and GEOS pseudoregisters are uninitialized. A subsequent rts will return to

MainLoop.

Sleeping in Detail:

1: The application calls Sleep with a jsr Sleep. The jsr places a return address on the stack and

transfers the processor to the Sleep routine.

2: Sleep pulls the return address (top two bytes) from the stack and places those values along

with the DELAY parameter in an internal sleep table.

4: Sleep executes an rts. Since the original caller's return address has been pulled from the stack

and saved in the sleep table, this rts uses the next two bytes on the stack, which it assumes

comprise a valid return address. (Note: it is imperative that this is in fact a return address; do

not save any values on the stack before calling Sleep).

5: At interrupt level GEOS decrements the sleep timer until it reaches zero.

6: On every pass, MainLoop checks the sleep timers. If one is zero, then it removes that sleeping

routine from the table, adds one to the return address it pulled from the stack (so it points to

the instruction following the jsr Sleep), and jsr's to this address. Because no context

information is saved along with the Sleep address, the awaking routine cannot depend on any

values on the stack, in the GEOS pseudoregisters, or in the processor's registers.

Note: A DELAY value of $0000 will cause the routine to sleep only until the next pass through

MainLoop.

When debugging an application, be aware that Sleep alters the normal flow of control.

Example: BeepThrice.

See also: InitProcesses.

process

 20-191 GEOS Kernal 2.0

UnblockProcess: (C64, C128) C10F

Function: Allow a process's events to go through.

Parameters: x PROCESS — number of process (0 - n-1, where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: UnblockProcess causes MainLoop to again recognize a process's runnable flag so that if a

process timer reaches zero (causing the process to become runnable) an event will be generated.

Because the GEOS interrupt level continues to decrement the countdown timer as long as the

process is not frozen, a process may become runnable while it is blocked. As long as the process

is blocked, however, MainLoop will ignore the runnable flag. When the process is subsequently

unblocked, MainLoop will recognize a set runnable flag as a pending event and call the

appropriate service routine. Multiple pending events are ignored: if a blocked process's timer

reaches zero more than once, only one event will be generated when it is unblocked. To prevent

a pending event from happening, use RestartProcess to unblock the process.

Note: If a process is not blocked, an unnecessary call to UnblockProcess will have no effect.

Example:

See also: BlockProcess, UnfreezeProcess. EnableProcess, RestartProcess.

process

 20-192 GEOS Kernal 2.0

UnfreezeProcess: (C64, C128) C115

Function: Resume (unfreeze) a process's countdown timer.

Parameters: x PROCESS — number of process (0 - n-1, where n is the number of processes in the table)

(byte).

Returns: x unchanged.

Destroys: a.

Description: UnfreezeProcess causes a frozen process's countdown timer to resume decrementing. The value

of the timer is unchanged; it begins decrementing again from the point where it was frozen. If a

process is not frozen, a call to UnfreezeProcess will have no effect.

Note: If a process is not frozen, a call to UnfreezeProcess will have no effect.

Example:

See also: FreezeProcess, BlockProcess.

 20-193 GEOS Kernal 2.0

sprite

Name Addr Description Page

DisablSprite C1D5 Disable sprite. 20-194

DrawSprite C1C6 Define sprite image. 20-195

EnablSprite C1D2 Enable sprite. 20-196

PosSprite C1CF Position sprite. 20-197

sprite

 20-194 GEOS Kernal 2.0

DisablSprite: (C64, C128) C1D5

Function: Disable a sprite so that it is no longer visible.

Parameters: r3L SPRITE — sprite number (byte).

Returns: nothing.

Alters: mobenble.

Destroys: a, x.

Description: DisablSprite disables a sprite so that it is no longer visible. Although there are eight sprites

available, an application should only directly disable sprite #2 through sprite #7 with

DisablSprite. Sprite #0 (the mouse pointer) is always enabled when GEOS mouse-tracking is

enabled (disable mouse-tracking with MouseOff), and sprite #1 (the text cursor) should be

disabled with PromptOff.

Example:

See also: EnablSprite, MouseOff, PromptOff, DrawSprite, PosSprite.

sprite

 20-195 GEOS Kernal 2.0

DrawSprite: (C64, C128) C1C6

Function: Copy a 64-byte sprite image to the internal data buffer that is used for drawing the sprites.

Parameters: r3L SPRITE — sprite number (byte).

r4 DATAPTR — pointer to 64-bytes of sprite image data (word).

Returns: nothing.

Alters: internal sprite image.

Destroys: a, y, r5.

Description: DrawSprite copies 64-bytes of sprite image data to the internal buffer that is used for drawing

the sprites. DrawSprite does not affect the enabled/disabled status of a sprite, it only changes the

image definition.

Although there are eight sprites available, an application should limit itself to sprites #2 through

#7 because GEOS reserves sprite #0 for the mouse cursor and sprite #1 for the text prompt.

C64: The 64 bytes are copied to the VIC sprite data area, which is located in memory immediately after

the color matrix. The size information byte (byte 64) is unused by GEOS 64 but is copied to the

data area, nonetheless. A SPRITE value of $00 can be used to change the shape of the mouse

cursor.

C128: The data is transferred to the VIC sprite area (regardless of the current graphics mode). This data

is used by the VIC chip in 40-column mode and by the soft sprite handler in 80-column mode.

The last byte (byte 64) of the sprite definition is used as the size information byte by the soft-

sprite handler. In 80-column mode, the sprite is not visually updated until the next time the soft-

sprite handler gets control. To change the mouse cursor, the application can use a SPRITE value

of $00 in 40-column mode or call SetMsePic in 80-column mode (doing both is a simple solution:

it will do no harm regardless of the graphics mode).

The 64th byte has size information that is required by the software sprite routines. The format of

this byte is:

 b7: 1 sprite <= 9 pixels wide

 0 sprite > 9 pixels wide

 b6-0: number of scan lines (1-21)

 Refer to "Chapter 12 Sprites/Soft Sprites" for more information.

Example:

See also: PosSprite, EnablSprite, DisablSprite.

sprite

 20-196 GEOS Kernal 2.0

EnablSprite: (C64, C128) C1D2

Function: Enable a sprite so that it becomes visible.

Parameters: r3L SPRITE — sprite number (byte).

Returns: nothing.

Alters: mobenble.

Destroys: a, x.

Description: EnablSprite enables a sprite so that it becomes visible. Although there are eight sprites available,

an application should only directly enable sprites #2 through #7 with EnablSprite. Sprite #0 (the

mouse pointer) is enabled through mouseOn and StartMouseMode, and sprite #1 (the text

cursor) should be enabled with PromptOn.

Example:

See also: DisablSprite, MouseOff, PromptOff, DrawSprite, PosSprite.

sprite

 20-197 GEOS Kernal 2.0

PosSprite: (C64, C128) C1CF

Function: Positions a sprite at a new GEOS (x, y) coordinate.

Parameters: r3L SPRITE — sprite number (byte).

r4 XPOS — x-position of sprite (word).

r5L YPOS — y-position of sprite (byte).

Returns: nothing.

Alters: mobNxpos sprite x-position (lower 8-bits).

msbNxpos sprite x-position (bit 9).

mobNypos sprite y-position.

where N is the number of the sprite being positioned.

Destroys: a, x, y, r6.

Description: PosSprite positions a sprite using GEOS coordinates (not C64 hardware sprite coordinates).

PosSprite does not affect the enabled/disabled status of a sprite, it only changes the current

position.

Although there are eight sprites available, an application should only directly position sprites #2

through #7 with PosSprite. Sprite #0 (the mouse pointer) should not be repositioned (except,

maybe through mouseXPos and mouseYPos), and sprite #1 (the text cursor) should only be

repositioned with stringX and stringY.

C64: The positions are translated to C64 hardware coordinates and then stuffed into the VIC chip's

sprite positioning registers. The C64 hardware immediately redraws the sprite at the new position.

C128: The x-positions are translated to C64 hardware coordinates (newXPos = NormalizeX(XPOS) /

2)) and then stuffed into the VIC chip's sprite positioning registers. This data is used by the VIC

chip in 40-column mode and by the soft-sprite handler in 80-column mode. In 80-column mode,

the sprite is not visually updated until the next time the soft-sprite handler gets control.

Example:

See also: DrawSprite, EnablSprite, DisablSprite.

 20-198 GEOS Kernal 2.0

text

Name Addr Description Page

GetCharWidth C1C9 Calculate width of char without style attributes. 20-199

GetNextChar C2A7 Get next character from keyboard queue. 20-200

GetRealSize C1B1 Calculate actual character size with attributes. 20-201

GetString† C1BA Get string input from user. 20-202

InitTextPrompt C1C0 Initialize text prompt. 20-204

LoadCharSet C1CC Load and begin using a new font. 20-205

PromptOff C29E Turn off text prompt. 20-206

PromptOn C29B Turn on text prompt. 20-207

PutChar† C145 Display a single character to screen. 20-208

PutDecimal† C184 Format and display an unsigned double-precision number. 20-209

PutString† C148 Print string of characters to screen. 20-210

i_PutString† C1AE Inline PutString. 20-210

SmallPutChar C202 Fast character print routine. 20-211

UseSystemFont C14B Use default system font (BSW 9). 20-212

Note†: Under GEOS 128, OR’ing DOUBLE_W into the X parameters of text routines will automatically

double the x-position in 80-column mode. OR’ing in ADD1_W will automatically add 1 to a doubled

x-position, (Refer to "GEOS 128 X-position and Bitmap Doubling" in chapter Graphics Routines

for more information).

text

 20-199 GEOS Kernal 2.0

GetCharWidth: (C64, C128) C1C9

Function: Calculate the pixel width of a character as it exists in the font (in its plaintext form). Ignores any

style attributes.

Parameters: a CHAR — character code of character.

Uses: curIndexTable.

Returns: a character width in pixels.

Destroys: y.

Description: GetCharWidth calculates the width of the character before any style attributes are applied. If the

character code is less than 32, $00 is returned. Any other character code returns the pixel width

as calculated from the font data structure.

Because GetCharWidth does not account for style attributes, it is useful for establishing the

number of bits a character occupies in the font data structure.

Example:

See also: GetRealSize.

text

 20-200 GEOS Kernal 2.0

GetNextChar: (C64, C128) C2A7

Function: Retrieve the next character from the keyboard queue.

Parameters: none.

Returns: a keyboard character code of character or NULL if no characters available.

Alters: pressFlag if the call to GetNextChar removes the last character from the queue, then the

KEYPRESS_BIT is cleared.

Destroys: x.

Description: GetNextChar checks the keyboard queue for a pending keypress and returns a non-zero value if

one is available. This allows more than one character to be processed without returning to

MainLoop.

Example: KeyHandler.

See also: GetString.

text

 20-201 GEOS Kernal 2.0

GetRealSize: (C64, C128) C1B1

Function: Calculate the printed size of a character based on any style attributes.

Parameters: a CHAR — character code of character.

x MODE — style mode (as stored in currentMode).

Uses: curHeight.

baselineOffset.

Returns: y character width in pixels (with attributes).

x character height in pixels (with attributes).

a character baseline offset (with attributes).

Destroys: nothing.

Calls: GetCharWidth.

Description: GetRealSize calculates the width of the character based on any style attributes. The character

code must be 32 or greater. If the character code is USELAST, the value in lastWidth is returned.

Any other character code returns the pixel width as calculated from the font data structure and the

MODE parameter.

Note: lastWidth is local to the GEOS Kernal and therefore inaccessible to applications. lastWidth

contains the actual width of the most recently printed character.

Note: Bold: increases width by 1.

 Outline: increases height and width by 2.

 Underline, italic, reverse do not change the size of the character.

 Although the size changes are currently predictable, you should always use GetRealSize to get

the character size to insure compatibility with future versions of the operating system.

Example: ClipChar.

 GetSizeW:

 ;--- Calculate size of largest character in current font
 lda #'W' ; capital W is a good choice
 ldx #(SET_BOLD|SET_OUTLINE) ; widest style combo
 jsr GetRealSize ; dimensions come back in x, y

See also: GetCharWidth.

text

 20-202 GEOS Kernal 2.0

GetString: (C64, C128) C1BA

Function: Get a string from the keyboard using a cursor prompt and echoing characters to the screen as they

are typed. Runs concurrently with MainLoop.

Parameters: r0 BUFR — pointer to string buffer. When called this buffer can contain a null-

terminated default data string (if no default data string is used, the

first byte of the buffer must be NULL). This buffer must be at least

MAX_CH+1 bytes long (word).

r1L FLAG — $00 = use system fault routine;

$80 = use fault routine pointed to by r4 (byte).

r2L MAX_CH — maximum number of characters to accept (not including the null-

terminator). (r2L must be >= size of the default data string in r0)

(byte).

r11 XPOS — x-coordinate to begin input (word).

r1H YPOS — y-coordinate of prompt and upper-left of characters. To calculate

this value based on baseline printing position, subtract the value

in baselineOffset from the baseline printing position (byte).

r4 FAULT — optional (see FLAG) pointer to fault routine (word).

keyVector STRINGDONE — routine to call when the string is terminated by the user typing a

carriage return. $0000 = no routine provided (word).

Uses: at call to GetString:

curHeight for size of text prompt.

baselineOffset for positioning default data string relative to prompt.

any variables used by PutString.

while accepting characters:

keyVector vectors off of MainLoop through here with characters.

stringX current prompt x-position.

stringY current prompt y-position.

string pointer to start of string buffer.

any variables used by PutChar.

Returns: from call to GetString:

keyVector address of SystemStringService.

StringFaultVec address of fault routine being used.

stringX starting prompt x-position.

stringY starting prompt y-position.

string BUFR (pointer to start of string buffer).

when done accepting characters:

x length of string / index to null.

string BUFR (pointer to start of string buffer).

keyVector $0000.

StringFaultVec $0000.

Destroys: at call to GetString:

a, x, y, r0-r13.

GetString text

 20-203 GEOS Kernal 2.0

Description: GetString installs a character handling routine into GetString and returns immediately to the

caller. During MainLoop, the string is built up a character at a time in a buffer. When the user

presses [Return], GEOS calls the STRINGDONE routine with the starting address of the string in

string and the length of the string in the x-register. Use ST_WRGS_FORE with dispBufferOn to

limit output to the foreground screen.

The following is a breakdown of what GetString does:

1: Variables local to the GetString character input routine are initialized. Global string input

variables such as string, stringX, and stringY are also initialized.

2: PutString is called to output the default data string stored in the character buffer. If no

default data string is desired, the first byte of the buffer should be a NULL.

3: The STRINGDONE parameter in keyVector is saved away and the address of the

GetString character routine (SystemStringService) is put into keyVector.

4: If the application supplied a fault routine, install it into StringFaultVec, otherwise install a

default fault routine.

5: The prompt is initialized by calling InitTextPrompt with the value in curHeight.

PromptOn is also called.

6: Control is returned to the application.

Note: String is not null-terminated until the user presses [Return]. To simulate a [Return], use the

following code:

;--- Simulate a CR to end GetString
 LoadB keyData,#CR ; load up a [Return]
 lda keyVector ; and go through keyVector
 ldx keyVector+1 ; so SystemStringService
 jsr CallRoutine ; thinks it was pressed

Note that this will also terminate the GetString input.

Note: This note courtesy of Bill Coleman...Because GetString runs off of MainLoop, it is a good idea

to call GetString from the top level of the application code and return to MainLoop while

characters are being input. That is, while at the top level of your code you can call GetString like

this:

jsr GetString ; Start GetString going
rts ; and return immediately to MainLoop so
 ; that string can be input.

Since the routine specified by the STRINGDONE value stored in keyVector is called when the

user has finished entering the string, that is where your application should again take control and

process the input.

Note2: If the user manages to type off the end of the screen, specifically past rightMargin, GetString

will stop echoing characters although it will still enter the characters into the buffer.

Example: NewGetString.

See also: PutChar, PutString, GetNextChar.

text

 20-204 GEOS Kernal 2.0

InitTextPrompt: (C64, C128) C1C0

Function: Initialize sprite #1 for use as a text prompt.

Parameters: a HEIGHT — pixel height for the prompt.

Alters: alphaFlag %10000011.

Destroys: a, x, y.

Description: InitTextPrompt initializes sprite #1 for use as a text prompt. The sprite image is defined as a

one-pixel wide vertical line of HEIGHT pixels. If HEIGHT is large enough, the double-height

sprite flags will be set as necessary. HEIGHT is usually taken from curHeight so that it reflects

the height of the current font.

The text prompt will adopt the color of the mouse pointer.

Example:

See also: PromptOn, PromptOff.

text

 20-205 GEOS Kernal 2.0

LoadCharSet: (C64, C128) C1CC

Function: Begin using a new font.

Parameters: r0 FONTPTR — address of font header (word).

Returns: r0 unchanged.

Alters: curHeight height of font.

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curIndexTable pointer to current font index table.

curSetWidth pixel width of font bitstream in bytes.

Destroys: a, y.

Description: LoadCharSet uses the data in the character set data structure to initialize the font variables for

the font pointed at by the FONTPTR parameter.

Example:

See also: UseSystemFont.

text/keyboard

 20-206 GEOS Kernal 2.0

PromptOff: (C64, C128) C29E

Function: Turn off the prompt (remove the text cursor from the screen).

Parameters: none.

Alters: alphaFlag (($C0 & (alphaFlag & $40) | PROMPT_DELAY),

where PROMPT_DELAY = 60.

Destroys: a, x, r3L.

Description: PromptOff removes the text prompt from the screen. To ensure the prompt will remain invisible

until a subsequent call to PromptOn, interrupts must be disabled before calling PromptOff.

Example: KillPrompt.

See also: InitTextPrompt, PromptOn.

text/keyboard

 20-207 GEOS Kernal 2.0

PromptOn: (C64, C128) C29B

Function: Turn on the prompt (show the text cursor on the screen).

Parameters: none.

Uses: stringX cursor x-position (word).

stringY cursor y-position (byte).

Alters: alphaFlag (($C0 & (alphaFlag | $40) | PROMPT_DELAY),

where PROMPT_DELAY = 60.

Destroys: a, x, r3L.

Description: PromptOn makes the text prompt visible and active at the position specified by stringX and

stringY. The prompt will flash once every second (PROMPT_DELAY). If stringX or stringY are

changed, the cursor will be repositioned automatically the next time the cursor flashes. To make

the update immediate, call PromptOn. Before PromptOn is called for the first time,

InitTextPrompt should be called.

Example: KillPrompt.

See also: InitTextPrompt, PromptOff.

text

 20-208 GEOS Kernal 2.0

PutChar: (C64, C128) C145

Function: Process a single character code (both escape codes and printable characters).

Parameters: a CHAR — character code.

r11 XPOS — x-coordinate of left of character (word).

r1H YPOS — y-coordinate of character baseline (byte).

Uses: dispBufferOn display buffers to direct output to.

currentMode character style.

leftMargin left-margin to contain character.

rightMargin right-margin to contain characters.

(following set by LoadCharSet).

curHeight height of current font.

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curIndexTable pointer to current font index table data.

curSetWidth pixel width of font bitstream in bytes.

Returns: r11 x-position for next character.

r1H unchanged.

Destroys: a, x, y, r1L, r2-r10, r12, r13.

Description: PutChar is the basic character handling routine. If the character code is less than 32, PutChar

will look-up a routine address in an internal jump table to process the escape code. Only send

implemented escaped codes to PutChar.

If the character code is 32 or greater, PutChar treats it as a printable character. First it establishes

the printed size of the character with any style attributes (currentMode) then checks the character

position against the bounds in leftMargin and rightMargin. If the left-edge of the character will

fall to the left of leftMargin, then the width of the character is added to the x-position in r1L and

PutChar vectors through StringFaultVec. If the right-edge of the character will fall to the right

of rightMargin, then PutChar vectors through StringFaultVec without altering the x-position.

The character is not printed in either case.

Assuming no margin fault, PutChar will print the character to the screen at the desired position.

Any portion of the character that lies above windowTop or below windowBottom will not be

drawn.

PutChar cannot be used to directly process multi-byte character codes such as GOTOX or

ESC_GRAPHICS unless r0 is maintained as a string pointer when PutChar is called (as it is in

PutString). See PutString for more information.

Note: A complete list of GEOS escape codes and character codes appears in "Chapter 19 Environment"

"Structures / Keyboard".

Example:

See also: SmallPutChar, PutString, PutDecimal.

text

 20-209 GEOS Kernal 2.0

PutDecimal: (C64, C128) C184

Function: Format and print a 16-bit positive integer.

Parameters: a FORMAT — formatting codes — see below.

r0 NUM — 16-bit integer to convert and print (word).

r11 XPOS — x-coordinate of leftmost digit (word).

r1H YPOS — y-coordinate of baseline (byte).

Uses: same as PutChar.

Returns: r11 x-position for next character.

r1H unchanged.

Destroys: a, x, y, r0, r1L, r2-r10, r12, r13.

Description: PutDecimal converts a 16-bit positive binary integer to ASCII and sends the result to PutChar.

The number is formatted based on the FORMAT parameter byte in the a-register as follows:

FORMAT:

7 6 5 4 3 2 1 0

 b7 b6 b0-b5

b7: justification: 1 = left;

0 = right.

b6: leading zeros: 1 = suppress;

0 = print.

b5-b0: field width in pixels (only used if right justifying).

The following constants may be used:

SET_LEFTJUST

SET_RIGHTJUST

SET_SUPRESS

SET_NOSUPRESS

Note: The maximum 16-bit decimal number is 65535 ($FFFF), so the printed number will never exceed

five characters.

Example:

See also: PutChar.

text

 20-210 GEOS Kernal 2.0

PutString:, i_PutString (C64, C128) C148, C1AE

Function: Print a string to the screen.

Parameters: Normal:

r0 STRING — pointer to string data (word).

r11 XPOS — x-coordinate of left of character (word).

r1H YPOS — y-coordinate of character baseline (byte).

InLine:

data appears immediately after the jsr i_PutString

.word XPOS — x-coordinate.

.byte YPOS — y-coordinate.

.byte STRINGDATA — null terminated string (no length limit).

Uses: same as PutChar.

Returns: r11 x-position for next character.

r1H y-position for next character (usually unchanged).

 r0 points to NULL terminator for STRING.

Destroys: a, x, y, r1L, r2-r10, r12, r13.

Description: PutString passes a full string of data to PutChar a character at a time. PutChar maintains r0 as

a running pointer into the string and so supports multi-byte escape codes such as GOTOXY.

If a character exceeds one of the margins, PutChar will vector through StringFaultVec as

appropriate. r0, r1L, and r1H will all contain useful values (current string pointer, x-position,

and y-position, respectively). For more information, refer to "String Faults (Left or Right

Margin Exceeded)" in Chapter "Text, Fonts, and Keyboard Input".

Basic operation of PutString:

SudoPutString:
10$
 ldy #0 ; use zero offset
 lda (r0),y ; get character
 beq 90$; exit if NULL terminator
 jsr PutChar ; otherwise process char
 IncW r0 ; move to next byte in string
 bra 10$; and loop through again
90$
 rts ; exit

Note: Unless a special string fault routine is placed in StringFaultVec prior to calling PutString, a

margin fault will be ignored and PutString will attempt to print the next character.

Note: A complete list of GEOS escape codes and character codes appears in "Chapter 19 Environment"

"Structures / Keyboard".

Example: Print, PutStrFault.

See also: PutChar, GraphicsString.

text

 20-211 GEOS Kernal 2.0

SmallPutChar: (C64, C128) C202

Function: Print a single character without the PutChar overhead.

Parameters: a CHAR — character code.

r11 XPOS — x-coordinate of left of character (word).

r1H YPOS — y-coordinate of character baseline (byte).

Uses: same as PutChar.

Returns: r11 x-position for next character.

r1H unchanged.

Destroys: a, x, y, r1L, r2-r10, r12, r13.

Description: SmallPutChar is a bare bones version of PutChar. SmallPutChar will not handle escape codes,

does no margin faulting, and does not normalize the x-coordinates on GEOS 128.

SmallPutChar will assume the character code is a valid and printable character. Any portion of

the character that lies above windowTop or below windowBottom will not be drawn. If a

character lies partially outside of leftMargin or rightMargin, SmallPutChar will only print the

portion of the character that lies within the margins. SmallPutChar will also accept small

negative values for the character x-position, allowing characters to be clipped at the left screen

edge.

Note: Partial character clipping at the leftMargin, including negative x-position clipping, is not

supported by early versions of GEOS 64 (earlier than v1.4) — the entire character is clipped

instead. Full leftMargin clipping is supported on all other versions of GEOS: GEOS 64 v1.4 and

above, GEOS 128 (both in 64 and 128 mode).

Like PutChar, 159 is the maximum CHAR value that SmallPutChar will handle correctly. Most

fonts will not have characters for codes beyond 129.

Example: ClipChar.

See also: PutChar, PutString.

text

 20-212 GEOS Kernal 2.0

UseSystemFont: (C64, C128) C14B

Function: Begin using default system font (BSW 9).

Parameters: none.

Returns: nothing.

Alters: curHeight height of font.

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curIndexTable pointer to current font index table.

curSetWidth pixel width of font bitstream in bytes.

Destroys: a, x, y, r0.

Description: UseSystemFont calls LoadCharSet with the address of the always-resident BSW 9 font.

128: In 80-column mode, a double-width BSW 9 font is substituted.

Example:

See also: LoadCharSet.

 20-213 GEOS Kernal 2.0

utility

Name Addr Description Page

Bell n/a 1000 Hz Bell sound. 20-214

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. 20-215

CRC C20E Cyclic Redundancy Check calculation. 20-216

DoInlineReturn C2A4 Return from inline subroutine. 20-217

GetRandom C187 Calculate new random number. 20-218

ToBasic C241 Pass Control to Commodore BASIC. 20-219

utility

 20-214 GEOS Kernal 2.0

Bell: (Apple GEOS) n/a

Function: Makes a brief beeping sound.

Parameters: none.

Returns: nothing.

Destroys: a.

Description: Bell sounds a 1000Hz signal. The sound lasts approximately 1/10th of a second.

Note: Bell does not exist in Commodore GEOS. Use the following code with your GEOS application

to provide the behavior of the Apple Bell Kernal routine.

 ; Based on code in the original HGG.

; Author: Dan Kaufman (w Chris Hawley)
; Updated by: Paul B Murdaugh

 PULSE = %01000001
 NOTE590 = $25DF ; 590Hz (original value for frequency)
 NOTE1K = $4016 ; 1000Hz (actual value for 1000HZ)
Bell:
 PushB CPU_DATA ; switch to I/O space
 LoadB CPU_DATA,#IO_IN
 LoadB sidVCReg,#0
 LoadW sidVoc1+O_PULSEWIDTH,#$800
 LoadB sidAtDcy,#$06
 LoadB sidSuRel,#$00
 LoadW sidVoc1+O_FREQUENCY,#NOTE1K
 LoadB sidVCReg,#PULSE
 PopB CPU_DATA ; return to memory space
 rts

Example: BeepThrice.

See also:

utility

 20-215 GEOS Kernal 2.0

CallRoutine: (C64, C128) C1D8

Function: Perform a pseudo-subroutine call, checking first for a null address (which will be ignored).

Parameters: a [ADDRESS — low-byte of subroutine to call.

x]ADDRESS — high-byte of subroutine to call.

where ADDRESS is the address of a subroutine to call.

Returns: depends on subroutine at ADDRESS.

Destroys: depends on subroutine at ADDRESS.

Description: CallRoutine offers a clean and simple way to perform an indirect jsr through a vector or call a

subroutine with an address from a jump table. Before simulating a jsr to the address in the x and

a register, it also checks for a null address ($0000). If the address is $0000 (x=$00 and a=$00),

CallRoutine performs rts without calling any subroutine address. This makes it easy to nullify a

vector or an entry in a jump table by using a $0000 value.

GEOS frequently uses CallRoutine when calling through vectors. This is why placing a $0000

into keyVector, for example, causes GEOS to ignore the vector. Other examples of this usage are

intTopVector, intBotVector, and mouseVector.

Note: CallRoutine modifies the st register prior to performing the jsr. It, therefore, cannot be used to

call routines that expect processor status flags as parameters (flags may be returned in the st

register, however). CallRoutine may be called from Interrupt Level (off of routines in

intTopVector and intBotVector). Do not use CallRoutine to call inline (i_) routines, as it will

not return properly.

Example: HandleCommand, KeyTrap.

See also:

utility

 20-216 GEOS Kernal 2.0

CRC: (C64, C128) C20E

Function: 16-bit cyclic redundancy check (CRC).

Parameters: r0 DATA — pointer to start of data (word).

r1 LENGTH — of bytes to check (word).

Returns: r2 CRC value for the specified range (word).

Destroys: a, y, r0-r3L.

Description: CRC calculates a 16-bit cyclic-redundancy error-checking value on a range of data. This value

can be used to check the integrity of the data at a later time. For example, before saving off a data

file, an application might perform a CRC on the data and save the value along with the rest of the

data. Later, when the application reloads the data, it can perform another CRC on it and compare

the new value with the old value. If the two are different, the data has unquestionably been

corrupted.

Note: Given the same data, CRC will produce the same value under all versions of GEOS.

Note1: This routine is called by the bootup routines to compute the checksum of GEOS BOOT. This

checksum is used to create the interrupt vector address. The reason for this was to prevent piracy.

Example: Kernal_CRC

MAGIC_VALUE = $0317 ; CRC value that we’re looking for
DATA_SIZE = $2434 ; size of data

.ramsect
 buffer:
 .block DATA_SIZE

.psect

Checksum:
 LoadW r0,#buffer ; r0 <- data area to checksum
 LoadW r1,#DATA_SIZE ; r1 <- bytes in buffer to check
 jsr CRC ; r2 <- CRC value for data area
 CmpWI r2,#MAGIC_VALUE ; return status to caller
 rts ; if equal (beq), then CRC is good

See also:

utility

 20-217 GEOS Kernal 2.0

DoInlineReturn: (C64, C128) C2A4

Function: Return from an inline subroutine.

Parameters: a DATABYTES — number of inline data bytes following the jsr plus one (byte).

stack top byte on stack is the status register to return (execute a php just before calling).

Returns: (to the inline jsr) x, y unchanged from the jmp DolnlineReturn.

st register is pulled from top of stack with a plp.

Uses: returnAddress return address as popped off of stack.

Destroys: a.

Description: DoInlineReturn simulates an rts from an inline subroutine call, properly skipping over the inline

data. Inline subroutines (such as the GEOS routines which begin with i) expect parameter data

to follow the subroutine call in memory. For example, the GEOS routine i_Rectangle is called in

the following fashion:

jsr i_Rectangle ; subroutine call
.byte y1,y2 ; inline data
.word x1,x2
jsr FrameRectangle ; returns to here

Now if i_Rectangle were to execute a normal rts, the program counter would be loaded with the

address of the inline data following the subroutine call. Obviously, inline subroutines need some

means to resume processing at the address following the data. DoInlineReturn Provides this

facility. The normal return address is placed in the global variable returnAddress. This is the

return address as it is popped off the stack, which means it points to the third byte of the inline jsr

(a rts increments the address before resuming control). The status registers is pushed onto the

stack with a php, DoInlineReturn is called with the number of inline data bytes plus one in the

accumulator, and control is returned at the instruction following the inline data.

Inline subroutines operate in a consistent fashion. The first thing one does is pop the return address

off of the stack and store it in returnAddress. It can then index off of returnAddress as in lda

(returnAddress),y to access the inline parameters, where the y-register contains $01 to access

the first parameter byte, $02 to access the second, and so on (not $00, $01, $02, as might be

expected because the address actually points to the third byte of the inline jsr). When finished,

the inline subroutine loads the accumulator with the number of inline data bytes and executes a

jmp DoInlineReturn.

Note: DoInlineReturn must be called with a jmp (not a jsr) or an unwanted return address will remain

on the stack. The x and y registers are not modified by DoInlineReturn and can be used to pass

parameters back to the caller. Inline calls cannot be nested without saving the contents of

returnAddress. An inline routine will not work correctly if not called directly through a jsr (e.g.,

CallRoutine cannot be used to call an inline subroutine).

Example: i_VerticalLine.

See also:

utility

 20-218 GEOS Kernal 2.0

GetRandom: (C64, C128) C187

Function: Creates a 16-bit random number.

Parameters: none.

Uses: random seed for next random number.

Alters: random contains a new 16-bit random number.

Destroys: a.

Description: GetRandom produces a new pseudorandom (not truly random) number using the following

linear congruential formula:

random = (2*(random+1) // 65521)

(remember: // is the modulus operator)

The new random number is always less than 65221 and has a fairly even distribution between 0

and 65521.

Note: GEOS calls GetRandom during Interrupt Level processing to automatically keep the random

variable updated. If the application needs a random number more often than random can be

updated by the Kernal, then GetRandom must be called manually.

Example:

See also:

utility

 20-219 GEOS Kernal 2.0

ToBasic: (C64, C128) C241

Function: Removes GEOS and passes control to Commodore BASIC with the option of loading a

non-GEOS program file (BASIC or assembly-language) and/or executing a BASIC command.

Parameters: r0 CMDSTRING — pointer to null-terminated command string to send to BASIC interpreter

(word).

r5 DIRENTRY — pointer to the directory entry of a standard Commodore file (PRG file

type), which itself can be either a BASIC or ASSEMBLY GEOS-type file. If this

parameter is $0000, then no file will be loaded (word).

r7 LOADADDR — if r5 is non-zero, then this is the file load address. For a BASIC program,

this is typically $801. If r5 is zero and a tokenized BASIC program is already in memory,

then this value should point just past the last byte in the program. If r5 is zero and no

program is in memory, this value should be $803, and the three bytes at $800-$802 should

be $00 (word).

Returns: n/a.

Destroys: n/a.

Description: ToBasic gives a GEOS application the ability to run a standard Commodore assembly-language

or BASIC program. It removes GEOS, switches in the BASIC ROM and I/O bank, loads an

optional file, and sends an optional command to the BASIC interpreter.

Once ToBasic has executed, there is no way to return directly to the GEOS environment unless

the RAM areas from BootGEOS-BootGEOS+$7F are preserved (those bytes may be saved and

restored later). To return to GEOS, the called program can execute a jump to BootGEOS.

A program in the C64 environment can check to see if it was loaded by GEOS by checking the

memory starting at bootName for the ASCII (not CBMASCII) string "GEOS BOOT”. If loaded

by GEOS, the program can check bit 5 of sysFlgCopy, if this bit is reset, ask the user to insert

their GEOS boot disk; if this bit is set, GEOS will reboot from the RAM expansion unit to actually

return to GEOS, set CPU_DATA to KRNL_BAS_IO_IN ($37) and jump to BootGEOS.

Note: C128: To return to GEOS:

 ;--- Code must reside below $4000
 rmbf 0,config ; Map in I/O in current bank
 setbit mmurcr,#%00110000,#%01000111 ; Common ram on for bottom 16K
 ; VIC in bank 1
 LoadB config,#CIO_IN ; Activate bank 1 memory
 jmp BootGEOS ; Return to GEOS

Example: LoadBASIC.

See also: BootGEOS.

Introduction

 21-1 Wheels Kernal 4.4

 Wheels Kernal 4.4

Introduction

excerpts from original Wheels Manual

This operating system came about ten years after the release of GEOS 2.0 and about 12 years after the first release of

GEOS. If you've been a loyal GEOS user all along, then you've likely grown to appreciate the many nice features of GEOS

and the common sense that went into the original development of it. GEOS is a remarkable enhancement to the Commodore

computer and has had much to do with keeping this computer platform alive all these years.

Since much of the original GEOS Kernal has been rewritten or changed in Wheels, what's actually left of the GEOS

Kernal can be found in versions of GEOS prior to V2.0. Therefore, you can install Wheels 64 as an upgrade to any version

of GEOS 64 from V1.3 through V2.0. Likewise, Wheels 128 may be installed as an upgrade to GEOS 128 from V1.4

through V2.0. Just about every beige-colored Commodore PC came with GEOS 64 V1.3. There is still a big advantage

to upgrading to Wheels from GEOS 2.0 as opposed to upgrading from an earlier version, though. GEOS 2.0 came with much

improved versions of geoWrite and geoPaint. So, you might still want to buy your own copy of GEOS 2.0 just to get

the newer versions of those applications.

Throughout the years, we've had new pieces of hardware released and methods employed to be able to use these products

with our GEOS systems. But there's nothing like having the support for the hardware built directly into the operating

system, rather than patching it up to do the job. That was one of the goals of the Wheels operating system, to better utilize

what we have available to us today and to provide better support for the future.

These computers will be around for a while longer yet, and your new Wheels system picks up where GEOS left off.

A Thumber's Guide to Wheels 4.4

There was a stated intention from the author / creator to make a "A Thumber's Guide to GEOS". The following section is an

attempt to create that guide from a combination of sources including all the way down to walking through code in the debugger.

This section is far from complete but it is the hope that it will grow over time and will someday be "done".

Welcome to the undiscovered country of the internals of Wheels 4.4.

Environment

 21-2 Wheels Kernal 4.4

Environment
Terms
 REU RAM-Expansion Unit.

 RBAM REU Bank Allocation Map.

 Bank REU 64K bank.

Environment

 21-3 Wheels Kernal 4.4

Constants
; Kernal groups
KG0_REU = 0

;--- run flags for GetNewKernal
NO_RUN = %01000000 ; $40
RUN_FIRST = %00000000 ; $00

;--- REU
MAX_RPART = 8 ; Maximum Number of REU Partitions

Environment

 21-4 Wheels Kernal 4.4

Equates
kgBase = $5000
kgJMPTbl = $5000
rBAMCRC = $5024
reuHDR = $5025 ; REU Header Block
reuBAM = $5025 ; Permanent RBAM
rBAM = $5045 ; RBAM Workspace
rPART = $5065 ; Partition ID's
rPARTSB = $506D ; Partition Starting Bank table
rPARTSZ = $5075 ; Partition Size Table
rPARTNM = $507D ; Partition Name table. 16 characters + NULL

Internal Equates
 ; Only Valid in 4.4

bitMskTbl = $522D ; Bit Position for each bank/8.
rCurPart = $5373 ; Current Partition Nbr

Environment

 21-5 Wheels Kernal 4.4

variables

Kernal
numDesktops = $88a6 ; Current Nesting Level of Desktops
dtDrive = $8868 ; DeskTop Drive
dtPartition = $8869 ; DeskTop Partition
dtType = $886a ; DeskTop Type?

version $41 - $44 V4.1 to V4.4 for Wheels.
 $11 - $20 V1.1 to 2.0 for Berkeley GEOS.

Driver
dirHeadTrack = $905c ; the current directory header track.
dirHeadSector = $905d ; the current directory header sector.
cableType = $9073 ; With the HD, if bit 7 is set, the parallel cable is being used
 ; With the RAM1581 drivers, if bit 7 is set, then this is a RamLink
 ; If cleared, then it's a normal RAMdisk running in an REU

ckdBrdrYet = $9074 ; $FF means GetNxtDirEntry is working in the system directory.
 ; (read only)

driverVersion = $904f ; ($51) driverVersion will be V5.1 ($51) or greater.

openError = $9071 ; 1 Set By OpenDisk to show the status of the last disk opened.
dir3Head = $9c80 ; to be used by the disk drivers only. Resides within each driver.

; ($9c80-$9d7f)

to make the driver behave as if OpenDisk has ran on the drive and was successful
LoadB openError,#0 ; FIXME. What other values are there? Would it not normally be 0 anyway?

Environment

 21-6 Wheels Kernal 4.4

Kernal Jump Table

InitMachine = $c2fe
GEOSOptimize = $c301
DEFOptimize = $c304
DoOptimize = $c307
NFindFTypes = $c30a
ReadXYPot = $c30d
MainIRQ = $c310
ColorRectangle_W = $c313 ; Original name is ColorRectangle
i_ColorRectangle = $c316
SaveColor = $c319
RstrColor = $c31c
ConvToCards = $c31f

Driver Jump Table
ddriveType = $904e
driverVersion = $904f
OpenRoot = $9050 ; OpenRoot-OpenDirectory: This is just like in GateWay for
compatibility
OpenDirectory = $9053 ; open any directory on a native partition
GetBamBlock = $9056
PutBamBlock = $9059
dirHeadTrack = $905c
dirHeadSector = $905d
curBamBlock = $905e
lastBamByte = $905f
lastBamSector = $9060
bamAltered = $9061
highestTrack = $9062

GetHeadTS = $9063 ; Get the Track and Sector of the directory header.
PutHeadTS = $9066
GetLink = $9069
GetSysDirBlk = $906c
startBank = $906f
startPage = $9070
pagesUsed = $9071

Environment

 21-7 Wheels Kernal 4.4

Structures

.ramsect kgBase
kgJMPTbl: .block $21 ; 5000-5020 $5000
rMR .block 3 ; 5021-5023 "MR#" $5021
rBAMCRC: .block 1 ; checksum of reuHDR $5024
reuHDR: .block $E0 ; 5025-5104 $5025

 .ramsect reuHDR

 ; 5025-5104
reuBAM: .block $20 ; Permanent RBAM $5025
rBAM: .block $20 ; RBAM Workspace $5045
rPART: .block 8 ; Partition ID's $5065
rPARTSB: .block 8 ; Partition Starting Bank table # $506D
rPARTSZ: .block 8 ; Partition Size Table $5075
rPARTNM: .block $88-1 ; Partition Name table

; Names are 16 characters + NULL
$507D

reuHDREnd: .block 1 ; Last byte of rPARTNM $5104
 ; Last byte of reuHDR $5104

Internal Structures
 ;--- Only Valid in 4.4

.psect $522D
bitMskTbl: byte $80, $40, $20, $10, $08, $04, $02, $01

Environment

 21-8 Wheels Kernal 4.4

Memory Maps

 Local RAM Kernal Group load area. Occupied as a result of a call GetNewKernal
$5000 kgWorkspace $1000 Total Area occupied by a loaded Kernal group

$5000 kgJMPTbl $24 Kernal Group Jump Table Entries

$5024 reuHDR $E1 REU Header Block

$5105 ? ? Unknown

$51B6 Start of Kernal Code

$522D bitMskTbl 8 $80, $40, $20, $10, $08, $04, $02, $01

All Kernal Groups by Name

 21-9 Wheels Kernal 4.4

All Kernal Groups by Name

KG0_REU = 0

AllocAllRAM $5006 Allocate all available banks in REU

AllocRAMBlock $5009 Allocate a Bank in the REU.

DelRamDevice $501B Remove a partition from REU

FreeRAMBlock $500C Release a Bank in the REU

GetRAMBam $5000 Load Ram Expansion 'BAM'

GetRAMInfo $500F Get information on available REU Banks

PutRAMBam $5003 Update REU BAM

RamBlkAlloc $5012 Allocate a Block of REU Banks.

RamDevInfo $501E Get information on a REU partition.

RemoveDrive $5015 Remove a RAM drive from the REU

SvRamDevice $5018 Create a partition in the REU.

KG1_DEVICE = 1

DevNumChange $5000

SwapDrives $5003

KG2_DISK = 2

DBFormat $5003

DBEraseDisk $5009

EraseDisk $500C

FormatDisk $5006

NSetGEOSDisk $5000

KG3_READFILE = 3

OReadFile $5000

KG4_WRITEFILE = 4

OWriteFile $5000

KG5_DIRECTORY = 5

ChDiskDirectory $5009 This routine may be safely called from within another dialog box.

This works just like ChPartition and ChSubdir other than the

ability to call it from a dialog box. It will start the user out in the

appropriate mode.

ChgParType $5000 Call this with r4L holding either a 1 for a native type or a 4 for a

1581 type, and the appropriate driver will be invoked for this CMD

device.

It's rare that this routine is ever needed. It's mainly used by the

operating system when switching partitions.

All Kernal Groups by Name

 21-10 Wheels Kernal 4.4

ChPartition $5003 This will call up a system dialog box, allowing the user to select a

different partition or subdirectory. This starts out by displaying a

list of the currently available partitions.

This may not be called from within another dialog box unless the

programmer is familiar with how to preserve dialog box variables.

ChPartOnly $501E This is just like ChPartition, except that it doesn't allow the user the

ability to change subdirectories. Only a partition can be selected.

All other aspects are the same as ChPartition.

ChSubdir $5006 This is similar to ChPartition, except that it starts out by displaying

a list of the subdirectories within the current directory. The user is

also given the ability to change partitions.

DownDirectory $5015 This will open a subdirectory within the current directory if it's a

native mode partition or native RAMdisk. If a real drive or the

RamLink, then the DOS in the device is also correctly pointed to

the root directory.

Call this with dirEntryBuf containing the directory entry of the

desired subdirectory.

FindRamLink $5027 This will search for a RamLink. If found, x will hold the "real"

device number of the RamLink, not the drive letter assignment as

seen by the user. This allows the programmer to address the

RamLink through direct DOS calls if needed. If x=0, then there is

no RamLink on the system.

This routine works whether the RamLink is configured for use by

the operating system or not.

GetFEntries $500C

GoPartition $5018 Select a partition on a CMD device. Call this with x holding the

number of the desired partition. The partition must be either a 1581

or native mode type. The correct driver will be installed by this

routine and the current directory on the desired partition will be

opened. The directory is whichever one is listed by the drive's own

DOS as the current directory.

TopDirectory $500F Open the root directory of the current drive. If it's a native mode

partition or native RAMdisk. If a real drive or the RamLink, then

the DOS in the device is also correctly pointed to the root directory.

All Kernal Groups by Name

 21-11 Wheels Kernal 4.4

UpDirectory $5012 open the parent directory of the current drive if it's a native mode

partition or native RAMdisk. If a real drive or the RamLink, then

the DOS in the device is also correctly pointed to the root directory.

KG6MKDIR = 6

MakeDirectory $5000

MakeSysDir $5003

KG7VALDISK = 7

ValDisk $5000

KG8CPYDISK = 8

CopyDisk $5000

TestCompatibility $5003

KG9COPY = 9

CopyFile $5000

KG10DESKTOP = 10

InstallDriver $5006 Install Printer Driver / Input Driver
;--- Put Driver Directory Entry into dirEntryBuf then the following code installs the driver.

lda #(KG10DESKTOP | NO_RUN)
jsr GetNewKernal
jsr InstallDriver
jmp RstrKernal

FindAFile $500C

FindDesktop $5009

NewDesktop $5000

OEnterDesktop $5003

KG11TOBASIC = 11

KToBasic $5000

Jump Table additions

 21-12 Wheels Kernal 4.4

Jump Table additions

OpenDirectory: (C64, C128) 9053

Function: open any directory on a native partition.

Parameters: r1L TRACK — Track of subdir to open.

 r1H SECTOR — Sector of subdir to open.

Destroys: (unknown).

Returns: nothing.

Description: OpenDirectory opens any directory on a native partition. Load r1L, r1H with the track and sector

of the subdir and call OpenDirectory. This does basically the same thing as OpenDisk.

Example:

See also:

Jump Table additions

 21-13 Wheels Kernal 4.4

GetHeadTS: (C64, C128) 9063

Function: Get the track and sector of the directory header.

Parameters: none.

Destroys: (unknown).

Returns: r1L track of directory header.

 r1H sector of directory header.

 r2L current partition number.

Description: GetHeadTS is contained in every Wheels disk driver.

Example:

See also:

Jump Table additions

 21-14 Wheels Kernal 4.4

GetNewKernal: (C64, C128) $9D80

Function: Load Kernal Group.

Parameters: a GROUPNBR to load | RUNFLAG

 RUNFLAG Bit 6 of a.

 1 Selected Kernal Group Swapped into memory at 5000-5FFF.

 0 First Routine in group executed. (Kernal Group swapped back).

Destroys: (unknown).

Returns: varies depending on RUNFLAG and GROUPNBR.

Description: GetNewKernal allows access to the Extended Kernal available in 4.4.

If RUNFLAG is 0 GetNewKernal behaves as a far jsr to the first routine in the Kernal Group.

Performing the following...

 Swap the extended Kernal group into memory.

 Execute the first routine in the group.

 Swap the Kernal back out of memory.

 Control is returned to the caller.

If RUNFLAG is set:

 Extended Kernal is swapped into memory at 5000-5FFF.

 Control is returned to the caller.

(Kernal will remain in memory until a call to RstrKernal to swap it back).

Note: Kernal Groups are loaded from the Last REU bank which is reserved exclusively for the 4.4

Kernal.

Note: Caller cannot be in the Range 5000-5FFF as that address range is swapped out with the Kernal

Group

Note: Loading KG0_REU also loads in the reuHDR.

Example:
 KG0_REU = $00
 NO_RUN = %01000000
 RUN_FIRST = %00000000

 LoadREUGrp:
 lda #KG0_REU|NO_RUN
 jmp GetNewKernal

See also: RstrKernal

Jump Table additions

 21-15 Wheels Kernal 4.4

RstrKernal: (C64, C128) $9D83

Function: Unload Extended Kernal group.

Parameters: none.

Destroys: a.

Returns: nothing.

Alters: Memory area from 5000-5FFF is restored to its previous contents.

Description: RstrKernal is used to restore the memory area 5000-5FFF after using GetNewKernal to load in

an extended Kernal Group.

Example:
KG0_REU =$00
NO_RUN =%01000000
RUN_FIRST =%00000000

.ramsect
 freeBanks:
 .block 1

.psect

GetBanksFree:
 lda #KG0_REU|NO_RUN ; select REU Group and don’t execute 1st
 jsr GetNewKernal ; load in Kernal group
 jsr GetRAMInfo ; Call Kernal Group function to get
 ; number of free REU banks
 MoveB r4H,freeBanks ; save the result
 jmp RstrKernal ; remove Kernal Group, restoring 5000-5FFF

; to its previous contents

See also: GetNewKernal

KG0_REU

 21-16 Wheels Kernal 4.4

AllocAllRAM: (C64, C128) $5006

Function: Allocate all available banks in REU.

Parameters: none.

Uses: reuHDR REU Header Block.

Alters: rBAM All bits in rBAM reset to mark banks as used.

rBAMCRC New CRC generated.

Returns: nothing.

Destroys: a, y.

Description: AllocAllRAM allows a program to allocate all banks in the REU for their own use.

Since AllocAllRAM returns no information on what blocks got allocated, an application must

already have knowledge of what banks were available prior to calling AllocAllRAM.

Note: No permanent changes are made. Call to PutRAMBam is required to update changes to

reuBAM. RstrKernal must then be called to make the changes permanent.

Note4:

Example:

See also: PutRAMBam, AllocRAMBlock, RamBlkAlloc.

KG0_REU

 21-17 Wheels Kernal 4.4

AllocRAMBlock: (C64, C128) $5009

Function: Allocate a Bank in the REU.

Parameters: r6L RBANK — REU Bank Number.

valid range: 1...ramExpSize-2 (byte).

Uses: ramExpSize Number of banks in REU.

rBAM RBAM Workspace.

rBAMCRC Check sum of reuHDR.

Alters: rBAMCRC New CRC generated.

 rBAM RBANK BAM bit reset to used.

Returns: x error ($00 = no error).

 BAD_BAM

Destroys: a, x, y.

Description: AllocRAMBlock allocates a single bank in the REU in rBAM

Note: No permanent changes are made. Call to PutRAMBam is required to update changes to

reuBAM. RstrKernal must then be called to make the changes permanent.

Note: Bank $00 and the last bank are reserved for the Kernal and are already allocated.

Note: BAD_BAM is returned in x for the following conditions.

1. RBANK has already been allocated.

2. RBANK is not a valid bank #.

Note4:

Example:

See also: PutRAMBam, AllocAllRAM, RamBlkAlloc.

KG0_REU

 21-18 Wheels Kernal 4.4

DelRamDevice: (C64, C128) $501B

Function: Remove a partition from REU.

Parameters: y PARTITION — Partition Nbr: 1-8 (Max of 8)

Uses: rBAM — RBAM Workspace.

rPARTSB — Partition Starting Bank table.

rPARTSZ — Partition Size table.

rPARTNM — Partition Name table.

Calls: GetRAMBam Reset rBAM to match reuBAM

PutRAMBam Save rBAM workspace to reuBAM

Alters: rBAM — RBAM Updated to reflect freed Banks.

rPARTSB — Partition Starting Bank entry set to $00

rPARTSZ — Partition Size entry set to $00

rPARTNM — Partition Name entry NULLed.

 reuBAM — Permanent RBAM updated with changes in rBAM.

rBAMCRC — Check sum of reuHDR

Returns: x error ($00 = no error).

 DEV_NOT_FOUND

1. PARTITION = 0

2. PARTITION > 8

3. rPARTSB,y = $00 (Selected Partition is not in use).

Destroys: a, y, r1, r3H, r6L.

Description: DelRamDevice removes a partition from the REU.

Note: No permanent changes are made. RstrKernal must be called to make the changes permanent.

Example:

See also: SvRamDevice, RamDevInfo.

KG0_REU

 21-19 Wheels Kernal 4.4

FreeRAMBlock: (C64, C128) $500C

Function: Release a Bank in the REU.

Parameters: r6L RBANK — REU Bank Number.

valid range: 1 ... ramExpSize-2 (byte).

Uses: ramExpSize. Number of banks in REU

rBAM RBAM Workspace

Returns: x error ($00 = no error).

 BAD_BAM

Alters: rBAM — RBAM Updated to reflect freed Banks.

rBAMCRC — Check sum of reuHDR

Destroys: a, y.

Description: FreeRAMBlock Release a Bank in the REU.

FreeRAMBlock resets the BAM bit for RBANK in rBAM, marking it as free.

Note: The Only Error Checking is for BAD_BAM

1. RBANK is not zero. To Protect against freeing Kernal bank 0

2. RBANK is < ramExpSize. To Protect against freeing Kernal in REU last block.

3. RBANK is currently allocated.

There are no checks to see if the Bank is assigned to an active partition.

Note4:

Example:

See also: AllocAllRAM, AllocRAMBlock, RamBlkAlloc.

KG0_REU

 21-20 Wheels Kernal 4.4

GetRAMBam: (C64, C128) $5000

Function: Reset rBAM to match contents of reuBAM

Parameters: none.

Uses: reuBAM Permanent RBAM.

Alters: rBAM RBAM Updated to reflect freed Banks.

rBAMCRC Check sum of reuHDR.

Returns: nothing.

Destroys: a, y.

Description: GetRAMBam copies the contents of reuBAM to rBAM to give a fresh working copy of the

RBAM. This should be used as a rollback step if an error occurs while processing changes to the

rBAM. After calling GetRAMBam the rBAM workspace will be complete reset and all prior

changes are lost.

Note: RBAM is a type of structure. It is synonymous with the BAM on a CBM disk.

Example:

See also: PutRAMBam

KG0_REU

 21-21 Wheels Kernal 4.4

GetRAMInfo: (C64, C128) $500F

Function: Get information on available Banks.

Parameters: nothing.

Uses: r6, r9L.

ramExpSize Number of banks in REU.

 reuBAM Permanent RBAM.

rBAM RBAM Workspace.

Calls: GetRAMBam.

RamBlkAlloc.

Alters: rBAMCRC New CRC generated.

 rBAM Reloaded from reuBAM

Returns: r2L # of consecutive free Banks.

0 = no banks available.

r3L # of starting bank pointing to the largest free area.

r4H # of free 64KB banks.

Destroys: a, y, r2H, r3H, r6, r9L

Description: GetRAMInfo gives a snapshot of available RAM that a program can use the REU. GetRAMInfo

loads r2L with ramExpSize-1 and loads r3L with $00 and calls RamBlkAlloc.

The RamBlkAlloc routine will allocate the largest available contiguous memory area and pass

its parameters upon return. Upon returning from the RamBlkAlloc routine, it then calls the

GetRAMBam routine to undo any changes that RamBlkAlloc routine may have made. Next, it

recomputes the RAM BAM's checksum value and stores it back onto $5024. The resulting

parameters are then returned back to the calling program.

Example:

See also:

KG0_REU

 21-22 Wheels Kernal 4.4

PutRAMBam: (C64, C128) $5003

Function: Update REU BAM.

Parameters: none.

Uses: rBAM — RBAM Workspace.

Alters: reuBAM Permanent RBAM updated with changes in rBAM.

rBAMCRC Check sum of reuHDR.

Returns: nothing.

Destroys: a, y.

Description: PutRAMBam applies the changes made to rBAM to the RBAM in reuBAM.

Note: No permanent changes are made. RstrKernal must be called to make the changes permanent.

Example:

See also: GetRAMBam

KG0_REU

 21-23 Wheels Kernal 4.4

RamBlkAlloc: (C64, C128) $5012

Function: Allocate a Block of REU Banks.

Parameters: r2L BANKS — Number of contiguous Banks needed (byte).

r3L START — Starting Bank Number (byte).

Uses: rBAM — RBAM Workspace.

Calls: GetRAMBam Reset rBAM to match reuBAM.

PutRAMBam Save rBAM workspace to reuBAM.

Alters: rBAM RBAM Updated to reflect allocated blocks.

rBAMCRC Check sum of reuHDR.

Returns: x error ($00 = no error).

 INSUFF_SPACE

Failed to Allocate Requested Banks.

r3L Starting Bank Number of allocated BANKS.

Destroys: a, y, r2H, r3H, r6, r9L.

Description: RamBlkAlloc allocates a BANKS sized block of contiguous Banks in the REU. RamBlkAlloc

searches for the contiguous block of Banks starting at START Bank Number.

if START = 0 RamBlkAlloc will start searching from the first Bank and will search the entire

REU for block of Banks large enough fulfill the request.

Note: Wheels will not allow other programs to allocate these banks once they have been allocated. Make

sure to free any Banks allocated when the application is done using them.

Example:

See also: AllocAllRAM, AllocRAMBlock.

KG0_REU

 21-24 Wheels Kernal 4.4

RamDevInfo: (C64, C128) $501E

Function: Get information on a REU partition.

Parameters: y = Partition Nbr. 1-8 (Max of 8).

Uses: rPART Partition ID table.

rPARTSB Partition Starting Bank table.

rPARTSZ Partition Size table.

rPARTNM Partition Name table.

Returns: r2L Size of Partition in Banks.

r3L Starting Bank Number.

r7L Partition ID.

r1 Pointer to Partition Name.

Destroys: a.

Description: RamDevInfo gets stats about a particular partition.

Example:

See also: SvRamDevice, RamDevInfo.

KG0_REU

 21-25 Wheels Kernal 4.4

RemoveDrive: (C64, C128) $5015

Function: Remove a RAM drive from the REU.

Parameters: nothing.

Uses driveType type of drive to open.

 numDrives number of drives in the system.

 curDrive device number of the active drive.

 curType currently active drive type.

 curDevice currently active device.

 ramBase RAM bank for each disk drive to use.

Calls: SetDevice.

 PurgeTurbo.

Returns: nothing.

Destroys: a, y, r4L.

Description: RemoveDrive checks numDrives to ensure that there are at least two drives running. No sense in

deleting the only drive in a system! Using the drive number passed in r4L, it calls SetDevice &

PurgeTurbo. Next, it zeroes out the corresponding driveType entry and the ramBase entry in

these two tables. It then zeroes out curType, curDrive, curDevice and finally decreases the value

found in numDrives by one.

This has the effect of removing a RAM drive from the Wheels OS system. It does not actually

remove the RAMdisk in a physical sense. It is just that some pointers indicating the existence of a

RAMdrive is simply wiped out.

Note4: Interestingly enough, there is no corresponding AddDrive entry. Maybe this routine is contained

in the Toolbox instead and is not in the Group 0 section of the Wheels OS Kernal.

Example:

See also:

KG0_REU

 21-26 Wheels Kernal 4.4

SvRamDevice: (C64, C128) $5018

Function: Create a Partition in the REU.

Parameters: r0 NAME — pointer to a 16-byte null-terminated partition name (word).

r2L BANKS — # of contiguous Banks needed (byte).

r3L START — Starting Bank Number (byte).

(0 = Let the Kernal decide which starting Bank to use).

r7L PARTID — ID number, can be any number less than 128 (byte).

(Any number higher than 128 designates a RAMdisk).

y PARTNBR — Partition Nbr. 1-8

0 Let the Kernal decide the partition number.

Uses: reuBAM — Permanent RBAM.

 rBAM — RBAM Workspace.

rPART — Partition ID table.

rPARTSB — Partition Starting Bank table.

rPARTSZ — Partition Size table.

rPARTNM — Partition Name table.

Calls: : GetRAMBam Reset rBAM to match reuBAM.

RamBlkAlloc. Allocate BANKS

PutRAMBam Save rBAM workspace to reuBAM

Alters: rBAM Updated to reflect Allocated Banks.

reuBAM Permanent RBAM updated with changes in rBAM.

rPART Partition ID set to PARTID.

rPARTSB Partition Starting Bank entry set to START.

rPARTSZ Partition Size entry set to BANKS.

rPARTNM Partition Name entry set to NAME.

rBAMCRC Updated Check sum of reuHDR.

Returns: x error ($00 = no error).

FULL_DIRECTORY ($04)

1. PARTION > 8

2. PARTIONNBR = 0 and all partitions are in use.

3. rPARTSB,y != 0

Destroys: a, y, r0, r1, r2L, r3L, r7L.

Description: SvRamDevice sets up a partition in the REU. The partition will be reserved by the Kernal and

survive various computing sessions. Once created, a program can simply reuse that partition over

and over instead of individually allocating and freeing up expansion RAM memory every time it

boots.

REU partitions are preserved for use in future computing sessions.

See also: DelRamDevice, RamDevInfo.

KGDEVICE

 21-27 Wheels Kernal 4.4

KGD EVICE

DevNumChange:

Function: Get information on a REU partition.

Parameters: x =

Uses:

Returns:

Destroys:

Description:

Example:

See also:

KG9COPY

 21-28 Wheels Kernal 4.4

KG9C OPY

CopyFile: 09:5000

Function: Copy File from Current Directory to Destination

Parameters: none.

Uses:

Alters:

Returns: x error ($00 = no error).

$FF= Destination file existed. Copy Aborted.

Destroys: $7900-$7fff

Description:

Note:

Example:

Examples

 21-29 Wheels Kernal 4.4

Examples

Copy File:

COPYING FILES and CHANGING PARTITIONS

Currently active directory is the source directory.

1. dirEntryBuf is loaded with the directory entry of the source file.

2. r0 DESTNAME — Destination filename.

This can also be used to duplicate a file. If the source and destination directories are the same and r0

points to a filename that is different from the source Filename, then a file duplication will take place

within the same directory.

If the names are different and the source and destination directories are also different, then the file will

be copied and the copy will receive a new name. Whatever r0 points to is what the destination file will

be named.

3. r3L bit 7 = 0 Copy file into the main directory.

= 1 Copy file to the system directory.

bit 6 = 0 Use Multi Drive Copier.

= 1 Use Single Drive Copier.

User will be prompted to insert the source and destination disks as needed.

bits 0-5 contains the destination drive number (8-11).

4. r2L - If the destination is a partitionable device, this is loaded with the destination partition number. It's

safe to set this even on non-partitionable devices such as the 1541. Therefore, it's not necessary to

determine the drive type prior to copying a file.

5. r1L, r1H - track and sector of the destination directory on a native mode partition or RAMdisk. These

values are also meaningless on a 1541, 71, or 81 type directory.

If the destination turns out to be the system directory of the main directory, then a simple directory entry

"move" will take place.

6. r3H - set bit 7 to force a "move" instead of a copy, if desired,

provided the destination is within the same partition as the source. If this is not the case, then a copy is

performed instead of a move.

7. r2H- bit 7 if clear, will replace the file on the destination if one of the same name as what r0 points to

exists.

If set, then the file will be skipped if one of the same name is found.

RETURNS x - $00 = no error.

$FF means a file of the same name existed (bit 7 of r2H was set). The copy did not proceed.

Examples

 21-30 Wheels Kernal 4.4

Sample copy file use:

fNameBuffer:

.block 17

CopyAFile:

PushB curDrive
jsr OpenDisk
PushB r1L
PushB r1H
jsr GetHeadTS ; get the current partition number into r2L
PushB r2L
lda #8
jsr SetDevice
jsr OpenDisk
LoadW r6,#fNameBuffer
jsr FindFile ; load dirEntryBuf
LoadW r0,#fNameBuffer ; destination name
PopB r2L ; destination partition
PopB r1H ; destination dir sector
PopB r1L ; destination dir track
PopB r3L ; destination drive
lda #9 ; Kernal group 9
jmp GetNewKernal ; run the first routine in group 9

Important: There is no error handling in this example to keep the sample focused. In real world code

"txa bne" would be after the I/O calls to handle errors.

Examples

 21-31 Wheels Kernal 4.4

Miscellaneous

Find a RamLink. Upon return, x can be tested. 0 = No RamLink found. >0 = "real" device number of RamLink

WhereIsRamLink:

lda #(5|NO_RUN)
jsr GetNewKernal
jsr FindRamLink
jmp RstrKernal

Pop up a dialog box allowing the user to select a partition or subdirectory.

thisPartition:
 .block 1
thisTrack:
 .block 1
thisSector:

.block 1

GetNewDirectory:
lda #(5|NO_RUN)
jsr GetNewKernal
jsr ChDiskDirectory
jsr RstrKernal
jsr GetHeadTS
MoveB r2L,thisPartition ; save the user's choice of partitions
MoveB r1L,thisTrack ; save the header track
MoveB r1H,thisSector ; Save the header sector
rts

Note: As sample code blocks are discovered they are added here until a more permanent home is found

for them.

A: Atoms

 A-1 A: Atoms

Appendix

A: Atoms

Introduction to atoms.

Building Blocks of an Application
The smallest level of GEOS application is the core instruction set of the 6502 processor. This simplistic instruction

set can make creating large bug free applications difficult. If not managed in an organized way an application can

quickly become larger and more complex than it should be.

There is a hierarchy of building blocks that leads to a solid base for creating applications.

This appendix focuses on the atom level.

atom
atoms are small reusable blocks of code. Depending on the atom and on situational needs, an atom may be used

as a subroutine or as inline code. When used as a subroutine they should be grouped together with other related

atoms and kept in a .rel library.

Creating an atom
• atoms should be small, less than a page of code.

• Base level atoms will only use processor registers.

• Mid-level atoms use pseudoregisters and possibly depend on the existence of a named global variable.

This is the case with multiple atoms working around the same global. Globals for atoms should be located

in zero page when possible.

• High level atoms will call lower level atoms.

• Getting an atom to work is only the first stage in creating a new atom.

Large vlir

application

process /

Small App

library

atom

macro

opcode

>> 6502 Instructions. virtually infinite ways of combining into an application. <<

Steps must be taken to reduce the amount of an application that is created from this level.

logic block. Normally only uses CPU registers. May use simple data structures.

Fully tested and optimized. (IR/RE)

Collection of common atoms. May contain small data structures.

Attached in the linking phase to the application or to a process library.

Collection of libraries. Glued together by opcode and macro.

Has data structures. Document Type Handlers etc...+UI elements

Collection of selected process and library blocks. Glued

together by opcode and macro. UI added for user control.

single statement. Represents a common multi opcode task.

Increase readability of source (IR). Reduce opportunities for coding errors. (RE)

A: Atoms

 A-2 A: Atoms

Optimizing
Time investment in reducing the size in bytes and/or the execution time in cycles is well spent here. The situation

will dictate which of the two is more important between size and speed. Inner loops are all about speed and

spending extra bytes for speed is often the correct path. At the top level UI it is all about space and trading speed

for size is the correct path.

Some atoms may perform double duty:

1. General purpose routine that saves space in the main body of the application by being a jsr target. With

every call saving total space used.

2. Provide faster inner loop logic by using inline:

Saves: a jsr and an rts. 3 + 6 cycles.

Costs: The size of the atom in bytes.

This dual personality can be handled in 2 different ways:

1. Copy the body of the atom into the inner loop. This is the easiest and quickest way to deploy.

2. Have an outer shell for the atom in the first atom name file. It only contains the following pseudo code:

Atom: ; Name of the Atom routine
 .include _atomname_i ; Include the core of the atom
 rts ; End the routine with standard rts.

 Then the inner loop at the point of insertion will have the following:
 code here ...
 .include _atomname_i
 code here ...

Libraries
The convention for storing an atom is _atomname with no extension. It is not intended to ever directly assemble

this file. The atoms will then be included mostly into the main source files of libraries with .include _atomname

The libraries are then assembled which generate .rel files. These are in turn used when linking applications that

use them. The more of your codebase that lives in libraries means more pre tested and pre optimized code. This

results in much faster application builds.

If you use 1541/71/81 type devices for storage then the disk will be the logical storage unit for a library. For

devices that support subdirectories the libraries should be separated by directory. Within each library area will be

the _source files for the atoms, the global .include files and the library .include files. These files will then be

assembled generating a .rel file which is the final form of the library.

The rest of this section will provide some actual atomic pieces from geoProgrammer applications and from

geoWrite as well as other atoms created for geoProgrammer' 2.1.

A: Atoms

 A-3 A: Atoms

quick reference

Categories

Identifier Category

bit bit operations
br branching
cmp Comparisons
flow Alters flow of logic
math Math
hw Hardware
size Code Base Reduction
text Text Operations
util Utility
conv Conversion

Sources

Identifier Source

gP1 geoProgrammer1.1

gD geoDebugger

gW geoWrite 128

gP' geoProgrammer' 2.1

 Other sources will be added as used.

 name Description quick reference

 A-4 A: Atoms

by name
BCD2Bin Convert Binary Coded Decimal to binary value gP' conv

Bin2bin Convert single Binary ASCII character ['0','1'] to a binary value gP util

Bin2Bin Convert Binary ASCII string ['0','1'...] to a binary word value gP' util

Bookmark Create a bookmark of current stack location gD flow

DiskName Get pointer to disk name in r0. gP' util

DoDlg Wrapper for DoDlgBox to reduce codebase size gP size

Hex2Nib Convert nibble with hex ASCII value to a binary nibble. gP' util

Hex2NibF Convert nibble with hex ASCII value to a binary nibble. Fast

Version. Does not convert character to uppercase first.

gP' util

Lower Convert character to lowercase. gP' text

Nib2Hex Convert nibble to ASCII hex character. gP' util

SwZp Swap Kernal I/O zp area with buffer area gP util

SwpNib Swap Upper and Lower nibbles in byte gP' util

Upper Convert character to uppercase gP' text

atom definitions by name

 A-5 A: Atoms

atom definitions by name

BCD2Bin: conv

Function: Convert single BCD (Binary Coded Decimal) value (00-99) to a binary value.

Parameters: accumulator NBR — Number to process

Returns: binary value in a

Destroys: r15L.

Description: binary value = (n10*10) + n1.

(n10*8) + (n10*2) = n10*10

(n10*16)/2 + (n10*16)/8 = (n10*8) + (n10*2)

Note: Especially useful for time /dates that are stored in BCD format.

Filename: _ BCD2Bin

Source: geoProgrammer'

Example:
 lda #$31
 jsr BCD2Bin
 ; a now = $1F

BCD2Bin: ; a = $31

 pha ; Save BCD Value
 and #%11110000 ; Get 10s place and divide by 2
 lsr a ;
 sta r15L ; r15L=(n10*16)/2 ; r15L = $18
 lsr a ;
 lsr a ;
 adc r15L ;
 sta r15L ; r15L=r15L +(n10*16)/8 ; r15L = $1E ($18 + $06)
 pla ; Restore BCD Value
 and #%00001111 ; Add Ones place
 adc r15L ; r15L=r15L+n1 ; r15L = $1F ($1E + $01)
 rts

atom definitions by name

 A-6 A: Atoms

Bin2bin: text

Function: Convert single Binary ASCII character ['0','1'] to a binary value.

Parameters: accumulator CHAR — Character to process

Returns: If CHAR is a valid binary character;

binary value of that character

 carry flag = 0

 otherwise

carry flag = 1

Destroys: nothing.

Description:

Note: Tuned by removing clc.

Filename: _ Bin2bin

Source: geoProgrammer'

Example:

 Bin2bin:
 cmp #'0' ; if char < ASCII zero then invalid
 bcc 98$
 cmp #'1'+1 ; if character > '1' then invalid
 bcs 99$
 sbc #'0' – 1 ; Convert to ASCII value†
 clc
 rts
 98$ sec
 99$ rts

†Carry is known to be clear at the sbc. -1 accounts for that.

See also:

atom definitions by name

 A-7 A: Atoms

Bin2Bin: text

Function: Convert Binary ASCII string ['0','1'...] to a binary word value.

Parameters: r0 PTR — Pointer to string to process.

 x REG — Pointer to zero page register for the result.

Returns: y = index to terminating character.

 Carry Flag = 0 No Error.

 binary value of binary string in REG

Carry Flag = 1 Error.

 a = TRUE Value Overflowed the word.

 a = FALSE Invalid Character in string.

Destroys: nothing.

Description: Convert a stream of binary digits to a binary value and save the result in REG. The string does not

have to be null terminated since this routine can handle processing a value that exists inside a

stream of characters. This is useful when parsing a file. Each time a % character is encountered

you would call this routine to get the value that occurs after the %. Then AddYW r0 to bump the

zp pointer to the next byte in the string.

Filename: _ Bin2Bin

Source: geoProgrammer'

Example:

 Bin2Bin:
 ldy #0
 sty zpage,x
 sty zpage,x+1
 10$
 lda (r0),y
 jsr Bin2bin ; convert ASCII to bit value
 bcs 50$; if carry set we had a non-binary character else
 ror a ; put new bit into the carry flag
 rol zpage,x ; rotate the result to the left with new incoming bit
 rol zpage,x +1 ; now rotate high-byte
 bcs 99$; if carry is set then we overflowed the word
 iny ; else loop
 bcc 10$; (carry always clear here. bcc instead of bra saves
 ; one byte and two cycles)
 ;---
 50$ jsr IsAlphaN ; if the ending character is alpha numeric then we have
 bcs 98$; an invalid binary string
 90$ clc ; our part of the string is done
 rts ; exit

 98$ lda #FALSE ; invalid character in stream
clda 99$, #[TRUE ; value over flowed word
 sec
 rts

See also:

atom definitions by name

 A-8 A: Atoms

Bookmark: flow

Function: Save last return address and stack position before the return address.

Parameters: nothing.

Returns: nothing.

Alters: bm_rts — Return Address saved as the bookmark

 bm_Stack — Stack address to restore too when returning to bookmark

Destroys: nothing.

Description: Provides the ability to reset Program Logic and stack to a previous state.

Filename: _Bookmark

Source: geoDebugger

Example:
 jsr Bookmark ; bookmark here as the start of a process
 ;--- do long process
 ;--- If error during process then return to Bookmark using bm_rts and bm_Stack.

.ramsect
 bm_rts:
 .block 2
 bm_Stack:
 .block 1

Bookmark:
 php ; save status register, a and x
 pha
 PushX
 tsx ; transfer SP to x
 inx ; point X to return address of caller
 inx
 inx
 inx
 lda $100,x ; save return address + 1 to bm_rts
 add #1
 sta bm_rts
 inx
 lda $100,x
 sta bm_rts+1
 stx bm_Stack ; save stack point before caller return address
 PopX ; restore status register, a and x
 pla

plp
rts

See also:

atom definitions by name

 A-9 A: Atoms

DoDlg: size

Function: stub to call DoDlgBox using a and x to point to dialog box.

Parameters: x DBH — High-byte of dialog box address.

a DBL — Low-byte of dialog box address.

Returns: Same as DoDlgBox.

Destroys: Same as DoDlgBox.

Description: Reduce foot print of an application that uses multiple dialog boxes.

Note: Normal way to call a dialog box is using:
 LoadW r0,#dbTable ; 8 byte Sequence

 With DoDlg you send the dbTable like this:
 ldx #]dbTable ; 2 bytes
 lda #[dbTable ; 2 bytes

 It takes 8 bytes to LoadW r0,#value but it only takes 4 bytes to lda and ldx with the dbTable

address bytes.

 It only requires 2 uses of DoDlg for it to cut a profit.

 DoDlg size = 7 bytes.

 Savings per use = 4 bytes.

Filename: _DoDlg

Source: geoProgrammer

Example:
 ...

 ldx #]dbTable ; load high-byte of dbTable address
 lda #[dbTable ; load low-byte of dbTable address
 jsr DoDlg ; put up the dialog box
 ...

 DoDlg:
 stx r0H ; store high-byte 2 bytes
 sta r0L ; store low-byte of address 2 bytes
 jmp DoDlgBox ; transfer control to DoDlgBox 3 bytes

See also:

atom definitions by name

 A-10 A: Atoms

IsAlphaN: text

Function: Check if a character is alpha numeric.

Parameters: a CHAR — Character to check.

Returns: Carry = 0 Not Alpha Numeric

 Carry = 1 Alpha Numeric

Destroys: nothing.

Description: test a for

 = Underscore or

 (>='0' and <=9) or

 (>='A' and <=Z) or

 (>='a' and <=z)

Filename: _IsAlphaN

Source: geoProgrammer

Example:

IsAlphaN:
 cmp #'_' ; underscores are OK
 beq 99$; exit w/carry set
 cmp #'0'
 bcc 99$; if less than '0' then not alpha numeric. exit w/cc
 cmp #'9'+1
 bcc 98$; if <= '9' then we have a number. exit w/cs.
 cmp #'A'
 bcc 99$; if < 'A' then not alpha numeric. exit w/cc
 cmp #'Z'+1
 bcc 98$; of <= 'Z' then alpha numeric. exit w/cs
 cmp #'a'
 bcc 90$; if < 'a' then not alpha numeric. exit w/cc
 cmp #'z'+1 ; if <= 'z' then alpha numeric. exit w/cs
 bcc 98$
 clc
 rts ; exit.

;--- At the atom level. 2 exits are ok from one routine if it saves cycles or bytes
; in doing so. In this case "bcc 99$" could replace the rts but that would make this
; exit take 2 extra cycles and 1 extra byte
98$
 sec
99$
 rts ; exit

See also:

atom definitions by name

 A-11 A: Atoms

Lower: text

Function: Convert character to lowercase.

Parameters: accumulator CHAR — Character to process.

Returns: If CHAR is a uppercase letter;

 return lowercase of that letter

 otherwise return accumulator unchanged.

Destroys: nothing.

Description: range checking is performed on CHAR. Only valid Uppercase Alpha characters will be altered.

Note: Tuned by removing clc.

Filename: _Lower

Source: geoProgrammer'

Example:

 Lower:
 cmp #'A' ; If character < 'A' then exit.
 bcc 14$
 cmp #'Z'+1 ; If character > 'Z' then exit.
 bcs 10$
 adc #('a'-'A') ; †Convert to Lower Case.
 10$
 rts

†Carry is known to be clear at the adc. no need to clc prior to the adc.

See also: Upper

atom definitions by name

 A-12 A: Atoms

Nib2Hex: text

Function: Convert nibble to ASCII value for a hex character

Parameters: accumulator NIBBLE — Binary value to convert

Returns: a ASCII character that represents the hex value of NIBBLE.

Destroys: nothing.

Description: Converts the low NIBBLE into an ASCII value. For speed and size there is no error checking to

make sure the high nibble is 0.

Note: Tuned by removing clc.

Filename: _ Nib2Hex

Source: geoProgrammer'

Example:

 ;--- Speed Optimized Version. Best for inner loop use.
 ; 10 bytes: (0-9) 12 Cycles, (A-F) 13 Cycles*
 Nib2Hex:
 cmp #10 ; if nibble is less than 10 then
 bcs 80$
 adc #'0' ; add value of ASCII zero
 rts ; exit
 80$
 adc #('A' – 10) -1 ; add offset to 'A' minus the base value of 10
 rts

 ;--- Size Optimized Version. Saves 1 byte over Speed optimized version.
 ; Best for general purpose library use.
 ; 9 bytes: (0-9) 13 Cycles, (A-F) 14 Cycles*
 Nib2Hex:
 cmp #10 ; if nibble is greater than 9 then
 bcc 90$
 adc ('A' – ('9'+1)) -1 ; add offset to 'A' from '9' (7) †
 90$
 adc #'0' ; add value of ASCII zero
 rts
 †Carry is known to be set at the adc. -1 accounts for that.
 *Plus 1 cycle if branch crosses a page boundary.
 ;--- Smallest and slowest version. Best for byte conservation in non inner loops.
 ; 8 bytes: (0-9,A-F) 16 Cycles.
 Nib2Hex:
 sed ; enter BCD mode

 clc ;

 adc #$90 ; produces $90-$99 (C=0) or $00-$05 (C=1)

 adc #$40 ; produces $30-$39 or $41-$46

 cld ; leave BCD mode
 rts

See also:

atom definitions by name

 A-13 A: Atoms

Hex2Nib:, Hex2NibF: text

Function: Convert nibble with hex ASCII value to a binary nibble.

Parameters: accumulator NIBBLE — Hex Character to process

Returns: If NIBBLE is a valid Hex character;

 return binary value of NIBBLE in the accumulator.

 Carry Flag = 0

 otherwise return

 Carry Flag = 1

Destroys: On error: a

Description: Use Hex2Nib when the case of the hex character is known. Use Hex2NibF when the characters

are known to be upper case.

Note: Tuned by removing 2 sec instructions.

Filename: _ Hex2Nib

Source: geoProgrammer'

Example:

 Hex2Nib:
 jsr Upper ; convert character to upper case

 ;--- enter here if the data is known to be already upper case
 Hex2NibF:
 cmp #'0' ; if the char is < ASCII zero then invalid character.
 bcc 99$
 cmp #'9'+1 ; if char is <= '9' then convert number
 bcc 90$
 cmp #'A' ; if char is < ASCII A then invalid character
 bcc 99$
 cmp #'F'+1 ; of char is <= 'F' then convert letter
 bcs 99$
 sbc #('A'-10) -1 ; subtract offset from 'A' to the base value of 10†
 clc
 rts
 90$
 sbc #'0' -1 ; subtract offset from '0' to the base value of 0†
 clc
 rts
 99$
 sec
 rts

†Carry is known to be clear at the sbc. -1 accounts for that without having to

spend a byte and 2 cycles to use a sec instruction.

See also:

atom definitions by name

 A-14 A: Atoms

DiskName: util

Function: Get Pointer to Diskname in r0.

Parameters: accumulator DRIVE — Device Number of Desired Drive.

Returns: r0 Contains pointer to DiskName of DRIVE.

Destroys: y.

Description: Since the Disk Names are not stored in a contiguous space, they cannot be retrieved by a simple

index lookup. This is an efficient size and speed method to get the pointer to the name.

Note: For speed and size there is no error checking on validity of DRIVE.

Filename: _ DiskName

Source: geoProgrammer'

Example:
 lda curDrive ; get current drive number
 jsr DiskName ; get ptr to the disk name in r0
 ...

 DiskName:
 pha ; preserve a on stack
 and #%00000111 ; normalize drives to offset to 0. e.g. drive 8 is now 0
 asl a ; set index to drive name table
 tay
 MoveB "T_DskNm+1,y",r0H ; save pointer to name in r0
 MoveB "T_DskNm,y",r0L
 pla ; restore a
 rts ; exit

;--- table of pointers to disk name buffers
 T_DskNm:
 .word DrACurDkNm
 .word DrBCurDkNm
 .word DrCCurDkNm
 .word DrDCurDkNm

See also:

atom definitions by name

 A-15 A: Atoms

SetSys: util

Function: Set sysType flag for runtime decisions based on current hardware.

Parameters: nothing.

Returns: a current value of sysType.

 z status flag = 0 if GEOS version < 1.3

 N=1 C128; N=0 C64

 V=1 80 Col Mode; V=0 40 Col Mode

 x current value version

Alters sysType. Application variable (byte).

Destroys: nothing.

Description: combines multiple system checks into 1 flag byte.

 Examples of logic checks:
 bbsf 7,sysType, 128$
 bbrf 7,sysType, 64$
 128$
 bbrf 6,sysType, 40$; 40 col mode
 bbsf 7,sysType, 80$; 80 col mode

 lda sysType
 beq Old version < 1.3 ; exit out if your app does not support old Kernal

Filename: _SetSys

Source: geoProgrammer'

Example:

 SYS_OLD =$0000
 SYS_64 =%0001
 SYS_128 =%10000000
 SYS_VDC =%11000000
 SetSys:
 lda #0
 ldx version
 cpx #$13
 bcc 90$
 bbrf 7,c128Flag, 64$
 lda graphMode
 and #%10000000
 lsr a
 ora #%10000000
 64$
 ora #%00000001
 cpx $40
 bcc 90$
 ora #%00000010
 90$
 sta sysType
 bit sysType ; set Flags based on OS and video mode
 rts

See also:

atom definitions by name

 A-16 A: Atoms

SwpNib: util

Function: Swap Upper and Lower nibbles in byte.

Parameters: accumulator TARGET — byte value to nibble swap.

Returns: a Upper and Lower nibbles are swapped.

Destroys: nothing.

Description: Fast and compact way to swap nibbles. One useful case for this is reversing foreground and

background colors in a byte.

Note:

Filename: _ SwpNib

Source: geoProgrammer'

Example:
 lda screencolors ; get current default screen colors
 jsr SwpNib ; invert colors
 sta screencolors ; set new default colors
 ...

 SwpNib:
 asl a ; shift a left
 adc #$80 ; adc %10000000 to a. b7 is now bit 0, b6 now in carry
 rol a ; rotate a left. b7 and b6 are now bits 1 and 0
 asl a ; repeat the process for the other 2 bits
 adc #$80
 rol a
 rts

.if 0
 Break down of the logic.
 asl a ; shift a left.
 ; carry flag = b7
 ; bit 0 = 0

 adc #$80 ; adc %10000000 to a
 ; bit 0 = carry flag
 ; carry flag = b6

 rol a ; rotate a left. b7 and b6 are now bits 1 and 0

 asl a ; repeat the process for the other 2 bits
 adc #$80
 rol a
 rts
.end if

See also:

atom definitions by name

 A-17 A: Atoms

SwZp: util

Function: Swap Kernal I/O zero page area with buffer area.

Parameters: nothing.

Alters: $80-FA is swapped with buffer at rSwZp.

Returns: I/O zero page area swapped with buffer.

Destroys: nothing.

Description: Allows greatly increasing the number of bytes available in Zero Page space for an application. To

use this the application must call this as its first step during initialization and as its last step on

shutting down. For the life of the application it must call this routine prior to any API calls that

access the serial bus (IE anything related to drives or printers) to put the Kernals I/O zero page

space back. After the I/O is done then call this again to put the application zero page back.

Note: This method is used by all of the Berkeley applications. Also note that none of the Berkeley

applications treat the application registers a0-a9 as a0-a9. They use the zero page space from

$70-7F (APP_ZPL), and $FB-FE (APP_ZPH) as .zsect space with variables declared and used in

this space having varying sizes as needed.

Filename: _SwZp

Source: geoProgrammer'

;--- Define the size of area to use. FA-80 is the entire I/O zp space. Constant declaration and
; ramsect is to be provided in the main body of the application.
SWZP_SZ = APP_ZPH - APP_ZIO ; ($FB-$80 = 123 bytes)

.ramsect
 rSwZp:
 .block SWZP_SZ
.psect
 SwZp:
 php ; save registers
 pha
 PushX
 PushY
 ldx #SWZP_SZ -1 ; set size of area to swap. get from 80-FA

 10$; while x > 0 loop
 lda APP_ZIO,X ; load a from zp
 ldy rSwZp,X ; load y from buffer
 sty APP_ZIO,X ; store y to zp
 sta rSwZp,X ; store a to buffer
 dex
 bpl 10$; end loop

 PopY ; restore registers
 PopX
 pla
 plp
 rts ; $80-$FA now available to use

atom definitions by name

 A-18 A: Atoms

SwZp†

Example:

.zsect APP_ZPL ; APP_ZPL = $70
 zTS: .block 2

.ramsect
 rSwZp: .block 123

.psect
 Init:
 jsr SwZp
 Do Rest of the initialization.

 DoSomeIO:
 LoadW r0,#diskBlkBuf
 MoveW zTS,r1
 jsr SwZp
 jsr GetBlock
 jsr SwZp
 txa
 bne handle_error
 ...

 Shutdown:
 jsr SwZp
 jmp EnterDeskTop

See also:

†Important: SwZp is impleminted in all of the large Berkeley applications. This is by far the most important

piece of logic that has been extracted from the Berkeley applications. Having a block of .zsect

that spans from $70-FE grants an application a vast improvement in efficiency it would not

otherwise have. This method can be further evolved to have the SwZp integrated into the calls.

e.g. GetBlock becomes sGetBlock. This version of GetBlock can then also do a txa before

returning so z contains the success / failure status. This reduces the footprint of this logic into

a size profit.

atom definitions by name

 A-19 A: Atoms

Upper: text

Function: Convert character to uppercase.

Parameters: accumulator CHAR — Character to process.

Returns: If CHAR is an lowercase letter;

 returns uppercase of that letter

 otherwise returns accumulator unchanged

Destroys: nothing.

Description: range checking is performed on CHAR. Only valid lower-case alpha characters will be altered.

Filename: _Upper

Source: geoProgrammer'

Example: KeyTrap.

 Upper:
 cmp #'a' ; if character < 'a' then exit
 bcc 90$;
 cmp #'z'+1 ; if character > 'z' then exit
 bcs 90$;
 sbc #('a'-'A') -1 ; convert to upper-case†
 90$
 rts

†Carry is known to be clear at the sbc. The -1 is to compensate for the additional +1 subtraction caused by the

cleared carry. This uses assembler time to save runtime bytes (1) and cycles (2) by removing the need for the sec

instruction.

See also: Lower

 B-1 B: Examples

B: Examples

This section contains all the code examples from the book chapters and from the GEOS 2.0 API.

The examples are organized into the following categories.

• atoms Small reusable blocks of code. They may be used as subroutines or as inline code

depending on the atom and on situational needs.

• dialog boxes Everything to do with Dialog Boxes.

• disk Disk I/O.

• drivers Input and Print Drivers. Includes multiple examples of each.

• graphics Covers all graphical output to the screen.

• hardware Code specific to the C64 and/or C128 hardware.

• icons & menu ...

• keyboard

• math ...

• memory ...

• mouse & sprite ...

• text Text output to screen and text input from keyboard.

• utility Miscellaneous routines.

Note: This section is for GEOS 2.0. Wheels 4.4 has its own examples section within Chapter 21

Wheels Kernal 4.4.

atoms

 B-2 B: Examples

atoms

KeyTrap:

.psect
.include _upper

T_Action:
 'A','B','C','D' ; keyboard commands to act on. case insensitive

T_ActL: ; low pointer table to action handlers
 .byte [SetDrv8
 .byte [SetDrv9
 .byte [SetDrv10
 .byte [SetDrv11

T_ActH: ; high pointer table to action handlers
 .byte]SetDrv8
 .byte]SetDrv9
 .byte]SetDrv10
 .byte]SetDrv11

T_ACTCNT=*-T_ActH

Init:
 LoadW keyVector,#KeyTrap
 rts

KeyTrap: ; routine hooked into keyVector
lda menuNumber ; check current menu level
bne 90$; ignore keys while menus down

 lda keyData ; get Keypress and
 jsr Upper ; convert it to uppercase
 ldy #T_ACTCNT-1 ; search action table for a hit

10$
 cmp T_Action,y
 beq 20$
 dey
 bpl 10$
 90$
 rts ; no action found for press. exit

20$
 ldx T_ActH,y
 lda T_ActL,y ; action found
 jmp CallRoutine ; execute the handler

SetDrv8:
 lda #8
clda SetDrv9, #9
clda SetDrv10, #10
clda SetDrv11, #11
 jsr SetDevice ; set device to user selected number
 jsr OpenDisk ; open the disk
 jmp ErrHndlr ; generic Error Handler

; displays error dialog or does nothing on no error

atoms

 B-3 B: Examples

ImpBin:

 .if 0

Function: Convert an ASCII Binary string to a word value.

Parameters: nothing.

Alters: zVal zero page word to hold result

Returns: r0 Pointer to string.

 y index to string terminator.

 Carry Flag 0 = No error.

 1 = Invalid Binary String.

Description: Simple use of Bin2Bin. Converts a simple null terminated string to a binary value.

.endif

.zsect APP_ZPL ; APP_ZPL = $70
 zVal:
 .block 2 ; zero page variable to hold result

.psect

.include _Bin2Bin

 bstr:
 .byte "00101101",NULL

 GetOneVal:
 LoadW r0,#bstr ; set pointer to string
 ldx #zVal ; set zp pointer
 jsr Bin2Bin ; convert binary string to word value
 bcs HandleError
 rts ; return with result in zVal

 dialog boxes

 B-4 B: Examples

dialog boxes

getFileDB:

 .if 0

Function: Get geoWrite File name from user using DBGETFILES.

Parameters: r7L FILETYPE — GEOS File type (NULL=Any File Type).

r5 BUFFER — pointer to buffer to return filename in.

r10 PERMNAME — Pointer to permanent name string (NULL=Any Data Type).

Description: A DB table from geoWrite for putting up a Dialog Box for loading an existing document. If

Open was selected from the openBoxDB, then the getFileDB is displayed to help the user

choose from the available files.

.endif
.ramsect
 fileName:
 .block 17 ; buffer to hold filename
 diskName:
 .block 20 ; disk name

.psect
 gwClass:

 .byte "Write Image",NULL ; only want geoWrite files

 tOnDisk: ; disk name header text
 .byte BOLDON,"On disk:",PLAINTEXT,NULL
+++++++++

 getFileDB:

 .byte DEF_DB_POS | 1 ; standard DB with shadow pattern #1
; the GetFile's box works well inside a standard DB

 .byte DBTXTSTR ; display a text string
 .byte DBI_X_2 * 8 – 6 ; x-offset in pixels for text. (=17*8-6 = 130)
 .byte TXT_LN_1_Y – 6 ; y-offset
 .word tOnDisk ; "On disk:"

 .byte DBTXTSTR ;
 .byte DB_ICN_X_2 * 8 - 6 ; x-offset in pixels for text. (=17*8-6 = 130)
 .byte TXT_LN_2_Y – 12 ;
 .word diskName ; buffer already loaded with disk name
 .byte DBGETFILES,4,4 ; get filename box command
 .byte OPEN,DBI_X_2,DBGF_Y_0 ; [Open] Icon
 .byte DBUSRICON,DBI_X_2,DBGF_Y_1 ; [Drive] Icon
 .word uiDrive ; disabled when only 1 Drive is on the system
 ; allows changing drives

 .byte CANCEL,DBI_X_2,DBGF_Y_3 ; [Cancel] Icon

 dbDisk: ; [Disk] Icon

 .byte DISK,DBI_X_2,DBGF_Y_2
 ; disabled on Drive geoWrite Loads from
 ; allows changing disks while dialog is open
 .byte NULL ; end of DB definition

dialog boxes

 B-5 B: Examples

GetWorkFile:

 .if 0

Function: Get geoWrite File name from user using DBGETFILES.

Parameters: r7L FILETYPE — GEOS File type. (NULL=Any File Type)

r5 BUFFER — pointer to buffer to return filename in.

r10 PERMNAME — Pointer to permanent name string. (NULL=Any Data Type).

Returns: TRUE File selected. (With selected Filename saved in fileName buffer).

 FALSE User canceled out of the dialog.

Description: The filename box displays a list of filenames. Any filename can be selected by the user. It is then

copied into BUFFER pointed to by r5. If r10 is not null, it points to PERMNAME which contains

the permanent name string, e.g., "Paint Image" taken from the File Header. In this case, only

geoPaint documents will be displayed for selection. If there are more files than can be displayed

within the box, pressing the scroll arrows that appear under the filename box will scroll the

filenames up or down. Max of 16 files supported.

.endif
.ramsect
 fileName:
 .block 17 ; buffer to hold filename

.psect

gwClass:
 .byte "Write Image",NULL ; only want GeoWrite files

gwDB:
 .byte DEF_DB_POS | 1 ; default Size with a solid shadow
 .byte OK ; display [OK] Icon
 .byte DBI_X_0 ; left-side
 .byte DBI_Y_2 ; bottom row
 ; display [CANCEL] Icon. right/bottom using compact layout.
 .byte CANCEL,DBI_X_2,DBI_Y_2
 .byte DBGETFILES,4,4 ; display file selection box @offset x4,y4

 ; 4 pixels in from the left, and down from top
 .byte NULL ; end of dialog Box table

;--- Display a dialog box to get the user selected name of a GeoWrite File.

GetWorkFile:
 LoadW r5,#fileName ; buffer to save selected filename
 LoadB r7L,#APPL_DATA ; want data files
 LoadW r10,#gwClass ; only show GeoWrite files
 LoadW r0,#gwDB ; point r0 to our dialog box table
 jsr DoDlgBox ; display the dialog box
 CmpBI r0L,#CANCEL ; set return value based on user
 beq 99$; icon selection
 lda #[TRUE ; user pressed [OK]

clda 99$, #FALSE ; user pressed [CANCEL]
 rts

dialog boxes

 B-6 B: Examples

openBoxDB:

 .if 0

Function: Dialog Table to display geoWrite's Open Dialog Box.

Description: A table from geoWrite for putting up Dialog Box for selecting a new document, opening an

existing document, or quitting geoWrite altogether. Also includes supporting data structures.

.endif
ICOLOFF = 2 ; number of cards to offset icons from DB.
 ; (card is 8 pixels wide and 8 pixels tall)
ICOWDTH = 6 ; width of icons in cards
ICOTXTOFF = 7 ; number of pixels to offset text after icons
ICOTXTXP = (ICOLOFF + ICOWDTH) * 8 + ICOTXTOFF

 openBoxDB:

 .byte DEF_DB_POS | 1 ; standard DB with shadow pattern #1

 .byte DBTXTSTR ; display a text string
 .byte TXT_LN_X ; place it at the standard x-offset (=16 pixels)
 .byte 2*8 ; y-offset in pixels from top of box
 .word selectOptionTxt ; pointer to the message "Please Select Option:"

 .byte DBUSRICON ; programmer defined icon
 .byte 2 ; x-offset in cards for left-side of icon
 .byte 3*8 ; y-offset in pixels for top of icon
 .word uiCreate ; pointer to the icon table for the [Create] icon

 .byte DBTXTSTR ;
 .byte ICOTXTXP ; place to the right of [Create] icon.
 .byte 3 * 8+10 ; y-offset: 10 below top of the [Create] icon
 .word tNewDoc ; pointer to text for "new document"

 .byte OPEN ; standard system OPEN icon
 .byte 2, 6*8 ; x-offset in cards
 ; y-offset, 3 Cards below [Create] icon

 .byte DBTXTSTR ;
 .byte ICOTXTXP ;
 .byte 6 * 8+10 ; y-offset: 10 below Top of [Open]
 .word tExisting ; pointer to "existing document"

 .byte DBUSRICON ;
 .byte 2 ; x-offset in cards
 .byte 9*8 ; y-offset in pixels
 .word uiQuit ; pointer to [Quit] icon

 .byte DBTXTSTR ;
 .byte ICOTXTXP ;
 .byte 9 * 8+10 ; y-offset for text after [Quit]
 .word tDesktop ; " to deskTop"
 .byte NULL ; end of table

dialog boxes

 B-7 B: Examples

uiDrive:

 .word iDrive,NULL
 .byte SYSDBI_WIDTH,SYSDBI_HEIGHT
 .word UADrive

 selectOptionTxt:
 ;--- The select option message with embedded BOLDON and PLAINTEXT bytes
 ;--- to turn boldface on and off
 .byte BOLDON, "Please Select Option:",PLAINTEXT,NULL

 tNewDoc:

 .byte "new document",NULL ; note each of these strings are null terminated

 tExisting:
 .byte "existing document",NULL

 tDesktop:
 .byte "to deskTop",NULL

 uiCreate: ; user icon definition table
 .word iCreate ; address of picture data for the [Create] icon
 .word NULL ; not used
 .byte 6 ; icon is 6 cards wide
 .byte 16 ; 16 pixels tall
 .word UACreate ; pointer to the service routine which creates the
 ; file, and returns to the application

 uiQuit: ; icon definition table
 .word iQuit ; address of picture data for the [Quit] icon
 .word NULL ; not used
 .byte SYSDBI_WIDTH ; icon is 6 Cards wide
 .byte SYSDBI_HEIGHT ; 16 pixels tall
 .word UAQuit ; pointer to the service routine which quits to the
 ; deskTop

;--- service routine for the [create] icon

 UACreate:
 lda #OK ; indicate icon number as if OK icon was activated.
clda UAQuit, #CANCEL ; return value for [quit]
 sta sysDBData ; store icon number before RstrFrmDialog call
 jmp RstrFrmDialog ; exit from DB

iCreate:

 iQuit:

openBoxDB

disk

 B-8 B: Examples

disk

CheckDiskSpace:

.if 0

Description: Ensures that the current disk has enough space for a minimum number of bytes. Does not take into

account any index blocks or other blocks needed to maintain the file structure. Works with GEOS

64, GEOS 128.

Parameters: r2 BYTES — number of bytes we need.

Returns: x = If not enough space, returns an

 INSUFF_SPACE error.

 x = 0 If there is enough space.

 z Flag follows value of x.

Destroys: a, y, r2, r3, r8, r9.

.endif
NO_ERROR = 0
BLOCK_SIZE = $100

;--- Number of bytes that can be stored in each block on the disk.
; accounts for two-byte track/sector link
BLOCK_BYTES = BLOCK_SIZE – 2

CheckDiskSpace:
 bweq r2,90$; exit if no BYTES to check
 LoadW r3,#BLOCK_BYTES ; r3 <- number of bytes per block
 ldx #r2 ; divide r2 by r3 to get number of
 ldy #r3 ; blocks to hold BYTES
 jsr Ddiv ; r2 <- r3/r2: remainder in r8
 bweq r8,10$; branch if no remainder bytes
 IncW r2 ; otherwise 1 more block needed
 ; r2 = BLOCKS needed to hold BYTES
10$; get number of free blocks on disk
 LoadW r5,#curDirHead ; point to directory header
 jsr CalcBlksFree ; r4 <- free blocks on disk
 CmpW r2,r4 ; are there enough free blocks?
 bgt 99$; if not, assume. correct, branch
90$
 ldx #NO_ERROR ; otherwise, no error
 rts
99$
 ldx #INSUFF_SPACE ; not enough space
 rts ; exit

disk

 B-9 B: Examples

DeleteDirEntry:

.if 0

Description: Remove a directory entry without actually freeing any blocks in the file.

Parameters: r0 FILENAME — pointer to FILENAME to delete.

Returns: x error ($00 = no error).

Destroys: a, y, r0, r9.

.endif

.ramsect
 rFileName:
 .block 17
 nullTrScTable:
 .block 256

;--- sample caller
CallDelDir:
 LoadW r0,#rFileName
 jsr DeleteDirEntry
 rts

;--- Pass r0 pointer to filename
DeleteDirEntry:
 LoadW r3,#nullTrScTable ; pass dummy table
 jmp FastDelFile ; will only delete the directory entry

;--- This will also work correctly with a VLIR file.

;--- For freeing (deleting) all the blocks in a file without removing the directory entry, refer to FreeFile.

disk

 B-10 B: Examples

GrabSomeBlocks:

 .if 0

Function: GrabSomeBlocks — allocate enough disk blocks to hold data in buffer.

Parameters: nothing.

Returns: Carry flag:

 1 = Error

 0 = success.

 x = Error Nbr if Carry is set,

or 0.

.endif
 K = 1024 ; one kilobyte

.ramsect
 buffer:
 .block 5*K -1 ; 5K buffer
 bufferE:
 .block 1 ; end of 5k Buffer

 BUF_SIZE = (bufferE – buffer)+1 ; size of buffer

.psect

 GrabSomeBlocks:
 LoadW r2,#BUF_SIZE ; number of bytes to allocate
 LoadW r6,#fileTrSecTab ; buffer to build out table
 jsr BlkAlloc ; allocate the blocks
 txa ; check status
 bne 99$; and exit on error
 ;--- more code here
 90$
 ldx #0
 clc ; success exit
 rts
 99$
 sec ; error exit
 rts

disk

 B-11 B: Examples

MyFreeBlock:

 .if 0

Function: MyFreeBlock — allocate specific block in BAM with any CBM device driver. And any GEOS

version.

Parameters: r6L track number.

 r6H sector number.

Note: FreeBlock was not added to the GEOS jump table until v1.3.

.endif
MyFreeBlock:
 lda version ; check GEOS version number
 cmp #$13 ; version Less than 1.3?
 bcc 10$;
 jmp FreeBlock ; if not, go through jump table

10$
 jsr FindBAMBit ; returns r8H = mask for BAM byte
 ; r7H = offset to track
 ; x = offset into bam
 ; a = masked value
 bne 99$; if 1, then not allocated, give error
 txa
 bne 99$
 lda r8H ; get mask
 eor curDirHead,x ; flip BAM bit to make available
 sta curDirHead,x ;
 ldx r7H ; one more free block
 inc curDirHead,x ;
 ldx #NO_ERROR ; ($00)
 rts

99$
 ldx #BAD_BAM
 rts

disk

 B-12 B: Examples

MyPutBlock:

 .if 0

Function: MyPutBlock — Write diskBlkBuf to disk.

Parameters: r1L track number.

 r1H sector number.

 r4 address of block to write.

 verify FALSE (0); do not verify

 != FALSE; verify after write

Note: If you have multiple blocks to write you should write the entire chain and then verify the chain.

See WriteBlock description for more information.

.endif
.ramsect
 nextTrack: .block 1
 nextSector: .block 1
 outbuffer: .block $FE
 track: .block 1
 sector: .block 1
 verify: .block 1
.psect

CallMyPutB:
 LoadW r4,#outBuffer-2
 MoveB track,#r1L
 MoveB sector,#r1H
 LoadB verify,#[TRUE
 jsr MyPutBlock
 bcs 99$
 rts ; return good status in carry
99$
 ... ; error handler or let caller handle error
 rts

MyPutBlock:
 jsr EnterTurbo ; go into turbo mode
 txa ; check for error in X
 bne 99$; branch if error found
 jsr InitForIO ; prepare for serial I/O
 jsr WriteBlock ; primitive write block
 txa ; set status flags
 bne 99$; branch if error found
 lda verify ; check verify flag
 beq 80$; branch if not verifying
 jsr VerWriteBlock ; verify block we wrote
 txa ; set status flags
 bne 99$; branch if error found
80$
 jsr DoneWithIO ; restore after I/O done
 clc
 rts ; no errors
99$
 jsr DoneWithIO ; restore after I/O done
 sec
 rts ; error status exit

disk

 B-13 B: Examples

MyReadBlock:

 .if 0

Function: MyReadBlock — Read sector from disk into diskBlkBuf.

Parameters: r1L track number.

 r1H sector number.

 r4 address of block to read into.

Description: Demonstrates use of very-low level disk primitives.

.endif
.ramsect
 nextTrack: .block 1
 nextSector: .block 1
 outbuffer: .block $FE
 inbuffer: .block $100
 track: .block 1
 sector: .block 1
 verify: .block 1

.psect

 CallMyPutB:
 LoadW r4,#inBuffer
 MoveB track,r1L
 MoveB sector,r1H
 jsr MyReadBlock
 bcs 99$
 rts ; return good status in carry
 99$
 ... ; error handler or let caller handle error
 rts

 MyReadBlock:
 jsr EnterTurbo ; go into turbo mode
 txa ; check for error in X
 bne 99$; branch if error found
 jsr InitForIO ; prepare for serial I/O
 jsr ReadBlock ; primitive read block
 jsr DoneWithIO ; restore after I/O done
 ; (x is preserved in DoneWithIO)
 txa ; get error result of ReadBlock
 bne 99$; branch if error found
 90$
 clc ; carry cleared when flowing through here
 99$
 sec ; carry set when branch to 99$ occurs
 rts

disk

 B-14 B: Examples

MySetGDirEntry:

 .if 0

Function: This routine duplicates the function of the Kernal's SetGDirEntry for demonstration purposes. It

shows examples of the following routines:

 BldGDirEntry

 GetFreeDirBlk

 PutBlock

Parameters: Same as SetGDirEntry.

Destroys: Same as SetGDirEntry.

.endif
DIRCOPYSIZE = 30 ; size of directory entry for copy
TDSIZE = 5 ; number of bytes in time/date entry

MySetGDirEntry:
 jsr BldGDirEntry ; build directory entry for GEOS file
 jsr GetFreeDirBlk ; get block with free directory entry
 ; block number of block in r1
 txa ; test for error code
 bne 99$; if error, exit...
 AddYWS diskBlkBuf,r5 ; add offset into diskBlkBuf for dir entry
 ; and put result in r5
 ldy #DIRCOPYSIZE ; copy over some bytes
10$
 lda dirEntryBuf,y ; get byte from directory entry built
 sta (r5),y ; store new entry into block buffer
 dey
 bpl 10$; loop till copied
 jsr TimeStampEntry ; stamp the dir entry with time & date
 LoadW r4,#diskBlkBuf ; write out the new directory entry
 jsr PutBlock
 txa ; get error status
 bne 99$; if error, exit
 clc
 rts ; success exit
99$
 sec
 rts ; error exit

TimeStampEntry:
 ldy #(OFF_YEAR+TDSIZE)-1 ; offset to time/date stamp
10$
 lda dirEntryBuf,y ; get the year/month/day/hour/minute
 sta (r5),y ; store in dir entry
 dey ;
 bpl 10$; loop until done
 rts

disk

 B-15 B: Examples

MySetNextFree:

.if 0

Purpose: Get next free block. If no block found retry from first of disk.

Parameters: r3L START_TR — start allocating from this track (byte).

 r3H START_SC — start allocating from this sector (byte).

Returns: x error ($00 = no error)

 INSUFF_SPACE

Destroys: a, y, r6-r7, r8H.

Description: Since SetNextFree in 1541 and 1571 drivers only searched from the current block to the end of

the disk, the possibility exists that a free block lies somewhere on a previous, still unchecked disk

area. The following alternative to SetNextFree will circumvent this problem.

.endif
MySetNextFree:
 ;--- Look for a free block starting at the current block
 ; so that we continue the interleave if possible
 jsr SetNextFree ; look for block to allocate
 cpx #INSUFF_SPACE ; check for no blocks
 beq 10$; start from beginning if none
90$ rts ; exit on any other error or
 ; valid block found

 ;--- We got an insufficient space error. Start the search
 ; again from the beginning of the disk.
.if VER>=2
10$ lda curType ; Current type is already saved for us
 and #%00111111 ; Mask off RAM and shadow drive flags.
 cmp DRV_1581
 bge 90$; 1581 and all drivers since, restart the search internaly
 ldx #1
 stx r3L ; always track 1
 dex ;
 stx r3H ; and sector 0
 jmp SetNextFree
.else
10$ LoadB r3H,#0 ; always sector 0
 ldx #1 ; assume track 1
 ldy curDrive ; but special case 1581
 lda driveType-8,y ; because of outer/inner track
 lda curType
 and #$0F ; searching scheme
 cmp DRV_1581
 bne 20$
 ldx #39 ; 1581 counts down on inner (39-1)
20$ stx r3L ; track number
 jmp SetNextFree
.endif

disk

 B-16 B: Examples

NewAllocateBlock:

 .if 0

Function: NewAllocateBlock — allocate specific block in BAM with any CBM GEOS device driver.

Parameters: r6L, r6H track, sector to allocate.

Uses: BAM in curDirHead.

Returns: x error status ($00 = success, BAD_BAM = block already in use, etc.).

Destroys: a, y, r7, r8H.

.endif
NewAllocateBlock:
 ldy curDrive ; get current drive
 lda driveType-8,y ; get drive type
 and #%00001111 ; keep only drive format
 cmp #DRV_1571 ; see if 1571 or above
 bcc 1541$; branch if 1541
 jmp AllocateBlock ; else, use driver routine
1541$
 jsr FindBAMBit ; get BAM bit info
 beq 99$; if zero, then it's not free
 lda r8H ; get bit mask for BAM
 eor #$FF ; convert to clearing mask
 and curDirHead,x ; and with BAM byte to clear
 ; bit and show as allocated
 sta curDirHead,x ; and store back.
 ldx r7H ; get base of track's entry
 dec curDirHead,x ; dec #free blocks this track
 ldx #NO_ERROR ; show no error
 rts ; exit
99$
 ldx #BAD_BAM ; show error — already in use
 rts ; exit

;--- Example Caller Routine:
.ramsect
 diskBlock: .block 2

.psect

CallNewAlloc:
 MoveW diskBlock,r6 ; block to allocate
 jsr NewAllocateBlock ; (see above)
 cpx #BAD_BAM ; BAD_BAM means block in use
 beq 95$; branch if block already in use
 txa ; check for other error
 bne 99$; branch if error
 ;--- code to handle newly allocated block goes here

95$; block was not free...
 ;--- code to handle block already allocated goes here

99$
 jmp MyDiskError ; call error handler with error in x

disk

 B-17 B: Examples

ReadAndDelete:

.if 0

Function: Read sequential file into memory and then delete it from disk.

Parameters: r6 pointer to filename

r2 size of buffer (max size of file)

Returns: x error code.

Destroys: a, y, r0-r9.

Description: Call FindFile to get the directory entry of the file to load/delete. We pass the directory entry to

GetFHdrInfo to get the GEOS header block. We check the header to ensure we're not trying to

read in a VLIR file. After GetFHdrInfo, the parameters are already set up correctly to call

ReadFile (fileTrScTab+0,fileTrScTab+1 contains header block and r1 contains first data block).

ReadFile reads in the file's blocks, building out the remainder of the fileTrScTab, which we pass

to FastDelFile to free all blocks in the file (including the file header block, which is the first entry

in the table).

.endif
 ReadAndDelete:
 MoveW r6,r0 ; save pointer for FastDelFile
 jsr FindFile ; find file on disk
 txa ; set status flags
 bne 99$; branch on error
 LoadW r9,#dirEntryBuf ; get directory entry
 jsr GetFHdrInfo ; get GEOS file header
 txa ; set status flags
 bne 99$; branch on error
 ;--- check filetype and branch if VLIR
 CmpBI fileHeader+OFF_GSTRUCT_TYPE,#VLIR
 beq 98$
 jsr ReadFile ; read in file
 txa ; else set status flags
 bne 99$; branch on other error
 20$
 LoadW r3,#fileTrScTab ; track/sector table
 jsr FastDelFile ; file read OK, delete it!
 bne 99$
 clc ; carry clear and z=0
 rts ; good exit
cldxI 98$, #STRUCT_MISMATCH ; can't load VLIR
 99$
 sec ; carry set
 rts ; error exit with error in x

disk

 B-18 B: Examples

SaveRecord:

.if 0

Function: Append new record into an existing VLIR.

Parameters: appendPoint already set to the last VLIR record.

Filename buffer populated with VLIR’s filename.

Note: geoProgrammer does not support the * counter in .ramsect. The method below must be used

when the assembler needs to calculate the size of a ramsect field.

.endif
NAME_LENGTH=17

.ramsect
 appendPoint: .block 1 ; record to append to
 filename: .block NAME_LENGTH ; hold null-terminated filename
 bufStart: .block 1023 ; data buffer
 bufEnd: .block 1 ; length of buffer
 BUFLENGTH = (BufEnd - BufStart)+1

.psect

SaveRecord:
 LoadW r0,#filename ; pointer to filename
 jsr OpenRecordFile ; open VLIR file
 txa ; check open status
 bne ; exit on error
 lda appendPoint ; get record to append to
 jsr PointRecord ; go to that record
 txa ; check point status
 bne 99$; exit on error
 jsr AppendRecord ; append a record at this point
 LoadW r7,#bufStart ; point at data buffer
 LoadW r2,#BUFLENGTH ; bytes in buffer (bufEnd-bufStart)
 jsr WriteRecord ; write buffer to record
 txa ; get write status
 bne 99$; exit on error
 jsr CloseRecordFile ; close VLIR file
 txa ; check point status
 bne 99$; exit on error
90$; clean exit
 clc ; clear carry for all ok
 rts
99$; error handler
 sec ; set carry to show returning with an error
 rts

drivers / Joystick

 B-19 B: Examples

drivers

Joystick

.if 0

Function: Sample Joystick Driver from OGPRG

Files: app.lnk Linker file

 app.hdr.s Header file

 app.driver.s Driver source

 app.Inc Master Include. sends all symbols to debugger

 app.con Application constants

 app.sym Application symbols

 app.mac Application macros

Callable Routines:

 o_InitMouse

 o_SlowMouse

 o_UpdateMouse

 .endif

drivers / Joystick

 B-20 B: Examples

app.lnk

;Function: Linker file for Joystick Driver.

;

;Filename: app.lnk

;

;Uses: app.hdr.rel

; app.driver.rel

;

;Callable Routines:

; o_InitMouse

; o_SlowMouse

; o_UpdateMouse

.output JOYSTICK

.header app.hdr.rel

.seq

.psect mouse_Base
app.driver.rel

drivers / Joystick

 B-21 B: Examples

app.hdr.s

 .if 0

Function: Define File Header Block.

Filename: app.hdr.s Header File

Uses: app.con

Callable Routines:

 None.

.endif
.if Pass1
 .noeqin

.include app.con

.eqin
.endif

.header ; start of header section
 .word 0 ; first two bytes are always zero
 .byte 3 ; width in bytes
 .byte 21 ; and height in scanlines of:

.byte $80|USR ; Commodore file type assigned to GEOS files
.byte INPUT_DEVICE ; GEOS file type
.byte SEQUENTIAL ; SEQ file structure
.word MOUSE_BASE ; start address for saving file data
.word endJoystick ; end address for saving file data (-1)
.word NULL ; not actually used (execution start address)

;--- 20 byte permanent name
.byte "Input Drvr V1.1",0,0,0,0

 ;--- 20 bytes for author name
 .byte "Dave & Mike & PBM",NULL,0,0

.endh

drivers / Joystick

 B-22 B: Examples

app.driver.s

.if 0

Function: Main Source file for Joystick Driver.

Filename app.driver.s

Uses: app.inc

Callable Routines:

 o_InitMouse

 o_SlowMouse

 o_UpdateMouse

Hardware: Joystick is read from cia1prb (Joystick Port 1 DC01). The bit values returned from this port are

naturally set to 1. With the joystick at rest, the low 5 bits will always be %11111.

 Only the b4-b0 are for the joystick with the following assignments.

 b4 0 = Fire Button Pressed

 Joystick Disk Directions

 b3 0 = right

 b2 0 = left

 b1 0 = Down

 b0 0 = Up

 This port is shared with the keyboard. The keyboard has to be masked off prior to reading the

joystick values. To do this write %11111111 to cia1pra (DC00) to select no keyboard rows to

scan. Then any value read from cia1prb (DC01) will be from the joystick. This input from the

Joystick is converted into the following output and saved into inputData.

 inputData: 0-7 for moving, -1 for centered

 joystick directions:

 0 = right

 1 = up & right

 2 = up

 3 = up & left

 4 = left

 5 = left & down

 6 = down

 7 = down & right

 -1 = joystick centered

 inputData+1: current mouseSpeed

.endif
.include app.inc

drivers / Joystick

 B-23 B: Examples

Jump Table

.if 0

Jump Table to Mouse Driver Routines

.endif
;--- Input driver jump table

jmp o_InitMouse
jmp o_SlowMouse
jmp o_UpdateMouse

;--- Local variables:

fracXMouse: ; fractional mouse position
 .byte 0

fracYMouse: ; fractional mouse position
 .byte 0

fracSpeedMouse: ; fractional part of current mouse speed
 .byte 0

velXMouse: ; x component of current Speed
 .byte 0

velYMouse: ; y component of current Speed
 .byte 0

curMouse: ; current value of fire button
 .byte 0

currentDisk: ; current value of joystick
 .byte 0

lastKeyRead: ; for debouncing joystick
 .byte 0

drivers / Joystick

 B-24 B: Examples

o_InitMouse:

.if 0

Function: External routine: This routine initializes the 'mouse'.

Called By: At initialization EXTERNALLY.

Parameters: nothing.

Alters: mouseXPos starting position for the mouse.

 mouseYPos

Returns: none.

Uses: none.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
o_InitMouse:
 jsr o_SlowMouse ; do LoadB mouseSpeed,#0
 sta fracSpeedMouse
 sta mouseXPos
 sta mouseXPos+1
 sta mouseYPos
 LoadB diskData,#[-1 ; pass release
 jmp ComputeMouseVels ; store the correct speeds

drivers / Joystick

 B-25 B: Examples

o_SlowMouse:

.if 0

Function: External routine: Called when menus are pulled down to slow the mouse.

Called By: External and Internal.

Parameters: none.

Returns: nothing.

Alters: nothing.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
o_SlowMouse:

LoadB mouseSpeed,#0 ; zero speed
SM_rts:
 rts

drivers / Joystick

 B-26 B: Examples

o_UpdateMouse:

.if 0

Function: External routine: This routine is called every interrupt to update the position of the pointer on the

screen. First, the joystick is read and the mouse velocities are updated. The

mouse position is then updated.

Called By: Interrupt code.

Parameters: mouseXPos current position for the mouse.

 mouseYPos

Returns: mouseXPos current position for the mouse.

 mouseYPos

Alters:

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So have to declare everything destroyed.

.endif
o_UpdateMouse:

jsr C64Joystick ; scan keyboard and update velocities
bbrf MOUSEON_BIT,mouseOn,SM_rts ; if mouse off then don't update
jsr UpdMouseVels ; update mouse Speed & Velocities
jsr UpdXMouse ; update x-position of mouse

 ;--- fall through to UpdYMouse

drivers / Joystick

 B-27 B: Examples

UpdYMouse:

.if 0

Function: Internal routine: Update the y-position of the mouse by adding in the velocity.

Called By: o_UpdateMouse.

Parameters: mouseYPos current position for the mouse.

Returns: mouseYPos updated.

Alters: none.

Destroys: a, y, r1H.

.endif
UpdYMouse:

ldy #0 ; assume positive velocity
lda velYMouse ; get velocity
bpl 10$
dey ; if negative then sign extend with -1

10$
sty r1H ; store high-byte
asl a ; shift left thrice
rol r1H ; add fractional position
asl a
rol r1H
asl a
rol r1H
add fracYMouse ; add fractional position
sta fracYMouse ; store new fractional position
lda r1H ; get high-byte of velocity
adc mouseYPos ; add position
sta mouseYPos
rts

drivers / Joystick

 B-28 B: Examples

UpdMouseVels:

.if 0

Function: Internal routine: Update the velocity of the mouse by adding in the acceleration.

Called By: o_UpdateMouse.

Parameters: none.

Uses: mouseSpeed current mouse speed.

 velXmouse current velocity.

 velYmouse

Alters: mouseSpeed updated.

 velXMouse

 velYMouse

Destroys: a, x y, r0-r2.

.endif
UpdMouseVels:
 ldx diskData ; get direction
 bmi 20$; if release then branch
 CmpB maxMouseSpeed,mouseSpeed ; check for maximum speed
 blt 15$; if max then do nothing
 AddB mouseAccel,fracSpeedMouse ; add acceleration to speed
 bcc 30$
 inc mouseSpeed ; increment mouse speed if necessary
 bra 30$
15$
 sta mouseSpeed
20$
 ; get Minimum speed and compare to current speed
 CmpB minMouseSpeed,mouseSpeed ; don't make less than minimum
 bge 25$; if minimum > Current then branch
 SubB mouseAccel,fracSpeedMouse ; subtract acceleration from speed
 bcs 30$
 dec mouseSpeed
 bra 30$; decrement mouse speed if necessary
25$

sta mouseSpeed
30$;--- fall through to ComputeMouseVels
 ;jmp ComputeMouseVels ; finally, based on direction and

; speed, calculate new mouse X & Y velocities

drivers / Joystick

 B-29 B: Examples

ComputeMouseVels:

.if 0

Function: Internal routine: Compute mouse velocity based on joystick direction.

Called By: Internal Only.

Uses: diskData – joystick direction.

mouseSpeed – current mouse speed.

Alters: velXMouse, velYMouse - set depending of passed direction.

Destroys: a, x, y, r0–r2.

.endif
ComputeMouseVels:

ldx diskData
bmi 10$; if release then handle
MoveB mouseSpeed,r0L ; pass magnitude
jsr SineCosine
MoveB r1H,velXMouse
MoveB r2H,velYMouse
rts

10$; released
LoadB velXMouse,#0 ; zero x-velocity
sta velYMouse ; zero y-velocity
rts

drivers / Joystick

 B-30 B: Examples

UpdXMouse:

.if 0

Function: Internal routine: Update the x-position of the mouse by adding in the velocity.

Called By: o_UpdateMouse.

Uses: mouseXPos - current position for the mouse.

Alters: mouseXPos - updated.

Destroys a, x, y, r11– r12L.

.endif
UpdXMouse:
 ldy #$FF ; assume negative
 lda velXMouse
 bmi 10$; if indeed negative then branch
 iny ; else sign extend with zero
10$
 sty r11H
 sty r12L
 asl a ; multiply by 8 for permanent speed power of 3
 rol r11H
 asl a
 rol r11H
 asl a
 rol r11H
 ; add velocity to fractional position
 add fracXMouse ; add fractional position
 sta fracXMouse ; store new fractional position
 lda r11H ; get high-byte of velocity
 adc mouseXPos ; add low-byte of position
 sta mouseXPos ; and store
 lda r12L ; this is actually triple precision math
 adc mouseXPos+1 ; add the high-byte of integer x-position
 sta mouseXPos+1 ; r11 now has newly calculated x-position
 rts

drivers / Joystick

 B-31 B: Examples

C64Joystick:

.if 0

Function: Internal routine: Read the joystick and update the appropriate mouse related variables.

Called By: o_UpdateMouse.

Uses: none

Alters: lastKeyRead - set to new joystick read.

currentDisk - set to new joystick direction (only if new).

pressFlag - MOUSE_BIT set if fire button pressed.

 - INPUT_BIT set if joystick direction changed.

diskData - new disk direction, if changed.

mouseData - new state of fire button, if changed.

Destroys a, x, y.

.endif
C64Joystick:

LoadB cia1pra,#%11111111 ; scan no rows, so we're sure of stick
lda cia1prb ; get port data for joystick A (port 1)
eor #$FF ; complement data for positive logic
cmp lastKeyRead ; software debounce, must be same twice
sta lastKeyRead ; store value for debounce
bne 20$; if not same, don't pass return value

and #%1111 ; isolate stick bits
cmp currentDisk ; compare to current stick value
beq 10$; if no change then branch
sta currentDisk ; set to new stick value
tay ; put value in y
lda directionTable,y ; get the value to pass from table
sta diskData
smbf INPUT_BIT,pressFlag ; mark that input device has changed
jsr ComputeMouseVels

10$
lda lastKeyRead ; get press
and #%10000 ; isolate the fire button
cmp curMouse ; and compare it to the current value
beq 20$; if no change then branch
sta curMouse ; else, set new button value
asl a ; shift into bit 7
asl a
asl a
eor #%10000000 ; complement to position logic
sta mouseData
smbf MOUSE_BIT,pressFlag ; set changed bit

20$
 rts

C64Joystick drivers / Joystick

 B-32 B: Examples

directionTable:
 .byte [-1 ; pass a -1 if no direction pressed
 .byte 2 ; see hardware description at start
 .byte 6 ; of this module to understand the
 .byte DISK_INVALID ; direction conversions here
 .byte 4 ; note that DISK_INVALID ($FF) are nonvalid states
 .byte 3 ; actually they should be impossible
 .byte 5 ; unless the controller is broken
 .byte DISK_INVALID
 .byte 0
 .byte 1
 .byte 7
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID

cosineTable:

.byte 255 ; dir 0 0 degree angle
 .byte 181 ; dir 2 45 degree angle

; Note: the cosineTable overlaps the sineTable
sineTable:
 .byte 0 ; dir 0 0 degree angle
 .byte 181 ; dir 2 45 degree angle
 .byte 255 ; dir 4 90 degree angle
 .byte 181 ; dir 6 135 degree angle
 .byte 0 ; dir 8 180 degree angle
 .byte 181 ; dir 10 -135 degree angle
 .byte 255 ; dir 12 -90 degree angle
 .byte 181 ; dir 14 -45 degree angle

sineCosineTable:
 .byte POSITIVE | (POSITIVE >> 1) ; dir 0 0 degree angle
 .byte POSITIVE | (NEGATIVE >> 1) ; dir 2 45 degree angle
 .byte POSITIVE | (NEGATIVE >> 1) ; dir 4 90 degree angle
 .byte NEGATIVE | (NEGATIVE >> 1) ; dir 6 135 degree angle
 .byte NEGATIVE | (POSITIVE >> 1) ; dir 8 180 degree angle
 .byte NEGATIVE | (POSITIVE >> 1) ; dir 10 -135 degree angle
 .byte POSITIVE | (POSITIVE >> 1) ; dir 12 -90 degree angle
 .byte POSITIVE | (POSITIVE >> 1) ; dir 14 -45 degree angle

drivers / Joystick

 B-33 B: Examples

SineCosine:

.if 0

Function: Internal routine: SineCosine does a sixteen-direction sine and cosine and multiplies this value

by a magnitude.

Called By: ComputMouseVels.

Parameters: x, diskData direction (0 to 15).

 r0L magnitude of speed.

Returns: r1L x-velocity.

 r2H y-velocity.

Destroys a, x, y, r0, r6-r8.

.endif
SineCosine:
 lda cosineTable,x ; save cosine value
 sta r1L
 lda sineTable,x ; save sine value
 sta r2L
 lda sineCosineTable,x ; get signs
 pha
 ldx #r1L ; compute x-velocity
 ldy #r0L ; (Could do MultBB manually to avoid call to BBMult)
 jsr BBMult
 ldx #r2L ; compute y-velocity
 ;ldy #r0L ; y already points to r0L
 jsr BBMult
 pla
 pha
 bpl 10$; if x-positive then branch
 NegateW r1
10$
 pla
 and #%1000000
 beq 20$; if y-positive then branch
 NegateW r2
20$
 rts
endJoystick:

drivers / Joystick

 B-34 B: Examples

app.con

 .if 0

Function: Application constants

Filename: app.con

Uses: geo.con

Callable Routines:

 none.

.endif
.include geo.con ; standard GEOS constants

;--- All constants only used by this application go here.

POSITIVE = 0
NEGATIVE = %10000000

;--- marks a joystick position that is impossible, short of a hardware fault
DISK_INVALID = $FF

drivers / Joystick

 B-35 B: Examples

app.sym

 .if 0

Function: Application symbols

Filename app.sym

Uses: geo.sym standard GEOS symbols (jump table and variables)
 geo.cia.sym Includes full detailed symbols for the CIA chip

Callable Routines:

 none.

.endif
.include geo.sym
.include geo.cia.sym

;--- All zero page / .zsect declarations created for the application go here.

;--- All symbols created for the application go here.

;--- Global variables:

;--- We Normally don't want to send any constants to the linker.
;--- If we need a constant to go to linker for use in the .lnk file or other linker resolutions,
;--- then need to redefine it here.

mouse_Base = MOUSE_BASE

diskData = inputData ; current disk direction
mouseSpeed = inputData+ 1 ; current mouse speed

drivers / Joystick

 B-36 B: Examples

app.mac

 .if 0

Function: Application Macros

Filename app.mac

Uses: geo.mac

Callable Routines:

 None.

.endif
.include geo.mac ; standard GEOS macros

;--- All macros created for the application go here.

.macro NegateW zaddr
 ldx #[zaddr
 jsr Dnegate
.endm

drivers / Joystick

 B-37 B: Examples

app.Inc

 .if 0

Function: Application include.

Filename app.Inc

Uses: app.con Application constants.

 app.mac Application macros.

 app.sym Application symbols.

Callable Routines:

 None.

Note: This can only be used one time as an include per application. Use app.inc for secondary source files.

.endif

.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include app.con
 .include app.mac
 .glbl
 .eqin
 .include app.sym ; all symbols will go to linker/debugger
.endif

.psect

drivers / 128 COMM 1351(a)

 B-38 B: Examples

128 COMM 1351(a)

.if 0

Function: Sample mouse driver.

Files: app.lnk Link file

 app.hdr Header file

 app.driver.s Driver source

 app.Inc Master Include. Sends all symbols to debugger

 app.con Application constants

 app.sym Application symbols

 app.mac Special macro(s) used for this driver.

Description: This driver source was generated from reverse engineering the 128 COMM 1351(a) driver.

 The source generates an exact copy.

Callable Routines:

 o_InitMouse

 o_SlowMouse

 o_UpdateMouse

 o_SetMouse

 .endif

drivers / 128 COMM 1351(a)

 B-39 B: Examples

app.lnk

Function: Linker file for 1351 Mouse Driver

Filename: app.lnk

Uses: app.hdr.rel

 app.driver.rel

Callable Routines:

 o_InitMouse

 o_SlowMouse

 o_UpdateMouse

 o_SetMouse

.output 128Comm1351(a)
.header app.hdr.rel
.seq

.psect $FD00

app.driver.rel

drivers / 128 COMM 1351(a)

 B-40 B: Examples

app.hdr.s

 .if 0

Function: Define File Header Block

Filename: app.hdr.s Header File

Uses: app.con

Callable Routines:

 None.

.endif
.if Pass1
 .noeqin
 .include app.con
 .eqin
.endif

.header ; start of header section
JoyHdr:
 .word 0 ; first two bytes are always zero
 .byte 3 ; width in bytes
 .byte 21 ; and height in scanlines of:

.byte $80 | USR ; Commodore file type assigned to GEOS files
;.byte INPUT_DEVICE ; GEOS file type
.byte INPUT_128 ; GEOS file type
.byte SEQUENTIAL ; SEQ file structure
;.word MOUSE_BASE ; start address for saving file data
.word MSE128_BASE ; start address for saving file data
.word endJoystick ; end address for driver
.word NULL ; not used (execution start address)
;--- 20 byte permanent name
.byte "128 Comm 1351(a)",0,0,0,0

 ;--- 20 bytes for author name
 .byte "Dave & Mike & PBM",NULL,0,0

.endh

drivers / 128 COMM 1351(a)

 B-41 B: Examples

app.driver.s

.include app.Inc

.if 0

Function: Main Source file for 1351(a) Mouse Driver.

Filename: app.driver.s

Uses: app.Inc

Callable Routines:

 o_InitMouse

 o_SlowMouse

 o_UpdateMouse

 o_SetMouse

Hardware: Mouse button is read from cia1prb (Joystick Port 1 DC01).

 The bit values returned from this port are naturally set to 1. With the left mouse button pressed, b4

will be 0. The right mouse button uses b0, the same bit as the Joystick Up direction.

 Only b0 and b4 is for the mouse with the following assignments.

 b0 0 = right mouse button pressed

 b4 0 = left button pressed

 This port is shared with the keyboard. The keyboard has to be masked off prior to reading the

mouse values. To do this write %11111111 to cia1pra (DC01) to select no keyboard rows to scan.

Then any value read from cia1prb (DC01) will be from the mouse.

 The mouse position is read from potX (D419) and potY (D41A). (Note: Only bits 1-6 are valid

and bits 0 and 7 must be masked out). By comparing the values of these ports to the last saved

values, a direction and distance can be computed. Acceleration is handled by expanding the

distance moved on a sliding scale. Small movements are 1:1 distance. Large movements are up to

3x times the distance. The distance moved in the x and y are used to update the mouse position.

 The calculated mouse direction is converted into Joystick directions and saved into inputData.

 inputData: 0-7 for moving, -1 for centered

 joystick directions:

 0 = right

 1 = up & right

 2 = up

 3 = up & left

 4 = left

 5 = left & down

 6 = down

 7 = down & right

 -1 = joystick centered

.endif

drivers / 128 COMM 1351(a)

 B-42 B: Examples

Jump Table

 .if 0

Jump Table to Mouse Driver Routines

.endif
 ;--- input driver jump table

 jmp o_InitMouse
 jmp o_SlowMouse
 jmp o_UpdateMouse
 jmp o_SetMouse

 ;--- local variables:

lastButton: .byte 0 ; current value of mouse button
lastpotX: .byte 0
lastpotY: .byte 0
lastSpeed: .byte 0

dblClkFlg: .byte 0

drivers / 128 COMM 1351(a)

 B-43 B: Examples

o_InitMouse:

.if 0

Function: External routine: This routine initializes the 'mouse'.

Called By: At initialization EXTERNALLY.

Parameters: nothing.

Alters: mouseXPos starting position for the mouse.

 mouseYPos

Returns: none.

Uses: none.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
 o_InitMouse:
 LoadW mouseXPos,#8 ; set initial mouse position
 sta mouseYPos
 ;--- fall through into o_SlowMouse

drivers / 128 COMM 1351(a)

 B-44 B: Examples

o_SlowMouse:

.if 0

Function: External routine: Called when menus are pulled down to slow the mouse.

Called By: External and Internal.

Parameters: none.

Returns: nothing.

Alters: nothing.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
 o_SlowMouse:
 rts

drivers / 128 COMM 1351(a)

 B-45 B: Examples

o_UpdateMouse:

.if 0

Function: External routine: This routine is called every interrupt to update the position of the pointer on the

screen. First, the mouse is read and the mouse velocities are updated. The mouse

position is then updated.

Called By: Interrupt code.

Parameters: nothing.

Uses: mouseOn.

Alters: mouseXPos current position for the mouse.

 mouseYPos

 pressFlag Set MOUSE_BIT to show input Device changed.

Returns: nothing.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
 o_UpdateMouse:
 bit mouseOn
 bpl o_SlowMouse ; if mouse off then don't update
 PushB cia1ddra ; save data direction reg a
 PushB cia1ddrb ; save data direction reg b
 PushB cia1pra ; save peripheral data reg a
 LoadB cia1ddra,#0 ; set data direction registers to read
 sta cia1ddrb
 lda cia1prb ; peripheral data reg b
 and #$10
 cmp lastButton
 beq 10$
 sta lastButton
 asl a
 asl a
 asl a
 sta mouseData
 smbf MOUSE_BIT, pressFlag ; set new mouse button data
 10$
 ldx lastSpeed
 dex
 bpl 20$
 ldx #3
 20$
 stx lastSpeed
 sec
 lda maxMouseSpeed
 sbc speedTable,X
 bmi 90$
 ldx #0
 stx r1
 lda potX

o_UpdateMouse drivers / 128 COMM 1351(a)

 B-46 B: Examples

 ldy lastpotX
 jsr AccelDist
 sta r2
 stx r2H
 sty lastpotX
 cmp #0
 beq 40$
 and #$80
 bne 30$
 lda #$40
 30$
 ora r1
 sta r1
 40$
 bit graphMode ; if 80-column mode then
 bpl 50$
 asl r2 ; double move distance
 rol r2H
 50$
 jsr GetDistance
 add mouseXPos
 sta mouseXPos
 txa
 adc mouseXPos+1
 sta mouseXPos+1
 lda potY
 ldy lastpotY
 jsr AccelDist ; calculate Y distance moved
 sta r2 ; save distance
 stx r2H
 sty lastpotY ; save potY to last potY
 cmp #$00
 beq 70$
 and #$80
 lsr a
 lsr a
 lsr a
 bne 60$
 lda #$20
 60$
 ora r1
 sta r1
 70$
 jsr GetDistance
 sec
 eor #$FF ; reverse Y direction and add to mouse position
 adc mouseYPos
 sta mouseYPos
 txa
 eor #$FF
 adc #0
 cmp #$FF
 bne 80$
 LoadB mouseYPos,#0
 80$
 lda r1
 lsr a
 lsr a
 lsr a

o_UpdateMouse drivers / 128 COMM 1351(a)

 B-47 B: Examples

 lsr a
 tax
 lda dirTable,X
 sta inputData
 90$
 PopB cia1pra
 PopB cia1ddrb
 PopB cia1ddra
 rts

;--- note that DISK_INVALID ($FF) are nonvalid states, actually they should be impossible
;--- unless the controller is broken

 dirTable:
 .byte [-1 ; pass a -1 if no direction
 .byte 6 ; see hardware description at start
 .byte 2 ; of this module to understand the
 .byte DISK_INVALID ; direction conversions here
 .byte 0
 .byte 7
 .byte 1
 .byte DISK_INVALID
 .byte 4
 .byte 5
 .byte 3
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID
 .byte DISK_INVALID

 speedTable:
 .byte $3F,$1F,$00,$00

drivers / 128 COMM 1351(a)

 B-48 B: Examples

o_SetMouse:

.if 0

Function: External routine: reset the pot (potentiometer) scanning lines so that they will recharge with the

new value.

Called By: Interrupt code.

Parameters: nothing.

Uses: mouseOn.

Alters: mouseXPos - Current position for the mouse

 mouseYPos

Returns: nothing.

Destroys: a, x, y, r0 - r15. Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
 o_SetMouse:
 LoadB cia1ddra,#%11111111
 LoadB cia1pra,#%01000000
 rts

drivers / 128 COMM 1351(a)

 B-49 B: Examples

AccelDist:

.if 0

Function: Internal routine: Calculate the distance moved using last pot, current pot and acceleration table.

Called By: o_UpdateMouse.

Parameters: y LASTPOT — lastpot.

 a POT — pot.

Returns: y pot to save.

 r2 move distance.

 a low-byte of move distance.

 x high-byte of move distance.

Destroys: r0.

.endif
 AccelDist:
 sty r0
 sta r0H
 ldx #0
 sub r0 ; calculate raw distance moved
 and #%01111111 ; strip off sign bit
 cmp #64
 bcs 10$; if distance is < 64 then
 lsr a ; distance = distance >> 1
 beq 90$; if distance = 0 then no move. exit
 tay ;
 lda accelTbl -1,Y ; get accel Distance
 ldy r0H ; put current pot in Y to be saved to lastpot
 rts ; exit
 10$; end if
 ora #%11000000 ;
 cmp #$FF
 beq 90$; if distance = -1 then exit.
 sec ;
 ror a ;
 eor #$FF ; distance = ~(distance / 2 | %10000000)
 tay ; distance now has a max value of 31. %xxx00000
 lda accelTbl,Y ;
 eor #$FF
 add #1
 ldx #$FF
 ldy r0H
 rts
 90$
 lda #0
 rts

 .byte $01,$01,$01
 accelTbl:
 .byte $01,$01,$02,$02,$03,$04,$06,$08,$09,$0B,$0D,$0F,$11,$13,$15,$19
 .byte $1D,$20,$23,$26,$29,$2C,$2F,$32,$35,$38,$3C,$41,$4B,$50,$5A,$64

drivers / 128 COMM 1351(a)

 B-50 B: Examples

GetDistance:

.if 0

Function: Internal routine: Return mouse movement distance saved in r2.

Called By: o_UpdateMouse.

Parameters: none.

Returns: x high-byte of movement distance.

 a low-byte of movement distance.

Alters: none.

Destroys: none.

.endif

 GetDistance:
 ldx r2H
 lda r2L
 rts

endJoystick: ; ending Label used in .hdr file

;--- The following was in the disassembly of the mouse driver, commented out now
;--- since it was never used.

;T_posAdj:
; .byte $01,$01,$01,$00 ; unused position adjustment table

drivers / 128 COMM 1351(a)

 B-51 B: Examples

app.con

.if 0

Function: Application constants

Filename: app.con

Uses: geo.con

Callable Routines:

 None.

 .endif
.include geo.con ; standard GEOS constants
.include ge8.con ; 128 GEOS constants

;--- All constants only used by this application go here.

POSITIVE = 0
NEGATIVE = %10000000
cia1pra = cia1base
cia1prb = $DC01

;--- Marks a joystick position that is impossible, short of a hardware fault.
DISK_INVALID = $FF

drivers / 128 COMM 1351(a)

 B-52 B: Examples

app.sym

.if 0

Function: Application symbols

Filename app.sym

Uses: geo.sym standard GEOS symbols (jump table and variables)

 geo.cia.sym Includes full detailed symbols for the CIA chip

 ge8.sym 128 GEOS symbols

Callable Routines:

 none.

.endif
.include geo.sym
.include geo.cia.sym
.include ge8.sym

;--- All zero page declarations created for the application go here.

;--- All symbols created for the application go here.

;--- Global variables:

;--- We normally don't send any constants to the linker.
;--- If we need one to go to linker for use in the .lnk file or other linker resolutions
;--- then need to redefine here.
mouse_Base = MSE128_BASE

diskData = inputData ; current disk direction
mouseSpeed = inputData+ 1 ; current mouse speed

;potX == $D419 ; bits 1-6 = current x-position

;potY == $D41A ; bits 1-6 = current y-position

drivers / 128 COMM 1351(a)

 B-53 B: Examples

app.mac

.if 0

Function: Application macros

Filename app.mac

Uses: geo.mac standard GEOS macros

Callable Routines:

 none.

.endif
.include geo.mac

;--- All macros created for the application go here.

.macro NegateW zaddr
 ldx #[zaddr
 jsr Dnegate
.endm

drivers / 128 COMM 1351(a)

 B-54 B: Examples

app.Inc

.if 0

Function: Application include

Filename app.Inc

Uses: app.con Application constants

 app.mac Application macros

 app.sym Application symbols

Callable Routines:

 none.

Note: This can only be used one time as an include per application. Use app.inc for secondary source files.

.endif
.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include app.con
 .include app.mac
 .glbl
 .eqin
 .include app.sym ; all symbols will go to linker/debugger
.endif

.psect

drivers / 64_128 COMM 1351(a)

 B-55 B: Examples

64_128 COMM 1351(a)

.if 0

Function: Sample Mouse Driver.

Files: ReadMe Build instructions

 1351.64.lnk Link file

 1351.128.lnk Link file

 1351.hdr.s Header file

 1351.driver.s Driver source

 1351.Inc Master Include. Sends all symbols to debugger

 1351.cfg Configuration file.

 1351.con Application constants

 1351.sym Application symbols

 1351.mac Special macro(s) used for this driver

Description: This driver source was created from the 128 COMM 1351(a) as a base. It was then optimized

and updated. This version has the following new features:

1. Generates either a 128 or 64 driver.

2. Right mouse button generates a double click action.

3. Variable acceleration at build time. This could evolve into a driver that has its sensitivity

 change on the fly with a supporting application.

Callable Routines:

 InitMouse

 SlowMouse

 UpdateMouse

 SetMouse (128 Version)

 .endif

drivers / 64_128 COMM 1351(a)

 B-56 B: Examples

ReadMe

Example 1351 Mouse Driver

This driver is configurable to generate a mouse driver for 64 GEOS 1.2+ or 128 GEOS 1.4+.

The driver configuration options are located in 1351.cfg.

Options:

C128 TRUE = driver is generated for a 128 GEOS.

 FALSE = 64 GEOS

DRAG Valid values 0 to 2.

 0 = Default acceleration matching that of the original 1351(a) driver.

 1..2 = Increasingly less acceleration.

 Note: Values outside of the listed range will cause the mouse to be useless.

 The DRAG value is displayed in the info section of the driver so you will know what

 value was used when the driver was built.

 Recommended value is 1.

drivers / 64_128 COMM 1351(a)

 B-57 B: Examples

1351.cfg

;--- Configuration Options

C128 = TRUE ; FALSE = Build 64 Driver

; TRUE = Build 128

.if C128
 .include ge8.con
 INPTYPE = INPUT_128
 MAXDRVSIZE = (END_MSE128-MSE128_BASE)
.else
 INPTYPE = INPUT_DEVICE
 MAXDRVSIZE = (END_MOUSE-MOUSE_BASE) + 60
.endif

DRAG = 0 ; 0-2 0=Normal. 1-2 increasingly less acceleration

drivers / 64_128 COMM 1351(a)

 B-58 B: Examples

1351.64.lnk

Function: Linker file for C64 1351 Mouse Driver.

Filename: 1351.lnk

Uses: 1351.hdr.rel

 1351.driver.rel

Callable Routines:

 InitMouse

 SlowMouse

 UpdateMouse

.output 64_1351(a)
.header 1351.hdr.rel
.seq

.psect BASEMOUSE ;$FE80
1351.driver.rel

drivers / 64_128 COMM 1351(a)

 B-59 B: Examples

1351.128.lnk

Function: Linker file for C128 1351 Mouse Driver.

Filename: 1351.lnk

Uses: 1351.hdr.rel

 1351.driver.rel

Callable Routines:

 InitMouse

 SlowMouse

 UpdateMouse

 SetMouse

.output 128Comm1351a
.header 1351.hdr.rel
.seq

.psect BASEMOUSE ;$FD00
1351.driver.rel

drivers / 64_128 COMM 1351(a)

 B-60 B: Examples

1351.hdr

.if 0

Function: Define File Header Block

Filename: 1351.hdr Header File

Uses: 1351.con

Callable Routines:

 none.

 .endif

.if Pass1
 .noeqin
 .include 1351.con
 .eqin
.endif

.header ; start of header section
 .word 0 ; first two bytes are always zero
 .byte 3 ; width in bytes
 .byte 21 ; and height in scanlines of:

 .byte $80 | USR ; Commodore file type assigned to GEOS files
 .byte INPTYPE ; GEOS file type
 .byte SEQUENTIAL ; SEQ file structure
 .word BaseMouse ; start address for saving file data
 .word endDriver ; end address for saving file data (-1)
 .word BaseMouse ; not used (execution start address)

 ;--- 20 byte permanent name
.if C128
 .byte "128 Comm 1351(a)",NULL,0,0,0
.else
 .byte "Comm 1351(a)",NULL,0,0,0,0,0,0,0
.endif
 ;--- 20 bytes for author name
 .byte "Dave & Mike & PBM",NULL,0,0

 .block 43
 ;--- info block
 .byte "Right Button Double Click",CR
 .byte "Drag = ",DRAG+'0',NULL

.endh

drivers / 64_128 COMM 1351(a)

 B-61 B: Examples

1351.driver.s

.include 1351.Inc
 .if 0
Page Block Description Notes

2 Overview Comments.
3 BaseMouse jmp table.
4 _SetMouse 128 Refresh Pot. (In line with jmp table).
5 Local variables.

dirTable. Used to translate mouse movements into
direction.

6 _InitMouse Initialize the mouse.
7 _UpdateMouse Header Info for o_UpdateMouse.
8 UpdBtns Update status of Left and Right buttons.
9 UpdateX Calculate x axis move distance and update mouseXPos.

10 UpdateY Calculate y axis move distance and update mouseYPos.
11 AccelDist Compute Distance Moved on X and Y planes.
12 endDriver Assembler size Check for driver size exceeded.

 .endif

Note: This page includes an index into the rest of the app.driver.s file, with page numbers, block names, and

descriptions. These page numbers represent the actual page numbers in geoWrite. To try to make those

page numbers make sense, the geoWrite page numbers are in the headings of each of the app.driver.s

pages. The point of this is to teach an organization tool that can be used with source code in geoWrite

that makes it very fast to find what you are looking for.

drivers / 64_128 COMM 1351(a)

 B-62 B: Examples

Overview Page: 2

.if 0

Function: Main Source file for 1351(a) Mouse Driver.

Filename 1351.driver.s

Uses: 1351.Inc

Callable Routines:

 _InitMouse

 _SlowMouse

 _UpdateMouse

 _SetMouse (128 Only)

Hardware: Mouse button is read from cia1prb (Joystick Port 1 DC01).

 The bit values returned from this port are naturally set to 1. With the left mouse button pressed, b4

will be 0. The right mouse button uses b0, the same bit as the Joystick Up direction.

 Only b0 and b4 is for the mouse with the following assignments.

 b0 0 = right mouse button pressed

 b4 0 = left button pressed

 This port is shared with the keyboard. The keyboard has to be masked off prior to reading the

mouse values. To do this write %11111111 to cia1pra (DC01) to select no keyboard rows to scan.

Then any value read from cia1prb (DC01) will be from the mouse.

 The mouse position is read from potX (D419) and potY (D41A). (Note: Only bits 1-6 are valid

and bits 0 and 7 must be masked out). By comparing the values of these ports to the last saved

values, a direction and distance can be computed. Acceleration is handled by expanding the

distance moved on a sliding scale. Small movements are 1:1 distance. Large movements are up to

3x times the distance. The distance moved in the x and y are used to update the mouse position.

 The calculated mouse direction is converted into Joystick directions and saved into inputData.

 inputData: 0-7 for moving, -1 for centered.

 joystick directions:

 0 = right

 1 = up & right

 2 = up

 3 = up & left

 4 = left

 5 = left & down

 6 = down

 7 = down & right

 -1 = joystick centered

.endif

drivers / 64_128 COMM 1351(a)

 B-63 B: Examples

Jump Table Page: 3

.if 0

Jump Table to Mouse Driver Routines

 .endif
BaseMouse:
 ;--- Input driver jump table
;InitMouse
 jmp _InitMouse
 ;---
;SlowMouse
 rts ; _SlowMouse has nothing to do
 nop ; rts instead of jmp to rts
 nop ; saving 3 cycles
 ;---
;UpdateMouse
 jmp _UpdateMouse
 ;---
 ;--- Normally _setMouse jmp entry but we are inlining it.

;--- Fall into o_SetMouse instead of jmp. Saves 3 bytes.
;.if C128
; jmp _SetMouse
;.endif
;--- This makes o_SetMouse replace the 4th jump table entry.

drivers / 64_128 COMM 1351(a)

 B-64 B: Examples

_SetMouse: Page: 4

.if 0

Function: External routine: Reset the pot (potentiometer) scanning lines so that they will recharge with the

new value.

Called By: Interrupt code.

Parameters: nothing.

Uses: mouseOn

Alters: mouseXPos current position for the mouse

 mouseYPos

Returns: nothing.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
.if C128
 _SetMouse:
 LoadB cia1ddra,#%11111111
 LoadB cia1pra,#%01000000
 rts
.endif

drivers / 64_128 COMM 1351(a)

 B-65 B: Examples

Locals Page: 5

 lastButton: .byte 0 ; current value of mouse button
 lastpotX: .byte 0
 lastpotY: .byte 0
 dblClkFlg: .byte 0

 dirTable:
 .byte [-1 ; pass a -1 if no direction
 .byte 6 ; down 0001
 .byte 2 ; up 0010
 ;--- can't do up and down at same time
 .byte DISK_INVALID ; n/a 0011
 .byte 0 ; right 0100
 .byte 7 ; right/down 0101
 .byte 1 ; right/up 0110
 ;--- can't do up and down at same time
 .byte DISK_INVALID ; n/a 0111
 .byte 4 ; left 1000
 .byte 5 ; left/down 1001
 .byte 3 ; left/up 1010
 ;--- All remaining possibilities are invalid and will never happen.

 accelTbl:
.if DRAG=1
 .byte $01,$01,$01,$02,$02,$03,$04,$06,$08,$09,$0B,$0D,$0F,$11,$13,$15
 .byte $19,$1D,$20,$23,$26,$29,$2C,$2F,$32,$35,$38,$3C,$41,$4B,$50,$5A

.elif DRAG=2
 .byte $01,$01,$01,$01,$02,$02,$03,$04,$06,$08,$09,$0B,$0D,$0F,$11,$13
 .byte $15,$19,$1D,$20,$23,$26,$29,$2C,$2F,$32,$35,$38,$3C,$41,$4B,$50

.else
 .byte $01,$01,$02,$02,$03,$04,$06,$08,$09,$0B,$0D,$0F,$11,$13,$15,$19
 .byte $1D,$20,$23,$26,$29,$2C,$2F,$32,$35,$38,$3C,$41,$4B,$50,$5A,$64

.endif

drivers / 64_128 COMM 1351(a)

 B-66 B: Examples

_InitMouse: Page: 6

.if 0

Function: External routine: This routine initializes the 'mouse'.

Called By: At initialization EXTERNALLY.

Parameters: nothing.

Alters: mouseXPos starting position for the mouse.

 mouseYPos

Returns: none.

Uses: none.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
_InitMouse:
 LoadW mouseXPos,#8 ; set initial mouse position
 sta mouseYPos
br_rts =*
 rts ; rts also used by o_UpdateMouse

drivers / 64_128 COMM 1351(a)

 B-67 B: Examples

_UpdateMouse: Page: 7

.if 0

Function: External routine: This routine is called every interrupt to update the position of the pointer on the

screen. First, the mouse is read and the mouse velocities are updated. The mouse

position is then updated.

Called By: Interrupt code.

Parameters: nothing.

Uses: mouseOn.

Alters: mouseXPos current position for the mouse.

 mouseYPos

 pressFlag Set MOUSE_BIT to show input device changed.

Returns: nothing.

Destroys: a, x, y, r0 - r15 Even though this does not destroy everything here, another driver may destroy

anything or nothing. So, we have to declare everything destroyed.

.endif
_UpdateMouse:
 bbrf 7,mouseOn,o_SlowMouse ; if mouse off then don't update
.if !C128
 PushB CPU_DATA
 LoadB CPU_DATA,#IO_IN
.endif
 PushB cia1ddra ; save Data Direction Reg a
 PushB cia1ddrb ; save Data Direction Reg b
 PushB cia1pra ; save Peripheral Data Reg a
 ldy #0
 sty cia1ddra ; set Data Direction Registers to read
 sty cia1ddrb
 ;--- fall through to UpdBtns

drivers / 64_128 COMM 1351(a)

 B-68 B: Examples

UpdBtns Page: 8

 UpdBtns:
 bbeq dblClkFlg,10$; check internal dblClkFlg
 ; if zero then get new buttons

 ;--- when dblClickCount is 29 show button released
 CmpB dblClickCount,#29
 beq 30$;

 ;--- when dblClickCount >= 27 do nothing and go to movement
 cmp #27
 bcs ResetPot

 sty dblClkFlg ; reset internal dblClkFlg
 bcc 20$; always branch to set button pressed
 ; to complete automated double-click

 10$ lda cia1prb ; get Left and right button bits
 and #%00010001 ; strip out bits we don't care about.
 cmp lastButton ; if the button status has not changed then
 beq ResetPot ; exit this section
 sta lastButton ; save new button status

 ;--- Reset dblClickCount to 0. On button press, icon handler sets dblClickCount to 30
 ; to give the user roughly .5 seconds to perform a second click
 sty dblClickCount
 lsr a ; rotate right button bit into the carry flag
 beq 20$; if z=0 then left button was pressed
 bcs 30$; if carry is set then right button was not pressed
 ; and left was released
 inc dblClkFlg ; right button was pressed, bump internal dblClkFlg

 20$ clc ; button pressed / clear carry flag for bit 7
 .byte $B0 ; (bcs instruction. skip next byte)

 30$ sec ; button released / set carry flag for bit 7
 ror a ; put carry into bit 7

 40$ sta mouseData ; set left button status. (b7 = pressed / released)
 smbf MOUSE_BIT,pressFlag ; set flag to show the mouse button state has changed

 ResetPot:
.if !C128
 LoadB cia1ddra,#%11111111 ;reset the pot (potentiometer) scanning lines
 LoadB cia1pra,#%01000000 ;so that they will recharge with the new value.
 ldx #102
 10$ nop ;Wait for new value to be read
 nop
 nop
 dex
 bne 10$
.endif

;--- fall through to UpdateX

drivers / 64_128 COMM 1351(a)

 B-69 B: Examples

UpdateX Page: 9

 UpdateX:
 ;--- Calculate x axis movement and update mouseXPos
 lda potX ; get current raw hardware x-position
 ldy lastpotX ; get last hardware x-position
 jsr AccelDist ; calculate distance and direction
 sty lastpotX ; save new last position
 tay ; check if movement occurred
 beq 20$; if z=0 then no movement on x axis
 bmi 10$; if negative then moving left
 lda #%0100 ; moving right
clda 10$, #%1000 ; moving Left
 20$ sta r1 ; save left/right/none direction moved in r1
 bbrf 7,graphMode,30$; if 80-column mode then
 asl r2 ; double move distance.
 ;--- r2H is always 0 or FF, and it follows bit 7 of r2, no need to rol it
 30$ AddW r2, mouseXPos ; add movement to current x-position

;--- fall through to UpdateY

drivers / 64_128 COMM 1351(a)

 B-70 B: Examples

UpdateY Page: 10

 UpdateY:
 ;--- Calculate Y axis movement and update mouseYPos
 lda potY ; get current raw hardware y-position
 ldy lastpotY ; get last hardware y-position
 jsr AccelDist ; calculate Y distance moved
 sty lastpotY ; save potY to last Pot Y
 tay
 beq 80$; no Y motion...
 bmi 10$
 lda #%10 ; moving up
clda 10$, #%01 ; moving down
 ora r1 ; set direction bit flag
 sta r1 ; save up/down/none direction moved in r1
 sec
 lda mouseYPos ; subtract movement from current mouse y-position
 sbc r2
 bbsf 7,r2H,20$; check if Moving up or down
 bcc 30$; moving up and bcc = above screen top
 clc
 20$ bcs 40$; rolled over byte. >256 result
 cmp #SC_PIX_HEIGHT ; rolled over screen bottom
 bcs 40$
clda 30$, #0 ; moving up and went under 0. reset to 0
clda 40$, #SC_PIX_HEIGHT-1 ; moving down and went over 255. reset to 199
 sta mouseYPos ; save new y-position

 80$ ldx r1 ; translate direction moved into joystick directions
 lda dirTable,X
 sta inputData ; save into inputData
 UMExit:
 PopB cia1pra ; restore registers to previous state
 PopB cia1ddrb
 PopB cia1ddra
.if !C128
 PopB CPU_DATA
.endif
 rts ; exit

drivers / 64_128 COMM 1351(a)

 B-71 B: Examples

AccelDist: Page: 11

.if 0

Function: Internal routine:

 Calculate the distance moved using last pot, current pot and acceleration table.

Called By: o_UpdateMouse.

Parameters: y LASTPOT — lastpot

 a POT — pot

Returns: y pot to save.

 r2 move distance.

 a low-byte of move distance.

 x high-byte of move distance.

Destroys: r0.

.endif
 AccelDist:
 sty r0
 sta r0H
 ldx #0
 sub r0 ; calculate raw distance moved
 and #%01111111 ; strip off sign bit
 cmp #64 ; if distance is < 64
 bcs 10$
 lsr a ; distance = distance >> 1
 beq 80$; if distance = 0 then no move exit
 tay ;
 lda accelTbl-1,Y ; get accel distance
 ldy r0H ; put current pot in Y to be saved to lastpot
 bra 90$; exit

 10$ ora #%11000000
 cmp #$FF
 beq 80$; if distance = -1 then exit
 sec
 ror a
 eor #$FF ; distance = ~(distance / 2 | %10000000)
 tay ; distance now has a max value of 31 (%xxx00000)
 lda accelTbl,Y ; get accelerated distance (AD)
 eor #$FF
 add #1 ; a now has the 2's complement of AD
 ldx #[-1
 ldy r0H
clda 80$, #0 ; if branched into 80$ then
 ; set move distance to no movement
 90$ sta r2 ; save distance
 stx r2H ; save direction
 rts

drivers / 64_128 COMM 1351(a)

 B-72 B: Examples

endDriver Page: 12

endDriver:

.if * > MAXDRVSIZE
 .echo Error: Driver has exceeded maximum size.
.endif

.end

drivers / 64_128 COMM 1351(a)

 B-73 B: Examples

1351.con

.if 0

Function: Application constants

Filename: 1351.con

Uses: geo.con

 1351.cfg

Callable Routines:

 none.

 .endif
.include geo.con ; standard GEOS constants
.include 1351.cfg ; multi output build needs cfg file to control output

;--- All constants only used by this application go here.

POSITIVE = 0
NEGATIVE = %10000000

;--- Marks a joystick position that is impossible, short of a hardware fault
DISK_INVALID = $FF

drivers / 64_128 COMM 1351(a)

 B-74 B: Examples

1351.sym

.if 0

Function: Application symbols

Filename: 1351.sym

Uses: geo.sym standard GEOS symbols (jump table and variables)

 geo.cia.sym Includes full detailed symbols for the CIA chip

 ge8.sym 128 GEOS symbols

Callable Routines:

 none.

.endif
.include geo.sym
.include geo.cia.sym
.include ge8.sym

;--- All zero page declarations created for the application go here.

;--- Driver does not get to use application zero page space.
;.zsect APP_ZPL ; 16 bytes dedicated
;.zsect APP_ZIO ; 123 bytes of swappable I/O
;.zsect AAP_ZPH ; 4 bytes dedicated

;--- All symbols created for the application go here.

;
; Global variables:

;--- We normally don't send any constants to the linker.
;--- If we need one to go to linker for use in the .lnk file or other linker resolutions
;--- then need to redefine here.

.if C128
 BASEMOUSE=MSE128_BASE
.else
 BASEMOUSE=MOUSE_BASE
.endif

diskData = inputData ; current disk direction
mouseSpeed = inputData+ 1 ; current mouse speed

;potX == $D419 ; bits 1-6 = current x-position

;potY == $D41A ; bits 1-6 = current y-position

drivers / 64_128 COMM 1351(a)

 B-75 B: Examples

1351.mac

.if 0

Function: Application macros.

Filename 1351.mac

Uses: geo.mac

Callable Routines:

 none.

.endif
.include geo.mac ; standard GEOS macros

;--- All macros created for the application go here.

.macro NegateW zaddr
 ldx #[zaddr
 jsr Dnegate
.endm

drivers / 64_128 COMM 1351(a)

 B-76 B: Examples

1351.Inc

.if 0

Function: Application include

Filename 1351.Inc

Uses: 1351.con Application constants

 1351.mac Application macros

 1351.sym Application symbols

Callable Routines:

 none.

Note: This can only be used one time as an include per application. Use 1351.inc for secondary source

files.

.endif
.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include 1351.con
 .include 1351.mac
 .glbl
 .eqin
 .include 1351.sym ; all symbols will go to linker/debugger
.endif

.noeqin
.psect

drivers / 8-Bit FX-80 Printer Driver

 B-77 B: Examples

8-Bit FX-80 Printer Driver

.if 0

Function: Sample 8-bit printer driver for FX-80 series.

Files:

app.lnk Link file

app.hdr Header file

app.driver.s Driver source

app.Inc Master Include. Sends all to symbols debugger

app.con Application constants

app.sym Application symbols

app.mac Application macros

Callable Routines:

 InitForPrint -> _InitForPrint

 StartPrint -> _StartPrint

 PrintBuffer -> _PrintBuffer

 StopPrint -> _StopPrint

 GetDimensions -> _GetDimensions

 PrintASCII -> _PrintASCII

 StartASCII -> _StartASCII

 SetNLQ -> _SetNLQ

For: EPSON FX-80,FX-100,RX-80,RX-100,JX-80

 PANASONIC KX-1091,KX-1092,KX-1592,KX-1595

Tested on: EPSON JX-80

 .endif

drivers / 8-Bit FX-80 Printer Driver

 B-78 B: Examples

app.lnk

;Function: Linker file for FX-80 Driver.

;

;Filename: app.lnk

;

;Uses: app.hdr.rel

; app.driver.rel

.output FX-80

.header app.hdr.rel

.seq

.psect $7900 ; printBase
app.driver.rel
prndrv.lib.rel

drivers / 8-Bit FX-80 Printer Driver

 B-79 B: Examples

app.hdr

.if 0

Function: Define File Header Block.

Filename: app.hdr.s Linker header file

Uses: app.con

Callable Routines:

 none.

 .endif
.if Pass1
 .noeqin

.include app.con

.eqin
.endif

.header ; start of header section
 .word 0 ; first two bytes are always zero
 .byte 3 ; width in bytes
 .byte 21 ; and height in scanlines of:

 .byte $80 | USR ; Commodore file type assigned to GEOS files
 .byte PRINTER ; GEOS file type
 .byte SEQUENTIAL ; SEQ file structure
 .word PRINTBASE ; start address for saving file data
 .word PRINTEND ; end address of print driver
 .word NULL ; not used (execution start address)
 ;--- 20 byte permanent name
 .byte "FX80-Drvr V1.1",0,0,0,0

 ;--- 20 bytes for author name
 .byte "OGPRG & PBM",NULL,0,0,0,0,0,0,0,0
.endh

drivers / 8-Bit FX-80 Printer Driver

 B-80 B: Examples

app.driver.s

.if 0

Function: Main Source file for FX-80 Print Driver.

Filename: app.driver.s

Uses: app.Inc

Callable Routines:

 InitForPrint -> _InitForPrint

 StartPrint -> _StartPrint

 PrintBuffer -> _PrintBuffer

 StopPrint -> _StopPrint

 GetDimensions -> _GetDimensions

 PrintASCII -> _PrintASCII

 StartASCII -> _StartASCII

 SetNLQ -> _SetNLQ

 .endif
.include app.Inc

drivers / 8-Bit FX-80 Printer Driver

 B-81 B: Examples

Jump Table

.if 0

Jump Table to Print Driver Routines

 .endif
;--- Input driver jump table
;InitForPrint:
 rts
 nop
 nop
;StartPrint:
 jmp _StartPrint
;PrintBuffer:
 jmp _PrintBuffer
;StopPrint:
 jmp _StopPrint
;GetDimensions:
 jmp _GetDimensions
;PrintASCII:
 jmp _PrintASCII
;StartASCII:
 jmp _StartASCII
;SetNLQ:
 jmp _SetNLQ

;--- RAM STORAGE/ UTILITIES

; Local variables:

printerName:
 ;--- name of printer as it should appear in menu

.byte "Epson FX-80",NULL
prntblcard:
 .block 8 ; printable character block
breakcount:
 .byte 0
;reduction:
; .byte 0
;cardwidth:
; .byte 0 ; width of the print buffer line in cards
 ; Used for reduction flag in laser drivers
scount:
 .byte 0 ; string output routine counter
cardcount:
 .byte 0 ;
modeflag:
 .byte 0 ; either 0=graphics, or $FF=ASCII
 ; for draft or nlq mode
 ; utility routines: (see "Print Driver Support Library")

drivers / 8-Bit FX-80 Printer Driver

 B-82 B: Examples

_StartPrint:

.if 0

Function: Performs initialization necessary before printing each page of a document.

Called By: A GEOS application.

Parameters: nothing.

Returns: nothing.

Destroys a, x, y, r3.

Description: This is the StartPrint routine as discussed above. It initializes the serial bus to the printer, and

sets up the printer to receive graphic data.

.endif
_StartPrint:

lda #0 ; set for graphic mode
sta modeflag

StartIn:
lda #PRINTADDR ; set to channel 4
jsr SetDevice
jsr InitForIO ; set I/O space in, disable interrupts
lda #0
sta status ; initialize the error byte to no error
jsr OpenFile ; open the file for the printer
lda status ; if problems with the output channel, go to
bne 20$; error handling routine
jsr OpenPrint ; open channel to printer
jsr InitPrinter ; initialize the printer for graphic mode
jsr ClosePrint ; close the print channel
jsr Delay ; wait for weird timing problem
jsr DoneWithIO ; set mem map back, and enable ints
ldx #0
rts

20$; save error return from the routines
 pha ; bit 0 set: timeout, write
 ; bit 7 set: device not present

jsr CloseFile ; close the file anyway
jsr DoneWithIO ; set mem map back, and enable interrupts
PopX ; recover the error return
rts ; pass out in x

Delay:
ldx #0

10$
 ldy #0
20$
 dey

bne $20
dex
bne $10
rts

drivers / 8-Bit FX-80 Printer Driver

 B-83 B: Examples

_PrintBuffer:

.if 0

Function: Prints out the indicated 640-byte buffer of graphics data (80 cards) as created by an application.

Called By: A GEOS application.

Parameters: r0 BUFFER — address of the 640-bytes (80 cards) to be printed.

 r1 PBBUFFER — address of an additional 640-byte buffer for PrintBuffer to use.

Destroys: a, x, y, r3.

Description: PrintBuffer, as described in more detail above, is the top level routine that dumps data from the

GEOS 640-byte buffer maintained in the Commodore C64 to the printer using the serial port.

Note: The PBBUFFER may not change between calls to PrintBuffer. 7-bit printers use it to store the

left-over scanlines between calls. Each time PrintBuffer is called it is passed 8 scanlines of data

but only 7 may be printed.

.endif
_PrintBuffer:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open channel to printer
 MoveW r0,r3
 jsr PrnPrintBuffer ; print the users 8-bit high buffer
 jsr Greturn ; do CR-LF here
 jsr ClosePrint ; close the print channel
 jsr DoneWithIO ; put RAM back in, enable interrupts
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-84 B: Examples

_StopPrint:

.if 0

Function: Called at end of every page to flush output buffer and tell the printer to form feed.

Parameters: r0 BUFFER — address of the 640-bytes (80 cards) to be printed.

 r1 PBBUFFER — address of an additional 640-byte buffer for PrintBuffer to use.

Destroys a, x, y, r3.

Description: StopPrint is called after all cards for a given page have been sent to the printer. It does a

SetDevice, InitForIO, makes the printer listen, and if the printhead was printing 7-bit high data,

flushes out any remaining lines of data in the print buffer. It then does a form-feed and an unlisten,

closes the Commodore output file, and does a DoneWithIO.

Note: The PBBUFFER may not change between calls to PrintBuffer. 7-bit printers use it to store the

left-over scanlines between calls. Each time PrintBuffer is called it is passed 8 scanlines of data

but only 7 may be printed.

.endif
_StopPrint:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open channel to printer
 jsr FormFeed ; do a form feed
 jsr ClosePrint ; close the print channel
 jsr CloseFile ; close the print file
 jsr DoneWithIO ; put RAM back in, enable interrupts
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-85 B: Examples

_GetDimensions:

.if 0

Function: Return the dimensions in cards of the rectangle that will print in an 8 x 10.5 area of the screen.

Parameters: nothing.

Returns: a $00 (printer has graphics and text modes).

 x width, in cards, that this printer can put out across a page.

 y height, in cards, that this printer can put down a page.

Uses: nothing.

Destroys: nothing.

Description: GetDimensions returns the number of cards wide and high that this printer is capable of printing

out on an 8 x 10.5 subset of an 8.5 x 11 inch page.

.endif
_GetDimensions:
 ldx #CARDSWIDE ; get the number of cards wide
 ldy #CARDSDEEP ; and get the number of cards high
 lda #0 ; set for graphics and text driver
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-86 B: Examples

_StartASCII:

.if 0

Function: Initializes the Epson to receive ASCII print streams.

Called By: A GEOS application.

Parameters: nothing.

Returns: nothing.

Destroys: a.

Description: Just sets the mode flag, called by user at beginning of each document.

.endif
_StartASCII:

LoadB modeflag,#ASCII ; set mode to ASCII printing
jmp StartIn ; pick up rest of start print

drivers / 8-Bit FX-80 Printer Driver

 B-87 B: Examples

_SetNLQ:

.if 0

Function: Initializes the Epson to near letter quality mode.

Called By: A GEOS application.

Parameters: nothing.

Returns: nothing.

Destroys: a.

Description: Send the printer driver the correct initialization bytes to put it in NLQ mode.

.endif
_SetNLQ:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set device number
 jsr InitForIO ; put I/O space in, disable interrupts
 jsr OpenPrint ; open channel to printer
 LoadW r3,#nlqTbl ; table of initialization bytes to send
 lda #NLQTBLSZ ; the length of the table
 jsr Strout ; send the table to the printer
 jsr ClosePrint ; close the print channel
 jsr DoneWithIO ; put RAM back in, enable interrupts

rts

nlqTbl:
 ;--- NLQ bytes, transmitted from right to left
 ;--- command the printer to enable NLQ mode

.byte $47, ESC, $45, ESC
NLQTBLSZ = * - nlqTbl ; end of command string to activate the NLQ mode

drivers / 8-Bit FX-80 Printer Driver

 B-88 B: Examples

_PrintASCII:

.if 0

Function: Prints a null terminated ASCII string to the printer.

Called By: A GEOS application.

Parameters: none.

Uses: r0 pointer to the ASCII string.

 r1 pointer to the 640-bytes buffer for the printer driver to use.

Returns: nothing.

Destroys a, x, y.

Description: Sends a null terminated ASCII string to the printer. All carriage returns and linefeeds must be

handled by the application. Carriage returns are mapped into CR-LF.

.endif
_PrintASCII:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open print channel
10$
 ldy #0 ; init the index into ASCII string
 lda (r0),y ; get the character
 beq 30$; if at end of string, exit
 cmp #CR ; if carriage return, add LF
 bne 20$; branch if not CR
 jsr Ciout ; output the character
 lda #LF ; load up a linefeed
20$
 jsr Ciout
 IncW r0 ; point to next character
 bra 10$; do again
30$
 jsr ClosePrint ; close the print channel
 jsr DoneWithIO ; put RAM back in, enable interrupts
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-89 B: Examples

PrnPrintBuffer:

.if 0

Function: Prints out the print buffer pointed to by r3.

Called By: PrintBuffer.

Parameters: r3 address of start of buffer to print.

Returns: r3 unchanged.

Destroys: a, x, y, r0-r15.

Description: Checks to see if the buffer is empty before printing the data. Then for each card in the buffer,

rotate the data and send it to the printer.

.endif
PrnPrintBuffer:
 PushW r3 ; save the buffer pointer
 jsr TestBuffer ; see if the buffer is all zeros
 bcs 10$; if there is data in the buffer, send it
 PopW r3 ; dummy pop
 rts
10$
 jsr SetGraphics ; set graphics mode for this line
 PopW r3 ; restore the buffer pointer
 lda #CARDSWIDE ; load the card count (up to 80)
 sub cardcount
 tax
20$
 PushX ; save x
 jsr Rotate ; rotate the card
 jsr SendBuff ; send the rotated card
 AddVW #8,r3 ; update pointer to buffer
 PopX ; recover x
 dex
 bne 20$; if not, do another card
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-90 B: Examples

TestBuffer:

.if 0

Function: Tests buffer to see if there is anything to print.

Called By: PrnPrintBuffer.

Parameters: r3 pointer to beginning of print buffer to test.

Returns: carry flag 1 = if data in the buffer;

 0 = no data in the buffer.

Destroys: a, x, r3.

Description: Check all the bytes in the buffer to see if all are 0.

.endif

TestBuffer:
 LoadB cardcount,#0
 LoadB scount,#7 ; assume 8-bit high printhead
 AddVW #(CARDSWIDE-1)*8,r3
 ldx #CARDSWIDE ; load the cards / line
10$
 ldy scount
20$
 lda (r3),y ; check a byte
 bne 99$; if zero, skip to check another byte
 dey ; point at next byte in card
 bpl 20$; if not at end, check next byte in this card
 SubVW #8,r3 ; point at next card
 inc cardcount
 dex ; see if all the cards are done
 bne 10$; if not done, do another card
 clc ; if here, then line was clear
 rts
99$
 sec ; set the carry to signal data was found
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-91 B: Examples

InitPrinter:

.if 0

Function: Initializes the Epson to line-feed 8/72 inch.

Called By: StartPrint.

Parameters: nothing.

Returns: r3 #inittbl

 scount $FF

 y 0

Destroys: a, x, r3.

Description: Outputs to the printer a string of characters which initializes it. See the printer's owners manual.

.endif
InitPrinter:
 bit modeflag ; see if printing ASCII or graphic mode
 bmi 10$; branch if ASCII
 LoadW r3,#inittbl ; table of bytes for initialization
 lda #INITSZ ; length of string
 jmp Strout ; output the string
10$
 LoadW r3,#ainittbl ; table of bytes for ASCII initialization
 lda #AINITSZ ; length of string
 jmp Strout ; output the string

inittbl:
 .byte 8, 'A',ESC ; send 8/72" line feed
 .byte '@',ESC ; reset totally
INITSZ=*- inittbl

ainittbl:
 .byte 2,ESC ; send 6 lines/inch
 .byte '@',ESC ; reset totally
AINITSZ=*- ainittbl

drivers / 8-Bit FX-80 Printer Driver

 B-92 B: Examples

SetGraphics:

.if 0

Function: Sets the Epson into 640-column graphics mode.

Called By: PrnPrintBuffer.

Parameters: cardcount the number of the card being processed.

Returns: r3 # wsdgphtbl, the printer width table.

 scount $FF

 y 0

Destroys: a.

Description: Tell printer the graphics mode and how many bytes to expect.

.endif
SetGraphics:
 LoadB r3H,#0 ; clear top byte
 MoveB cardcount,r3L ; load cardcount into low-byte
 asl r3L ; x 8
 rol r3H
 asl r3L
 rol r3H
 asl r3L
 rol r3H
 ;--- set total width for the page(bytes)
 SubVWS #CARDSWIDE*8,r3,wsdgphtbl
 LoadW r3,#wsdgphtbl ; table of control bytes for 640 col

; single density
 lda #WSDGPHSZ ; length of string
 jmp Strout ; output the string

wsdgphtbl: ; (Reverse Order String)
 .word NULL ; N1 N2: Number of graphic bytes to output
 .byte 4,"*",ESC ; ESC * 4: set screen dump mode
 ; (80 dpi in graphics mode)
WSDGPHSZ = *-wsdgphtbl

drivers / 8-Bit FX-80 Printer Driver

 B-93 B: Examples

SendBuff:

.if 0

Function: Sends a printable card out the serial port.

Called By: PrnPrintBuffer.

Uses: prntblcard.

Returns: nothing.

Destroys: a, x.

Description: After a card has been rotated so that the bytes each represent a vertical column of bits to go to the

printer, SendBuff sends the card across the serial bus.

.endif
SendBuff:
 ldx #0 ; initialize the count
10$
 PushX ; save count
 lda prntblcard,x ; get byte to send
 jsr Ciout ; send this byte
 PopX ; recover the count
 inx ; point at next byte
 cpx #8 ; are we done with all bytes?
 bne 10$; if not, continue with sending
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-94 B: Examples

Greturn:

.if 0

Function: Set carriage / Line feed to printer.

Called By: PrintBuffer.

Parameters: nothing.

Returns: nothing.

Destroys: a.

Description: Outputs the CR/LF ($0D/$0A) pair to advance to beginning of next line.

.endif
Greturn:
 lda #CR
 jsr Ciout ; send carriage return
 lda #LF
 jsr Ciout ; send linefeed
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-95 B: Examples

FormFeed:

.if 0

Function: Send the form feed command to the printer.

Called By: PrintBuffer.

Parameters: nothing.

Returns: nothing.

Destroys: a.

Description: Outputs a form feed ($0C) to advance printer to next page.

.endif
FormFeed:
 lda #FF ; form feed
 jsr Ciout ; send it
 rts

drivers / 8-Bit FX-80 Printer Driver

 B-96 B: Examples

Rotate:

.if 0

Function: Rotates a hi-res bit mapped card from the 640-byte print buffer to an 8 byte buffer which is then

ready for sending to the printer.

Called By: PrnPrintBuffer.

Parameters: r3 address of the card to be operated on.

Returns: prntblcard rotated data placed here.

Destroys: a, x, y.

Description: Create the nth byte in the prntblcard buffer out of the nth bit of each of the bytes in the card pointed

to by r3. This rotates a hires bit mapped card from the 640-byte print buffer pointed at by r3 into

the prntblcard 8-byte buffer.

.endif
Rotate:
 php ; save processor status register
 sei ; disable any IRQs
 ldy #7 ; initialize the index into the card
10$
 lda (r3),y ; get the byte from the card
 ldx #7 ; initialize the index into the printable card
20$
 ror a ; get the least significant bit into c
 ror prntblcard,x ; shift it into the printable card table
 dex ; next bit
 bpl 20$; if not done, store another bit
 dey ; next byte
 bpl 10$; if not done, load another byte
 plp ; restore interrupts to their saved state
 rts ; exit

PRINTEND: ; last label in Epson FX printer driver

drivers / 8-Bit FX-80 Printer Driver

 B-97 B: Examples

app.Inc

.if 0

Function: Application include

Filename: app.inc Master Include. Symbols go to Linker / Debugger

Uses: app.con Application constants

 app.mac Application macros

 app.sym Application symbols

Callable Routines:

 none.

Note: This can only be used one time as an include per application. Use app.inc for secondary source

files.

 .endif
.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include app.con
 .include app.mac
 .glbl
 .eqin
 .include app.sym ; all symbols will go to linker/debugger
.endif

.psect

drivers / 8-Bit FX-80 Printer Driver

 B-98 B: Examples

app.con

.if 0

Function: Application constants

Filename: app.con

Uses: geo.con

Callable Routines:

 none.

 .endif
.include geo.con ; standard GEOS constants

;--- All constants only used by this application go here.
LOWERCASE = 7 ; command that does nothing
TRANSPARENT = 5
CARDSWIDE = 80 ; 80 Commodore cards wide
CARDSDEEP = 90 ; 90 Commodore cards deep
CGPX = 8 ; graphic mode activation command
ECGPX = 15 ; graphic mode deactivation command
ESC = $1B
FF = $0C

ASCII = $FF
GRAPHIC = $00

drivers / 8-Bit FX-80 Printer Driver

 B-99 B: Examples

app.sym

.if 0

Function: Application symbols.

Filename: app.sym

Uses: geo.sym

Callable Routines:

 none.

 .endif
.include geo.sym ; standard GEOS symbols (jump table and variables)

;--- All zero page declarations created for the application go here.

;--- All Symbols created for the application go here.

; Global variables:
status == $90 ; serial command status
Ciout == $FFA8 ; transmit a byte over the serial bus
printBase = PRINTBASE

;--- prndrv.lib needs these constants to be global so they are declared here
SECADD = TRANSPARENT ; secondary address
PRINTADDR = 4 ; Serial address of the printer

drivers / 8-Bit FX-80 Printer Driver

 B-100 B: Examples

app.mac

.if 0

Function: Application macros.

Filename: app.mac

Uses: geo.mac

Callable Routines:

 none.

 .endif
.include geo.mac ; standard GEOS macros

;--- All macros created for the application go here.

.macro NegateW zaddr
 ldx #[zaddr
 jsr Dnegate
.endm

drivers / 7-Bit MPS-801 Printer Driver

 B-101 B: Examples

7-Bit MPS-801 Printer Driver

.if 0

Function: Sample 7-bit printer driver for MPS-801.

Files.

app.lnk Link file

app.hdr.s Header file

app.driver.s Driver source

app.Inc Master Include. Sends all to symbols debugger

app.inc Secondary include. Sends nothing from includes to debugger

app.con Application constants

app.sym Application symbols

app.mac Application macros

Callable Routines:

 InitForPrint -> rts ; not supported

 StartPrint -> _StartPrint

 PrintBuffer -> _PrintBuffer

 StopPrint -> _StopPrint

 GetDimensions -> _GetDimensions

 PrintASCII -> _PrintASCII

 StartASCII -> _StartASCII

 SetNLQ -> rts ; not supported

For: COMMODORE MPS-801, 1525

Tested on: COMMODORE MPS-801

Control Codes:

 EnterGraphicMode 8

 Line Feed $0A

 CR $0D

 DoubleWidth $0E

 StardardCharMode $0F

 TabSettingPrint Head $10

 Cursor Down Mode $11

 Reverse $18

 RepeatGraphicsSelected $1A

 Dot Address $1B

 CursorUpMode $91

 OffReverse $92

 .endif

drivers / 7-Bit MPS-801 Printer Driver

 B-102 B: Examples

app.lnk

Function: Linker file for MPS-801 Driver.

File name: app.lnk

Uses:

 app.hdr.rel

 app.driver.rel

.output MPS-801
.header app.hdr.rel
.seq

.psect $7900 ;printBase

app.driver.rel
prndrv.lib.rel

drivers / 7-Bit MPS-801 Printer Driver

 B-103 B: Examples

app.hdr.s

.if 0

Function: Define File Header Block.

Filename: app.hdr.s Linker header file

Uses: app.con

Callable Routines:

 None.

 .endif
.if Pass1
 .noeqin

.include app.con

.eqin
.endif

.header ; start of header section
 .word 0 ; first two bytes are always zero
 .byte 3 ; width in bytes
 .byte 21 ; and height in scanlines of:

 .byte $80 | USR ; Commodore file type assigned to GEOS files
 .byte PRINTER ; GEOS file type
 .byte SEQUENTIAL ; SEQ file structure
 .word PRINTBASE ; start address for saving file data
 .word PRINTEND ; end address of print driver
 .word NULL ; not used (execution start address)
 ;--- 20 byte permanent name

.byte "MPS-801-DrvrV1.1",0,0,0,0

 ;--- 20 bytes for author name
 .byte "OGPRG & PBM",NULL,0,0,0,0,0,0,0,0
.endh

drivers / 7-Bit MPS-801 Printer Driver

 B-104 B: Examples

app.driver.s

.if 0

Function: Main Source file for MPS-801 Driver

Filename: app.driver.s

Uses: app.Inc

Callable Routines:

 InitForPrint -> rts ;No action

 StartPrint -> _StartPrint

 PrintBuffer -> _PrintBuffer

 StopPrint -> _StopPrint

 GetDimensions -> _GetDimensions

 PrintASCII -> _PrintASCII

 StartASCII -> _StartASCII

 SetNLQ -> rts ;Not supported. No Action

 .endif
.include app.Inc

drivers / 7-Bit MPS-801 Printer Driver

 B-105 B: Examples

Jump Table

.if (0)

Jump Table to Print Driver Routines

 .endif
;--- Input driver jump table

;InitForPrint:
 rts
 nop
 nop
;StartPrint:
 jmp _StartPrint
;PrintBuffer:
 jmp _PrintBuffer
;StopPrint:
 jmp _StopPrint
;GetDimensions:
 jmp _GetDimensions
;PrintASCII:
 jmp _PrintASCII
;StartASCII:
 jmp _StartASCII
;SetNLQ:
 rts
 nop
 nop

;--- RAM STORAGE / UTILITIES

;--- Local variables:

printerName:
 ;--- name of printer as it should appear in menu

.byte "MPS-801",NULL
prntblcard:
 .block 8 ; printable character block
breakcount:
 .byte 0
scount:
 .byte 0 ; string output routine counter
cardcount:
 .byte 0 ;
modeflag:
 .byte 0 ; either 0=graphics, or $FF=ASCII
 ; for draft or nlq mode
linesLeft:
 .byte 0 ; Blank lines remaining on page
 ; utility routines: (see "Print Driver Support Library")

drivers / 7-Bit MPS-801 Printer Driver

 B-106 B: Examples

_StartPrint:

.if 0

Function: StartPrint initializes the serial bus to the printer, sets up the printer to receive graphic data, and

initialize the break count RAM location.

Called By: A GEOS application.

Parameters: nothing.

Returns: nothing.

Destroys a, x, y, r3.

.endif
_StartPrint:

LoadB modeflag,#GRAPHIC ; set for graphic mode
StartIn:

lda #PRINTADDR ; set to channel 4
jsr SetDevice
jsr InitForIO ; set I/O space in, disable interrupts
lda #99
bit modeflag
bpl 10$
lda #66

10$
 sta linesLeft

LoadB breakcount,#0 ; initialize the counter for the card breaks
sta status ; initialize the error byte to no error
jsr OpenFile ; open the file for the printer
lda status ; if problems with the output channel, go to
bne 20$; error handling routine
jsr Delay ; wait for weird timing problem
jsr DoneWithIO ; set mem map back, and enable interrupts
ldx #0
rts

20$; save error return from the routines
 pha ; bit 0 set: timeout, write
 ; bit 7 set: device not present

jsr CloseFile ; close the file anyway
jsr DoneWithIO ; set mem map back, and enable interrupts
PopX ; recover the error return
rts ; pass out in x

Delay:

ldx #0
10$
 ldy #0
20$
 dey

bne $20
dex
bne $10
rts

drivers / 7-Bit MPS-801 Printer Driver

 B-107 B: Examples

_PrintBuffer:

.if 0

Function: PrintBuffer is the top level routine that dumps data from the GEOS 640-byte buffer maintained

in the C64 to the printer using the serial port.

Called By: A GEOS application.

Parameters: r0 BUFFER — address of the 640-bytes (80 cards) to be printed.

 r1 PBBUFFER — address of an additional 640-byte buffer for PrintBuffer to use.

 IMPORTANT: this memory pointed at by r1 MUST stay intact between calls to the PrintBuffer

routine. It is used as a storage area for the partial lines for the 7-bit high printers.

Returns: r0, r1 preserved.

Destroys: a, x, y, r3.

.endif
_PrintBuffer:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open channel to printer
 jsr IPrintBuffer ; print out a line
 jsr ClosePrint ; close the print channel
 jsr DoneWithIO ; put back the memory map, enable interrupts
 rts ; exit

drivers / 7-Bit MPS-801 Printer Driver

 B-108 B: Examples

IPrintBuffer:

.if 0

Function: Flush Buffer of any remaining lines.

Called By: A GEOS application.

Parameters: r0 BUFFER — address of the 640-bytes (80 cards) to be printed.

 r1 PBBUFFER — address of an additional 640-byte buffer for PrintBuffer to use.

 IMPORTANT: This memory pointed at by r1 MUST stay intact between calls to the PrintBuffer

routine. It is used as a storage area for the partial lines for the 7-bit high printers.

Returns: r0, r1 preserved.

Destroys: a, x, y, r3.

.endif
IPrintBuffer:
 jsr TopRollBuffer ; roll into print buffer
 MoveW r1,r3
 jsr PrnPrintBuffer ; print it
 jsr BotRollBuffer ; roll leftover lines into print buffer
 CmpBI breakcount,#7 ; see if we just print the last line in brktab
 bne 10$; if not, skip
 MoveW r1,r3 ; point to print buffer
 jsr PrnPrintBuffer ; print it again
 LoadB breakcount,#0 ; stuff breakcount
10$
 inc breakcount ; next index to breaks in 7-bit printing
 ; valid values = 1-7
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-109 B: Examples

_StopPrint:

.if 0

Function: StopPrint is called when a page of a document is finished or when the document itself is finished.

Parameters: r0 BUFFER — address of the 640-bytes (80 cards) to be printed.

 r1 PBBUFFER — address of an additional 640-byte buffer for PrintBuffer to use.

 IMPORTANT: this memory pointed at by r1 MUST stay intact between calls to the PrintBuffer

routine. It is used as a storage area for the partial lines for the 7-bit high printers.

Returns: r0, r1 unchanged.

Destroys a, x, y, r3.

Description: StopPrint is called after all cards for a given page have been sent to the printer. It does a

SetDevice, InitForIO, makes the printer listen, and if the printhead was printing 7-bit high data,

flushes out any remaining lines of data in the print buffer. It then does a form-feed and an unlisten,

closes the Commodore output file, and does a DoneWithIO.

.endif
_StopPrint:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open channel to printer
 bit modeflag ; if ASCII printing
 bmi 10$; skip buffer flush
 PushW r0 ; save the buffer addresses
 PushW r1
 MoveW r0, r1 ; load the address of RAM to clear
 LoadW r0,#640 ; length to clear
 jsr ClearRam ; clear it
 PopW r1 ; recover the buffer addresses
 PopW r0
 jsr IPrintBuffer ; flush out the buffer data
10$
 jsr FormFeed ; do a form feed
 jsr ClosePrint ; close the print channel
 jsr CloseFile ; close the print file
 jsr DoneWithIO ; put RAM back in, enable interrupts
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-110 B: Examples

_GetDimensions:

.if 0

Function: returns the number of cards wide and high that this printer is capable of printing out on an 8.5 by

11 inch page.

Called By: A GEOS application.

Parameters: nothing.

Returns: a $00 (printer has graphics and text modes).

 x width, in cards, that this printer can put out across a page.

 y height, in cards, that this printer can put down a page.

Uses: none.

Destroys nothing.

Description: GetDimensions returns the number of cards wide and high that the printer is capable of printing

in an 8 x 10.5 inch rectangle. This rectangle is included entirely in the page, which usually

measures 8.5 x 11 inches.

.endif
_GetDimensions:
 ldx #CARDSWIDE ; get the number of cards wide
 ldy #CARDSDEEP ; and get the number of cards high
 lda #GRAPHIC ; set for graphics or text driver
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-111 B: Examples

_StartASCII:

.if 0

Function: Sets the Commodore up to receive ASCII print streams.

Called By: A GEOS application.

Parameters: nothing.

Returns: nothing.

Destroys: a.

.endif
_StartASCII:

LoadB modeflag,#ASCII ; set mode to ASCII printing
jmp StartIn ; pick up rest of start print

drivers / 7-Bit MPS-801 Printer Driver

 B-112 B: Examples

_PrintASCII:

.if 0

Function: Prints a null terminated ASCII string passed in the buffer pointed at by r0.

Called By: A GEOS application.

Parameters: none.

Uses: r0 pointer to the ASCII string.

 r1 pointer to the 640-bytes buffer for the printer driver to use.

Returns: nothing.

Destroys a, x, y.

.endif
_PrintASCII:
 lda #PRINTADDR ; set to channel 4
 jsr SetDevice ; set to printer device
 jsr InitForIO ; put I/O space in and disable interrupts
 jsr OpenPrint ; open print channel
10$
 ldy #0 ; init the index into ASCII string
 lda (r0),y ; get the character
 beq 80$; if at end of string, exit
 cmp #CR
 bne 20$
 dec linesLeft ; reduce number of blank lines to feed at end of page
20$
 cmp #'A' ; see if alpha char, for CBM ASCII conversion
 bcc 30$; branch if not CR
 cmp #'Z'+1
 bcs 30$
 eor #%100000 ; convert upper to lower and vice-versa
30$
 jsr Ciout
 IncW r0 ; point to next character
 bra 10$; do again
80$
 jsr ClosePrint ; close the print channel
 jsr DoneWithIO ; put RAM back in, enable interrupts
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-113 B: Examples

PrnPrintBuffer:

.if 0

Function: Prints out the print buffer pointed to by r3.

Called By: PrintBuffer.

Parameters: r3 address of start of buffer to print.

Returns: nothing.

Destroys: a, x, y, r0-r15.

Description: Checks to see if the buffer is empty before printing the data. Then for each card in the buffer,

rotate the data and send it to the printer.

.endif
PrnPrintBuffer:
 PushW r3 ; save the buffer pointer
 jsr TestBuffer ; see if the buffer is all zeros
 bcs 10$; if there is data in the buffer, send it
 PopW r3 ; dummy pop
 jsr SetGraphics ; set graphics mode for this line
 bra 80$
10$
 jsr SetGraphics ; set graphics mode for this line
 PopW r3 ; restore the buffer pointer
 lda #CARDSWIDE ; load the card count (up to 80)
 sub cardcount
 tax
20$
 PushX ; save x
 jsr Rotate ; rotate the card
 jsr SendBuff ; send the rotated card
 AddVW #8,r3 ; update pointer to buffer
 PopX ; recover x
 dex ; done?
 bne 20$; if not, do another card
80$
 jsr Greturn ; do graphics return here
 jsr UnSetGraphics ; get out of graphics mode
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-114 B: Examples

TopRollBuffer:

.if 0

Function: Rolls the entire print buffer up the correct amount of lines for the previously unprinted lines to be

printed over any new lines in the user buffer.

Called By: PrintBuffer.

Parameters: r0 BUFFER — pointer to user buffer.

 r1 PBBUFFER — pointer to my print buffer.

Returns: nothing.

Destroys: a, x.

.endif
TopRollBuffer:
 PushW r0 ; save buffer pointers
 PushW r1
 ldx #CARDSWIDE-1 ; load the card count
10$
 ldy breakcount ; get the count for the break table index
 lda topbreaktab,y ; get the number of lines to roll
 jsr RollaCard ; rotate the card
 dex ; done?
 bpl 10$; if not, do another card
 PopW r1 ; recover the pointers
 PopW r0
 rts

topbreaktab:
 .byte 8,7,6,5,4,3,2,1

drivers / 7-Bit MPS-801 Printer Driver

 B-115 B: Examples

BotRollBuffer:

.if 0

Function: Rolls the entire print buffer up the correct amount of lines for the unprinted lines from the user

buffer to be rolled into the bottom of the print buffer.

Called By: PrintBuffer

Parameters: r0 BUFFER — pointer to user buffer.

 r1 PBBUFFER — pointer to my print buffer.

Returns: nothing.

Destroys: a, x.

.endif
BotRollBuffer:
 PushW r0 ; save buffer pointers
 PushW r1
 ldx #CARDSWIDE-1 ; load the card count
10$
 lda breakcount ; get the count for the number of lines to roll
 jsr RollaCard ; rotate the card
 dex ; done?
 bpl 10$; if not, do another card
 PopW r1 ; recover the pointers
 PopW r0
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-116 B: Examples

RollaCard:

.if 0

Function: Rolls a card from the user buffer into the print buffer lines.

Called By: TopRollBuffer, BotRollBuffer.

Parameters: a number of lines to roll.

Returns: r0 r0+8.

 r1 r1+8.

Destroys: a, r3L.

.endif
RollaCard:

sta r3L ; store the loop count
10$

jsr Roll8BOut ; shift out of the user buffer
jsr Roll8BIn ; and into the print buffer
dec r3L ; done?
bne 10$; if not, do another byte
AddVW #8,r0 ; update pointer to user buffer
AddVW #8,r1 ; update pointer to print buffer
rts

drivers / 7-Bit MPS-801 Printer Driver

 B-117 B: Examples

TestBuffer:

.if 0

Function: Tests buffer to see if there is anything to print.

Called By: PrnPrintBuffer.

Parameters: r3 BUFFER — pointer to beginning of print buffer to test.

Returns: carry flag 1 = data in the buffer;

 2 = no data in the buffer.

Destroys: a, r3.

Description: Check all the bytes in BUFFER to see if all are $00.

.endif
TestBuffer:
 LoadB cardcount,#0
 LoadB scount,#6 ; assume 7-bit high printhead
 AddVW #(CARDSWIDE-1)*8,r3
 ldx #CARDSWIDE-1 ; load the cards / line
10$
 ldy scount
20$
 lda (r3),y ; check a byte
 bne 99$; if zero then skip to check another byte
 dey ; point at next byte in card
 bpl 20$; if not at end, check next byte in this card
 SubVW #8,r3 ; point at next card
 inc cardcount
 dex ; see if all the cards are done
 bpl 10$; if not done, do another card
 clc ; if here, then line was clear
 rts
99$
 sec ; set the carry to signal data was found
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-118 B: Examples

Roll8BIn:

.if 0

Function: Rotates 8 bytes through a, used in the routines to load the second 640-byte print buffer, the effect

is to roll a line of cards up 1 line.

Called By: RollaCard.

Parameters: a byte to fill in at bottom of card.

 r1 pointer to card to roll up 1 line.

Returns: nothing.

Destroys: a, y.

.endif
Roll8BIn:

pha ; save the byte to fill in with
ldy #0 ; initialize the index to the card

10$
iny ; point at next line down (top byte is lost)
lda (r1),y ; load a line from the card
dey ; point at next line up
sta (r1),y ; store the byte at the next line up
iny ; point at next line down
cpy #7 ; see if at last line in card
bmi 10$; if not, do more lines
PopB "(r1),y" ; recover the byte to fill in
 ; store the byte at the bottom line
rts

drivers / 7-Bit MPS-801 Printer Driver

 B-119 B: Examples

Roll8BOut:

.if 0

Function: Rotates 8 bytes through a, used in the routines to empty the first 640-byte print buffer, the effect

is to roll a card up 1 line and leave the byte pushed out on top in a.

Called By: RollaCard.

Parameters: r0 pointer to card to roll up 1 line.

Returns: a byte from the top of the card.

Destroys: y.

.endif
Roll8BOut:

ldy #0 ; initialize the index to the card
lda (r0),y ; load the top line from the card
pha ; save the byte

10$
iny ; point at next line down (top byte is lost)
lda (r0),y ; load a line from the card
dey ; point at next line up
sta (r0),y ; store the byte at the next line up
iny ; point at next line down
cpy #7 ; see if at last line in card
bmi 10$; if not, do more lines
pla ; recover the byte to fill in
rts

drivers / 7-Bit MPS-801 Printer Driver

 B-120 B: Examples

SetGraphics:, UnSetGraphics:

.if 0

Function: Sets graphics mode.

 Unsets Graphics Mode.

Called By: PrnPrintBuffer.

Parameters: nothing.

Returns: nothing.

Destroys: a.

.endif
 SetGraphics:
 lda #CGPX ; send character to set graphics mode
clda UnSetGraphics, #ECGPX ; send character to unset graphics mode

 jsr Ciout
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-121 B: Examples

SendBuff:

.if 0

Function: sends the prntblcard out to the serial port.

Called By: PrnPrintBuffer.

Uses: prntblcard.

Returns: nothing.

Destroys: a, x.

Description: Synopsis: After a card has been rotated so that the bytes each represent a vertical column of bits

to go to the printer, SendBuff sends the card across the serial bus.

.endif
SendBuff:
 ldx #0 ; initialize the count
10$
 PushX ; save count
 lda prntblcard,x ; get byte to send
 ora #$80 ; add to get out of valid ASCII space
 jsr Ciout ; send this byte
 PopX ; recover the count
 inx ; point at next byte
 cpx #8 ; are we done with all bytes?
 bne 10$; if not, continue with sending
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-122 B: Examples

Greturn:

.if 0

Function: Set carriage / Line feed to printer.

Called By: PrintBuffer.

Parameters: nothing.

Returns: nothing.

Destroys: a

Description: Outputs the CR/LF ($0D/$0A) pair to advance to beginning of next line.

.endif
Greturn:
 lda #CR ; carriage return
 jsr Ciout ; send it
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-123 B: Examples

FormFeed:

.if 0

Function: Advance the remaining page from the printer.

Called By: PrintBuffer.

Parameters: nothing.

Returns: nothing.

Destroys: a

Description: For every blank line left to print advance the printer until the page is complete.

.endif
 FormFeed:
 bit modeflag ; if in graphics mode then
 bmi PgFeed ; feed rest of page
 ; else
 jsr SetGraphics ; put printer in graphics mode
 jsr PgFeed ; feed rest of page
 jsr UnSetGraphics ; turn off graphics mode
 rts ; exit
 PgFeed: ; loop
 lda #$0D
 jsr Ciout ; send carriage return to advance the page
 dec linesLeft
 bne PgFeed ; until page complete
 rts

drivers / 7-Bit MPS-801 Printer Driver

 B-124 B: Examples

Rotate:

.if 0

Function: Rotates a hi-res bit mapped card from the 640-byte print buffer to an 8 byte buffer which is then

ready for sending to the printer.

Called By: PrnPrintBuffer.

Parameters: r3 address of the card to be operated on.

Returns: prntblcard rotated data placed here.

Destroys: a, x, y.

Description: Create the nth byte in the prntblcard buffer out of the nth bit of each of the bytes in the card pointed

to by r3. This rotates a hires bit mapped card from the 640-byte print buffer pointed at by r3 into

the prntblcard 8-byte buffer.

.endif
Rotate:
 php ; save current interrupt disable status
 sei ; disable interrupts
 ldy #7 ; initialize the index into the card
10$
 lda (r3),y ; get the byte from the card
 ldx #7 ; initialize the index into the printable card
20$
 ror a ; get the least significant bit into c
 ror prntblcard,x ; shift it into the printable card table
 dex ; next bit
 bpl 20$; if not done, store another bit
 dey ; next byte
 bpl 10$; if not done, load another byte
 plp ; restore old interrupt status
 rts
PRINTEND: ; last label in the MPS-801 Printer driver

drivers / 7-Bit MPS-801 Printer Driver

 B-125 B: Examples

app.Inc

.if 0

Function: Application Include

Filename: app.Inc Master Include. Symbols go to Linker / Debugger

Uses: app.con Application constants

 app.mac Application macros

 app.sym Application symbols

Callable Routines:

 None.

Note: This can only be used one time as an include per application. Use app.inc for secondary source

files.

 .endif
.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include app.con
 .include app.mac
 .glbl
 .eqin
 .include app.sym ; all symbols will go to linker/debugger
.endif

.psect

drivers / 7-Bit MPS-801 Printer Driver

 B-126 B: Examples

app.con

.if 0

Function: Application constants

Filename: app.con

Uses: geo.con

Callable Routines:

 none.

 .endif
.include geo.con ; Standard GEOS constants.

;--- All constants only used by this application go here.
LOWERCASE = 7 ; command that does nothing
CARDSWIDE = 60 ; 60 Commodore cards wide
CARDSDEEP = 94 ; 90 Commodore cards deep
CGPX = 8 ; graphic mode activation command
ECGPX = 15 ; graphic mode deactivation command
PRINTADDR = 4 ; Serial address of the printer
ASCII = $FF
GRAPHIC = $00

drivers / 7-Bit MPS-801 Printer Driver

 B-127 B: Examples

app.sym

.if 0

Function: Application symbols

Filename: app.sym

Uses: geo.sym

Callable Routines:

 None.

 .endif

.include geo.sym ; standard GEOS symbols. (jump table and variables)

;--- All zero page declarations created for the application go here.

;--- All Symbols created for the application go here

; Global variables:

status == $90 ; serial command status
Ciout == $FFA8 ; transmit a byte over the serial bus
printBase = PRINTBASE

;--- prndrv.lib needs these constants to be global so they are declared here
SECADD = LOWERCASE ; secondary address
PRINTADDR = 4 ; Serial address of the printer

drivers / 7-Bit MPS-801 Printer Driver

 B-128 B: Examples

app.mac

.if 0

Function: Application macros

Filename: app.mac

Uses: geo.mac

Callable Routines:

 None.

 .endif
.include geo.mac ; standard GEOS macros

;--- All macros created for the application go here.

.macro NegateW zaddr
 ldx #[zaddr
 jsr Dnegate
.endm

drivers / Print Driver Support Library

 B-129 B: Examples

Print Driver Support Library

.if 0

Function: Support Library for Print Drivers

Files: prndrv.lib.s Library source

 app.inc Secondary Include. Sends nothing from includes to debugger

 app.con Application constants

 app.sym Application symbols

 app.mac Application macros

Creates: prndrv.lib.rel

Note: To obtain more information on the serial bus transmission protocol of the C64 and its features,

please refer to the official operation guide.

Callable Routines:

 OpenFile opens the Commodore structure of the file

 CloseFile closes the Commodore structure of the file

 OpenPrint prepares the printer for listening on the serial bus

 ClosePrint the communication with the printer on the serial bus ends

 Strout: transmits a string of bytes on the serial bus.

 .endif

drivers / Print Driver Support Library

 B-130 B: Examples

prndrv.lib.s

.if 0

Function: Main Source file for Print Driver Support Library

Filename: prndrv.lib.s

Uses: app.inc

Callable Routines:

 OpenFile opens the Commodore structure of the file

 CloseFile closes the Commodore structure of the file

 OpenPrint prepares the printer for listening on the serial bus

 ClosePrint end communications with the printer on the serial bus

 Strout transmits a string of bytes on the serial bus.

.endif
.include app.inc

drivers / Print Driver Support Library

 B-131 B: Examples

OpenFile:

.if 0

Function: Internal routine: prepares the file structure for communications with the printer through the

serious bus.

Called By: PrintBuffer.

Parameters: none.

Returns: none.

Uses: none.

Destroys: a, x, y.

.endif
OpenFile:

lda #PRINTADDR ; device number
jsr Listen ; directs the printer
lda #SECADD|$F0 ; load the secondary address for this
jsr Second ; printer and transmit
jsr Unlsn ; commands the printer to stop listening on the bus
rts

drivers / Print Driver Support Library

 B-132 B: Examples

CloseFile:

.if 0

Function: Internal routine: Disables the file structure for communications with the printer.

Called By: PrintBuffer.

Parameters: none.

Returns: none.

Uses: none.

Destroys: a, x, y.

.endif
CloseFile:

lda #PRINTADDR ; device number
jsr Listen ; directs the printer
lda #SECADD|$E0 ; load the secondary address for this
jsr Second ; printer and transmit
jsr Unlsn ; commands the printer to stop listening on the serial bus
rts

drivers / Print Driver Support Library

 B-133 B: Examples

OpenPrint:

.if 0

Function: Internal routine: Initializes the printer listening on the serial bus.

Called By: PrintBuffer.

Parameters: none.

Returns: none.

Uses: none.

Destroys: a.

.endif
OpenPrint:

lda #PRINTADDR ; device number
jsr Listen ; directs the printer
lda #SECADD|$60 ; load the secondary address for this printer
jsr Second ; Transmit
rts

drivers / Print Driver Support Library

 B-134 B: Examples

ClosePrint:

.if 0

Function: Internal routine: Initializes the printer listening on the serial bus.

Called By: PrintBuffer.

Parameters: none.

Returns: none.

Uses: none.

Destroys: a, x, y.

.endif
ClosePrint:

jsr Unlsn ; commands the printer to stop listening
 ; on the serial bus
rts

drivers / Print Driver Support Library

 B-135 B: Examples

Strout:

.if 0

Function: Strout (string out) transmits the string of characters pointed to by r3.

Called By: PrintBuffer

Parameters: r3 STRING — string to be transmitted (data must be arranged in reverse order).

 a number of bytes to be transmitted.

Alters: scount

Return: scount $FF

 y $00

Destroys: a.

.endif
Strout :
 sta scount ; save the index
 dec scount
10$
 ldy scount ; load the index
 lda (r3),y ; get the byte
 jsr Ciout ; send it
 dec scount ; update the index
 bpl 10$; if the table is not finished, proceed

; with the next character
 rts

drivers / Print Driver Support Library

 B-136 B: Examples

app.inc

.if 0

Function: Application include

File name: app.inc

Uses: app.con Application constants

 app.mac Application macros

 app.sym Application symbols

Callable Routines:

 none.

Note: This sends nothing from the includes to the linker. Use this when app.Inc has been used in a

main source file, or from the main source file if you don't care about debugger information.

 .endif
.if Pass1
 .noeqin ; never want to send CONSTANTS to linker
 .noglbl
 .include app.con
 .include app.mac
 .include app.sym ; no symbols will go to linker/debugger
 .glbl
 .eqin
.endif

.psect

drivers / Print Driver Support Library

 B-137 B: Examples

app.con

.if 0

Function: Application constants

File name: app.con

Uses: geo.con

Callable Routines:

None.

 .endif
.include geo.con ; standard GEOS constants

;--- All constants only used by this application/Library go here.

drivers / Print Driver Support Library

 B-138 B: Examples

app.sym

.if 0

Function: Application symbols.

File name: app.sym

Uses: geo.sym

Callable Routines:

 None.

 .endif
.include geo.sym ; standard GEOS symbols (jump table and variables)

;--- All zero page declarations created for the application go here.

;--- All symbols created for the application go here.

; Global variables:

;--- We normally don't send any constants to the linker.
;--- If we need one to go to linker for use in the .lnk file or other linker resolutions
;--- then need to redefine here.

Acptr = $FFA5 ; Input byte from serial port
Ciout = $FFA8 ; Transmit a byte over the serial bus
Listen = $FFB1 ; Command a device on the serial bus to listen
Second = $FF93 ; Send secondary address for listen
Unlsn = $FFAE ; Send an UNLISTEN command
Untlk = $FFAB ; Send an UNTALK command

drivers / Print Driver Support Library

 B-139 B: Examples

app.mac

.if 0

Function: Application macros.

File name: app.mac

Uses: geo.mac

Callable Routines:

 None.

 .endif
.include geo.mac ; Standard GEOS macros.

;--- All macros created for the application go here.

graphics / BitOtherClip Example

 B-140 B: Examples

internal

graphics

BitOtherClip Example

;--- Constants
NO_PICTURE = -1 ; no picture error. MUST BE NON-ZERO

;--- window coordinates and dimensions
WIN_CRDX = 5 ; card x-position
WIN_CRDWIDTH = 12 ; card width
WIN_Y = 40 ; y-position
WIN_HEIGHT = 110 ; height

;--- Variables
.ramsect
 error: .block 1 ; temp holder for disk errors
 curPhoto: .block 1 ; Record to use
 saveR1: .block 2 ; temp save for GEOS registers that need to
 saveR5: .block 2 ; be preserved between calls to ReadByte
 leftOffset: .block 1 ; scroll x-index into bitmap
 topOffset: .block 2 ; scroll y-index into bitmap
 picWidth: .block 1 ; bitmap card width
 picLength: .block 2 ; bitmap card height
 clipBuffer: .block 135 ; BitOtherClip buffer (+1 for safety)

.psect

graphics / BitOtherClip Example

 B-141 B: Examples

DrawPhoto:

.if 0

Function: Read a picture in from a photo album record and draw it clipped to a window. Scroll values

allow a specific portion of the bitmap to be shown.

Parameters: Open VLIR album file with photo scraps in records.

curPhoto record to use.

leftOffset scroll value on x.

topOffset scroll value on y.

RETURNS: picWidth from photo record.

picLength from photo record.

x error ($00 = NO_ERROR).

Destroys:

 .endif
DrawPhoto:
 jsr ClearWindow ; clear the drawing window
 jsr GetPicSize ; get the size of the picture
 txa ; check for error
 bne 99$; carry comes back set if we can draw
 jsr SetUpPhoto ; set up clipping parameters
 ldx #NO_ERROR ; no errors yet
 bcc 99$; skip drawing if necessary
 jsr PutUpPhoto ; draw photo from the record
99$
 rts ; exit with error in x

graphics / BitOtherClip Example

 B-142 B: Examples

ClearWindow:

.if 0

Function: Erase the window areas where we plan to put the bitmap.

Parameters: nothing.

Returns:

Alters: curPattern = pattern 0.

Destroys: a, x, y, r5-r8.

 .endif
ClearWindow:
 lda #0 ; use blank fill pattern
 jsr SetPattern
 jsr i_Rectangle
 .byte WIN_Y
 .byte (WIN_Y+WIN_HEIGHT)
 .word (WIN_CRDX * 8)
 .word (WIN_CRDX*8 + WIN_CRDWIDTH*8)
 rts

graphics / BitOtherClip Example

 B-143 B: Examples

SetUpPhoto:

.if 0

Function: Set up clipping regions and other parameters.

Parameters: picWidth card width of bitmap.

picLength height of bitmap.

leftOffset card scroll index into bitmap.

rightOffset line scroll index into bitmap.

Returns: carry set = OK to draw.

 clear = don't draw (lies outside of region).

r0 BitOtherClip buffer.

r1L Card x-position of window.

r1H y-position of window.

r2L number of cards of bitmap to display in window.

r2H number of lines of bitmap to display in window.

r12 lines to skip on top.

r11L cards to skip on left.

r11H cards to skip on right.

Destroys: a.

 .endif
SetUpPhoto:
 LoadW r0,#clipBuffer ; r0 <- buffer for BitOtherClip's use
 LoadB r1L,#WIN_CRDX ; r1L <- window's card x-position
 LoadB r1H,#WIN_Y ; r1H <- window's y-position
 lda picWidth ; accumulator <- (picWidth-leftOffset)
 ; (difference between width of
 sub leftOffset ; picture and offset into picture)
 bcc 99$; if offset exceeds width, then skip
 beq 99$; over picture draw
 cmp #WIN_CRDWIDTH ; if width to display exceeds width of bitmap then
 bcc 10$; display as much as
 lda #WIN_CRDWIDTH ; will fit in the window.
10$;
 sta r2L ; r2L <- card width to display
 ;
 lda picLength ; accumulator <- (picLength-topOffset)
 ; (difference between height of
 sub topOffset ; picture and offset into picture)
 bcc 99$; if offset exceeds height, then
 beq 99$; skip over picture draw
 cmp #WIN_HEIGHT ; if height to display exceeds height
 bcc 20$; of bitmap, then display as much as
 lda #WIN_HEIGHT ; will fit in the window.

SetUpPhoto graphics / BitOtherClip Example

 B-144 B: Examples

20$;
 sta r2H ; r2H <- pixel height to display
 MoveW topOffset,r12 ; r12 <- lines to skip on top
 MoveW leftOffset,r11L ; r11L <- cards to skip on left
 ;
 lda picWidth ;
 sub r2L ;
 sbc leftOffset ;
 sta r11H ; r11H <- cards to skip on right
 clc ; flag as OK to draw
 rts ; exit
99$;
 sec ; flag as not to draw
 rts ;

graphics / BitOtherClip Example

 B-145 B: Examples

PutUpPhoto:

.if 0

Function: Draw photo from record.

Parameters: nothing.

Returns: x error ($00 = no error).

Destroys: a, x, y, r0-r15.

 .endif
PutUpPhoto:
 jsr GetPicSize ; reload picture length and width
 txa ; check for error or no picture
 bne 99$; leave on error
; --- No need to preload r0. Sync is called before the first byte of each packet is retrieved.
; jsr Sync ; r0 <- clipBuffer
; ---
 LoadW r13,#AppInput ; r13 <- AppInput routine
 LoadW r12,#Sync ; r12 <- Sync routine
 LoadB error,#NO_ERROR ; start out with no error
 jsr BitOtherClip ; display photo
 ldx error ; put any error into x
99$;
 rts ; exit

graphics / BitOtherClip Example

 B-146 B: Examples

AppInput:

Part of BitOtherClip Example on how to handle APPINPUT.
.if 0

Function: Bitmap input routine called by BitOtherClip. Returns a single byte of the uncompacted bitmap

into buffer pointed to by (r0).

Parameters: r0 BUFFER — Active BUFFER being used by BitOtherClip.

Uses: saveR1, saveR5, BitOtherClip active parameters.

Returns: bitmap byte in BitOtherClip's buffer (off of r0) any error in error.

Destroys: a, y.

 .endif
AppInput:
 PushW r1 ; save r1, r4, and r5
 PushW r4 ; (saved for calls to ReadByte routine
 PushW r5 ;
 MoveW saveR1,r1 ; r1 <- saveR1
 MoveW saveR5,r5 ; r5 <- saveR5
 LoadW r4,#diskBlkBuf ; r4 <- disk buffer we use
 jsr ReadByte ; get a byte from the file
 ; (byte is in A)
 stx error ; save any error
 ldy #0 ; null indirection index
 sta (r0),y ; store byte into buffer
 MoveW r5,#saveR5 ; r5 -> saveR5
 MoveW r1,#saveR1 ; r1 -> saveR1
 PopW r5 ; restore r1, r4, and r5
 PopW r4 ;
 PopW r1 ;
 rts ; exit

.if 0

Function: Dumb synchronization routine needed by BitOtherClip.

 Resets r0 buffer pointer back to start of buffer.

Uses: clipBuffer.

Alters: r0.

Returns: r0 set to start of buffer.

Destroys: a.

 .endif

Sync:
 LoadW r0,#clipBuffer ; reset the pointer
 rts ; exit

graphics / BitOtherClip Example

 B-147 B: Examples

GetPicSize:

.if 0

Function: Get picture size and other misc. setup for PutUpPhoto

Returns: x error.

 .endif
GetPicSize:
 PushW r1 ; save r1 and r4
 PushW r4
 lda curPhoto ; get current photo's record number
 jsr PointRecord ; point to that record
 ; r1 <- block# of first record
 lda r1L ; make sure there's something there
 bne 10$; branch if valid record found
 ldx #NO_PICTURE ; otherwise, flag no picture
;--- Following line changed to save bytes
; bra 40$; and exit
 bne 40$; unconditional (NO_PICTURE != 0)
10$
 jsr SetUpReadByte ; prepare for ReadByte
 txa ; check status
 bne 40$; exit on error
 jsr ReadSizeBytes ; read the size bytes out of the record
 ; and store them in the photo size
 ; variables (error comes back in x)
 MoveW r1,saveR1 ; save off r1 and r5
 MoveW r5,saveR5
;--- Following line removed to let error propagate back
 ldx #NO_ERROR ; we got this far; no errors found...
40$
 PopW r4 ; restore r4 and r5
 PopW r5
 rts ; exit

graphics / BitOtherClip Example

 B-148 B: Examples

SetUpReadByte:

.if 0

Function: Set up variables and stuff for ReadByte

Parameters: r1L, r1H track/sector of first block in chain

Returns: r1, r4, r5 set up for ReadByte

x error ($00 = no error)

Destroys: a, y.

 .endif
SetUpReadByte:
 ldx #NO_ERROR
 MoveW r4,r1 ; r1 <- track/sector of 1st block
 LoadW r4,#diskBlkBuf ; r4 <- disk buffer for ReadByte
 LdNull r5 ; r5 <- $0000 (for ReadByte)
 rts ; exit

.if 0

Function: Set up variables and stuff for ReadByte.

Parameters: r1L, r1H track/sector of first block in chain.

Returns: r1, r4, r5 set up for ReadByte.

x error ($00 = no error).

Destroys: a, y.

 .endif
ReadSizeBytes:
 jsr ReadByte ; get photo width
 sta picWidth
 txa ; check for error
 bne 99$
 jsr ReadByte ; get photo length (low-byte)
 sta picLength
 txa ; check for error
 bne 99$
 jsr ReadByte ; get photo length (high-byte)
 sta picLength+1
99$
 rts ; exit error in x

 graphics / Compact Bitmap

 B-149 B: Examples

Compact Bitmap

.if 0

Name: BitCompact

Description:

Converts linear bitmap data into compacted bitmap format, suitable for passing to routines such as

BitmapUp.

When compacting bitmaps directly from screen memory, the data must first be converted from the internal

screen format to linear bitmap format. The left-edge of the source bitmap must start on a card boundary

and the right-edge must extend to the end of another card boundary.

This bitmap data must then be converted to a linear format where the first byte represents the first eight

pixels of the upper-left corner of the bitmap, the next byte represents the next eight pixels and so on to the

right-edge of the bitmap. The byte following the last byte in a single line of a bitmap is the first byte of

the next line. (The actual dimensions of the bitmap will be reconstructed from the WIDTH and HEIGHT

parameters passed to the bitmap display routine).

To convert from internal screen format to linear bitmap format:

C64: Set dispBufferOn appropriately (to reflect which screen buffer to grab data from) and...

Cnvrt40:
 ldx yPos ; get y-coordinate of top of bitmap
 jsr GetScanLine ; use it to calculate screen pointers
 lda xPos ; get x-coordinate (low-byte)
 and #%11111000 ; strip off 3 bits for card x-position
 ; add card offset to
 add r5L ; base pointer (low-byte first)
 sta r5L

 lda xPos+1 ; (high-byte also)
 adc r5H
 sta r5H

;--- at this point, (r5) points to the first byte in
;--- the bitmap (upper-left corner)

Now step through each byte in this scanline by adding 8 to the pointer in r5 (compensating for the

card architecture) to get to the next byte, and repeat this process for each line in the bitmap

(incrementing yPos appropriately for each scanline).

C128: (40-column, same as C64; 80-column, read on...)

Conveniently, the 80-column data is already in linear bitmap format. The data, will probably be

coming from the background buffer because the foreground screen is entirely contained on the

VDC chip's internal RAM and is difficult to access.

graphics/Compact Bitmap

 B-150 B: Examples

Cnvrt80:

bit graphMode ; make sure in 80-column mode
bpl Cnvrt40 ; handle 40 like C64
PushB dispBufferOn ; save current dispBufferOn
LoadB dispBufferOn,#ST_WR_BACK ; force use of back buffer
ldx yPos ; get y-coordinate
jsr GetScanLine ; use it to calc screen ptrs
MoveW xPos,r0 ; copy x-position to zp work register
ldx #r0 ; divide r0 by 8
ldy #3 ; (shift right 3 times)
jsr DShiftRight ; this gives us the card offset
AddW r0,r6 ; add card (byte) offset to scanline address

;--- at this point (r6) points to the first byte of the bitmap

Now step each byte in this scanline by adding 1 to the pointer in r6 to get to the next byte, and

repeat this process for each line in the bitmap (incrementing yPos appropriately).

Parameters: r0 Pointer to destination buffer to store compacted data (this buffer must be at least 1 and 1/64

of size of the uncompacted data because it is possible, but unlikely, that the compacted data

will actually be larger than the uncompacted data).

r1 Pointer to linear bitmap data to compact.

r2 #of bytes to compact.

Returns: r0 Points to byte following last byte in compacted data.

Destroys: a, x, y, r1-r6.

PSEUDO CODE / STRATEGY:

Starts with the first source byte and counts the number of identical bytes following it to determine whether

to generate a UNIQUE or REPEAT packet. If there are three or less identical bytes in a row, a UNIQUE

packet is generated, four or more generates a REPEAT packet. The packet is placed in the destination

buffer and this process is then repeated until all bytes in the source buffer have been compressed.

KNOWN BUGS / SIDE EFFECTS / IDEAS:

Only uses the UNIQUE and REPEAT compaction types. The BIGCOUNT compaction type is such that

it is difficult to determine the compaction payoff point. BIGCOUNT could be used to compress adjacent

scanlines that are identical because this type of check would be trivial. The basic scanline could be

compressed with UNIQUE and REPEAT, then duplicated by placing it inside a BIGCOUNT.

 This routine is not limited to compressing bitmap data. In fact, it works quite well on any data where

strings of identical bytes are common (e.g., fonts). It does not, for example, compress text very efficiently.

A Huffman-based algorithm yields better results.

 .endif

graphics/Compact Bitmap

 B-151 B: Examples

MAX_REPEAT = 127 ; maximum repeat COUNT value
MAX_UNIQUE = 191 ; maximum unique COUNT value
UNIQ_THRESH = 3 ; byte count threshold, beyond which a REPEAT type
 ; should be used instead of UNIQUE
BitCompact:
10$; r1 = current addr in source buffer
 ; r0 = current addr in destination buffer
 ; r2 = # bytes left in source
 jsr CountRepeat ; count the # of identical bytes here
 cmp #UNIQ_THRESH ; enough repeats to justify REPEAT type?
 ble 20$; no, go use UNIQUE
 ; yes, use REPEAT (A = # to repeat)
 sta r5L ; store repeat # for later
 ldy #0 ; initialize index into buffers
 sta (r0),y ; store repeat # to destination
 lda (r1),y ; get repeat value
 iny ; point to next byte in destination buffer
 sta (r0),y ; store to destination buffer
 AddVW #2,r0 ; move up destination pointer
 bra 80$; exit
20$
 ; use UNIQUE
 jsr GetUnique ; calc # of unique bytes to use
 ; (A = number of unique)
 ldy #0 ; initialize index into buffers.
 ora #$80 ; convert unique count to packet count value
 sta (r0),y ; store to destination buffer
30$
 lda (r1),y ; get first unique value
 iny ; increment pointer
 sta (r0),y ; store to destination buffer
 cpy r5L ; done yet? (r5L - repeat #)
 bne 30$; loop till done copying
 inc r5L ; convert to # to add to destination pointer
 AddBW r5L,r0 ; move up destination pointer
 dec r5L ; correct back to # done
 ; fall through to exit
80$
 AddBW r5L,r1 ; move up source pointer
 SubBW r5L,r2 ; subtract off #left in source buffer
 bwne r2,10$; Loop until r2=0
 rts ; else, exit

CountRepeat:
 ; r1 = current pointer into source buffer
 ; r0 = current pointer into destination buffer
 ; r2 = number of bytes left in source
 ldy #0 ; initialize relative buffer index
 ldx #0 ; initialize current repeat count
 lda (r1),y ; get first byte
 sta r6L ; keep in r6L. This is the byte we're trying
 ; to match

graphics/Compact Bitmap

 B-152 B: Examples

10$
 lda r2H ; more than 255 bytes left in source?
 bne 20$; if so, ignore # check
 cpx r2L ; else, are we at the last byte?
 beq 90$; if so, exit
20$
 cpx #MAX_REPEAT ; check repeat count with max # of repeats
 beq 90$; if at maximum, branch to exit
 lda (r1),y ; does it actually match?
 cmp r6L ; check against 1st byte
 bne 90$; if no match, exit
 inx ; else, we found a match, increment repeat count
 iny ; move to next byte in source
;--- Note: following branch changed to save a byte, y is never incremented to $00
; bra 10$; and loop to check it
 bne 10$; branch always... iny above will always clear z flag
90$
 txa ; return repeat count in A
 rts ; exit

GetUnique:
 PushW r1 ; save orig pointer
 LoadB r5L,#0 ; start none unique
10$
 inc r5L ; do one more unique
 ldx r5L ; get # unique so far
 lda r2H ; lots left?
 bne 20$; if so, skip end check
20$
 cpx r2L ; all of them?
 beq 90$; if yes, then that many
 cpx #MAX_UNIQUE ; max # unique
 beq 90$; if full, do them
 AddVW #1,r1 ; move up a byte
 jsr CountRepeat ; how many of the following bytes are repeats?
 cmp #UNIQ_THRESH ; enough to warrant a REPEAT packet?
 ble 10$; no, go stuff them in this UNIQUE packet
30$; yes, close this UNIQUE packet
 PopW r1 ; retrieve start pointer
 lda r5L ; get # to do unique
 rts

graphics

 B-153 B: Examples

ChangeMode:

 .if 0

Function: Change Video Mode in GEOS 128.

Parameters: nothing.

Returns: nothing.

Destroys: a, x, y, r0.

 .endif
GREYPAT=2

ChangeMode:

tmbf 7,graphMode ; toggle 40/80 bit
jsr SetNewMode ; Set new video mode
jsr GreyScreen ; grey out new screen
rts ; exit

GreyScreen:
 jsr i_GraphicsString
 .byte NEWPATTERN,GREYPAT ; set to grey pattern
 .byte MOVEPENTO ; Put pen in upper left
 .word 0 ; x
 .byte 0 ; y
 .byte RECTANGLETO ; grey out entire screen
 .word (SC_PIX_WIDTH-1) | DOUBLE_W | ADD1_W
 .byte SC_PIX_HEIGHT-1
 .byte NULL
 rts

graphics

 B-154 B: Examples

Check128:

 .if 0

Function: Check for GEOS 128.

Parameters: nothing.

Returns: st minus flag set if running under GEOS 128.

 .endif
Check128:
 lda #$12 ; c128Flag not valid until version 1.3
 cmp version ; first see if version <= 1.2
 bpl 10$; if so; branch and say C64
 lda c128Flag ; else set minus based on high bit c128Flag
10$
 rts

Example usage:
 jsr Check128
 bpl 10$; ignore if under GEOS 64
 jsr DoDeDoubling ; else, patch x-coordinates to remove doubling bits
10$
 .
 .
 .

graphics

 B-155 B: Examples

DblDemo1:

.if 0

Function: Will assemble differently depending on the status of the C64 and C128 assembly constants. If

assembling for GEOS 64, doubling constants will be set to zero so that they will not affect the

x-positions. If assembling for GEOS 128, doubling constants will be set according to GEOS

Constants file so that graphic operations will double automatically in 128 mode.
 .endif
.if !(C128 ^^ C64) ; C64/C128 flags must be mutually exclusive!
 .echo DblDemo not designed to assemble for both GEOS 64 and GEOS 128!
.else

.if !C128 ; if not assembling for GEOS 128, force
; doubling constants to harmless values so
; GEOS 64 graphics routines

 ; don't get confused.
DBLE_B = 0 ; Note3: geoAssembler.x cannot do reassignment
DBLE_W = 0 ; need a new equate to hold the conditional
AD1_W = 0 ; value.

 .else ;
DBLE_B = DOUBLE_B ; if this logic block was in the CONSTANTS
DBLE_W = DOUBLE_W ; file it could set DOUBLE_B, DOUBLE_W, ADD1_W as
AD1_W = ADD1 ; needed and then all of the code base would

.endif ; use those values.

BM_XPOS = (32/8) ; byte x-position of bitmap (40-col)
BM_YPOS = 20 ; y-position of bitmap

Bitmap:

BM_WIDTH = picW ; byte bitmap width (40-col)
BM_HEIGHT = picH ; byte bitmap width (40-col)

FPATTERN = %11111111 ; pattern for surrounding frame

DoBMap:
 ;--- Place the bitmap on the screen, loading the registers with
 ; inline data (note double-width settings).

jsr i_BitmapUp ; inline call
.word Bitmap ; bitmap address
.byte (BM_XPOS|DBLE_B) ; xPos
.byte (BM_YPOS ; yPos
.byte (BM_WIDTH|DBLE_B) ; width
.byte BM_HEIGHT ; height

90$
rts ; exit
;--- (both C128 & C64 constants were both TRUE or both FALSE)

.endif

graphics

 B-156 B: Examples

DisplayImage:

.if 0

Function: General purpose routine to display a portion of compacted bitmap image in a window.

Parameters: pixBuf compacted bitmap image in pseudo-photo scrap format. Byte 0 is card width of

image. Byte 1 and 2 is the pixel height (word). The compacted image data starts at

byte 3.

 xOffset card index into bitmap to display.

 yOffset pixel index into bitmap to display.

Destroys: a, x, y, r0-r12.

.endif
.ramsect
 xoffset:
 .block 1 ; card x index into bitmap (byte)
 yoffset:
 .block 2 ; pixel y index into bitmap (word)

 ;--- 2K picture buffer
 pixWidth:
 .block 1 ; width of picture in cards (byte)
 pixHeight:
 .block 2 ; height of picture in pixels (word)
 pixImage:
 .block $800-3 ; start of bitmap image

.psect

WINDOW_X = 4 ; card x-position of window.
WINDOW_Y = 30 ; pixel y-position of window.
WINDOW_WIDTH = 5 ; card width of window
WINDOW_HEIGHT = 60 ; pixel height of window

DisplayImage:
 ;--- set up initial parameters
 LoadW r0,#pixImage ; r0 <- compacted picture data (DATA)
 LoadB r1L,#WINDOW_X ; r1L <- left-edge of window (XPOS)
 LoadB r1H,#WINDOW_Y ; r1H <- top-edge of window (Y)
 LoadB r2L,#WINDOW_WIDTH ; r2L <- width of window (W_WIDTH)
 LoadB r2H,#WINDOW_HEIGHT ; r2H <- height of window (W_HEIGHT)
 MoveB xOffset,r11L ; r11L <- x-offset into bitmap (DX1)
 MoveW yOffset,r12 ; r12 <- y-offset into bitmap (DY1)
 ;--- clip x to window
 lda pixWidth ; get bitmap width
 sec ;
 sbc #WINDOW_WIDTH ;
 sbc r11L ; now we have the right-edge clip distance
 sta r11H ; r11H <- right-edge clip (DX2)
 bpl 10$; if we're >0, branch to skip x-clipping
 adc #WINDOW_WIDTH ; add back the window width
 sta r2L ; make that the new clip window
 LoadB r11H,#0 ; r11H <- $00 (fixes underflow of DX2)

DisplayImage graphics

 B-157 B: Examples

10$;--- clip y to window
 ; subtract window height from bitmap height
 ; store intermediate result in r3
 SubVWS #WINDOW_HEIGHT,pixHeight,r3
 SubW r12,r3 ; now subtract y-index into bitmap
 bpl 20$; branch if no underflow
 lda r3L
 adc #WINDOW_HEIGHT ; correct for underflow
 sta r2H
20$ jsr BitmapClip ; display the bitmap with clipping
 rts ; exit

graphics / FilledRect:

 B-158 B: Examples

FilledRect:

.if 0

Function: Draw a filled rectangle using the current pattern.

Parameters: none.

Returns: none.

Destroys: a, x, y, r2-r9, r11.

 .endif
X1 = 35 ; left-edge
X2 = 301 ; right-edge
Y1 = 40 ; top-edge
Y2 = 100 ; bottom-edge

FilledRect:
 jsr i_Rectangle ; inline call
 .byte Y1,Y2 ; y1, y2
 .word (X1|DOUBLE_W|ADD1_W) ; x1 with doubled width + space on left for frame
 .word (X2|DOUBLE_W) ; x2 with doubled width

 jsr i_FrameRectangle
 .byte Y1,Y2 ; y1, y2
 .word (X1|DOUBLE_W) ; x1 with doubled width
 .word (X2|DOUBLE_W|ADD1_W) ; x2 with doubled width + offset for frame
 .byte $FF
 rts

;--- size optimized Version
; saves 7 bytes over the original version of FilledRect
; while achieving the same result

FilledRect:
 jsr i_Rectangle ; inline call
 .byte Y1,Y2 ; y1, y2
 .word (X1|DOUBLE_W) ; fill full size of final rectangle
 .word (X2|DOUBLE_W) ;
 ; X (r3, r4) and Y (r2L, r2H) are set and returned
 ; unchanged by i_Rectangle

 lda #$FF ; set line pattern
 jmp FrameRectangle ; frame full size of rectangle

graphics / GrphcsStr:

 B-159 B: Examples

GrphcsStr:

.if 0

Function: Draw a simple rectangle with pattern 0.

Uses: upper left corner at (xUL, yUL)

 and lower right at (xLR, xLB).

 .endif
GrphcsStr:

jsr i_GraphicsString
.byte NEWPATTERN,0
.byte MOVEPENTO
.word xUL
.byte yUL
.byte RECTANGLETO
.word xLR
.byte xLB

 .byte NULL
 rts

;--- Draw Berkeley Softworks plaque and display copyright text inside it.
; Doubling information is in the x-coordinates.
; The application this came from is compatible with all modes of GEOS at runtime.

 BSW_Sig:
 jsr i_GraphicsString
 .byte NEWPATTERN,1 ; draw shadow
 .byte MOVEPENTO
 .word DOUBLE_W | 48
 .byte 148
 .byte RECTANGLETO
 .word DOUBLE_W | 288
 .byte 196
 .byte NEWPATTERN,0 ; draw background of plaque
 .byte MOVEPENTO
 .word DOUBLE_W | 40
 .byte 140
 .byte RECTANGLETO
 .word DOUBLE_W | 280
 .byte 188
 .byte FRAME_RECTO ; frame top section
 .word DOUBLE_W | 40
 .byte 140
 .byte FRAME_RECTO ; frame bottom section
 .word DOUBLE_W | 280
 .byte 170
 .byte ESC_PUTSTRING ; now put application name using PutString
 .word DOUBLE_W | 136
 .byte 152
 .byte BOLDON
 .byte "geoAssembler'"
 .byte GOTOXY ; go to new XY for copyright
 .word DOUBLE_W | 108
 .byte 164
 .byte PLAINTEXT ; and print it
 .byte "Copyright 1987 Berkeley Softworks",NULL
 rts

graphics / MseToCardPos:

 B-160 B: Examples

MseToCardPos:

.if 0

Function: converts current mouse positions to card position.

Parameters: nothing.

Uses: mouseXPos, mouseYPos.

Returns: r0L mouse card x-position (byte).

r0H mouse card y-position (byte).

Destroys: a, x, y.

 .endif

MseToCardPos:
 php ; save current interrupt disable status
 sei ; disable interrupts so mouseXPos doesn't change
 MoveW mouseXPos,r0 ; copy mouse x-position to zp work reg (r0)
 lda mouseYPos ; get mouse y-position while interrupts are disabled
 plp ; reset interrupt status asap
 ldx #r0 ; divide x-position (r0) by 8
 ldy #3 ; (shift right 3 times)
 jsr DShiftRight ; this gives us the card x-position in r0L
 lsr a ; shift y-position in accumulator right 3 times
 lsr a ; which is a divide by 8
 lsr a ; and gives us the card y-position in a
 sta r0H ; set card y-position
 rts ; exit

Note: If you do not disable interrupts prior to getting the value of mouseXPos you could get r0H with

lda/sta and before getting r0L an interrupt occurs and the mouse position is updated during the

interrupt. Now, when you do lda/sta for r0L, it is for a different mouseXPos reading giving

unpredictable results.

Note3: By also getting the Y value while interrupts are disabled, you are guaranteed to get a consistent

reading for all three parts of the mouse position.

 The three mouse position parts that have to be read, and the order that they are normally read:

 mouseXPos+1 (byte) high-byte of x-position word.

 mouseXPos (byte) low-byte of x-position word.

 mouseYPos (byte) y-position.

 If interrupts are enabled while reading these three values the interrupt could occur between the

read of mouseXPos+1 and mouseXPos, making mouseXPos+1 a completely unrelated value to

mouseXPos and mouseYPos. The same is true if the interrupt occurs after mouseXPos is read. In

this case the mouseXPos word will be from one sampling of the mouse and the mouseYPos byte

will be from a different and unrelated later sampling.

graphics / ShowBitmap:

 B-161 B: Examples

ShowBitmap:

.if 0

Function: ShowBitmap.

Note: For C64 and C128:

 Showing compile time handling of C64/C128 differences with x-position.

 .endif

.if C128
 DOUBLE_B = %10000000
.else
 DOUBLE_B = NULL
.endif

BM_XPOS = (32/8) ; card x-position of bitmap
BM_YPOS = 20 ; y-position of bitmap
 ;
Bitmap:

BM_WIDTH = picW ; card width of bitmap
BM_HEGHT = picH ; bitmap height
 ;
 ; place the bitmap on the screen
 ; loading the registers with
 ; inline data (note double-width)
ShowBitmap:
 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK)

;--- bug fix for 128 release 1. (Not needed for 2.0+)
.if (C128)
 jsr TempHideMouse ; remove sprites
.endif

 jsr i_BitmapUp ; inline bitmap call
 .word Bitmap ; *bitmap address
 .byte BM_XPOS | DOUBLE_B ; *x-position
 .byte BM_YPOS ; *y-position
 .byte BM_WIDTH | DOUBLE_B ; *width
 .byte BM_HEIGHT ; *height

90$
 rts ; exit

graphics / StopMenus:

 B-162 B: Examples

StopMenus:

.if 0

Function: Example of how to temporarily disable menus and then restart them at a later time.

Note: jsr StopMenus will stop menu processing.

jsr RestartMenus will return menu processing to its prior state.

 .endif
oldMouseOn:
 .byte 0 ; temp save area for mouseOn variable

StopMenus:
 MoveB mouseOn,oldMouseOn ; save current enable status for later
 rmbf MENUON_BIT,mouseOn ; disable menus temporarily
 rts

RestartMenus:
 lda oldMouseOn ; get old menu enable status
 and #(%1 << MENUON_BIT) ; ignore all but menu bit
 ora mouseOn ; restore old menu bit
 sta mouseOn ; in current mouseOn byte
 rts ; exit

graphics

 B-163 B: Examples

i_VerticalLine:

.if 0

Function: Inline version of VerticalLine.

Parameters: Inline:
 .word x1
 .word x2
 .byte y1

.endif
V_BYTES = 5 ; number of inline bytes in call

i_VerticalLine:

;--- save away the inline return address
 PopW returnAddress

;--- load up VerticalLine's parameters
ldy #V_BYTES
lda (returnAddress),y ; get y1 parameter first
sta r11L

10$
dey ; load other params in a loop
lda (returnAddress),y ; they occupy consecutive GEOS
sta r3L-1,y ; pseudoregisters, so this will
cpy #1 ; work correctly
bne 10$

;--- now call VerticalLine with registers loaded
jsr VerticalLine

;--- and do an inline return
php ; save st register to return
lda #V_BYTES +1 ; # of bytes + 1
jmp DoInlineReturn ; jump to inline return. DO NOT jsr!

hardware

 B-164 B: Examples

hardware

GetFPS:

.if 0

Author: PBM.

Parameters: nothing.

Returns: a = fps.

 minus flag set if known model was not found.

Note: minus return should never happen without a bug in C64Model.

 .endif
 models:
 .byte %00,%01,%10,%11
 NBR_MODELS=*-models

 frates:
 .byte 50,60,60,50

 GetFPS:
 jsr C64Model
 10$
 ldx #NBR_MODELS-1
 cmp models,x
 beq 90$
 dex
 bpl 10$
 lda #[TRUE
 rts
 90$
 lda frates,x
 rts

hardware

 B-165 B: Examples

C64Model:

.if 0

Function: Detect PAL/NTSC.

Original Name:

 DetectC64Model.

Author: TWW.

Description:

312 rasterlines -> 63 cycles per line PAL

 => 312 * 63 = 19656 Cycles / VSYNC => #>76 %00

262 rasterlines -> 64 cycles per line NTSC V1

 => 262 * 64 = 16768 Cycles / VSYNC => #>65 %01

263 rasterlines -> 65 cycles per line NTSC V2

 => 263 * 65 = 17095 Cycles / VSYNC => #>66 %10

312 rasterlines -> 65 cycles per line PAL DREAN

 => 312 * 65 = 20280 Cycles / VSYNC => #>79 %11

 .endif
 C64Model:
 ;--- Use CIA #1 timer B to count cycles in a frame
 lda #$FF
 sta cia1tblo
 sta cia1tbhi ; latch #$FFFF to timer B
 10$
 bbrf 7, grcntrl1, 10$; wait until raster > 256

 20$
 bbsf 7, grcntrl1, 20$; wait until raster = 0

 ldx #%00011001
 stx cia1crb ; start timer B (one shot mode

 ; (timer stops automatically when underflow))
 30$
 bbrf 7, grcntrl1, 30$; wait until raster > 256

 40$
 bbsf 7, grcntrl1, 40$; wait until raster = 0

 sub cia1tbhi ; high-byte number of cycles used
 and #%00000011
 rts

DetectC64Model source from CodeBase64:
https://codebase64.org/doku.php?id=base:detect_pal_ntsc

https://codebase64.org/doku.php?id=base:detect_pal_ntsc

hardware

 B-166 B: Examples

math

VDC

Sta80Fore:

.if 0

Function: Stores byte to 128 80-column foreground screen.

Parameters: r5 address in foreground memory.

a data value (for Sta80Fore).

Returns: a data value (for Lda80Fore).

Destroys x.

Note: Call TempHideMouse to disable software sprites before writing foreground screen directly.

.endif
R18_UAH = $12 ; update high-byte of VDC pointer
R19_UAL = $13 ; update low-byte of VDC pointer
R31_DA = $1F ; data byte at current VDC pointer
vdccr = $D600
vdcdr = $D601

Sta80Fore:
;--- Send data byte to the VDC chip
 jsr NewVDCAddress ; update VDC address with foreground screen pointer (r5)
 ldx #R31_DA ; request VDC data register
 stx vdccr ;
10$ bit vdccr ; test VDC status
 bpl 10$; loop till VDC ready for data byte
 sta vdcdr ; store data byte
 rts ; exit

hardware

 B-167 B: Examples

Lda80Fore:

.if 0

Function: loads byte from 128 80-column foreground screen.

Parameters: r5 address in foreground memory.

Returns: a data value from VDC screen memory.

Destroys x.

 .endif
Lda80Fore:
 jsr NewVDCAddress ; update VDC address with foreground screen pointer (r5)
 ldx #R31_DA ; request VDC data register
 stx vdccr ;
10$ bit vdccr ; test VDC status
 bpl 10$; loop till VDC ready for data byte
 lda vdcdr ; get data byte
 rts ; exit

hardware

 B-168 B: Examples

NewVDCAddress:

.if 0

Function: Set VDC Memory pointer to address in r5.

Parameters: r5 address in foreground memory.

Returns: nothing.

Destroys: x.

Description: Transfer value in r5 to VDC internal hi/lo address register.

Note: Call TempHideMouse to disable software sprites before writing foreground screen directly.

 .endif
NewVDCAddress:
 ldx #R18_UAH
 stx vdccr ; ask VDC for high-byte
10$ bit vdccr ; check VDC status
 bpl 10$; and loop till VDC ready
 ldx r5H ; store high-byte of address
 stx vdcdr ; to VDC chip

 ldx #R18_UAL ; ask VDC for low-byte
 stx vdccr ;
20$ bit vdccr ; check VDC status
 bpl 20$; and loop till VDC ready
 ldx r5L ; store low-byte of address
 stx vdcdr ; to VDC chip
 rts ; exit

 icons & menu icons & menu / IconsUp:

 B-169 B: Examples

icons & menu

IconsUp:

 .if 0

Function: Install an icon table.

Important: Due to a limitation in the icon-scanning code, the application must always install an icon table with

at least one icon. If the application is not using icons, create a dummy icon table with one icon (see

example NoIcons).

 .endif
IconsUp:
 ;--- draw to both buffers
 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK)
 LoadW r0,#IconTable ; put pointer to table in r0
 jmp DoIcons ; activate the icons and exit

 icons & menu icons & menu / mainMenu:

 B-170 B: Examples

mainMenu:

 .if 0

Function: Sample Menu Table.

Description: Define an unconstrained horizontal menu of three items, suitable for use as the main menu.

Each item in the menu points to a sub-menu that is not shown

(GEOSMenu, fileMenu, and editMenu).

 .endif

;--- Menu bounding rectangle
MAINX1 = 0 ; left-edge
MAINY1 = 0 ; top-edge
MAINX2 = 72 ; right-edge
MAINY2 = MAINY1 + M_HEIGHT ; bottom-edge
M_ITEMS = 3

;**
; MENU DEFINITION
;**
; HEADER
mainMenu:
 .byte MAINY1 ; top
 .byte MAINY2 ; bottom
 .word MAINX1 ; left
 .word MAINX2 ; right
 .byte (HORIZONTAL | UN_CONSTRAINED | M_ITEMS)

;--- ITEMS
mainItems:
;GEOS
 .word GEOSText ; pointer to null-terminated text
 .byte SUB_MENU ; generates sub-menu
 .word GEOSMenu ; pointer to sub-menu structure
;File
 .word fileText ; pointer to null-terminated text
 .byte SUB_MENU ; generates sub-menu
 .word fileMenu ; pointer to sub-menu structure
;Edit
 .word editText ; pointer to null-terminated text
 .byte SUB_MENU ; generates sub-menu
 .word editMenu ; pointer to sub-menu structure

;--- text string for GEOS selection
GEOSText:
 .byte "GEOS", NULL ; null-terminated item string

;--- text string for File selection
fileText:
 .byte "File", NULL ; null-terminated item string

;--- text string for Edit selection
editText:
 .byte "Edit", NULL ; null-terminated item string

 icons & menu icons & menu / NoIcons:

 B-171 B: Examples

NoIcons:

 .if 0

Function: Install a dummy icon table. For use in applications that aren't using icons. Call early in the

initialization of the application, before returning to MainLoop.

 .endif

DummyIconTable:
 .byte 1 ; one icon
 .word NULL ; dummy mouse x (don't reposition)
 .byte NULL ; dummy mouse y
 .word NULL ; bitmap pointer to $0000 (disabled)
 .byte NULL ; dummy x-position
 .byte NULL ; dummy y-position
 .byte 1,1 ; dummy width and height
 .word NULL ; dummy event handler

NoIcons:
LoadW r0,#DummyIconTable ; point to dummy icon table
jmp DoIcons ; install. let DoIcons rts

 keyboard keyboard / Keyboard Entry Routine

 B-172 B: Examples

keyboard

Keyboard Entry Routine

Constants and Variables
TXT_LEFT = 10 ; text left-margin
TXT_RIGHT = (SC_PIX_WIDTH - TXT_LEFT) ; text right-margin
TXT_TOP = 20 ; text top-margin
TXT_BOT = (SC_PIX_HEIGHT – TXT_TOP) ; text bottom-margin

;--- text (x, y) starting position
TXT_X = 20
TXT_Y = 50
;--- size of the text buffer
TXTBUFSIZE = $200 ; 1/2K is far more than enough for
 ; now. To accept multiple lines,
 ; the buffer will need to grow

;--- Characters to accept before buffer overflow fault
MAX_CHARS = 30

SPACE = 32 ; first printable character code

.ramsect
 ;--- Buffer that will hold all the text we enter. We let the key input
 ;--- routine build it up a line at a time by passing
 bigTextBuffer:
 .block TXTBUFSIZE
 textDispBufOn:
 .block 1 ; holds dispBufferOn value for text
 txtInMax:
 .block 1 ; number of characters that will
 ; generate buffer overflow fault
 textOn:
 .block 1 ; text is ON flag. (TRUE = ON)

;--- If the indirect jump vector straddles a page boundary, fix it to compensate for a bug
; in the 6502 architecture.
; To use this logic we must know the base address that the .rel file will use.
; PSB (PSect Base address) is where we KNOW the .rel will be linked.
; * is the current psect offset.
; PSB+* = current real memory pointer of final code.
; (warning: if the link address does not match PSB, it will break this logic).
; if PSB is not a known value then this logic block cannot be used.
; Use a fixed location in .zsect or .ramsect that does not span a page boundary instead.
PSB = $400 ; psect address this code will be linked at
.if ((PSB+* & $FF) == $FF) ; if the real memory address is on the edge of a boundary
 .block 1 ; allocate 1 byte to move the vector to the next page
.endif

 bufFaultVec:
 .block 2 ; vector cannot span a page boundary!

tempDisp:
.block 1 ; temporary hold for dispBufferOn

 sysKeySave:
 .block 2 ; holds address of system key routine

.psect

 keyboard keyboard / Keyboard Entry Routine

 B-173 B: Examples

Table of control keys

 ;--- Keys and their corresponding routines
ctrlKeys :
 .byte CR ; 1 Carriage return
 .byte BACKSPACE ; 2 backspace
 .byte KEY_DELETE ; 3 ditto
 .byte KEY_INSERT ; 4 ditto ; Insert is a shifted Delete.
 .byte KEY_RIGHT ; 5 ditto

NUM_CTRL = (* - ctrlKeys - 1) ; number of control keys

.if (NUM_CTRL > 127)
 .echo WARNING: too many control keys
.endif

 ;--- Table of low-bytes of control key routine addresses
l_CtrlTbl:
 .byte [DoReturn ; 1
 .byte [DoBackSpace ; 2
 .byte [DoBackSpace ; 3
 .byte [DoBackSpace ; 4
 .byte [DoBackSpace ; 5

 ;--- Table of high-bytes of control key routine addresses
h_CtrlTbl:
 .byte]DoReturn
 .byte]DoBackSpace
 .byte]DoBackSpace
 .byte]DoBackSpace
 .byte]DoBackSpace

 keyboard keyboard / Keyboard Entry Routine

 B-174 B: Examples

StartText:

 .if 0

Name: StartText.

Function: Initialize the text input process by loading the proper vectors, setting flags, etc. Wedges KeyIn

into keyVector to intercept keypresses and output them to a single line.

Parameters: nothing.

Returns: text input routine in keyVector.

Destroys: assume a, x, y, r0-r15.

 .endif

StartText:
 ;--- Send our text output to both screens
 LoadB textDispBufOn,#(ST_WR_FORE | ST_WR_BACK)

 ;--- Install our character handler
 LoadW keyVector,#KeyIn ; keypresses vector thru here
 LoadW StringFaultVec,#TextFault ; and string faults here

 jsr UseSystemFont ; install the system font
 lda #PLAINTEXT ; clear all text attributes
 jsr PutChar

 LoadW leftMargin,#TXT_LEFT ; set the left and right-margins
 LoadW rightMargin,#TXT_RIGHT
 LoadW windowTop,#TXT_TOP ; set the top and bottom-margins
 LoadW windowBottom,#TXT_BOT

 LoadW stringX,#TXT_X ; set the text starting position
 LoadB stringY,#TXT_Y

 lda curHeight ; initialize the prompt
 jsr InitTextPrompt
 jsr PromptOn

 ;--- Point at the start of the line buffer
 LoadW txtBuf,#bigTextBuffer ; where to start
 LoadB txtBufIndex,#0 ; index from start

 LoadB txtInMax,#MAX_CHARS ; max number of characters to accept

 LoadW bufFaultVec,#BufOverflow ; and where control goes if we go over...

 LoadB textOn,#[TRUE ; turn text on
 rts ; exit

 keyboard keyboard / Keyboard Entry Routine

 B-175 B: Examples

KeyIn:

 .if 0

Function: keyVector handler. Control comes here off of MainLoop when a key is pressed.

Uses: keyData, menuNumber.

 .endif

KeyIn:
 lda menuNumber ; check current menu level
 bne 99$; ignore keys while menus down
 lda keyData ; get the keypress
 bmi 10$; was it a shortcut?
 jsr NormalKey ; no, process normally
 bra 99$; exit
10$
 jsr ShortKey ; yes, process as a shortcut
99$
 rts ; exit

 keyboard keyboard / Keyboard Entry Routine

 B-176 B: Examples

ShortKey:

 .if 0

Function: Process Shortcut Keypresses.

Parameters: a.

Description: Control comes here when shortcut keys are pressed.

 .endif
ShortKey:
 rts ; no shortcut key handler now. just ignore keypress.

 keyboard keyboard / Keyboard Entry Routine

 B-177 B: Examples

NormalKey:

 .if 0

Function: Process Non-Shortcut Keypresses.

Parameters: a.

Uses:

Returns:

Description: Control comes here when non-shortcut keys are pressed.

 .endif
NormalKey:
 ;--- Return immediately if text is off
 lda textOn
 bne 10$; branch if text on
 rts
10$
 jsr KillPrompt ; turn the prompt off
 PushB dispBufferOn ; save the current value of dispBufferOn
 MoveB textDispBufOn,dispBufferOn ; load correct value for text output.

 ;--- Load the current cursor position into the PutChar position
 ;--- registers, just in case we need to use them later.
 MoveW stringX,r11 ; X printing position
 lda stringY ; convert y cursor position to
 clc ; baseline position
 adc baselineOffset ; y printing position
 sta r1H

 ;--- Process the character
 lda keyData ; get the keypress again
 cmp #SPACE ; compare with first printable char
 bge 40$; branch if printable

 ;--- Check the control character against a table of special action
 ;--- keys. Use Y-reg to index so we can use X-register later for CallRoutine.
 ldy #NUM_CTRL ; start at top of table
20$;
 cmp ctrlKeys,y ; check for a keycode match
 beq 30$; branch if key matches table entry
 dey ; else, try next
 bpl 20$; loop until done. Note: must not
 ; have more than 127 special keys
 ; or this branch will fail!
 bmi 88$; no match was found, ignore this key
30$
 ;--- We've found a match on a control character. Get the corresponding
 ;--- routine address from the jump table and call the routine
 ldx h_CtrlTbl,y ; get high address of routine
 lda l_CtrlTbl,y ; and low address
 jsr CallRoutine ; call the routine
 bra 88$; go clean up and exit
40$

 keyboard Keyboard Entry Routine / NormalKey:

 B-178 B: Examples

 ;--- It's a normal alphanumeric character. Output it to the screen
 ;--- and save it in the text buffer
 pha ; save the character code
 ldy txtBufIndex ; pointer into current text buffer
 sta (txtBuf),y ; place the character into the buffer
 iny ; point to next position in buffer
 lda #NULL ; and null-terminate the string
 sta (txtBuf),y ;
 sty txtBufIndex ; set down the new index value
 pla ; get the character code back.

 ;--- (Note: We could have pulled it off of keyData, but future versions may
 ;--- pre-process or translate the char code in the A-reg before passing)

 jsr PutChar ; print it on the screen
 MoveW r11,stringX ; update the prompt x-position
 lda txtBufIndex ; was that the last character we
 cmp txtInMax ; can accept?
 blt 88$; OK if under max.
 lda bufFaultVec ; otherwise
 ldx bufFaultVec+1
 jsr CallRoutine ; call buffer overflow routine

88$
 ;--- Clean up
 lda textOn ; only re-enable the prompt if text
 beq 90$; is still on (might have changed!)
 jsr PromptOn ; turn the prompt back on

90$
 PopB dispBufferOn ; restore dispBufferOn
 rts ; exit

keyboard / Keyboard Entry Routine

 B-179 B: Examples

KillPrompt:

 .if 0

Function: Proper way to use PromptOff.

Description: Disable interrupts and clears alphaFlag.

 .endif

KillPrompt:
 php ; save interrupt status
 sei ; disable interrupts
 jsr PromptOff ; prompt = off
 LoadB alphaFlag,#0 ; clear alpha flag
 plp ; restore interrupt status
 rts

keyboard / Keyboard Entry Routine

 B-180 B: Examples

DoReturn:

 .if 0

Function: Process a carriage return.

Description: No real carriage return handler yet. Just shut text off.

 .endif
DoReturn:

LoadB textOn,#FALSE
 rts

keyboard / Keyboard Entry Routine

 B-181 B: Examples

DoBackspace

 .if 0

Function: Process a backspace.

Description:
 .endif
DoBackspace:
 ldy txtBufIndex ; get ptr into current text buffer
 beq 90$; if no characters in buffer, exit
 dey ; back up a character
 sty txtBufIndex ; and make the new index permanent
 lda (txtBuf),y ; get the character we want to delete
 jsr EraseCharacter ; and remove it from the screen
 ldy txtBufIndex ; get the index to the character
 lda #NULL ; we just deleted and make it the
 sta (txtBuf),y ; null-terminator
 MoveW r11,stringX ; update the cursor's x-position
90$
 rts ; exit

keyboard / Keyboard Entry Routine

 B-182 B: Examples

EraseCharacter:

 .if 0

Function: Physically remove a character from the screen

Description:

 .endif
EraseCharacter:
 MoveW r11,r4 ; current X is rectangle's right-edge
 ldx currentMode ; get the mode we're in
 jsr GetRealSize ; go calc the size of the character
 sta r3L ; set down baseline offset
 SubBS r3L,r1H,r2L ; calc top of character by subtracting
 ; baseline offset from y-position
 ; and making top-edge of rectangle
 txa ; add char height to top-edge
 ; to calc bottom-edge
 add r2L
 sta r2H ; and make bottom of rectangle
 sty r3L ; set down width so we can subtract it
 ; from the current x-position to
 sub r11L ; find the character's starting
 sta r3L ; position
 ldy r11H
 bcs 10$; subtract one from high-byte if borrow
 dey
10$
 sty r3H ; make left-edge of rectangle
 jsr Rectangle ; erase in current pattern
 rts ; exit

 .if 0

Function: Handle Buffer Overflow.

Description: What to do if the buffer hits its maximum.
 .endif
BufOverflow:

LoadB textOn,#FALSE
rts

 .if 0

Function: text fault handler.

Description: String faults come here.
 .endif
TextFault:

LoadB textOn,#FALSE ; no real text fault handler, yet, just shut text off
rts

keyboard / KeyHandler:

 B-183 B: Examples

KeyHandler:

 .if 0

Function: Sample key handler. Stuff address of this routine into keyVector. Unloads the keyboard queue

into an internal buffer but does nothing with the characters.

 .endif
.ramsect

newKeys:
 .block KEY_QUEUE+1 ; max queue size + NULL

.psect

KeyHandler:

ldx #0 ; start at beginning of internal buffer
lda keyData ; get first keypress
sta newKeys,x ; store it in my buffer

;--- lock out interrupts for a moment
; so we don't get any new keypresses
php ; save current interrupt disable status
sei ; disable interrupts

10$
inx ; point to next position in buffer
jsr GetNextChar ; get another character
sta newKeys,x ; put it in our buffer
cmp #NULL ; was that the last
bne 10$; loop back to get more

plp ; restore old interrupt status

 ;--- All new keys are now in our buffer. Our buffer is conveniently
 ; null-terminated because the last character we set down was a
 ; NULL. Neat, huh?

jsr DoNewKeys ; go process the keys we picked up
99$

rts ; return to MainLoop

keyboard / KeyHandler:

 B-184 B: Examples

DoNewKeys:

 .if 0

 A do-nothing routine that just pretends to empty our own keyboard buffer.

 .endif
DoNewKeys:

ldx #0 ; start at beginning of buffer
10$
 lda newKeys,x ; get a key
 beq 20$; exit loop if it's the null
; nop ; do nothing with this keypress
 inx ; point to next position
 bne 10$; always branch (X should never go to 0)
20$

;--- We've encountered the NULL and therefore gone through the entire
;--- string. Clear the buffer by storing the null in the first
;--- position of the string.
 sta newKeys
99$

rts ; exit

keyboard / KillPrompt:

 B-185 B: Examples

KillPrompt:

 .if 0

Function: Safely turn off text prompt.

Parameters: nothing.

Returns: nothing.

Alters: alphaFlag.

Destroys: a, x, r3L.

Description: Disables interrupts and then turns text prompt off.

 .endif
KillPrompt:
 php ; save current interrupt disable status
 sei ; disable interrupts
 jsr PromptOff ; prompt - off
 LoadB alphaFlag,#0 ; clear alpha flag
 plp ; restore old interrupt status
 rts

keyboard / NewGetString

 B-186 B: Examples

NewGetString

 .if 0

Function: New front-end to GetString to guarantee a consistent state of dispBufferOn during the entire

entry.

Parameters: same as GetString.

Returns: same as GetString.

Destroys: same as GetString.

Description: Wedges into keyVector before SystemStringService gets control. This routine uses StringPatch to

adjust dispBufferOn so that it holds the value that it contained when NewGetString was first

called, making every character print consistently. It otherwise acts just like GetString.

Note: It is very unlikely that dispBufferOn will be getting changed during MainLoop processing during

GetString. The primary purpose of this example is to show how to hook into the GetString

processing.

 .endif
.ramsect

tempDisp:
 .block 1 ; temporary hold for dispBufferOn
sysKeySave:
 .block 2 ; holds address of system key routine

.psect

NewGetString:

;--- Save the current value of dispBufferOn to stuff back each time SystemStringService
; gets control.
MoveB dispBufferOn,tempDisp

jsr GetString ; Call GetString as normal

;--- Now that GetString has put SystemStringService into keyVector, we need to preempt
; that. We save off the address in keyVector and place our StringPatch routine in its
; place.
MoveW keyVector,sysKeySave ; save old
LoadW keyVector,#StringPatch ; install ours

 rts ; exit

keyboard / NewGetString

 B-187 B: Examples

StringPatch:

 .if 0

Function: When a key is pressed during a GetString, control comes here.

Description: We load up the correct value of dispBufferOn, link through to the correct SystemStringService,

and restore dispBufferOn when control comes back. When the string is terminated with

[Return], SystemStringService will take care of removing us.

 .endif
StringPatch:

PushB dispBufferOn ; Save the current value of dispBufferOn

;--- Load up the correct value for dispBufferOn that NewGetString saved away for us.
MoveB tempDisp,dispBufferOn

;--- Continue through SystemStringService

 lda sysKeySave
 ldx sysKeySave+1
 jsr CallRoutine

;--- we will eventually get control again. Restore the old value of dispBufferOn before
; going back to MainLoop
PopB dispBufferOn

 rts ; Exit

keyboard / ShortKey:

 B-188 B: Examples

ShortKey:

 .if 0

Function: Shortcut key handler.

Parameters: keycode in accumulator.

Description: Short cut key dispatcher. Call From keyVector handler.

 .endif
ShortKey:
;--- Do some minor conversion on the keycode
 and #~SHORTCUT ; lop off shortcut bit
 cmp #'a' ; check if lowercase
 blt 10$; branch if less than "a"
 cmp #'z'+1 ; or greater than "z"
 bge 10$; it's lowercase: convert to upper
 ;--- Carry will always be clear here.
 ;sec
 ;--- Subtract 1 extra and save a byte and 2 cycles by not doing the sec.

 sbc #('a'-'A') -1 ; by subtracting the ASCII difference
; between a lowercase 'a' and an uppercase 'A'

10$

;--- Now that we have a shortcut key, we go searching through
; a table of valid shortcut keys, looking for a match. Use Y-reg
; to index so we can use X-reg later for CallRoutine.
 ldy #NUM_SHORTCUTS ; start at top of table
20$
 cmp shortcuts ; check for a keycode match
 beq 30$; branch if found
 dey ; else, try next
 bpl 20$; loop until done. Note: must

; not have more than 127 shortcuts
; or this branch will fail!

 bmi 99$; no match, ignore this key
30$
;--- We've found a match. Get the corresponding routine address from
; the Jump table and call the routine
 ldx h_shortCutTbl,y ; get high address of routine
 lda l_shortCutTbl,y ; and low address
 jsr CallRoutine ; call the routine
99$
 rts ; exit

keyboard / ShortKey:

 B-189 B: Examples

;--- Table of shortcut keys and their corresponding routines
shortcuts:
 .byte '0' ; 1 undo
 .byte 'T' ; 2 text
 .byte 'P' ; 3 print
 .byte 'Q' ; 4 quit
 .byte 'N' ; 5 new document
 .byte 'G' ; 6 go to page
 .byte 'B' ; 7 boldface toggle
 .byte 'O' ; 8 outline toggle
 .byte 'I' ; 9 italic toggle
 .byte 'U' ; 10 underline toggle
 .byte 'D' ; 11 delete
 .byte 'C' ; 12 copy
 .byte 'S' ; 13 scroll
 .byte 'L' ; 14 load document

NUM_SHORTCUTS = (* - shortcuts) -1 ; number of shortcuts

.if (NUM_SHORTCUTS > 127)
 .echo WARNING: too many shortcuts
.endif

;--- Table of low-bytes of shortcut routine
l_shortCutTbl:
 .byte [DoUndo ; 1
 .byte [DoText ; 2
 .byte [DoPrint ; 3
 .byte [DoQuit ; 4
 .byte [DoNew ; 5
 .byte [DoGoto ; 6
 .byte [DoBoldface ; 7
 .byte [DoOutline ; 8
 .byte [Doltalic ; 9
 .byte [DoUnderline ; 10
 .byte [DoDelete ; 11
 .byte [DoCopy ; 12
 .byte [DoScroll ; 13
 .byte [DoLoad ; 14

h_ShortCutTbl:
 .byte]DoUndo ; 1
 .byte]DoText ; 2
 .byte]DoPrint ; 3
 .byte]DoQuit ; 4
 .byte]DoNew ; 5
 .byte]DoGoto ; 6
 .byte]DoBoldface ; 7
 .byte]DoOutline ; 8
 .byte]Doltalic ; 9
 .byte]DoUnderline ; 10
 .byte]DoDelete ; 11
 .byte]DoCopy ; 12
 .byte]DoScroll ; 13
 .byte]DoLoad ; 14

math

 B-190 B: Examples

math

8BitMultiply:

 .if 0

Function: 8 Bit unsigned multiply.

Parameters: r1L multiplicand.

 r1H multiplier.

Returns: unsigned product in r2.

Destroys: a, x, y, r7L, r8.

Description: Multiply r1L by r1H and store the word product in r2.

 .endif
8BitMultiply:
 MoveB r1L,r2L ; r2L <- r1L copy of multiplicand
 ldx #r2 ; x <- multiplicand address
 ldy #r1H ; y <- multiplier address
 jsr BBMult ; r2 <- r2L * r1H do multiplication
 rts

math

 B-191 B: Examples

16x8Multiply:

 .if 0

Function: 16x8 Bit unsigned multiply.

Parameters: x zpage address of multiplicand.

 y zpage address of multiplier.

Returns: unsigned result in address pointed to by x.

 x, y unchanged.

Description: Multiply the value in r9 by 87 and store the result back in r9 (r1 is destroyed).

 .endif
16x8Multiply:
 ldx #r9 ; point to multiplicand in r9
 LoadB r1L,#87 ; r1L <- 87 (multiplier)
 ldy #r1L ; point to multiplier in r1L
 jsr Bmult ; r9 <- r9 * r1L
 rts

math

 B-192 B: Examples

ConvToUnits:

 .if 0

Function: This routine converts a pixel measurement to inches or, optionally, centimeters, at the rate of 80

pixels per inch or 31.5 pixels per centimeter.

Parameters: r0 number to convert (in pixels).

Returns: r0 inches / centimeters.

 r1L tenths of an inch / millimeters.

Destroys: a, x, y, r0-r1, r8-r9.

Description: Assembler time decision on whether inches or centimeters is to be used.

 .endif
.if AMERICAN
 INCHES = TRUE
.else
 INCHES = FALSE ; metric
.endif

ConvToUnits: ; first, convert r0 to length in 1/20 of
 ; standard units

.if INCHES
 ; for inches, need to multiply by
 ; 20 1
 ; ------------- = ---
 ; 80 dots/inch 4
 ldx #r0 ; which amounts to a divide by four
 ldy #2
 jsr DShiftRight
.else
 ; For Centimeters, need to multiply by
 ; 20 1
 ; ------------- = ---
 ; 31.5 dots/cm 63
 ;
 LoadB r1,#40 ; First multiply by 40
 ldx #r0 ; (word value)
 ldy #r1 ; (byte value)
 jsr Bmult ; r0 * r0*40 (byte by word multiply)
 LoadW r1,#63 ; then divide by 63
 ldx #r0 ;
 ldy #r1 ;
 jsr Ddiv ; r0 - r0/63
.endif
 ;-- Start of Common Code ; r0 * result in l/20ths
 IncW r0 ; add in one more l/20th, for rounding
 LoadW r1,#20 ; now divide by 20 (to move decimal over one)
 ldx #r0 ; dividend
 ldy #r1 ; divisor
 jsr Ddiv ; r0 = r0/20 (r0 = result in proper unit)
 MoveB r8L,r1L ; r1L - l/20ths
 asl r1L ; and convert to l/10ths (rounded)
 rts ; exit

math

 B-193 B: Examples

DdecvsDecW:

 .if 0

Function: Size in bytes vs speed in cycles of Ddec and DecW.

Ddec Represents a maximum of 7 byte savings over DecW every time it is used in your code. If Not

needing a zero result after DecW then only a 3 byte savings.

DecW Takes roughly ½ the time to execute. In an inner loop executed 1 Million times, DecW will save

roughly 20 seconds off the time vs Ddec.

 .endif
zCounter=$70
.macro DecW dest
 lda dest
 bne dolow
 dec dest+1
dolow:
 dec dest
.endm

Ddec code block.
Machine Code Opcode Bytes Cycles
------------ --------------- ------ --------
A2 70 ldx #zCounter 2 2
20 0E C2 jsr Ddec 3 6
 (Kernal Routine) 0 27 - 32

 Total 5 35 - 40

DecW macro code block.
Machine Code Opcode Bytes Cycles
------------ --------------- ------ --------
A9 70 lda zCounter 2 3
D0 02 bne 10$ 2 2 or 3 or 4
C6 71 dec zCounter+1 2 5
 10$
C6 70 dec zCounter 2 5

 Total 8 11 Worst Case 15
 if branch crosses page 12

 ;-- When using DecW on a counter, Add check for word=0 after the DecW macro
A9 70 lda zCounter 2 2
05 70 ora zCounter+1 2 3

 Total 12 16 - 20

Kernal Ddec ;Actual Kernal Code for Ddec
Machine Code Opcode Bytes Cycles
------------ --------------- ------ --------
B5 00 lda zpage,X 4
D0 02 bne 10$ (1/256ish chance 2) or 3 or Worst case:4
D6 01 dec zpage+1,X 6
 10$
D6 01 dec zpage,X 6
B5 00 lda zpage,X 4
D6 01 ora zpage+1,X 4
60 rts 6
 =====================
 Total Best Case: 27 Worst Case:32
 if branch crosses Page 28 (1/256 chance)

math

 B-194 B: Examples

DecCounter:

 .if 0

Description: Example use for Ddec.

Parameters: nothing.

Alters: zCounter.

Destroys: a, anything destroyed in DoSomething.

 .endif
.ramsect APP_ZPL ; $70
 zCounter:
 .block 1

COUNT = $FFF0

DecCounter:
 LoadW zCounter,#COUNT
10$
 jsr DoSomething
 ldx #zCounter
 jsr Ddec
 bne 10$
 rts

math

 B-195 B: Examples

Divide By Zero:

 .if 0

Function: NewDdiv Wrapper for Ddiv with divide-by-zero error checking.

NewDSdiv Wrapper for DSdiv with divide-by-zero error checking.

Parameters: x zp address of dividend.

 y zp address of divisor.

Returns: x, y unchanged.

 zp, x result.

 r8 remainder.

 a $00 no error.

 $FF divide by zero error.

 st set to reflect error code in accumulator.

Destroys: r9.

Example:
 ;--- Example use of the validated Ddiv wrapper.
 ldx #r0 ; point x to dividend
 ldy #r1 ; point y to divisor
 jsr NewDdiv ; call our validated Ddiv routine
 bmi 99$; branch on divide by zero error
 ...

 .endif
DIVIDE_BY_ZERO = $FF
NO_ERROR = $00

 NewDdiv:
 lda zpage,y ; get low-byte of divisor

 ora zpage+1,y ; and high-byte of divisor
 beq 99$; if both are zero, raise error
 jsr Ddiv ; divide
 lda #NO_ERROR ; and return no error

clda 99$, #DIVIDE_BY_ZERO
 rts

 NewDSdiv:
 lda zpage,y ; get low-byte of divisor
 ora zpage+1,y ; and high-byte of divisor
 beq 99$; if both are zero, raise error

 jsr DSdiv ; divide
 lda #NO_ERROR ; and return no error

clda 99$, #DIVIDE_BY_ZERO
 rts

math

 B-196 B: Examples

DSmult:

 .if 0

Function: DSMult double-precision signed multiply.

Parameters: x zpage address of multiplicand.

 y zpage address of multiplier.

Returns: signed product in address pointed to by x.

word pointed to by y is absolute-value of the multiplier passed.

 x, y unchanged.

Strategy: Establish the sign of the result: if the signs of the multiplicand and the multiplier are different,

then the result is negative; otherwise, the result is positive. Make both the multiplicand and the

multiplier positive, do unsigned multiplication on those, then adjust the sign of the result to

reflect the signs of the original numbers.

Destroys: a, r6-r8

 .endif
DSmult:
 lda zpage+1,x ; get sign of multiplicand (high-byte)
 eor zpage+1,y ; and compare with sign of multiplier
 php ; save the result for when we come back
 jsr Dabs ; multiplicand = abs(multiplicand)
 stx r6L ; save multiplicand index
 tya ; put multiplier index into x
 tax ; for call to Dabs
 jsr Dabs ; multiplier = abs(multiplier)
 ldx r6L ; restore multiplier index
 jsr DMult ; do multiplication as if unsigned
 plp ; get back sign of result
 bpl 90$; ignore sign-change if result positive
 jsr Dnegate ; otherwise, make the result negative
90$
 rts

math

 B-197 B: Examples

Kernal_CRC:

 .if 0

Function: This is the actual Kernal Code for CRC.

Parameters: r0 pointer to start of data.

 r1 # of bytes to check.

Returns: r2 CRC Checksum.

Destroys: a, x, y, r0, r1, r3L.

 .endif
Kernal_CRC:

 ldy #$FF
 sty r2L
 sty r2H
 iny

10$
 lda #$80
 sta r3L

20$
 asl r2L
 rol r2H
 lda (r0),y
 and r3L
 bcc 30$
 eor r3L

30$
 beq 40$
 tmbf 5,r2L
 tmbf 4,r2H

40$
 lsr r3L
 bcc 20$
 iny
 bne 50$
 inc r0H

50$
 ldx #r1
 jsr Ddec ; Ddec returns with z flag following the value of r1
; bwne r1,10$; No need to recheck for zero.
 bne 10$
 rts

math

 B-198 B: Examples

NewSDSdiv:

 .if 0

Function: Wrapper for DSdiv. Call as you would call DSdiv.

Parameters: x OPERAND1 — zero page address of signed word dividend (byte pointer to a word

variable).

 y OPERAND2 — zero page address of signed word divisor (byte pointer to a word variable).

Returns: x, y unchanged.

r8 the fractional remainder (word) with a matching sign of the dividend.

word pointed to by OPERAND2 equals its absolute value.

word pointed to by OPERAND1 contains the word result.

Destroys: a, r9.

Decscription: The remainder is always positive regardless of the sign of the dividend. This will cause problems

with some mathematical operations that expect a signed remainder. The following code fragment

will fix this problem

Example:
 ;--- Example use of the validated Ddiv wrapper.
 ldx #r0 ; point x to dividend
 ldy #r1 ; point y to divisor
 jsr NewSDSdiv ; call our validated Ddiv routine
 bmi 99$; branch on divide by zero error
 ...

 .endif
NewSDSdiv:
 lda zpage+1,x ; save sign of dividend
 php
 jsr DSdiv ; divide as normal
 plp ; then get sign of dividend back
 bpl 90$; ignore if positive
 PushX ; save x-register
 ldx #r8 ; else, negate remainder
 jsr Dnegate
 PopX ; restore x-register
90$
 rts

memory

 B-199 B: Examples

memory

CopyBuffer:

 .if 0

Function: Examples for CopyFString and CopyString.

 .endif

srcBuff:

.byte "Any Values can be in the buffer",NULL,CR

.byte $0C, ”NULLS are just zeros for CopyFString”,CR

LENBUFF = (*-srcBuff)

.ramsect

destBuff:
.block LENSTRING

.psect

CopyBuffer:

LoadW r5,#srcBuff ; point to start of source buffer
LoadW r1L,#destBuff ; point to start of destination buffer
ldx #r5 ; x <- source register address
ldy #r1L ; y <- destination register address
lda #LENBUFF ; a <- length of buffer
jsr CopyFString ; destBuff <- srcBuff (copy)
rts

srcStr:
 .byte "Any values but null can be in the string",NULL
LENSTRING = (*-srcStr)

.ramsect

DestBuff:
.block LENSTRING

.psect

CopyStr:

LoadW r0,#srcStr ; point to start of source String
LoadW r1,#destBuff ; point to start of destination buffer
ldx #r0 ; x <- source register address
ldy #r1 ; y <- destination register address
jsr CopyString ; destBuff <- srcStr (copy)
rts

memory

 B-200 B: Examples

Find:

 .if 0

Function: Examples for Find.

 .endif
REC_SIZE = 5 ; size of each record
.ramsect

Data:
 .block 1024 ; table of zip code locations

.psect

Key:
 .byte "94704" ; zip code to find

Find:

LoadW r2,#NUM_RECS ; r2 <- total number of records
LoadW r0,#Key ; r0 <- pointer to keyword
LoadW r1,#Data ; r1 <- pointer to start of search list

10$; Do
 ldx #r0 ; x <- source string – key

ldy #r1 ; y <- destination string – list
lda #REC_SIZE ; a <- length of each record
jsr CmpFString ; compare key with current record
beq 20$; if they match, branch to handler
AddVW #REC_SIZE,r1 ; otherwise point to the next record
DecW r2 ; r2 — (decrement counter)
bne 10$; While (r2 > 0)
;---
jmp NotMatched ; jmp to no match handler

20$
 jmp Matched ; jmp to match handler

memory

 B-201 B: Examples

Find2:

 .if 0

Function: Another example for find.

 .endif
Find2:

LoadW r0,#original ; r0 <- pointer to original string
LoadW r1,#copy ; r1 <- pointer to copy
ldx #r0 ; x <- source string =* key
ldy #r1 ; y <- destination string - list
jsr CmpString ;
beq 20$
jmp NotMatched ; jmp to no match handler

20$
 jmp Matched ; jmp to match handler

original:

.byte "Mark Charles Heartless",NULL

Copy:
 .byte "Mark Charlie Heartless",NULL

memory

 B-202 B: Examples

InitBuffers:

 .if 0

Function: Clear RAM examples.

 .endif
;--- initialize buffers and variables to zero

InitBuffers:
 LoadW r0,#varStart ; clear variable space
 LoadW r1,#(varEnd-varStart)
 jsr ClearRam
 LoadW r0,#heapStart ; clear heap
 LoadW r1,#(heapEnd-heapStart)
 jmp ClearRam

;--- Alternate version. Using more space efficient i_FillRam

InitBuffers:
 jsr i_FillRam ; clear variable space
 .word varStart
 .word varEnd-varStart
 .byte $AA ; with any value you choose

 jsr i_FillRam ; clear heap
 .word heapStart
 .word heapEnd-heapStart
 .byte $00 ; heap set to zero’s
 rts

mouse & sprite

 B-203 B: Examples

mouse & sprite

ArrowUp:

 .if 0

Function: Put up a new mouse picture.

 .endif
ArrowUp:
 LoadW r0,#dnArrow ; point at new image
 jsr SetMsePic ; install it
 rts

;--- macro to store a word value in high/low order

.macro HILO word
 .byte]word,[word
.endm

;--- mouse picture definition for down-pointing arrow

dnArrow:
 HILO %1111111110000000 ; mask
 HILO %1111111001111110
 HILO %0001100111111001
 HILO %0110011111100111
 HILO %0111111110011111
 HILO %0111111110011111
 HILO %0111111111101111
 HILO %0000000000001111

 HILO %0000000000000000 ; image
 HILO %0000000001111110
 HILO %0000000111111000
 HILO %0110011111100000
 HILO %0111111110000000
 HILO %0111111110000000
 HILO %0111111111100000
 HILO %0000000000000000

mouse & sprite

 B-204 B: Examples

MouseInit:

 .if 0

Purpose: Initialize the mouse and start it at screen center.

Parameters: nothing.

Returns: nothing.

Alters: alphaFlag.

Destroys: a, x, y, r0-r15.

Description: Disable interrupts and then setup mouse at screen center.

 .endif
MouseInit:
 LoadW r11,#(SC_PIX_WIDTH/2) ; screen center
 ldy #(SC_PIX_HEIGHT/2)
 sec ; set carry to move mouse
 php ; save current interrupt disable status
 sei ; disable interrupts
 jsr StartMouseMode
 plp ; restore old interrupt status
 rts

mouse & sprite

 B-205 B: Examples

NewIsMseInRegion:

 .if 0

Function: Replacement for IsMseInRegion.

Description: Handles the disabling of interrupts so return status registers are not effected by plp.

 .endif
NewIsMseInRegion:
 ;--- disable interrupts around coordinate checks
 ; so it doesn't change while we're looking
 php ; save current interrupt disable status
 sei ; disable interrupts

CmpB mouseYPos,r2L ; compare mouse y-position to top-edge
 blt 10$; branch if outside
 cmp r2H ; compare to bottom-edge
 bgt 10$; branch if outside
 CmpW mouseXPos,r3 ; compare mouseX with left-edge
 blt 10$; branch if outside
 CmpW mouseXPos,r4 ; compare mouseX with right-edge
 bgt 10$; branch if outside
 plp ; restore old interrupt status (before setting st reg)
 lda #[TRUE ; return inside region status
 rts ; exit
10$ plp ; restore old interrupt status (before setting st reg)
 lda #FALSE ; return outside region status
 rts ; exit

NewIsMseInRegion: ;-- Alternative version compatible with 128 GEOS.
 php
 sei
 jsr IsMseInRegion ;IsMseInRegion handles DOUBLE_W coordinates.
 bpl 10$
 plp
 lda #[TRUE
 rts
10$ plp
 lda #FALSE
 rts

NewIsMseInRegion: ; Much smaller version but the y-register is destroyed.
 php
 sei
 jsr IsMseInRegion
 plp
 tay ; transfer result to y-register to reset status flags.
; ora #0 ; or use 'ora' instead of tay and maintain the y-register
 rts ; at the cost of one more byte used.

SampleUse:
 LoadW r3,#windowX1 ; get coordinates of window's rectangle
 LoadW r2L,#windowY1
 LoadW r4,#windowX2
 LoadW r2H,#windowY2
 jsr NewIsMseInRegion ; check for mouse inside region
 bpl MouseOutsideWindow ; branch if outside window area
 ...

mouse & sprite

 B-206 B: Examples

IsMseInMargins:

 .if 0

Function: Check if mouse is within the left and right text margin

 .endif
 IsMseInMargins:
 ;--- disable interrupts around mouseXPos access
 php ; save current interrupt disable status
 sei ; disable interrupts
 MoveW mouseXPos,r0 ; and copy current position to a working location
 plp ; restore old interrupt status

 CmpW r0,leftMargin ; check left-margin
 bcc 99$; fault out if less than left
 10$
 CmpW r0,rightMargin ; check right-margin
 ble 20$; branch if inside right
 bcs 99$; fault out
 20$
 lda #[TRUE ; no fault (inside text margins)
clda 99$, #FALSE ; fault outside of margins
 rts

mouse & sprite

 B-207 B: Examples

OPVector:

 .if 0

Function: Sample otherPressVec handler.

Description: gets called on each press (and release) of input button.

 demonstrates double click detection.

 .endif
OPVector:
 ;--- Ignore releases on entry
 lda mouseData ; check state of the mouse button
 bpl 05$; branch to handle presses
 rts ; but return immediately to ignore releases

05$;--- User pressed mouse once, start double-click counter going
 LoadB dblClickCount,#CLICK_COUNT ; start delay
10$
 ;--- Loop until double-click counter times-out or button is released

lda dblClickCount ; check double-click timer
 beq 30$; if timed-out, no double-click
 lda mouseData ; else, check for second press

bpl 10$; loop until released

 ;--- mouse was released, loop until double-click counter times-out or
 ;--- button is pressed a second time.
20$

lda dblClickCount ; check double-click timer
 beq 30$; if timed-out, no double-click
 lda mouseData ; else, check for second press
 bmi 20$; loop until pressed

;--- double-click detected (no single-click)
 jmp DoDoubleClick ; do double-click stuff

 ;--- Single-click detected (no double-click)
30$ jmp DoSingleClick ; do single-click stuff

Alternative method:

 This method does not use UI time waiting in a loop too see of the user is going to click again.
.ramsect
 rDblCnt: .block 1
.psect

OPVector:
 bbrf 7,mouseData,10$; Do work on button press
 LoadB dblClickCount,#CLICK_COUNT ; On release set double click count to 30
 rts ; and return immediately to otherwise ignore releases.

10$ MoveB dblClickCount,rDblCnt ; save current count
 ;--- Do work to determine what is being effected.
 ...
 ;--- In area that responds to a dbl click, check the saved count.
50$ bbne rDblCnt,70$; if rDblCnt >= 0 then we have a double click
 ;--- do single click work here

70$;--- do double click work here
90$ rts

mouse & sprite

 B-208 B: Examples

ResetMouse:

 .if 0

Function: Routine to restore the mouse service routines to an operational state after an application's use of

mouse faults through mouseFaultVec. Should be called before menus are reenabled.

 .endif
ResetMouse:
 ;--- (Following line changed to save bytes)
 LdNull mouseLeft ; reset mouse left to left screen edge
 sta mouseTop ; and mouse top to top screen edge

.if (C128)
 LoadW r0,#(SC_40_WIDTH-1 | DOUBLE_W | ADD1_W) ; put in zp reg to normalize
 ldx #r0 ; point to register
 jsr NormalizeX ; double if in 80-column
 MoveW r0,mouseRight ; mouse right to right screen edge
.else
 LoadW mouseRight,#SC_PIX_WIDTH-1 ; mouse right to right screen edge
.endif
 LoadB mouseBottom,#SC_PIX_HEIGHT-1 ; mouse bottom to bottom screen edge
 clc ; don't reposition mouse...
 jsr StartMouseMode ; exit
 rts

text

 B-209 B: Examples

text

ClipChar:

 .if 0

Function: Draw a character, clipping it EXACTLY to leftMargin, rightMargin, windowTop and

windowBottom.

Parameters: a character to print.

r1L x-position.

r1H y-position.

Returns: r11 x-position for next char.

r1H y-position for next char.

Destroys: a, x, y, r2-r10L.

Description: Operates by temporarily modifying the font definition (making the character thinner, so as to fit

in the margin).

Note: SmallPutChar already does character clipping at the margins. The ClipChar example should

not be used simply for the purpose of printing a partial character at the margin. The following

code will perform the same function:

 strFaultHandler:
 ldy #0
 lda (r0),y ; get the character that caused the fault
 jsr SmallPutChar ; use SmallPutChar to draw clipped character
 LoadW r0,#null-1 ; set r0 to point to a null to end
 rts ; PutString processing.

 null: byte NULL

 .endif

.ramsect

savedWidths:
.block 4 ; values from index table stored here

.psect

ClipChar:
 sta r1L ; store character
 ldx currentMode ; get width of character
 jsr GetRealSize ;
 dey ; use width - 1 to calc last position
 AddYWS r11,r2 ; r2 = last pixel that char covers
 CmpW r2,leftMargin ; check for char entirely off window
 blt 10$; if so then exit
 CmpW rightMargin,r11
 bge 20$
10$ AddVWS #1,r2,r11 ; r11 = one pixel beyond where char would have gone
 rts ; exit

20$ SubBS #32,r1L,r3L ; push old width table values
 asl a ; get card #
 tay
 ldx #0

ClipChar text

 B-210 B: Examples

30$
 lda (curIndexTable),y ; store this char's index values
 sta savedWidths,x
 iny
 inx
 cpx #4
 bne 30$; loop to copy values

 CmpW leftMargin,r11
 blt 40$
 lda r3L
 asl a
 tay
 lda leftMargin ; check for clipping on left
 sub r11L
 add (curIndexTable),y
 sta (curIndexTable),y
 iny
 lda #0
 adc (curIndexTable),y
 sta (curIndexTable),y
 MoveW leftMargin,r11
40$
 CmpW r2,rightMargin
 blt 50$; check for clipping on right
 SubBS rightMargin,r2L,r3H ; save amount to subtract
 lda r3L
 asl a
 tay
 iny
 iny
 lda (curIndexTable),y
 sub r3H
 sta (curIndexTable),y
 iny
 lda (curIndexTable),y
 sbc #0
 sta (curIndexTable),y
50$
 PushB r1L ; save it for later
 jsr SmallPutChar ; draw the character!!
 pla
 sub #' ' ; $20
 asl a ; recover old widths
 tay
 ldx #0
60$
 lda savedWidths,x
 sta (curIndexTable),y
 iny
 inx
 cpx #4
 bne 60$
 rts

 text text

 B-211 B: Examples

Print:

 .if 0

Function: Example use of PutString. Places a text string onto the screen. Assumes that leftMargin,

rightMargin, windowTop and windowBottom contain their default, startup values (full screen

dimensions).

 .endif

STR_X = 40 ; x-position of first character
STR_Y = 100 ; y-position of character baseline

Print:
 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK) ; both buffers!
 LoadW r11,#STR_X ; string x-position
 LoadB r1H,#STR_Y ; string y-position
 LoadW r0,#string ; address of text string
 jsr PutString ; print the string
 rts ; exit

string:
 .byte "This is a test.", NULL ; null-terminated string

 text text

 B-212 B: Examples

PutStrFault:

 .if 0

Function: Modify default GEOS string fault handling with PutString.

Note: Activate this handler with:
LoadW StringFaultVec,#PutStrFault

Description: String fault routine to immediately terminate string printing when any fault (left or right-margin)

is generated by setting r0 to point to the end of the string.

 .endif
PutStrFault:
 ;--- go through the string looking for the null
 ldy #0 ; load index to character pointed to by (r0)
10$
 lda (r0),y ; get character
 beq 90$; if null then exit
 IncW r0 ; bump pointer to check next character
 bne 10$; loop until we find null
90$
 ;--- return to PutString pointing at a null
 rts

 text text

 B-213 B: Examples

SmartPutString:

 .if 0

Description: New front-end to PutString that handles right-edge string faults by exiting immediately rather

than moving through the string until it finds a character that fits. It operates by replacing the current

string fault service routine with its own routine that tricks PutString into thinking it encountered

a null on a right-margin fault.

Parameters: Same as PutString.

Returns: r15 points to the offending character in the string that caused the fault. (NULL if no fault).

Destroys:

 .endif
SmartPutString:

PushW StringFaultVec ; saving Fault Vector for restore on exit
LoadW StringFaultVec,#FaultFix ; install new fault routine
LdNull r15 ; clear r15 to $0000
jsr PutString ; call PutString with our string fault routine in place

90$
PopW StringFaultVec ; restore the old string fault routine
rts ; return
 ; caller can now check if r15 has a value

An alternate implementation.

During application init, set the StringFaultVec to the FaultFix handler. Then leave it for the life of the application.

GEOS will reset the vector on application close.

 LoadW StringFaultVec,#FaultFix ; set it and forget it

You can now use PutString or i_PutString as you always have with the new ability to check for margin faults

after the call to either one.

Example:
 ...
 jsr PutString
 CmpWI r15,#0
 bne HandleFault
 ...

If you impose a restriction that strings cannot be in zero page then you can check this way.
 ...
 jsr PutString
 lda r15H
 bne HandleFault
 ...

 text SmartPutString: / FaultFix:

 B-214 B: Examples

FaultFix:

 .if 0

Function: New StringFaultVec Handler.

Parameters: Called by PutString when margin fault occurs. Normal PutString registers will be set.

Returns: r15 points to the offending character in the string that caused the fault. (null if no fault).

Destroys: same as PutString.

Description: Fixes the handling of right margin fault by:

1. All attempts to continue printing, stop immediately.

2. Pointer to the offending character position that caused the fault is returned in r15.

Note: left-margin fault behavior is not changed.

Note: GEOS 128 x-coordinates are already in a normalized state at time of handler call.

 .endif

fakeNull:
 .byte NULL ; null for FaultFix

FaultFix:

CmpW rightMargin,r11 ; check x-coordinate with right-edge
ble 90$; exit if right not exceeded;

; the character was outside the left-edge

 MoveW r0,r15 ; save the pointer to the offending character in r15
 LoadW r0,#(fakeNull-1) ; -1 since PutString will check the "next" char on return
90$
 rts

utility

 B-215 B: Examples

utility

BeepThrice:

 .if 0

Function: Beep three times.

Description: Runs off the MainLoop by using Sleep.

 .endif
.if TARGET_NTSC
 FRAME_RATE=60
.else
 FRAME_RATE=50
.endif

BELL_INTERVAL = (FRAME_RATE/10) ; approximately. 1/10 second.

BeepThrice:
 jsr Bell ; sound the bell
 LoadW r0,#BELL_INTERVAL ;
 jsr Sleep ; pause a bit
 jsr Bell ; sound the bell again
 LoadW r0,#BELL_INTERVAL
 jsr Sleep ; pause a bit
 jmp Bell ; sound the bell again and let bell rts

Note3: see GetFPS for detecting frame rate for portability between hardware.

utility

 B-216 B: Examples

FatalError:

.if 0

Function: use Panic to send a fatal error message to the user.

Parameters: r0

 .endif
.ramsect
 GEOS_save:
 .block BYTESTOSAVE ; save area for GEOS restart block

.psect

 FatalError:
 IncW r0 ; add 2 to error number
 IncW r0 ; to compensate for Panic
.if C64
 PushW r0 ; push error number onto stack
.else
 ;--- 128, expects all kinds of internal
 ; machine-state information (10 bytes total) on the stack.
 ; it ignores all but the bottom-most word.
 ldx #5 ; place 5 words (10 bytes) total onto stack
 $10
 PushW r0 ; push error number onto stack
 dex ; (use error number repeatedly as dummy value)
 bne 10$; loop until all done.
.endif
 jmp Panic ; go put up the Panic dialog box

 ;--- Alternate Version with live detection of 64/128
 ; and a more efficient setting of the stack pointer.

 FatalError:
 IncW r0 ; add 2 to error number
 IncW r0 ; to compensate for Panic
 bbrf 7,c128Flag,10$; if C64. just push once.
 ;--- 128, expects all kinds of internal
 ; machine-state information (10 bytes total) on the
 ; stack. It ignores all but the bottom-most word.
 tsx ; set stack pointer down 8 bytes to prepare for r0
 txa ; push for the last word
 sub #8
 txs ; save the new stack pointer
 10$; now put final word onto stack
 PushW r0 ; push error number onto stack
 jmp Panic ; go put up the Panic dialog box

utility

 B-217 B: Examples

HandleCommand:

 .if 0

Function: Given a command number this routine handles dispatching control to the appropriate routine.

Parameters: y command number.

Returns: depends on command.

Destroys: depends on command.

 .endif
UNIMPLEMENTED = $0000

HandleCommand:
 cpy #TOT_CMDS ; check command # against last cmd#
 bcs 99$; exit if command is invalid
 ldx CMDtabH,y ; get high-byte routine address
 lda CMDtabL,y ; get low-byte of routine address
 jsr CallRoutine ; call the routine
99$
 rts ; exit

;--- The table below is a collection of the high/low-bytes of the routine
;--- associated with each command number. If a command is not yet implemented
;--- use the UNIMPLEMENTED constant

CMDtabH: ; high-bytes
 .byte]UNIMPLEMENTED ; high-byte of command 0
 .byte]Cmdl ; high-byte of command 1
 .byte]Cmd2 ; etc...
 .byte]Cmd3
 .byte]Cmd4
CMDtabL: ; low-bytes
 .byte [UNIMPLEMENTED ; low-byte of command 0
 .byte [Cmdl ; low-byte of command 1
 .byte [Cmd2 ; etc...
 .byte [Cmd3
 .byte [Cmd4

TOT_CMDS = (CMDtabL-CMDtabH) ; total Number of commands

Cmd1:
 ;--- Perform some action here.
 rts
Cmd2:
 ;--- Perform some action here.
 rts
Cmd3:
 ;--- Perform some action here.
 rts
Cmd4:
 ;--- Perform some action here.
 rts

utility

 B-218 B: Examples

LoadBASIC:

 .if 0

Function: Loads a Commodore BASIC program and starts it running. Assumes that the program is a standard

BASIC file that loads at $801. This example does little error checking.

Parameters: nothing.

 .endif
basicProg:
 .byte "GodZilla",NULL

runCommand:
 .byte "RUN",NULL

LoadBASIC:
 LoadW r6,#basicProg ; find Basic Program to run
 jsr FindFile ; r5 will now point to programs DIR entry
 txa
 bne 99$; if FILE_NOT_FOUND or other disk errors exit
 LoadW r0,#runCommand ; point at command string
 LoadW r7,#$801 ; assume standard address
 jmp ToBasic
99$
 sec
 rts

 utility / RoadTrip:

 B-219 B: Examples

RoadTrip:

.if 0

Function: Demonstrate leaving GEOS to use all of the resources of the machine and returning again via

rebooting by either REU or disk. Note: 128 Code for reboot must reside below $4000.

 .endif
BYTESTOSAVE = 128 ; # of bytes to save at BootGEOS.
RBOOT_BIT = 5 ; bit in sysFlgCopy to check
CIO_IN = $7E
config = $FF00

.ramsect
 GEOS_save:
 .block BYTESTOSAVE ; save area for GEOS restart block

.psect

RoadTrip:
 jsr OnEntry ; save Kernal Boot strap
 jsr HaveAFunTrip ; do anything... use all of Kernal RAM
 ; just no GEOS Kernal calls while you are gone
 jmp OnExit ; reboot the Kernal

OnEntry:
 ldx #BYTESTOSAVE-1 ; save bytes GEOS needs so we can use area
 ; STARTLOOP
10$ MoveB "BootGEOS,x","GEOS_save,x" ; copy a byte
 dex ; count = count -1
 bpl 10$; if (count > 0), then loop
 rts ; ENDLOOP

OnExit:
 bbsf RBOOT_BIT,sysFlgCopy, 10$; if rboot flag is not set
 jsr AskForBootDisk ; get user to insert boot disk
10$ CmpB version,#$13 ; get version of GEOS
 bcc 64$; if version < 1.3, then branch
 bbrf 7,c128Flag,64$; else, test for GEOS 128 and branch if GEOS64
;--- 128
 rmbf 0,config ; Map in I/O in current bank
 setbit mmurcr,#%00110000,#%01000111 ; Common ram on for bottom 16K / VIC in bank 1
 LoadB config,CIO_IN ; load 128 memory mapping, activate bank 1 memory
 bne 20$; (always branch)

64$ LoadB CPU_DATA,#KRNL_BAS_IO_IN ; load 64 memory mapping
20$ ldx #BYTESTOSAVE-1 ; restore bytes GEOS needs to restart
 ; STARTLOOP
30$ MoveB "GEOS_save,x","BootGEOS,x" ; copy a byte
 dex ; count = count -1
 bpl 30$; if (count > 0), then loop
 ; ENDLOOP
 bbsf RBOOT_BIT,sysFlgCopy, 90$; if rboot flag is set, branch to rboot
 jsr AskForBootDisk ; else, get user to insert boot disk
90$ jmp BootGEOS

 C: Hardware C64

 C-1 C: Hardware

C: Hardw are

C64

6510 data register

C64

CPU_DDR = $00 Data Direction Register.

Power on default $2F

GEOS default $2F

Bit Description

b7: unused

b0-b6: Sets Data Direction of CPU_DATA port.

0 = Bit is read only

1 = Bit is write only

CPU_DATA = $01

Machine power on default KRNL_BAS_IO_IN

GEOS default RAM_64K

GEOS during serial I/O IO_IN

RAM_64K = $30 ; %11 0000 64K RAM

KRNL_CH_BAS_IN = $33 ; %11 0011 Kernal + basic + Char ROM

IO_IN = $35 ; %11 0101 60K RAM, 4K I/O space in

KRNL_IO_IN = $36 ; %11 0110 Kernal + I/O

KRNL_BAS_IO_IN = $37 ; %11 0111 Kernal + basic + I/O

FFFF RAM_64K KRNL_CH_BAS_IN IO_IN KRNL_IO_IN KRNL_BAS_IO_IN

E000

8K RAM 8k KERNAL ROM 8K RAM 8k KERNAL ROM

8k KERNAL ROM

D000 4K RAM CHAR ROM I/O I/O I/O

C000 4K RAM 4K RAM 4K RAM 4K RAM 4K RAM

A000

8K RAM 8K BASIC 8K RAM 8K RAM

8K BASIC

0100

24K RAM 24K RAM 24K RAM 24K RAM

24K RAM

 Zero Page Zero Page Zero Page Zero Page Zero Page

Note: In GEOS 128, I/O is always mapped in. CPU_DATA does not control RAM/ROM on the 128. It is

safe to use CPU_DATA in the same way as on the C64 before using I/O, so no code changes around

it are neccessary. See "Mapping the Commodore 128" for more information on CPU_DATA.

C64

 C-2 C: Hardware

Keyboard (C64, C128)

cia1pra cia1prb (DC01)
(DC00) b7

%01111111
b6

%10111111
b5

%11011111
b4

%11101111
b3

%11110111
b2

%11111011
b1

%11111101
b0

%11111110
b0

%11111110

KEY_UP
KEY_DOWN

KEY_F6
KEY_F5

KEY_F4
KEY_F3

KEY_F2
KEY_F1

KEY_F8
KEY_F7

KEY_LEFT
KEY_RIGHT

KEY_ENTER

KEY_INSERT
KEY_DELETE

b1
%11111101

Left SHIFT
(LOCK)

E

S Z $
4

A W #
3

b2
%11111011

X T F C &
6

D R %
5

b3
%11110111

V U H B (
8

G Y '
7

b4
%11101111

N O K M 0 J I

)
9

[CONTROL] [TAB]

b5
%11011111

<
,

@

[
:

>
.

-

L P +

 ` { _
b6

%10111111
?
/

^
(UpArrow)

=

Right
SHIFT

KEY_CLEAR
KEY_HOME

]
;

*

KEY_BPS
(£)

 \ | } ~

b7
%01111111

KEY_RUN
KEY_STOP

Q

SPACE "

2
CTRL KEY_LARROW !

1

Sample code to check for Commodore key pressed:
.if 0

Parameters: nothing.

Returns: Z=0 beq to key is pressed.

Z=1 bne to key not pressed.

Destroys: a, x.

.endif
cia1pra = $DC00
cia1prb = $DC01

 IsCKeyPressed:
 php ; save processor status
 sei ; disable interrupts
 ldx CPU_DATA ; save current memory map
 LoadB CPU_DATA,#IO_IN ; bring I/O space into memory
 LoadB cia1pra,#%01111111 ; scan for row 7
 lda cia1prb ; get row 7
 stx CPU_DATA ; restore memory map
 plp ; restore processor/interrupt status
 and #%00100000 ; Mask out bit 5, if bit 5 is reset (0)
 ; then the C= key was pressed
 rts ; exit

C128

 C-3 C: Hardware

C128

128 Keyboard - additional Keys

keyreg cia1prb (DC01)

(D02F) b7
%01111111

b6
%10111111

b5
%11011111

b4
%11101111

b3
%11110111

b2
%11111011

b1
%11111101

b0
%11111110

b0
%11111110

1 7 4 2 KEY_TAB 5 8 KEY_HELP

b1
%11111101

3 9 6 KEY_ENTER KEY_LF - + KEY_ESC

b2
%11111011

KEY_
NOSCRL

KEY_RIGHT KEY_LEFT KEY_DOWN KEY_UP . 0 KEY_ALT

The 128 can use the same logic block as C64 GEOS for reading the base keyboard. If the application is designed

for 128 only then the saving/setting of CPU_DATA can be removed from the code block.

Sample 128 only code to check for TAB key pressed from the 128's additional keys:

.if 0

Parameters: nothing.

Returns: N=1 bmi to key is pressed.

N=0 bpl to key not pressed.

Destroys: a, x.

.endif

keyreg = $DC2F
cia1pra = $DC00
cia1prb = $DC01

 IsTabKeyPressed:
 php ; save processor status
 sei ; disable interrupts
 LoadB cia1pra,#%11111111 ; don't scan for any of the standard keyboard rows
 LoadB keyreg,#%11111110 ; scan for row 0 in number pad area
 bbrf 4,cia1prb,10$; if bit 5 is reset (0) then the tab key was pressed
 ldx #FALSE ; tab key was not pressed
cldx 10$, #[TRUE ; tab key was pressed
 plp ; restore processor/interrupt status
 txa ; set N flag
 rts ; exit

C128

 C-4 C: Hardware

MMU: Configuration Register D500, FF00

FF00 is a Mirror of D500. FF00 is always visible to the CPU.

†GEOS defaults

†GEOS defaults

 Configuration Register config=FF00 mmucr=D500

Bits Description Constant

7-6 Bank select

00 Bank 0

01 Bank 1†

10 Bank 2

11 Bank 3

MBANK0 =%00000000

MBANK1 =%01000000

MBANK2 =%10000000

MBANK3 =%11000000

5-4 C000-CFFF, E000-EFFF

00 Kernal ROM

01 Internal Function ROM

10 External Function ROM

11 RAM†

Zone 4
MHKERNAL =%000000
MHIROM =%010000
MHEROM =%100000
MHERAM =%110000

3-2 8000-BFFF

00 Basic ROM

01 Internal Function ROM

10 External Function ROM

11 RAM†

Zone 3

MUBASIC =%0000

MUIROM =%0100

MUEROM =%1000

MURAM =%1100

1 4000-7FFF

0 BASIC ROM low

1 RAM†

Zone 2

MBASIC =%00
MEXTROM =%10

0 D000-DFFF

0 I/O†

1 1 RAM or Character ROM

Zone 5

MIO =%0
MCROM =%1

 RAM Configuration Register mmurcr=D506

Bits Description Constant

7-6 Bank select for VIC video bank

00 Bank 0

01 Bank 1†

10 Bank 2

 11 Bank 3

MBANK0 =%00000000

MBANK1 =%01000000

MBANK2 =%10000000

MBANK3 =%11000000

5-4 Not used

3-2 Common Ram Location

00 Disabled†

01 Bottom

10 Top

 11 Both

CRL_OFF =%0000

CRL_BOT =%0100

CRL_TOP =%1000
CRL_BOTH =%1100

0-1 Size of Common Ram

00 1k †

01 4k

10 8k

11 16k

CRS_1K =%00

CRS_4K =%01

CRS_8K =%10

CRS_16K =%11

C128

 C-5 C: Hardware

Bank Configurations config (D500/FF00)

GEOS configurations
CIO_IN = %01111110 $7E ; 60K RAM, 4K I/O GEOS default
CRAM_64K = %01111111 $7F ; 64K RAM
CKRNL_BAS_IO_IN = %01000000 $40 ; Kernal, I/O, basic
CKRNL_IO_IN = %01001110 $4E ; Kernal, I/O
CIO_INB0 = %00111110 $3E ; BANK 0, 60K RAM, 4K I/O BACKRAM DEBUGGER default

Commodore standard configurations
BANK_0 = MBANK0|MHERAM|MURAM|MEXTROM|MCROM ; No ROMs, RAM 0

BANK_0 = %00111111 ; No ROMs, RAM 0
BANK_1 = %01111111 ; No ROMs, RAM 1
BANK_2 = %10111111 ; No ROMs, RAM 2 ; requires 512k expanded 128

; otherwise same as bank 0
BANK_3 = %11111111 ; No ROMs, RAM 3 ; requires 512k expanded 128

; otherwise same as bank 1

BANK_4 = MBANK0|MHIROM|MUIROM|MEXTROM|MIO
BANK_5 = MBANK1|MHIROM|MUIROM|MEXTROM|MIO
BANK_6 = MBANK2|MHIROM|MUIROM|MEXTROM|MIO
BANK_7 = MBANK3|MHIROM|MUIROM|MEXTROM|MIO

BANK_8 = MBANK0|MHEROM|MUEROM|MEXTROM|MIO
BANK_9 = MBANK1|MHEROM|MUEROM|MEXTROM|MIO
BANK_10 = MBANK2|MHEROM|MUEROM|MEXTROM|MIO
BANK_11 = MBANK3|MHEROM|MUEROM|MEXTROM|MIO

BANK_12 = %00000110 ; int function ROM, Kernal and I/O, RAM 0
BANK_13 = %00001010 ;
BANK_14 = %00000001 ; all ROMs, char ROM RAM 0
BANK_15 = %00000000 ; all ROMs, RAM 0 power on default

BANK_99 = $00001110 ; I/O, KERNAL, RAM 0 48K

Miscellaneous
;--- Set shared RAM size to 16K
lda mmurcr
and #%11111100
ora CRS_16K
sta mmurcr

.macro SetVICBank bank

lda cia2pra
and #%11111100
ora #(3 – bank)
sta cia2pra

.endm

REU/17XX RAM Expansion:

 C-6 C: Hardware

REU

17XX RAM Expansion:

EXP_BASE:

DF00: Status Register – Read Only

 b7: Interrupt Pending: 1 = interrupt waiting to be served

 b6: End of Block: 1 = transfer complete

 b5: Fault: 1 = block verify error

 b4: Size: 1 = 256 KB on 1764 and 512K on a 1750

 0 = 128 KB on 1700.

 b3...0: Version 0

 Note: Bits 7-5 are cleared when this register is read

 Note: REU can be expanded in size beyond the original shown by Bit 4. Testing the RAM is the

only way to find the actual size. CONFIGURE does this and puts the result in ramExpSize.

DF01: Command Register – Read/Write Write to this register to start operation.

 b7: Execute: 1 = Transfer per current configuration (GEOS default = 1)

 b6: Reserved:

 b5: Load: 1 = enable AUTOLOAD option (GEOS default = 0)

 With autoload enabled the address and length registers (see below) will be unchanged after a

command execution. Otherwise the address registers will be counted up to the address of the

last accessed byte of a DMA + 1, and the length register will be changed (normally to 1).

 b4: FF00 1=Disable FF00 decode (GEOS default = 1)

 If this bit is set command execution starts immediately after setting the command register.

Otherwise command execution is delayed until write access to memory position config

($FF00)

 b3-2: Reserved:

 b1-0: Transfer type: 00 = transfer C64 –> REU

 01 = transfer C64 <– REU

 10 = swap C64 <-> REU

 11 = compare C64 – REU

DF02: .word C64 base address

DF04: .word REU base address

DF06: .byte bank Note: When read, bits b7-b3 are always set

DF07: .word transfer size

DF09: Interrupt mask register – Read/Write

 b7-5: Interrupt flags 000 = Interrupts disabled (GEOS default = 0)

 b4-0: unused

DF0A: Address control register – Read/Write

 b7-6: 00 = Increment both addresses (GEOS default = 0)

 01 = Fix expansion address

 10 = Fix C64 address

 11 = Fix both addresses

 b5..0: unused

Note3: By using a fixed address in the REU as a source you can very quickly initialize large blocks of RAM.

References:

1764 Ram Expansion Module Users Guide / 1700 1750 Ram Expansion Module Users Guide

http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata/programming.reu Richard Hable

http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata/programming.reu

REU/GEORAM

 C-7 C: Hardware

GEORAM

GEOS 2.0 requires version 2.0r to use a GEORAM.

An application will normally use the GEOS REU API to work with the GEORAM. Using the API will keep the

application portable between systems with different REU types installed.

The GEORAM Unit has 512k bytes of RAM which appear to the system Unit as 2048 256-byte pages. The device

has two page select registers (at $DFFE and $DFFF) to set up which page can be accessed by the processor.

The page select register is 6 bits wide at $DFFE. Each block of pages is 16K.

The block select register is 5 bits wide at $DFFF. (512 REU, each size upgrade gets another active bit).

Both registers are write-only locations, so an image must be kept of their current state if needed later. The memory

itself appears as one 256-byte page at $DE00 to $DEFF.

$DE00

 256-byte directly accessible page of RAM

$DEFF

$DF00

 Do not write to this area

$DFFE b5-0 page select register (256 byte pages)

$DFFF b4-0 block select register (16K blocks)

Size Block Range (DFFE) Total Number of Blocks (DFFF)

512K $00 - 1F 32

1MB $00 - 3F 64

2MB $00 - 7F 128

4MB $00 - FF 256

Example:
georampg=$DE00
georamps=$DFFE
georambs=$DFFF
GRB_SIZE=$4000 ; 16K page size
GRPG_SIZE=$100 ; 256 byte block size
REU_BANK=0 ; rboot code is 128 bytes in bank 0
REU_ADDR=$BC40 ; and it is at address $BC00+$40
GRAM_BLK=REU_BANK*4+REU_ADDR/GRB_SIZE ; 2 (2*GRB_SIZE = $8000)
GRAM_PG=(REU_ADDR-((REU_ADDR/GRB_SIZE)*GRB_SIZE))/GRPG_SIZE; $3C ($3C*GRPG_SIZE = $3C00)
 ;--- Restore reboot code from GEORAM for rboot.
 LoadB georamps, #GRAM_PG ; 3C ($3C*GRPG_SIZE = $3C00)
 LoadB georambs, #GRAM_BLK ; 02 (2*GRB_SIZE = $8000)
 ; Address in bank 0 = $BC00+$40
 ;--- Boot code is now visible at georampg
 ldx #$7F
 10$ MoveB "georambs+$40,x","BootGEOS,x"
 dex
 bpl 10$

6502 Instruction Set

 C-8 C: Hardware

6502 Instruction Set
Legend

rel Relative offset signed value -128 to 127

zp Zero Page address $00 - $FF

abs Absolute address $0000 - $FFFF

Hi Low Nibble

 0 1 2 4 5 6 8 9 A C D E

00 brk ora (zp,X) ora zp asl zp php ora # asl a ora abs asl abs
10 bpl rel ora (zp),y ora zp,x asl zp,x clc ora abs,y ora abs,x asl abs,x
20 jsr abs and (zp,x) bit zp and zp rol zp plp and # rol a bit abs and abs rol abs
30 bmi rel and (zp),y and zp,x rol zp,x sec and abs,y and abs,x rol abs,x
40 rti eor (zp,x) eor zp lsr zp pha eor # lsr a jmp abs eor abs lsr abs
50 bvc rel eor (zp),y eor zp,x lsr zp,x cli eor abs,y eor abs,x lsr abs,x
60 rts adc (zp,x) adc zp ror zp pla adc # ror a jmp (abs) adc abs ror abs
70 bvs rel adc (zp),y adc zp,x ror zp,x sei adc abs,y adc abs,x ror abs,x
80 sta (zp,x) sty zp sta zp stx zp dey txa sty abs sta abs stx abs
90 bcc rel sta (zp),y sty zp,x sta zp,x stx zp,y tya sta abs,y txs sta abs,x
A0 ldy # lda (zp,x) ldx # ldy zp lda zp ldx zp tay lda # tax ldy abs lda abs ldx abs
B0 bcs rel lda (zp),y ldy zp,x lda zp,x ldx zp,y clv lda abs,y tsx ldy abs,x lda abs,x ldx abs,y
C0 cpy # cmp (zp,x) cpy zp cmp zp dec zp iny cmp # dex cpy abs cmp abs dec abs
D0 bne rel cmp (zp),y cmp zp,x dec zp,x cld cmp abs,y cmp abs,x dec abs,x
E0 cpx # sbc (zp,x) cpx zp sbc zp inc zp inx sbc # nop cpx abs sbc abs inc abs
F0 beq rel sbc (zp),y sbc zp,x inc zp,x sed sbc abs,y sbc abs,x inc abs,x

Quick Reference/Terms

 D-1 D: Macros

D: Macros

D: Macros
Quick Reference

Terms

Term Description

addend A number which is added to another.

addr Target for a relative branch.

Target of Macro Action

augend The number to which an addend is added.

bitNumber Index for bit position. example %10000000 / bitNumber 7 is set.

difference Result of subtraction.

dest An address to store a macro result.

immed A Constant number.

minuend A number from which another is to be subtracted.

result The Sum of addition.

New value after BIT operation.

source An address to load from.

Address or Immediate value in byte macros.

subtrahend A number to be subtracted from another.

value A Constant number.

zaddr Zero Page Address.

Categories

Identifier Category

bit Bit operations.

br Branching.

cmp Comparisons.

flow Alters flow of logic.

math Math.

hw Hardware.

util Utility.

Sources

Identifier Source

gP1 geoProgrammer1.1

gP' geoProgrammer' 2.1

HGG Created by PBM to perform actions for HGG Macros that were not defined in

geoProgrammer1.1. Example: macro bgt is used in HGG but is not in

geoProgrammer1.1. Macro logic was obvious so it was created here for use in the

examples.

GPG Official GEOS Programmer's Reference Guide

 Other sources will be added as used

Quick Reference/Category

 D-2 D: Macros

Category

bit operations

rmb

bitNumber

dest

resets bit in destination byte.

bit number in byte to reset.

address of byte which contains bit to reset.

Destroys: nothing.

gP1

rmbf

bitNumber

dest

reset bit in byte.

bit number in byte to reset.

address of byte which contains bit to reset.

Destroys: a.

gP1

setbit

source

mask

bits

Set bits in byte.

address of byte which contains the bits to be set.

address of bit mask to logical AND with source. (or immediate value)

address of bits to logical OR with source. (or immediate value)

Destroys: a

gP'

smb

bitNumber

dest

Set bit in byte.

bit number in byte to set (7 for MSD).

address of byte which contains bit to set.

Destroys: nothing.

gP1

smbf

bitNumber

result

Set bit in byte.

bit number in byte to set.

address of byte which contains bit to set.

Destroys: a.

gP1

tmb

bitNumber

result

Toggle bit in byte.

bit number in byte to toggle.

address of byte which contains bit to toggle.

Destroys: nothing.

gP'

tmbf

bitNumber

result

Toggle bit in byte.

bit number in byte to toggle.

address of byte which contains bit to toggle.

Destroys: a.

gP'

branching

bbeq

source

addr

Branch if (source = 0).

address of byte to test for zero.

where to branch to if byte is zero.

Returns: a = value @source.

gP'

bbmi

source

addr

Branch if (source < 0). (bit 7 is set)

address of signed byte to test for negative.

where to branch to if byte is negative.

Returns: a = value @source.

gP'

bbne

source

addr

Branch if (source != 0).

address of byte to test for not zero.

where to branch to if byte is not zero.

Returns: a = value @source.

gP'

bbpl

source

addr

Branch if (source != 0).

address of signed byte to test for positive.

where to branch to if byte is positive.

Returns: a = value @source.

gP'

bbr tests bit in source byte, branches if reset. gP1

Quick Reference/Category

 D-3 D: Macros

bitNumber

source

addr

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is reset.

bbrf

bitNumber

source

addr

Branch if bit reset.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is reset.

Destroys: a if bitNumber is < 6.

gP1

bbs

bitNumber

source

addr

Branch if bit set.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is set.

Destroys: nothing.

gP1

bbsf

bitNumber

source

addr

Branch if bit set.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is set.

Destroys: a if bitNumber is < 6.

gP1

bge addr Branch if (a >= b). gP1

bgt addr Branch if (a > b). HGG

ble addr Branch if (a <= b). HGG

blt addr Branch if (a < b). HGG

bra addr Unconditional branch to relative addr. gP1

bweq

source

addr

Branch if ([source |]source = 0)

address of word to test for zero.

where to branch to if source is zero.

gP'

bwne

source

addr

Branch if ([source |]source != 0)

address of word to test for zero.

where to branch to if source is not zero.

gP'

bxeq

addr

Branch if (x-register = 0).

where to branch to.

Returns: a-register = x-register.

gP'

bxne

addr

Branch if (x-register != 0).

where to branch to.

Returns: a-register = x-register.

gP'

comparisons

CmpB

source

dest

test (s == d).

address of first byte (or #immediate value).

address of second byte (or #immediate value).

gP1

CmpBI

source

immed

test (s == #i).

address of first byte.

value to compare to.

gP1

CmpW

source

dest

test (S == D).

address of first byte.

address of second byte.

gP1

CmpWI

source

immed

test (S == #I).

address of first word.

constant value to compare to.

gP1

Quick Reference/Category

 D-4 D: Macros

flow

clda

label

addr

load accumulator on branch to label.

Label for branch target.

address load accumulator from on branch.

gP'

cldxI

label

value

load x register on branch to label.

Label for branch target.

#immediate value to load into x register on branch.

gP'

cldyI

label

value

load y register on branch to label.

Label for branch target.

#immediate value to load into y register on branch.

gP'

math

add addend a = a + add. gP1

AddAW

augend

AU = AU + a-register.

address of word to add to.

Destroys: a.

gP'

AddB

addend

augend

au = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

Destroys: a.

gP1

AddBS

addend

augend

sum

s = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

address of byte to save result to.

Destroys: a.

gP'

AddBSW

addend

augend

sum

S = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

address of word to save result to.

Destroys: a.

gP'

AddBW

addend

augend

AU = AU + add.

address of byte to add, or #immediate value.

address of word to add to.

Destroys: a.

gP'

AddBWS

addend

augend

sum

S = AU + add.

address of byte to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP'

AddCB

addend

augend

au = au + carry + add.

address of byte to add, or #immediate value.

address of byte to add to.

Destroys: a.

gP'

AddRW

value

augend

AU = AU + #R.

#Relocatable address (or #immediate value) to add to augend.

address of word to add to.

Destroys: a.

gP'

Quick Reference/Category

 D-5 D: Macros

AddVB

value

augend

au = au + #v.

#immediate byte value to add to augend.

address of byte to add to.

Destroys: a.

gP1

AddVW

value

augend

AU = AU + #V.

#immediate byte or word value to add to augend.

address of word to add to.

Destroys: a.

gP1

AddVWS

addend

augend

sum

S = #AU + ADD.

#immediate byte or word value to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP'

AddW

addend

augend

AU = ADD + AU.

address of word to add.

address of word to add to.

Destroys: a.

gP1

AddWS

addend

augend

sum

S = AU + ADD.

address of word to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP'

AddYW

augend

AU = AU + y.

address of word to add to.

Destroys: a.

gP'

AddYWS

augend

sum

S = AU + y.

address of word to add to.

address of word to save result to.

Destroys: a.

gP'

DecW

addr

A = A -1.

address of word to decrement.

Destroys a.

gP'

sub

subtrahend

accumulator = accumulator – s.

address of byte to subtract, or #immediate value.

Destroys: a.

gP1

SubB

subtrahend

minuend

m = m – s.

address of byte to subtract, or #immediate value.

address of byte to subtract from and store result to.

Destroys: a.

gP1

SubBS

subtrahend

minuend

difference

m = m – s.

address of byte to subtract, or #immediate value.

address of byte to subtract from and store result to.

address of byte to store the result.

Destroys: a.

gP1

SubBW

subtrahend

minuend

M = M – s.

address of byte to subtract.

address of word to subtract from.

Destroys: a.

gP'

Quick Reference/Category

 D-6 D: Macros

SubBWS

subtrahend

minuend

difference

M = M – s.

address of byte to subtract.

address of word to subtract from.

address of word to store the result.

Destroys: a.

gP'

SubVW

value

minuend

M = M – #V.

value of subtrahend.

address of word to subtract from.

Destroys: a.

gP'

SubVWS

subtrahend

minuend

difference

D = M – #S.

value to subtract.

address of word to subtract from.

address of word to store the result.

Destroys: a.

gP'

SubW

subtrahend

minuend

M = M – S.

address of word to subtract.

address of word to subtract from.

Destroys: a.

gP1

SubWS

subtrahend

minuend

difference

D = M – S.

address of word to subtract.

address of word to subtract from.

address of word to store result.

Destroys: a.

gP'

SubWVS

subtrahend

minuend

difference

D = #M – S.

address of word to subtract.

#immediate value to subtract from.

address of word to store the result.

Destroys: a.

gP'

utility

Dialog

dbBox

Call DoDlgBox

address of dialog box structure to display

gP'

IncW

addr

A = A + 1.

address of word to increment.

gP'

jsr_a

procedure

param

a=param; jsr procedure.

address of routine to call.

address of byte to load, or #immediate value.

gP'

jsr_x

procedure

param

x=param; jsr procedure.

address of routine to call.

address of byte to load into x, or #immediate value.

gP'

LdNull

addr

D = #$0000.

address of word to load with null.

(accumulator is only loaded once).

Destroys: a.

gP'

LdWW

dest

dest2

value

D,D2 = #V.

address of word to load with value.

address of second word to load with value.

#immediate value to load. (constant or relocatable address)

Destroys: a.

gP'

Quick Reference/Category

 D-7 D: Macros

LoadB

dest

value

d = #v.

address of byte to load with value.

#immediate value to load.

Destroys: a.

gP1

LoadW

dest

value

D = #V.

address of byte to load with value.

#immediate value to load.

Destroys: a.

gP1

MoveB

source

dest

d = s.

source address.

destination address.

Destroys: a.

gP1

MoveW

source

dest

D = S.

source address.

destination address.

Destroys: a.

gP1

MvWW

source

dest

dest2

D,D2 = S

source address.

destination address.

second destination address.

Destroys: a.

gp'

PopB

dest

Pull a byte from the stack.

where to store byte value.

Destroys: a.

gP1

PopW

dest

Pull a word from the stack.

where to store word value.

Destroys: a.

gP1

PopX - Pull X from Stack.

Destroys: a.

gP'

PopY - Pull Y from Stack.

Destroys: a.

gP'

PushB

source

Push byte to stack.

address of the byte to push (or #immediate value).

gP1

PushW

source

Push the word at source onto the stack.

address of the word to push.

Destroys: a.

gP1

PushX - Push X to Stack.

Destroys: a.

gP'

PushY - Push Y to Stack.

Destroys: a.

gP'

Quick Reference/By Name

 D-8 D: Macros

By Name

add addend a = a + add. gP1 math

AddAW

augend

AU = AU + a-register.

address of word to add to.

Destroys: a.

gP' math

AddB

addend

augend

au = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

Destroys: a.

gP1 math

AddBS

addend

augend

sum

s = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

address of byte to save result to.

Destroys: a.

gP' math

AddBSW

addend

augend

sum

S = au + add.

address of byte to add, or #immediate value.

address of byte to add to.

address of word to save result to.

Destroys: a.

gP' math

AddBW

addend

augend

AU = AU + add.

address of byte to add, or #immediate value.

address of word to add to.

Destroys: a.

gP' math

AddBWS

addend

augend

sum

S = AU + add.

address of byte to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP' math

AddCB

addend

augend

au = au + carry + add.

address of byte to add, or #immediate value.

address of byte to add to.

Destroys: a.

gP' math

AddRW

value

augend

AU = AU + #R.

#Relocatable address (or #immediate value) to add to augend.

address of word to add to.

Destroys: a.

gP' math

AddVB

value

augend

au = au + #v.

#immediate byte value to add to augend.

address of byte to add to.

Destroys: a.

gP1 math

AddVW

value

augend

AU = AU + #V.

#immediate byte or word value to add to augend.

address of word to add to.

Destroys: a.

gP1 math

AddVWS

addend

augend

sum

S = AU + #ADD.

#immediate byte or word value to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP' math

Quick Reference/By Name

 D-9 D: Macros

AddW

addend

augend

AU = ADD + AU.

address of word to add.

address of word to add to.

Destroys: a.

gP1 math

AddWS

addend

augend

sum

S = AU + ADD.

address of word to add to augend.

address of word to add to.

address of word to save result to.

Destroys: a.

gP' math

AddYW

augend

AU = AU + y.

address of word to add to.

Destroys: a.

gP' math

AddYWS

augend

sum

S = AU + y.

address of word to add to.

address of word to save result to.

Destroys: a.

gP' math

bbeq

source

addr

Branch if (source = 0).

address of byte to test for zero.

where to branch to if byte is zero.

Returns: a = value @source.

gP' br

bbmi

source

addr

Branch if (source < 0). (bit 7 is set)

address of signed byte to test for negative.

where to branch to if byte is negative.

Returns: a = value @source.

gP' br

bbne

source

addr

Branch if (source != 0).

address of byte to test for not zero.

where to branch to if byte is not zero.

Returns: a = value @source.

gP' br

bbpl

source

addr

Branch if (source != 0).

address of signed byte to test for positive.

where to branch to if byte is positive.

Returns: a = value @source.

gP' br

bbr

bitNumber

source

addr

tests bit in source byte, branches if reset.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is reset.

gP1 br

bbrf

bitNumber

source

addr

Branch if bit reset.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is reset.

Destroys: a if bitNumber is < 6.

gP1 br

bbs

bitNumber

source

addr

Branch if bit set.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is set.

Destroys: nothing.

gP1 br

Quick Reference/By Name

 D-10 D: Macros

bbsf

bitNumber

source

addr

Branch if bit set.

bit number in byte to test (7 for MSD).

address of byte which contains bit to test.

where to branch to if bit is set.

Destroys: accumulator if bitNumber is < 6.

gP1 br

bge addr Branch if (a >= b). gP1 br

bgt addr Branch if (a > b). HGG br

ble addr Branch if (a <= b). HGG br

blt addr Branch if (a < b). HGG br

bra addr Unconditional branch to relative addr. gP1 br

bweq

source

addr

Branch if (source | (source +1) = 0).

address of word to test for zero.

where to branch to if source is zero.

gP' br

bwne

source

addr

Branch if (source | (source +1) != 0).

address of word to test for zero.

where to branch to if source is not zero.

gP' br

bxeq

addr

Branch if (x-register = 0).

where to branch to.

Returns: a-register = x-register.

gP' br

bxne

addr

Branch if (x-register != 0).

where to branch to.

Returns: a-register = x-register.

gP' br

clda

label

addr

load accumulator on branch to label.

Label for branch target.

address load accumulator from on branch.

gP' flow

cldxI

label

value

load x register on branch to label.

Label for branch target.

#immediate value to load into x register on branch.

gP' flow

cldyI

label

value

load y register on branch to label.

Label for branch target.

#immediate value to load into y register on branch.

gP' flow

CmpB

source

dest

test (s == d).

address of first byte (or #immediate value).

address of second byte (or #immediate value).

gP1 cmp

CmpBI

source

immed

test (s == #i).

address of first byte.

value to compare to.

gP1 cmp

CmpW

source

dest

test (S == D).

address of first byte.

address of second byte.

gP1 cmp

CmpWI

source

immed

test (S == #I).

address of first word.

constant value to compare to.

gP1 cmp

DecW

addr

A = A -1.

address of word to decrement.

Destroys a.

gP' math

Dialog

dbBox

Call DoDlgBox.

address of dialog box structure to display

gP' util

Quick Reference/By Name

 D-11 D: Macros

IncW

addr

A = A + 1.

address of word to increment.

gP' util

jsr_a

procedure

param

a=param; jsr procedure.

address of routine to call.

address of byte to load into a, or #immediate value.

gP' util

jsr_x

procedure

param

x=param; jsr procedure.

address of routine to call.

address of byte to load into x, or #immediate value.

gP' util

LdNull

addr

D = #$0000.

address of word to load with null.

(accumulator is only loaded once).

Destroys: a.

gP' util

LdWW

dest

dest2

value

D,D2 = #V.

address of word to load with value.

address of second word to load with value.

#immediate value to load. (constant or relocatable address)

Destroys: a.

gP' util

LoadB

dest

value

d = #v.

address of byte to load with value.

#immediate value to load.

Destroys: a.

gP1 util

LoadW

dest

value

D = #V.

address of byte to load with value.

#immediate value to load.

Destroys: a.

gP1 util

MoveB

source

dest

d = s.

source address.

destination address.

Destroys: a.

gP1 util

MoveW

source

dest

D = S.

source address.

destination address.

Destroys: a.

gP1 util

MvWW

source

dest

dest2

D,D2 = S

source address.

destination address.

second destination address.

Destroys: a.

gp' util

PopB

dest

Pull a byte from the stack.

where to store byte value.

Destroys: a.

gP1 util

PopW

dest

Pull a word from the stack.

where to store word value.

Destroys: a.

gP1 util

PopX - Pull X from Stack.

Destroys: a.

gP' util

PopY - Pull Y from Stack.

Destroys: a.

gP' util

Quick Reference/By Name

 D-12 D: Macros

PushB

source

Push byte to stack.

address of the byte to push (or #immediate value).

gP1 util

PushW

source

Push the word at source onto the stack.

address of the word to push.

gP1 util

PushX - Push X to Stack.

Destroys: a.

gP' util

PushY - Push Y to Stack.

Destroys: a.

gP' util

rmb

bitNumber

dest

resets bit in destination byte.

bit number in byte to reset.

address of byte which contains bit to reset.

Destroys: nothing.

gP1 bit

rmbf

bitNumber

dest

reset bit in byte.

bit number in byte to reset.

address of byte which contains bit to reset.

Destroys: a.

gP1 bit

setbit

source

mask

bits

Set bits in byte.

address of byte which contains the bits to be set.

address of bit mask to logical AND with source. (or

immediate value)

address of bits to logical OR with source. (or immediate

value)

Destroys: a

gP' bit

smb

bitNumber

dest

Set bit in byte.

bit number in byte to set (7 for MSD).

address of byte which contains bit to set.

Destroys: nothing.

gP1 bit

smbf

bitNumber

result

Set bit in byte.

bit number in byte to set.

address of byte which contains bit to set.

Destroys: a.

gP1 bit

sub

subtrahend

accumulator = accumulator – s.

address of byte to subtract, or #immediate value.

Destroys: a.

gP1 math

SubB

subtrahend

minuend

m = m – s.

address of byte to subtract, or #immediate value.

address of byte to subtract from and store result to.

Destroys: a.

gP1 math

SubBS

subtrahend

minuend

difference

m = m – s.

address of byte to subtract, or #immediate value.

address of byte to subtract from and store result to.

address of byte to store the result.

Destroys: a.

gP1 math

SubBW

subtrahend

minuend

M = M – s.

address of byte to subtract.

address of word to subtract from.

Destroys: a.

gP' math

Quick Reference/By Name

 D-13 D: Macros

SubBWS

subtrahend

minuend

difference

M = M – s.

address of byte to subtract.

address of word to subtract from.

address of word to store the result.

Destroys: a.

gP' math

SubVW

value

minuend

M = M – #V.

value of subtrahend.

address of word to subtract from.

Destroys: a.

gP' math

SubVWS

subtrahend

minuend

difference

D = M – #S.

value to subtract.

address of word to subtract from.

address of word to store the result.

Destroys: a.

gP' math

SubW

subtrahend

minuend

M = M – S.

address of word to subtract.

address of word to subtract from.

Destroys: a.

gP1 math

SubWS

subtrahend

minuend

difference

D = M – S.

address of word to subtract.

address of word to subtract from.

address of word to store result.

Destroys: a.

gP' math

SubWVS

subtrahend

minuend

difference

D = #M – S.

address of word to subtract.

#immediate value to subtract from.

address of word to store the result.

Destroys: a.

gP' math

tmb

bitNumber

result

Toggle bit in byte.

bit number in byte to toggle.

address of byte which contains bit to toggle.

Destroys: nothing.

gP' bit

tmbf

bitNumber

result

Toggle bit in byte.

bit number in byte to toggle.

address of byte which contains bit to toggle.

Destroys: a.

gP' bit

Macro Definitions by name

 D-14 D: Macros

Macro Definitions by name

add: math

Form: add addend gP1

Function: a = a + add.

Parameters: addend address of byte to add, or #immediate value.

Returns: sum in accumulator.

Destroys: nothing.

Description: Add the addend to the accumulator. addend is either an address or an immediate byte value. If it

is an address, the byte at the address is added to the value in the a-register. If it is an immediate

value (preceded by a # sign), the actual value is added to the a-register. The result is returned in

the a-register. The sole purpose of the add macro is to combine the adc with its mandatory clc

instruction.

Note: Result is not stored.

Example:
 add #12
 ...
 add mouseYPos

.macro add addend
 clc ; clear carry to start an addition
 adc addend ; add addend to the accumulator
.endm

; Sample of how a macro is stored in GEOASSEMBLER.

macro body:
.byte "clc",CR ; 4 bytes: mnemonic 3 bytes

; line terminator 1 byte
.byte "adc ",$01,PAGE_BREAK ; 6 bytes: mnemonic 3 bytes

; [SPACE] 1 byte
; parameter number 1 byte
; macro terminator 1 byte (PAGE_BREAK)

 ===============
 ;Total: 10 bytes

See also: AddB, AddW.

Macro Definitions by name

 D-15 D: Macros

AddAW: math

Form: AddAW augend gP'

Function: AU = AU + a-register.

Parameters: augend address of word to add the a-register to.

Destroys: a.

Description: Add a-register to word at location of augend.

Note:

Example:
 ;--- Filter geoWrite page of esc objects
 10$ bbeq "(r0),y",90$; exit when end of file found
 cmp #PAGE_BREAK
 beq 90$; exit when end of page found
 cmp #NEWCARDSET
 beq 17$
 cmp #ESC_RULER
 beq 18$
 cmp #ESC_GRAPHICS
 beq 19$
 sta (r1),y
 IncW r0
 IncW r1
 bra 10$

 17$ lda #4 ; size of NEWCARDSET
clda 18$, zGWRulerSize ; size of Ruler in buffer. (V1.1 and 2.x have different sizes)
clda 19$, #5 ; size of ESC_GRAPHICS
 AddAW r0 ; add size of current object to buffer pointer
 bra 10$; loop back to get next character

.macro AddAW augend
 clc ; clear carry to start an addition
 adc augend ; add a-register to low-byte of augend
 sta augend ; store updated low-byte of augend
 bcc z ; if carry is not set then done
 inc augend+1 ; else increment high-byte of augend
z:
.endm

.macro AddAW augend ; Compact next form
 add augend ; add a-register to low-byte of augend
 sta augend ; store updated low-byte of augend
 bcc z ; if carry is not set then done
 inc augend+1 ; else increment high-byte of augend
z:
.endm

See also: AddB, AddW.

Macro Definitions by name

 D-16 D: Macros

AddB: math

Form: AddB addend, augend gP1

Function: au = au + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of byte to add to.

Destroys: a.

Returns: C=1 addition overflowed the result byte.

 C=0 no overflow.

Description: Adds the byte at one address (addend) to the byte at another address (augend) and stores the

result in augend.

Example:
 ;--- Move input prompt by amount in r1L lines.
 AddB r1L,stringY
 ...
 ;--- Move input prompt down 10 scan lines.
 AddB #$0A,stringY

.macro AddB addend, augend
 clc ; must start a new add with carry cleared
 lda addend ; get value to add
 adc augend ; add to value to add too
 sta augend ; store result
.endm

See also: AddCB, AddBS, AddBW, AddW.

Macro Definitions by name

 D-17 D: Macros

AddBS: math

Form: AddBS addend, augend, sum gP'

Function: s = au + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of byte to add to.

 sum address of byte to save result to.

Destroys: a.

Returns: C=1 Addition overflowed the result byte.

 C=0 No overflow.

Description: Add addend to augend and save result in sum.

Note: Any overflow is lost and will be reflected by C=1 on return.

Example:
 ;--- Move input prompt by amount in r1L lines from offset defined in zCurOffSet
 AddBS r1L,zCurOffSet,stringY
 ...
 ;--- Move input prompt down 10 scan lines from offset defined in zCurOffSet
 AddBS #$0A,zCurOffSet,stringY

.macro AddBS addend, augend, sum
 lda augend ; get augend to add to
 clc ; must start a new add with carry cleared
 adc addend ; add the addend byte
 sta sum ; store result in sum byte
.endm

See also: AddBSW.

Macro Definitions by name

 D-18 D: Macros

AddBSW: math

Form: AddBSW addend, augend, sum gP'

Function: S = au + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of byte to add to.

 sum address of word to save result to.

Destroys: a.

Description: Add addend to augend and save word sized result in sum.

Note:

Example:
 ;--- Add value in r1L to current Platform line to get new reach from platform
 AddBSW r1L,zCurOffSet,zReach
 ...
 ;--- Add 10 to current Platform line to get new reach from platform
 AddBSW #$0A,zPlatform,zReach

.macro AddBSW addend, augend, sum
 lda augend ; get the value to add too
 clc ; must start a new add with carry cleared
 adc addend ; add the addend byte to the augend
 sta sum ; store result
 lda #0 ; set high-byte of sum to zero
 adc #0 ; add overflow to high byte of sum
 sta sum+1
.endm

See also: AddW.

Macro Definitions by name

 D-19 D: Macros

AddBW: math

Form: AddBW addend, augend gP'

Function: AU = AU + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of word to add to.

Destroys: a.

Description: Add addend (byte) to word at location of augend and save the result in augend.

Note:

Example:
 ;--- Calculate new file size by the value in nbrBlks
 AddBW nbrBlks,fileSize
 ...
 ;--- Calculate pointer to next icon using size of icon structure
 AddBW #OFF_NX_ICON,r0

.macro AddBW addend, augend
 lda addend ; load addend low-byte
 clc ; clear carry to start an addition
 adc augend ; add to low-byte of augend
 sta augend ; store updated augend
 bcc z ; if carry is not set then done
 inc augend+1 ; else increment high-byte of augend
z:
.endm

See also: AddB, AddW.

Macro Definitions by name

 D-20 D: Macros

AddBWS: math

Form: AddBWS addend, augend, sum gP'

Function: SUM = AU + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of word to add to.

 sum address of word to add to save result.

Destroys: a.

Description: Add addend (byte) to word at location of augend and save the result to byte pointed to by sum.

Note:

Example:
 ;--- Calculate temporary file size to test if new addition will fit on disk
 AddBWS nbrBlks,fileSize,sizeCheck
 ...
 ;--- Calculate pointer to next icon from reference pointer in r14
 ;--- using size of icon structure
 AddBWS #OFF_NX_ICON,r14,r0

.macro AddBWS addend, augend, sum
 lda augend ; load augend low-byte
 clc ; clear carry to start an addition
 adc addend ; add addend byte
 sta sum ; store result in sum
 lda augend+1 ; add carry to the
 adc #0 ; high-byte of augend
 sta sum+1 ; and save in sum
.endm

See also: AddB, AddW.

Macro Definitions by name

 D-21 D: Macros

AddCB: math

Form: AddCB addend, augend gP'

Function: au = au + carry + add.

Parameters: addend address of byte to add, or #immediate value.

 augend address of byte to add to.

Destroys: a.

Returns: C=1 addition overflowed the result byte.

 C=0 no overflow.

Description: Adds the carry and the byte at one address (addend) to the byte at another address (augend) and

stores the result in augend.

Note:

Example:
 ;--- Add word to an indexed word.
 AddB r1L,"rValuesL,X" ; AddB clears the carry and adds the values
 AddCB r1H,"rValuesH,X" ; AddCB includes the carry in the addition

 ;--- Add word to an indirect indexed word.
 AddB r1L,"(zValues),Y"
 iny ; advance index to next byte
 AddCB r1H,"(zValues),Y"

 ;--- Add word to an indirect indexed word.
 AddB r1L,"(zValues),Y"
 IncW zValues ; advance pointer to next byte
 AddCB r1H,"(zValues),Y"

.macro AddCB addend, augend
 lda addend ; get value to add
 adc augend ; add carry + addend
 sta augend ; store result
.endm

See also: AddB.

Macro Definitions by name

 D-22 D: Macros

AddRW: utility

Form: AddRW value, augend gP'

Function: Function: AU = AU + #R.

Parameters: value #Relocatable address (or #immediate value) to add to augend.

 augend address of word to add to.

Destroys a.

Description: Adds a relocatable address or (#immediate value) (value) to the word at augend and stores the

result in augend.

Note:

Example:
 ...
 AddRW rBuffer, pointer ; add start of buffer address to pointer

.macro AddRW value, augend
 lda #[(value) ; load low-byte of value
 clc ; clear carry to start an addition
 adc augend ; add to low-byte of augend
 sta augend ; store updated augend
 lda #](value) ; carry was set if adc above overflowed
 adc augend+1 ; add carry + value to high-byte of address
 sta augend+1 ; store result
.endm

See also:

Macro Definitions by name

 D-23 D: Macros

AddVB: math

Form: AddVB value, augend gP1

Function: au = au + #v.

Parameters: value #immediate value to add to augend.

 augend address of byte to add to.

Destroys: a.

Description: Adds an immediate byte value (value) to the byte at augend and stores the result in augend.

Note: This macro is redundant with AddB. AddB can do immediate values as well. AddVB was left in

geoProgrammer' 2.1 for backwards compatibility with existing source.

Note: Use AddBs, or AddBS to add a value to a byte and store into a different address.

Example:
 ;--- Move input prompt down 10 scan lines.

 AddVB #$0A,stringY ; Macro adds the #. Redundant to use it again here.

.macro AddVB value, augend
 lda augend ; load low-byte of augend
 clc ; clear carry to start an addition
 adc #value ; add #immediate value
 sta augend ; store result
.endm

See also: AddW.

Macro Definitions by name

 D-24 D: Macros

AddVW: math

Form: AddVW value, augend gP1

Function: AU = AU + #V.

Parameters: value #immediate byte or word value to add to augend.

 augend address of word to add to.

Destroys: a.

Description: Adds an immediate byte or word value (value) to the word at augend and stores the result in

augend.

Note:

Example: Find.
 ;--- Move input prompt to the right by 12 pixels

 AddVW #12,stringX

.macro AddVW value, augend
 clc ; clear carry to start an addition
 lda #[(value) ; load low-byte of value
 adc augend ; add to low-byte of augend
 sta augend ; store updated augend
.if (value >= 0) && (value <= 255)
 bcc z ; carry was set if adc above overflowed
 inc augend+1 ; increment high-byte of word
z:
.else
 lda #](value) ; carry was set if adc above overflowed
 adc augend+1 ; add carry + value to high-byte of address
 sta augend+1 ; store result
.endif
.endm

See also: AddB.

Macro Definitions by name

 D-25 D: Macros

AddVWS: math

Form: AddVWS addend, augend, sum gP'

Function: S = AU + #ADD.

Parameters: addend #immediate value to add to augend.

 augend address of word to add to.

 sum address of word to save the result.

Destroys: a.

Description: Add addend to augend and store in sum.

Note:

Example: ClipChar

 AddVWS #$400,r1,r0 ; Add $400 to value in r1 and save result in r0.

.macro AddVWS addend, augend, sum
 lda augend ; load low-byte of word being added to
 clc ; clear carry to start an addition
 adc #[(addend) ; add low-byte of addend
 sta sum ; save result in sum
 lda augend+1 ; now add the high-byte and save it
 adc #](addend)
 sta sum+1
.endm

See also: AddB.

Macro Definitions by name

 D-26 D: Macros

AddW: math

Form: AddW addend, augend gP1

Function: AU = ADD + AU.

Parameters: addend address of word to add to augend.

 augend address of word to add to.

Destroys: a.

Description: Adds the word at addend to the word at augend and stores the result in augend.

Note:

Example:

.macro AddW addend, augend
 lda addend ; load addend low-byte
 clc ; clear carry to start an addition
 adc augend ; add to destination low-byte
 sta augend ; store result, sec carry with overflow
 lda addend+1 ; load source high-byte
 adc augend+1 ; add with carry to high-byte dest
 sta augend+1 ; store result
.endm

See also: AddB.

Macro Definitions by name

 D-27 D: Macros

AddWS: math

Form: AddWS addend, augend, sum gP'

Function: AU = ADD + AU.

Parameters: addend address of word to add to augend.

 augend address of word to add to.

 sum address of word to save the result.

Destroys: a.

Description: Add addend to augend and store in augend.

Note:

Example:

.macro AddWS addend, augend, sum
 lda addend ; load addend low-byte
 clc ; clear carry to start an addition
 adc augend ; add to destination low-byte
 sta sum ; store result, sec carry with overflow
 lda addend+1 ; load source high-byte
 adc augend+1 ; add with carry to high-byte dest
 sta sum+1 ; store result
.endm

See also: AddB.

Macro Definitions by name

 D-28 D: Macros

AddYW: math

Form: AddYW augend gP'

Function: AU = AU + y.

Parameters: y ADDEND — value in y to add to augend.

 augend address of word to add to.

Destroys: a.

Description: Add ADDEND to augend and store sum in augend.

Note:

Example:

.macro AddYW augend
 tya ; put addend in a
 clc ; reset carry flag
 adc augend ; add addend to low-byte of augend
 sta augend
 bcc z ; if carry is set then increment high-byte of augend
 inc augend+1
z:
.endm

See also: AddYWS.

Macro Definitions by name

 D-29 D: Macros

AddYWS: math

Form: AddYWS augend, sum gP'

Function: S = AU + y.

Parameters: y ADDEND — value in y to add to augend.

 augend address of word to add to.

 sum address of word to save the result.

Destroys: a.

Description: Add ADDEND to augend and store result in sum.

Note:

Example: ClipChar, MySetGDirEntry.

.macro AddYWS augend, sum
 tya ; put addend in a
 clc ; reset carry flag
 adc augend ; add addend to low-byte of augend
 sta sum ; save low-byte to sum
 lda #0 ;
 adc augend+1 ; add carry to the high-byte
 sta sum+1 ; save high-byte of the result
.endm

See also: AddYW.

Macro Definitions by name

 D-30 D: Macros

bbeq: branch

Form: bbeq source, addr gP'

Function: Branch if (source = 0).

Parameters: source address of byte to test for zero.

 addr where to branch to if byte is zero.

Returns: a = value @source.

Description: Branch to addr if source byte is zero. Allows relative branching forward and backward with the

same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note:

Example:

 bbeq yPos, 60$;if y position is zero then branch to handle edge of screen action.

.macro bbeq source, addr
 lda source ; load source byte
 beq addr ; branch if zero
.endm

See also: bbne.

Macro Definitions by name

 D-31 D: Macros

bbmi: branch

Form: bbmi source, addr HGG

Function: Branch if (source < 0). (bit 7 is set)

Parameters: source address of signed byte to test for negative.

 addr where to branch to if byte is negative.

Returns: a = value @source.

Description: Branch to addr if source byte is less than zero. Allows relative branching forward and backward

with the same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid

label, local label or offset (127 thru -128).

Note: Use "bbsf 7,source, addr" to branch when negative while not altering the accumulator.

Example:

.macro bbmi source, addr
 lda source ; load source byte
 bmi addr ; branch if negative (bit 7 is set)
.endm

See also: bbpl, bbsf

Macro Definitions by name

 D-32 D: Macros

bbne: branch

Form: bbne source, addr gP'

Function: Branch if (source != 0).

Parameters: source address of byte to test for not zero.

 dest where to branch to if byte is not zero.

Returns: a = = value @source.

Description: Branch to addr if source byte is not zero. Allows relative branching forward and backward with

the same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note:

Example:

.macro bbne source, addr
 lda source ; load source byte
 bne addr ; branch if not zero
.endm

See also: bbeq.

Macro Definitions by name

 D-33 D: Macros

bbpl: branch

Form: bbpl source, addr gP'

Function: Branch if (source >= 0). (bit 7 is not set)

Parameters: source address of signed byte to test for positive.

 addr where to branch to if byte is positive.

Returns: a = value @source.

Description: Branch to addr if source byte is greater than or equal to zero. Allows relative branching forward

and backward with the same limitations as normal 6502 branch instructions (+127 or -128 bytes),

addr is a valid label, local label or offset (127 thru -128).

Note: Use "7,bbrf source,addr" to branch on positive while not altering the accumulator.

Example:

.macro bbpl source, addr
 lda source ; load source byte
 bpl addr ; branch if positive (bit 7 is not set)
.endm

See also: bbmi.

Macro Definitions by name

 D-34 D: Macros

bbr: branch

Form: bbr bitNumber, source, addr gP1

Function: test bit in source byte, branch on reset.

Parameters: bitNumber bit number in byte to test (7 for MSD, 0 for LSD).

 source address of byte which contains bit to test.

 addr where to branch to if bit is reset.

Destroys: nothing.

Description: Tests a bit in the byte at source. bitNumber is the bit to test; it is a value which ranges from zero

to seven, with zero being the LSB and seven being the MSB of the byte. If the bit is reset, a relative

branch to addr is taken. Otherwise, it falls through to the next instruction. Does not affect any

registers.

Note: No status registers will change as a result of the test.

Example:
 bbr MOUSEON_BIT,mouseOn,SM_rts

.macro bbr bitNumber, source, addr
 php ; save processor status register
 pha ; save a
 lda source ; load byte to be tested
 and #(1 << bitNumber) ; mask out the bit to test
 bne z ; if bit set then done
 pla ; else
 plp ; restore a and process status registers
 bra addr ; branch to target
z:
 pla ; restore a
 plp ; restore processor status register
.endm

See also: bbrf.

Macro Definitions by name

 D-35 D: Macros

bbrf: branch

Form: bbrf bitNumber, source, addr gP1

Function: Branch if bit reset.

Parameters: bitNumber bit number in byte to test (7 for MSD, 0 for LSD).

 source address of byte which contains bit to test.

 addr where to branch to if bit is set.

Destroys: if bitNumber is < 6:

 a.

 if bitNumber is 6 or 7:

 nothing.

Description: Tests a bit in the byte at source. bitNumber is the bit to test; it is a value which ranges from zero

to seven, with zero being the LSB and seven being the MSB of the byte. If the bit is reset, a relative

branch to addr is taken. Otherwise, it falls through to the next instruction. Identical to bbr, except

it is faster and affects the ST and a-register.

Note: Fast version that destroys the accumulator. Use bbs to preserve a. (The a-register is only destroyed

when testing bits 0-5).

Example: o_UpdateMouse.

 bbrf MOUSEON_BIT,mouseOn,SM_rts

.macro bbrf bitNumber, source, addr
.if (bitNumber = 7) ; bits 7 and 6 have fast checks for bit set
 bit source
 bpl addr
.elif (bitNumber = 6)
 bit source
 bvc addr
.else
 lda source ; other bits require a load and a test
 and #(1 << bitNumber)
 beq addr
.endif
.endm

See also: bbr.

Macro Definitions by name

 D-36 D: Macros

bbs: branch

Form: bbs bitNumber, source, addr gP1

Function: Branch if bit set.

Parameters: bitNumber bit number in byte to test (7 for MSD, 0 for LSD).

 source address of byte which contains bit to test.

 addr where to branch to if bit is set.

Destroys: nothing.

Description: Tests a bit in the byte at source. bitNumber is the bit to test; it is a value which ranges from zero

to seven, with zero being the LSB and seven being the MSB of the byte. If the bit is set, a relative

branch to addr is taken. Otherwise, it falls through to the next instruction. Does not affect any

registers.

Note: Process status register is preserved and does not reflect the results of the bit test.

Note: bbs should only be used instead of bbsf if the accumulator needs to be preserved.

Example:
 bbsf KEYPRESS_BIT,pressFlag,KbdChg

.macro bbs bitNumber, source, addr
 php ; save processor status register
 pha ; save a
 lda source ; load byte to be tested
 and #(1 << bitNumber) ; mask out the bit to test
 beq z ; if reset then done
 pla ; else
 plp ; restore a and process status registers
 bra addr ; branch to target
z:
 pla ; restore a
 plp ; restore processor status register
.endm

See also: bbr.

Macro Definitions by name

 D-37 D: Macros

bbsf: branch

Form: bbsf bitNumber, source, addr gP1

Function: Branch if bit set.

Parameters: bitNumber bit number in byte to test (7 for MSD, 0 for LSD).

 source address of byte which contains bit to test.

 addr where to branch to if bit is set.

Description: Tests a bit in the byte at source. bitNumber is the bit to test; it is a value which ranges from zero

to seven, with zero being the LSB and seven being the MSB of the byte. If the bit is set, a relative

branch to addr is taken. Otherwise, it falls through to the next instruction. Identical to bbs, except

it is faster and affects the ST and a-register.

Destroys: if BITPOS is < 6

 a.

 if BITPOS >= 6

 nothing.

Note: Fast version that destroys the accumulator. Use bbs to preserve a. (The a-register is only

destroyed when testing bits 0-5).

Example:
 bbsf MOUSE_BIT,pressFlag,MseChg

.macro bbsf bitNumber, source, addr
.if (bitNumber = 7) ; bits 7 and 6 have fast checks for bit set
 bit source
 bmi addr
.elif (bitNumber = 6)
 bit source
 bvs addr
.else
 lda source ; other bits require a load and a test
 and #(1 << bitNumber)
 bne addr
.endif
.endm

See also: bbr.

Macro Definitions by name

 D-38 D: Macros

bge: branch

Form: bge addr gP1

Function: Branch if (a >= b).

Parameters: addr where to branch to.

Destroys: nothing.

Description: If carry flag is set, then branch to addr.

Note:

Example: RoadTrip.

.macro bge addr
 bcs addr ; if carry set then branch to addr
.endm

See also: bge, bgt, blt, ble.

Macro Definitions by name

 D-39 D: Macros

bgt: branch

Form: bgt addr HGG

Function: Branch if (a > b).

Parameters: addr where to branch to.

Destroys: nothing.

Description: If carry flag is set and if zero flag is not set, then branch to addr.

Note:

Example: NewIsMseInRegion.

.macro bgt addr
 beq z ; if zero flag set then done
 bcs addr ; if carry set then branch to addr
z:
.endm

See also: bge, bgt, blt, ble.

Macro Definitions by name

 D-40 D: Macros

ble: branch

Form: ble addr HGG

Function: Branch if (a <= b).

Parameters: addr where to branch to.

Destroys: nothing.

Description: If carry flag is clear or if zero flag is set, then branch to addr.

Note:

Example:
 CmpB mouseYPos,#10 ; check position of the mouse
 ble MseAtTop ; branch if mouse is less than or equal to our top

.macro ble addr
 bcc addr ; branch if carry clear
 beq addr ; branch if zero flag set
.endm

See also: bge, bgt, blt, ble.

Macro Definitions by name

 D-41 D: Macros

blt: branch

Form: blt addr HGG

Function: Branch if (a < b) —> addr.

Parameters: addr where to branch to.

Destroys: nothing.

Description: If carry flag is reset, then branch to addr.

Note:

Example: NewIsMseInRegion.

.macro blt addr
 bcc addr ; branch if carry clear
.endm

See also: bge, bgt, ble, bra.

Macro Definitions by name

 D-42 D: Macros

bra: branch

Form: bra addr gP1

Function: Unconditional relative branch to addr.

Parameters: addr where to branch to.

Destroys: nothing.

Description: Generates an unconditional relative branch. Allows relative branching forward and backward with

the same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is valid address

or label; it can be a local label.

Note:

Example: RoadTrip.

.macro bra addr
 clv ; clear overflow flag
 bvc addr ; branch on overflow clear to addr
.endm

See also: bge, bgt, blt, ble.

Macro Definitions by name

 D-43 D: Macros

bweq: branch

Form: bweq source, addr gP'

Function: Branch if (source | (source +1) = 0).

Parameters: source address of word to test for zero.

 addr where to branch to.

Destroys: a.

Description: Branch to addr if source word is zero. Allows relative branching forward and backward with the

same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note:

Example: RoadTrip.

.macro bweq source, addr
 lda source ; load low-byte of source
 ora source+1 ; or with high-byte of source
 beq addr ; branch if zero flag is set
.endm

See also: bwne.

Macro Definitions by name

 D-44 D: Macros

bwne: branch

Form: bwne source, addr gP'

Function: Branch if (source | (source +1) != 0).

Parameters: source address of word to test for zero.

 addr where to branch to.

Destroys: a.

Description: Branch to addr if source word is not zero. Allows relative branching forward and backward with

the same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note:

Example: RoadTrip.

.macro bwne source, addr
 lda source ; load low-byte of source
 ora source+1 ; or with high-byte of source
 bne addr ; branch if zero flag is not set
.endm

See also: bweq.

Macro Definitions by name

 D-45 D: Macros

bxeq: branch

Form: bxeq addr gP'

Function: Branch if (x-register != 0).

Parameters: addr where to branch to.

Returns: a = x.

Description: Branch to addr if x-register is not zero. Allows relative branching forward and backward with the

same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note: Commonly used after disk access to branch if there were no errors.

Example:

.macro bxeq addr
 txa ; transfer x-register to a-register to set flags
 beq addr ; branch if x is not zero
.endm

See also: bxne.

Macro Definitions by name

 D-46 D: Macros

bxne: branch

Form: bxne addr gP'

Function: Branch if (x-register != 0).

Parameters: addr where to branch to.

Returns: a = x.

Description: Branch to addr if x-register is not zero. Allows relative branching forward and backward with the

same limitations as normal 6502 branch instructions (+127 or -128 bytes), addr is a valid label,

local label or offset (127 thru -128).

Note: Commonly used after disk access to branch to an error handler.

Example:
 jsr GetBufBlock ; load block into the diskBlkBuf
 bxne 99$; is x<>0 then go to the error handler

.macro bxne addr
 txa ; transfer x-register to a-register to set flags
 bne addr ; branch if x is not zero
.endm

See also: bxeq.

Macro Definitions by name

 D-47 D: Macros

clda: flow

Form: clda label, data gP'

Function: Load accumulator on branch to label.

Parameters: label Label for branch targeting.

 data memory address to load accumulator from (or #immediate value) if branch target is

used.

Description: Conditionally load accumulator with data if label is used as the destination of a branch

instruction.

Note:

Example: IsMseInMargins.

 DAApp: ; branch (jmp/jsr/br) to here loads accumulator
 lda zDevApp ; from the application drive
clda DAData, zDevData ; branch to here loads accumulator from data drive
clda DAOutput, zDevOutput ; branch to here loads accumulator from output drive
 SafeSetD:
 cmp curDrive ; only set new device if selected device is a change
 bne SfSetDev ; from the current drive
 rts
 SfSetDev:
 ...

 ; Example using constants.
 lda #4 ; if flow gets here a=4 when PointRecord called
clda 40$, #3 ; local labels are ok. a=3 if branch to 40$
clda Rec2, #2 ; if branch or jmp/jsr to Rec2 a = 2
clda Rec1, #1 ; if jmp/jsr to Rec1 a = 1
 jsr PointRecord
 ...

.macro clda label, data
 .byte $2C ; $2C is opcode for an absolute bit instruction
label: ; if flow goes through the bit instruction then
 lda data ; the lda command will never happen
.endm

See also: cldx, cldy.

Macro Definitions by name

 D-48 D: Macros

cldx: flow

Form: cldx label, data gP'

Function: Load x-register on branch to label.

Parameters: label Label for branch targeting.

 data memory address to load the x-register from (or #immediate value) if branch target is

used.

Description: Conditionally load data into x register if label is used as the destination of a branching

instruction.

Note:

Example:

 ldx #6 ; if flow gets here y=6 when lda diskBlkBuf,x executes
cldxI 40$, #4 ; local labels are ok. y=4 if branch to 40$
cldxI Rec2, #2 ; if branch or jmp/jsr to Rec2 y = 2
cldxI Rec1, #0 ; if jmp/jsr to Rec1 y = 1
 lda diskBlkBuf,y
 ...

.macro cldx label, data
 .byte $2C ; $2C is opcode for an absolute bit instruction
label: ; if flow goes through the bit instruction then
 ldx data ; the ldx command will never happen
.endm

See also: clda, cldy.

Macro Definitions by name

 D-49 D: Macros

cldy: flow

Form: cldy label, data gP'

Function: Load y-register on branch to label.

Parameters: label Label for branch targeting.

 data memory address to load the y-register from (or #immediate value) if branch target is

used.

Description: Conditionally load value into y register if label is used as the destination of a branching

instruction.

Note:

Example:

 ldy #6 ; if flow gets here y = 6 when lda (r0),y executes
cldyI 40$, #4 ; local labels are ok. y = 4 if branch to 40$
cldyI Rec2, #2 ; if branch or jmp/jsr to Rec2 y = 2
cldyI Rec1, #0 ; if jmp/jsr to Rec1 y = 1
 lda (r0),y
 ...

.macro cldy label, data
 .byte $2C ; $2C is opcode for an absolute bit instruction
label: ; if flow goes through the bit instruction then
 ldy data ; the ldy command will never happen
.endm

See also: clda, cldx.

Macro Definitions by name

 D-50 D: Macros

CmpB: cmp

Form: CmpB source, dest gP1

Function: test (s == d).

Parameters: source address of first byte to compare, or #immediate value.

 dest address of byte to compare to, or #immediate value.

Destroys: a.

Description: Compares the byte at source to the byte at dest.

Note:

Example:
 CmpB #20,myVar ; compare constant with variable
 CmpB myVar,count ; compare two variables
 CmpB count,#40 ; compare variable with constant

.macro CmpB source, dest
 lda source ; get source byte
 cmp dest ; compare source to dest
.endm

See also: CmpBI.

Macro Definitions by name

 D-51 D: Macros

CmpBI: cmp

Form: CmpBI source, immed gP1

Function: test (s == #i).

Parameters: source address of byte to compare.

 immed #immediate value to compare to.

Destroys: a.

Description: Compares the byte at source with the immediate byte immed.

Note: This macro is redundant with CmpB since CmpB can do immediate values too. Left in

geoProgrammer' 2.1 for backwards compatibility with existing source.

Example: ReadAndDelete.

.macro CmpBI source, immed
 lda source ; load source byte
 cmp #immed ; compare to #immediate value
.endm

See also: CmpB.

Macro Definitions by name

 D-52 D: Macros

CmpW: cmp

Form: CmpW source, dest gP1

Function: test (S == D).

Parameters: source address of first word to compare.

 dest address of word to compare to.

Destroys: a.

Description: Compares the word at source with the word at dest. Note: the high-bytes are compared first, so the

condition codes (and therefore subsequent branches) are the same as for one-byte comparisons.

Note:

Example: IsMseInMargins.

.macro CmpW source, dest
 lda source+1 ; get high-byte of source
 cmp dest+1 ; compare source to dest
 bne z ; if bytes are not equal then

; done
 lda source ; load low-byte

 cmp dest ; compare to low-byte of #immediate value
z:
.endm

See also: CmpWI.

Macro Definitions by name

 D-53 D: Macros

CmpWI: cmp

Form: CmpWI source, immed gP1

Function: test (S == #I).

Parameters: source address of word to compare.

 immed #immediate value to compare to.

Destroys: a.

Description: Compares the word value at source to the immediate word immed. As with CmpW, the condition

codes (and therefore subsequent branches) are the same as for one-byte comparisons.

Note:

Example:

.macro CmpWI source, immed
 lda source+1 ; load high-byte of source
 cmp #](immed) ; compare to high-byte of #immediate value
 bne z ; if bytes are not equal then done
 lda source ; load low-byte
 cmp #[(immed) ; compare to low-byte of #immediate value
z:
.endm

See also: CmpW.

Macro Definitions by name

 D-54 D: Macros

DecW: Math

Form: DecW addr gP'

Function: A = A -1.

Parameters: addr address of word to decrement.

Destroys: a.

Description: Decrement word by 1.

Note: Zero flag does not follow the result value at addr.

Example: Find.

.macro DecW addr
 lda addr ; load low-byte
 bne z ; if low-byte is zero then
 dec addr+1 ; decrement high-byte
z:
 dec addr ; decrement low-byte
.endm

See also: IncW.

Macro Definitions by name

 D-55 D: Macros

Dialog: util

Form: Dialog dbBox gP'

Function: Call DoDlgBox.

Parameters: dbBox address of dialog box to display.

Destroys: a, x.

Description: Companion macro to the atom DoDlg. Loads the x-register with the high-byte of dbBox address

and the a-register with the low-byte of dbBox address. It then calls the DoDlg routine to display

the dialog box.

Note:

Example:
 Dialog #dbMyDlg ; display dialog box
 lda r0L ; get dialog box result

.macro Dialog dbBox
 ldx #]dbBox ; load x with high-byte address of zero page pointer
 lda #[dbBox ; load a with low-byte address of zero page pointer
 jsr DoDlg ; activate dialog
.endm

See also: DecW.

Macro Definitions by name

 D-56 D: Macros

IncW: utility

Form: IncW addr gP'

Function: A = A + 1.

Parameters: addr address of word to increment.

Destroys .

Description: Increment addr.

Note: If the result is zero, then the zero flag in the status register is set.

Example:

.macro IncW addr
 inc addr ; increment addr
 bne z ; if result of increment is not zero then done
 inc addr+1 ; else increment high-byte of address
z:
.endm

See also: DecW.

Macro Definitions by name

 D-57 D: Macros

jsr_a: utility

Form: jsr_a procedure, param gp'

Function: a=param; jsr procedure.

Parameters: procedure address of routine to call.

 param address of byte to load into a, or #immediate value.

Destroys: nothing.

Description: Loads the a-register with param and then calls procedure.

Note:

Example:
 jsr_a SetPattern , #2

 ...

 jsr_a SetDevice, DrvData

.macro jsr_a procedure, param
 lda param ; load a-register with param to pass to procedure
 jsr procedure ; call the procedure
.endm

See also: jsr_x

Macro Definitions by name

 D-58 D: Macros

jsr_x: utility

Form: jsr_x procedure, param gp'

Function: x=param; jsr procedure.

Parameters: procedure address of routine to call.

 param address of byte to load into x, or #immediate value.

Destroys:

Description: Loads the x-register with param and then calls procedure.

Note:

Example:
 jsr_x Ddec, #r11 ; Decrement zero page word in r11

 ...

 jsr_x Dnegate, #z70 ; perform two's complement on word in z70

.macro jsr_x procedure, param
 ldx param ; load x-register with param to pass to procedure
 jsr procedure ; call the procedure
.endm

See also: jsr_a.

Macro Definitions by name

 D-59 D: Macros

LdNull: utility

Form: LdNull addr gP'

Function: D = #$0000.

Parameters: dest address of word to load with null value.

Destroys a.

Description: Load a word at dest with a null value ($0000).

Note:

Example: SmartPutString

 VectorAppMain:
 LdNull appMain ; Disable hook to appMain
 rts

.macro LdNull addr
 lda #0 ; load null value
 sta addr ; store low-byte of dest
 sta addr+1 ; store it in high-byte of dest
.endm

See also: LoadW, LdWW

Macro Definitions by name

 D-60 D: Macros

LdWW: utility

Form: LdWW dest, dest2, value gP'

Function: D,D2 = #V.

Parameters: dest address of word to load with an immediate value.

dest2 address of second word to load with an immediate value.

 value immediate word to load (constant or relocatable address).

Destroys a.

Description: Load a word at dest and at dest2 with an immediate value or relocatable address.

Note:

Example:
 LdWW r0, appMain,#NULL

.macro LdWW dest, dest2, value
 lda #[(value) ; load low-byte of value
 sta dest ; store low-byte of dest
 sta dest2 ; store low-byte of dest2
 lda #](value) ; load high-byte of value
 sta dest+1 ; store it in high-byte of dest
 sta dest2+1 ; store it in high-byte of dest2
.endm

See also: LoadW, LdNull

Macro Definitions by name

 D-61 D: Macros

LoadB: utility

Form: LoadB dest, value gP1

Function: d = #v.

Parameters: dest address of byte to load with immediate value.

 value byte to load.

Destroys a.

Description: Loads a memory address (dest) with an immediate byte (value).

Note:

Example: ShowBitmap.

.macro LoadB dest, value
 lda #value ; load value
 sta dest ; store byte to dest
.endm

See also: LoadW.

Macro Definitions by name

 D-62 D: Macros

LoadW: utility

Form: LoadW dest, value gP1

Function: D = #V.

Parameters: dest address of word to load with immediate value.

 value #immediate value to load.

Destroys a.

Description: Loads a memory address (dest) with an immediate word (value). A word is two bytes in length

and is placed at dest and dest+1 in low-byte, high-byte order.

Note:

Example: DisplayImage.

.macro LoadW dest, value
 lda #](value) ; load high-byte of value
 sta dest+1 ; store byte to high-byte of dest
 lda #[(value) ; load low-byte of value
 sta dest ; store byte to low-byte of dest
.endm

See also: LoadB.

Macro Definitions by name

 D-63 D: Macros

MoveB: utility

Form: MoveB source, dest gP1

Function: d = s.

Parameters: source source address.

 dest destination address.

Destroys a.

Description: Moves a byte from one address (source) to another address (dest). The byte at the source address

is not destroyed.

Note:

Example: StopMenus.

.macro MoveB source, dest
 lda source ; load source byte
 sta dest ; store it in dest
.endm

See also: MoveW.

Macro Definitions by name

 D-64 D: Macros

MoveW: utility

Form: MoveW source, dest gP1

Function: D = S.

Parameters: source source address of word to move.

 dest destination address of word to set.

Destroys a.

Description: Moves a word (two bytes) from one address (source) to another address (dest). The word at the

source address is not destroyed.

Note:

Example: MseToCardPos.

.macro MoveW source, dest
 lda source+1 ; load high-byte of source
 sta dest+1 ; store it to high-byte of dest
 lda source ; load low-byte of source
 sta dest ; store it to low-byte of dest
.endm

See also: MoveXW.

Macro Definitions by name

 D-65 D: Macros

MvWW: utility

Form: MvWW source, dest, dest2 gP'

Function: D,D2 = S.

Parameters: source source address of word to move.

 dest destination address of word to set.

 dest2 destination address of second word to set.

Destroys a.

Description: Moves a word (two bytes) from one address (source) to address (dest) and address (dest2). The

word at the source address is not destroyed.

Note:

Example:

.macro MvWW source, dest, dest2
 lda source ; load low-byte of source
 sta dest ; store it to low-byte of dest
 sta dest2 ; store it to high-byte of dest2
 lda source+1 ; load high-byte of source
 sta dest+1 ; store it to high-byte of dest
 sta dest2+1 ; store it to high-byte of dest2
.endm

See also:

Macro Definitions by name

 D-66 D: Macros

PopB: utility

Form: PopB dest gP1

Function: Pull dest byte from stack.

Parameters: dest where to store byte value.

Destroys a.

Description: The opposite of PushB; pops a byte from the stack and stores it at dest.

Note:

Example:

.macro PopB dest
 pla ; load byte from stack
 sta dest ; save byte to dest
.endm

See also: PushB.

Macro Definitions by name

 D-67 D: Macros

PopW: utility

Form: PopW dest gP'

Function: Pull dest word from stack.

Parameters: dest where to store word value.

Destroys a.

Description: The opposite of PushW; pops a word (two-bytes) from the stack and stores it at dest. The first

byte popped is the low-byte and is stored at dest; the second byte is the high-byte and is stored at

dest +1.

Note:

Example:
 PopW r3

.macro PopW dest
 pla ; load byte from stack
 sta dest ; save byte to low-byte of dest
 pla ; load byte from stack
 sta dest+1 ; save it to high-byte of dest
.endm

See also: PushW.

Macro Definitions by name

 D-68 D: Macros

PopX: utility

Form: PopX gP'

Function: Pull x register from stack.

Parameters: none.

Destroys a.

Description: Pull accumulator from stack and store in x-register.

Note:

Example:

.macro PopX
 pla ; load byte from stack
 tax ; transfer a into x-register
.endm

See also: PushX.

Macro Definitions by name

 D-69 D: Macros

PopY: utility

Form: PopY gP'

Function: Pull y register from stack.

Parameters: none.

Description: Pull accumulator from stack and store in y register.

Destroys: a.

Note:

Example:

.macro PopY
 pla ; load byte from stack
 tay ; transfer a into y
.endm

See also: PushY.

Macro Definitions by name

 D-70 D: Macros

PushB: utility

Form: PushB source gP1

Function: Push source byte to stack.

Parameters: source address of the byte to push, or #immediate value.

Destroys: a.

Description: Pushes the byte at source onto the stack. source can be an immediate value preceded by a #-sign

if desired.

Note:

Example:
 PushB "zpage,y"
 ...
 PushB #32

.macro PushB source
 lda source ; load byte into a
 pha ; push a onto the stack
.endm

See also: PushW.

Macro Definitions by name

 D-71 D: Macros

PushW: utility

Form: PushW source gP1

Function: Push word to stack.

Parameters: source address of the word to push.

Destroys: a.

Description: Pushes the word (two-bytes) at source onto the stack. The high-byte at source+1 is pushed first,

followed by the low-byte at source.

Note:

Example:

.macro PushW source
 lda source+1 ; load high-byte of word
 pha ; push a onto the stack
 lda source ; load low-byte of word
 pha ; push a onto the stack
.endm

See also: PopW.

Macro Definitions by name

 D-72 D: Macros

PushX: utility

Form: PushX gP'

Function: Push x-register to stack.

Parameters: none.

Destroys: a.

Description: Push x-register onto the stack.

Note:

Example:

.macro PushX
 txa ; transfer x-register to a-register
 pha ; push a-register onto the stack
.endm

See also: PopX.

Macro Definitions by name

 D-73 D: Macros

PushY: utility

Form: PushY gP'

Function: Push y register to stack.

Parameters: none.

Destroys a.

Description: Push y-register onto the stack.

Note:

Example: SwZp.

.macro PushY
 tya ; transfer y-register to a-register
 pha ; push a-register onto the stack
.endm

See also: PopX.

Macro Definitions by name

 D-74 D: Macros

rmb: bit

Form: rmb bitNumber, dest gP1

Function: Reset bit in byte.

Parameters: bitNumber bit number in byte to reset (7 for MSD, 0 for LSD).

 dest address of byte which contains bit to reset.

Destroys: a.

Description: Resets (clears to 0) a bit in the byte at dest. bitNumber is a value from zero to seven, with zero

being the LSB and seven being the MSB of the byte.

Note: rmb should only be used instead of rmbf if the accumulator needs to be preserved.

Example:
 rmb MENU_ON_BIT,mouseOn

.macro rmb bitNumber, dest
 pha ; save the accumulator
 lda #[~(1 << bitNumber) ; load bit mask
 and dest ; reset selected bit
 sta dest ; save modified byte
 pla ; restore accumulator from stack
.endm

See also: rmbf.

Macro Definitions by name

 D-75 D: Macros

rmbf: bit

Form: rmbf bitNumber, dest gP1

Function: Reset bit in byte.

Parameters: bitNumber bit number in byte to set (7 for MSD, 0 for LSD).

 dest address of byte which contains bit to be reset.

Destroys: a.

Description: Resets (clears to 0) a bit in the byte at dest. bitNumber is a value from zero to seven, with zero

being the LSB, and seven being the MSB of the byte. Identical to rmb, except that it is faster,

smaller, and destroys the a-register.

Note: Fast version that destroys the accumulator. Use rmb to preserve the a-register.

Example: StopMenus.

 rmbf MENU_ON_BIT,mouseOn

.macro rmbf bitNumber, dest
 lda #[~(1 << bitNumber) ; load bit mask
 and dest ; reset selected bit
 sta dest ; save modified byte
.endm

See also:

Macro Definitions by name

 D-76 D: Macros

setbit: bit

Form: setbit source, mask, bits gP'

Function: Set bits in byte.

Parameters: source address of byte which contains the bits to be set.

 mask address of bit mask to logical AND with source. (or immediate value)

 bits address of bits to logical OR with source. (or immediate value)

Destroys: nothing.

Description: Sets bits in the byte at source while retaining settings of other bits. Use mask to isolate out and

retain the bit settings of bits not being affected by bits. The bits are then applied using a logical

OR and are saved back to the source.

Example:
 setbit CPU_DATA, #%11111001, rCPU_DATA ; restore bits b2-b1 with saved value

 setbit cia2pra, #%11111100, #%01 ; Put VIC bank at $8000

.macro setbit source, mask, bits
 lda source ; load the source byte
 and mask ; apply the mask
 ora bits ; set selected bits
 sta source ; save modified byte
.endm

See also: smbf.

Macro Definitions by name

 D-77 D: Macros

smb: bit

Form: smb bitNumber, result gP1

Function: Set bit in byte.

Parameters: bitNumber bit number in byte to set (7 for MSD, 0 for LSD).

 result address of byte which contains the bit to be set.

Destroys: nothing.

Description: Sets a bit in the byte at result. bitNumber is a value from zero to seven, with zero being the LSB,

and seven being the MSB of the byte.

Note: smb should only be used instead of smbf if the accumulator needs to be preserved.

Example:
 smb MENU_ON_BIT,mouseOn

.macro smb bitNumber, result
 pha ; save the accumulator
 lda #(1 << bitNumber) ; load mask
 ora result ; set selected bit
 sta result ; save modified byte
 pla ; restore the accumulator from the stack
.endm

See also: smbf.

Macro Definitions by name

 D-78 D: Macros

smbf: bit

Form: smbf bitNumber, result gP1

Function: Set bit in byte.

Parameters: bitNumber bit number in byte to set (7 for MSD, 0 for LSD).

 result address of byte which contains the bit to be set.

Destroys: a.

Description: Sets a bit in the byte at result, bitNumber is a value from zero to seven, with zero being the LSB,

and seven being the MSB of the byte. Identical to smb, except that it is faster, smaller, and destroys

the a-register.

Note: Fast version that destroys the accumulator. Use smb to preserve the accumulator.

Example: C64Joystick.

 smbf MOUSE_ON_BIT,mouseOn

.macro smbf bitNumber, result
 lda #(1 << bitNumber) ; load mask
 ora result ; set selected bit
 sta result ; save modified byte
.endm

See also: smb.

Macro Definitions by name

 D-79 D: Macros

sub: math

Form: sub subtrahend gP1

Function: accumulator = accumulator – s.

Parameters: subtrahend address of byte to subtract, or #immediate value.

Destroys: a.

Description: subtrahend is either an address or an immediate byte value. If it is an address, the byte at the

address is subtracted from the value in the accumulator. If it is an immediate value (preceded by

a # sign), the actual value is subtracted from the accumulator. The result is returned in the

accumulator. The sole purpose of the sub macro is to combine the sbc instruction with its

mandatory sec instruction.

Note:

Example:
 sub #11
 ...
 sub r7L

.macro sub subtrahend
 sec ; set carry before starting a new subtraction
 sbc subtrahend ; subtract the subtrahend from the accumulator
.endm

See also:

Macro Definitions by name

 D-80 D: Macros

SubB: math

Form: SubB subtrahend, minuend. gP1

Function: m = m – s.

Parameters: subtrahend address of byte to subtract, or #immediate value.

 minuend address of byte to subtract from.

Destroys: a.

Description: subtrahend is either an address or an immediate byte value. Subtracts the subtrahend from the

byte at address (minuend) and stores the result in minuend.

Note:

Example:
 SubB r2L,r15
 ...
 SubB #$20,lastKey

.macro SubB subtrahend, minuend
 sec ; set carry before starting a new subtraction
 lda minuend ; get minuend byte
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta minuend ; store difference in minuend
.endm

See also:

Macro Definitions by name

 D-81 D: Macros

SubBS: math

Form: SubBS subtrahend, minuend, difference gP'

Function: d = m – s.

Parameters: subtrahend address of byte to subtract, or #immediate value.

 minuend address of byte to subtract from.

 difference address of byte to store the result.

Destroys: a.

Description: Subtract subtrahend from minuend and store result in difference.

Note:

Example:
 SubBS r2L,r15L,r14L ; subtract value at r2L from r15L and save result in r14L
 ...
 SubBS #$20,r15L,r14L ; subtract $20 from r15L and save result in r14L

.macro SubBS subtrahend, minuend, difference
 sec ; set carry before starting a new subtraction
 lda minuend ; get minuend byte
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta difference ; store result in difference
.endm

See also:

Macro Definitions by name

 D-82 D: Macros

SubBW: math

Form: SubBW subtrahend, minuend gP'

Function: M = M – s.

Parameters: subtrahend address of byte to subtract, or #immediate value.

 minuend address of word to subtract from.

Destroys: a.

Description: Subtract subtrahend from minuend and store result in minuend.

Note:

Example:
 SubBW r0L,r1 ; subtract byte value at r0L from word value at r1
 SubBW #7,r1 ; subtract 7 from word at r1

.macro SubBW subtrahend, minuend
 lda minuend ; get minuend low-byte
 sec ; set carry before starting a new subtraction
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta minuend ; store result back into minuend
 bcs z ; exit if no carry
 dec minuend+1 ; subtract 1 from high-byte
z:
.endm

See also:

Macro Definitions by name

 D-83 D: Macros

SubBWS: math

Form: SubBWS subtrahend, minuend, difference gP'

Function: D = M – s.

Parameters: subtrahend address of byte to subtract, or #immediate value.

 minuend address of word to subtract from.

 difference address of word to store the result.

Destroys: a.

Description: Subtract subtrahend from minuend and store result in difference.

Note:

Example:
 SubBWS #7,r1L,r15L

.macro SubBWS subtrahend, minuend, difference
 sec ; set carry before starting a new subtraction
 lda minuend ; get minuend low-byte
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta difference ; store result back into minuend
 lda minuend+1 ; get minuend high-byte
 sbc #0 ; subtract with carry from minuend
 sta difference+1 ; store result back into high-byte of minuend
.endm

See also:

Macro Definitions by name

 D-84 D: Macros

SubVW: math

Form: SubVW value, minuend gP'

Function: M = M – #V.

Parameters: value #immediate value to subtract.

 minuend address of word to subtract from.

Destroys: a.

Description: Subtracts an immediate byte or word (value) from the word at minuend and stores the result in

minuend.

Note: When value is the address of a relocatable label, use SubVWS.

Example:
 SubVW #20,rightMargin

.macro SubVW value, minuend
 sec ; set carry before starting a new subtraction
 lda minuend ; get minuend low-byte
 sbc #[(value) ; subtract the subtrahend from the minuend
 sta minuend ; store result back into minuend
.if (value >= 0) && (value <= 255)
 bcs z ; exit if no carry
 dec minuend+1 ; subtract 1 from high-byte
z:
.else
 lda minuend+1 ; get minuend high-byte
 sbc #](value) ; subtract subtrahend high-byte with carry from minuend
 sta minuend +1 ; store result in minuend
.endif
.endm

See also: SubVWS

Macro Definitions by name

 D-85 D: Macros

SubVWS: math

Form: SubVWS subtrahend, minuend, difference. gP'

Function: D = M – #S.

Parameters: subtrahend #immediate value to subtract.

 minuend address of word to subtract from.

 difference address of word to store the result.

Destroys: a.

Description: Subtract subtrahend from minuend and store result in difference.

Note:

Example:
 SubVWS #RECSIZE,bufSize,bufLeft

.macro SubVWS subtrahend, minuend, difference
 sec ; set carry before starting a new subtraction
 lda minuend ; get source low-byte
 sbc #[(subtrahend) ; subtract the subtrahend from the minuend
 sta difference ; store into difference
 lda minuend+1 ; get minuend high-byte
 sbc #](subtrahend) ; subtract subtrahend high-byte with carry from minuend
 sta difference+1 ; store result in difference
.endm

See also: SubVW

Macro Definitions by name

 D-86 D: Macros

SubW: math

Form: SubW subtrahend, minuend. gP1

Function: M = M – S.

Parameters: subtrahend address of word to subtract.

 minuend address of word to subtract from.

Destroys: a.

Description: Subtracts the word at subtrahend from the word at minuend and stores the result in minuend.

Note:

Example:
 SubW strSize,bufFree

.macro SubW subtrahend, minuend
 lda minuend ; get low-byte of the minuend
 sec ; set carry before starting a new subtraction
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta minuend ; store result back into minuend
 lda minuend+1 ; get minuend high-byte
 sbc subtrahend+1 ; subtract the high-byte with carry from the subtrahend
 sta minuend+1 ; store result back into high-byte of minuend
.endm

See also:

Macro Definitions by name

 D-87 D: Macros

SubWS: math

Form: SubWS subtrahend, minuend, difference gP'

Function: D = M – S.

Parameters: subtrahend address of word to subtract.

 minuend address of word to subtract from.

 difference address of word to save result too.

Destroys: a.

Description: Subtract subtrahend from minuend and store result in difference.

Note:

Example:
 SubW strSize,bufSize,bufFree

.macro SubWS subtrahend, minuend, difference
 lda minuend ; get low-byte of the minuend
 sec ; set carry before starting a new subtraction
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta difference ; store result
 lda minuend+1 ; get minuend high-byte
 sbc subtrahend+1 ; subtract the high-byte with carry from the subtrahend
 sta difference+1 ; store high-byte of result
.endm

See also:

Macro Definitions by name

 D-88 D: Macros

SubWVS: math

Form: SubWVS subtrahend, minuend, difference. gP'

Function D = #M – S.

Parameters: subtrahend address of word to subtract.

 minuend #immediate value to subtract from.

 difference address of word to hold result.

Destroys: a.

Description: Subtract subtrahend from minuend and store the result in difference.

Note:

Example:
 SubWVS mouseXPos,#SC_PIX_WIDTH,distToEdge

.macro SubWVS subtrahend, minuend, difference
 lda #[(minuend) ; get low-byte of the minuend
 sec ; set carry before starting a new subtraction
 sbc subtrahend ; subtract the subtrahend from the minuend
 sta difference ; store result in difference
 lda #](minuend) ; now do the high-byte with the carry from the result
 sbc subtrahend+1 ; of the first subtract
 sta difference+1 ; store result back into high-byte of difference
.endm

See also:

Macro Definitions by name

 D-89 D: Macros

tmb: bit

Form: tmb bitNumber, result. gP'

Function: Toggle bit in byte.

Parameters: bitNumber bit number in byte to set (7 for MSD, 0 for LSD).

 result address of byte which contains the bit to toggle.

Destroys: nothing.

Description: Toggle bit position bitNumber in result byte.

Note: tmb should only be used instead of tmbf if the accumulator needs to be preserved.

Example:
 tmb 6,menuOpt

.macro tmb bitNumber, result
 pha ; save the accumulator
 lda result ; load byte to modify
 eor #(1 << bitNumber) ; toggle selected bit
 sta result ; save modified byte
 pla ; restore the accumulator
.endm

See also: tmbf.

Macro Definitions by name

 D-90 D: Macros

tmbf: bit

Form: tmbf bitNumber, result. gP'

Function: Toggle bit in byte.

Parameters: bitNumber bit number in byte to set (7 for MSD, 0 for LSD).

 result address of byte which contains bit to toggle.

Destroys: a.

Description: Toggle bit position bitNumber in result byte.

Note: Fast version that destroys the accumulator. Use tmb to preserve a.

Example:
 tmbf 7,myFlag

.macro tmbf bitNumber, result
 lda result ; load byte to modify
 eor #(1 << bitNumber) ; toggle selected bit
 sta result ; save modified byte
.endm

See also: tmb.

GEOS Memory Region Map

 E-1 E: Memory Maps

E: Memory Maps

GEOS Memory Region Map

Address Region Equate Description App Usable

00 ZeroPage †¥ Zero Page 144

100 StackPage †¥ 6510 Stack Var

200 AppLowVar ¥ APP_LVAR low application variable space All

314 Vectors ROM Vectors when ROM is switched in -

334 AppLowRAM † APP_LRAM Used by GEODEBUGGER All

400 AppRAM † APP_RAM start of application space All

6000 Backscreen †¥ BACK_SCR_BASE base of background screen All

7900 PRINTBASE †¥ load address for print drivers All

7F40 AppVar † APP_VAR application variable space All

8000 OsVars †¥ OS_VARS OS variable base 384

8C00 ColorMatrix †¥ COLOR_MATRIX video color matrix All

9000 DiskDrivers DISK_BASE disk driver base address -

A000 Forescreen †¥ SCREEN_BASE base of foreground screen 7960

BF40 Kernal Low -

D000 I/O / Kernal †¥ vicbase video interface chip base address 1024

E000 Kernal High / ROM -

†Contains areas that are usable as application RAM.
¥Requires special consideration to use. See Memory Region Maps for more details on locations and conditions.

GEOS Memory Region Map

 E-2 E: Memory Maps

Zero Page

00 CPU_DDR 6510 data direction register.

01 CPU_DATA Built-in 6510 I/O port, bit oriented.

02 r0-r15 GEOS Kernal zero page pseudoregisters.

22 curPattern Pointer to fill pattern data.

24 string Pointer to input buffer.

26 fontTable Label for start of current font settings.

26 baselineOffset Number of pixels from top of font to baseline.

27 curSetWidth Pixel width of font bitstream in bytes.

29 curHeight Card height in pixels (point size1) of font.

2A curIndexTable Pointer to font index table.

2C cardDataPntr Pointer to font image data.

2E currentMode Current text drawing mode.

 ;--- fontTable End

2F dispBufferOn Controls the screen to draw too. Fore/back or both.

30 mouseOn Mouse/Menu/Icon control flag.

31 msePicPtr Pointer to the mouse graphics data.

 ;--- Text Clipping

33 windowTop Top line of window for text clipping.

34 windowBottom Bottom margin, usually 199.

35 leftMargin Leftmost point for writing characters.

37 rightMargin The rightmost point for writing characters.

39 pressFlag Input control flags.

3A mouseXPos Mouse's x-position.

3C mouseYPos Mouse's y-position.

3D returnAddress Address to return to from in-line call.

3F graphMode 40 / 80-column mode flag (only in GEOS 128).

40 GEOS Kernal internal use.

70 APP_ZPL Generically named. Application zpage area (A2-A9). 16-bytes.

80-FA APP_ZIO Swappable Kernal I/O/application zpage space.

 (BA) curDevice Current serial device number.

FB APP_ZPH Generically named. Application zpage area (A0-A1). 4-bytes.

FF Used by BASIC to convert floating point number to string.

*Note: 80-FA is only used by the Kernal during I/O. See SwZp for how to make safe use of this area in your

applications.

Application Memory Available in Zero Page

70-7F

FB-FE

Dedicated application space.

...

16

4

FF This byte is only used by BASIC and is free to use from within GEOS 1

 Total bytes with no application effort. 21

80-FA Conditionally available space.

This space is used only by Kernal I/O routines. To safely use this area as

application RAM, use SwZp to swap the area with an application buffer as needed.

123

 Total Zero Page space with logic added. 144

GEOS Memory Region Map

 E-3 E: Memory Maps

Stack Page

0100-01FF 6510 Hardware Stack Area.

The depth of stack usage is largely under the control of the application. It can be managed so that x% of the

stack will never be used. This remaining bottom of the stack area can then be used as application space. An

example of this practice is GEODEBUGGER that uses a data area starting at 0100. Knowing that the Debugger

uses this area is also an important consideration if you want the application to remain compatible with

GEODEBUGGER for debugging that application.

 Dedicated application Space. 0

 Total bytes with no application effort. 0

100-x Conditionally available space.

Depends on applications stack needs. Half of the stack as a data area could be safely

used under normal circumstances. Careful monitoring of stack usage during design

time would be required to fine tune the number to get the maximum safe amount.

0-127

 Total potential Zero Page space with logic added. 127

AppLowVar APP_LVAR

200-313

This area is unused by the C128 Kernal or the DEBUGGER and is safe for the application to use with some

restrictions. The C64 CMD Kernal uses 02A1 during serial I/O and will freeze if this byte is changed to a non-

zero value.

 Dedicated application space. 276

02A1 C64 ENABL. This byte cannot be altered by a C64 application -1

 C64 Total bytes with no application effort. 275

 C128 Total bytes with no application effort. 276

Example: ramsect definition that is compatible with C64 and C128 GEOS.

.ramsect APP_LVAR ;200-2A0

 .block 161 ;Break up the block statement with individual assignments.

 ;Make sure the total .block usage puts rENABL at $02A1.

 rENABL: .block 1 ;Byte at $02A1 cannot be changed from 0 on C64 GEOS without

 ;freezing I/O.

 ;Label name is used for verifying that this byte is correctly set aside.

.ramsect APP_LVAR+$A2 ;2A2-313

 .block 114 ;

AppLowRAM APP_LRAM

334-3FF

This area is completely unused by the Kernal. DEBUGGER uses this location and would not be compatible

with an application that alters this area in anyway.

 Dedicated application space. 204

 Total bytes with no application effort. 0

 Total bytes with loss of ability to use the DEBUGGER. 204

GEOS Memory Region Map

 E-4 E: Memory Maps

BackScreen

6000-7F3F

In order to use the BackScreen as an application space you must:

1. LoadB dispBufferOn, #ST_WR_FORE.

2. Provide a mechanism for recovering the background behind dialog boxes. This can be either redrawing

the area where the dialog was or by saving the part of the Foreground screen that the dialog uses to an

application buffer. See Chapter "Graphics Routines", "Using the Background Buffer as Extra

Memory" for more information and "Exiting from a DB" in chapter "Dialog Box" for sample code.

7900-7F3F PRINTBASE

This part of the Backscreen region doubles as the load location for print driver when printing. If the application

is going to be printing this area would be a temporary use only while printing is not in progress.

 Dedicated application space. 0

 Total bytes with no application effort. 0

 Total application space with added logic. 8000

OsVars

If the application is not using sprites, then the sprite images can be a data area for the application. Never use

spr0pic as this is the mouse pointer. spr1pic is for the text prompt. The spr1pic image is created every time

InitTextPrompt is called. So spr1pic is safe to use as long as the application is not using text input or is only

using the spr1pic area as temporary space between uses of text input.

 Dedicated application Space. 0

848A diskOpenFlg. This variable is only used by the desktop and can be freely used by

any application for any purpose during the life of the application.

1

8A40 spr1pic 64

8A80 spr2pic 64

8AC0 spr3pic 64

8B00 spr4pic 64

8B40 spr5pic 64

8B80 spr6pic 64

8BC0 spr7pic 64

 Total bytes with no application effort. 449

 Total application space with added logic. -

Example: Use all of sprite 1 through 7 area as a ramsect buffer.

.ramsect spr1pic ; $8A40

highBuf:
.block 448

GEOS Memory Region Map

 E-5 E: Memory Maps

ColorMatrix

8C00-8FE7

C64 and C128 in 40 Col mode

There will be a visual penalty for using this area as it directly affects what the user is seeing. geoPublish uses this

area during processing and accepts the visual penalties. If space is tight this can be the only last option for more

room to work with. You would normally not want to use the last screen line so that a readable status line can be

maintained. Post processing, the color matrix should be set back to the current FG/BG color in screencolors.

C128 80 Col mode

This area can be freely used but should be reset prior to exiting the application by setting the entire color matrix

to the current FG/BG color in screencolors.

C64 & C128

 Dedicated application space. 0

8C00 COLOR_MATRIX 1000

 Total bytes with no application effort . 0

 C128 Total application space with added logic. 1000

 C64 Total application space with added logic. 960

Forescreen

C64 and C128 in 40 Col mode

A000-BF3F

The foreground screen can be used during processing. To hide its use, you can set the COLOR_MATRIX to

have the same FG/BG colors for the screen area that is being used for data. Normally you would not want to use

the last Card Row of the foreground screen so that a readable status line can be maintained. This approach is used

by geoAssembler. Post processing, the color matrix should be set back to the current FG/BG color in

screencolors.

C64 & C128 40-column Mode

 Dedicated application space. 0

A000 Foreground screen. 8000

 Total bytes with no application effort . 0

 Total application space with added logic. 7680

C128 80 Col mode

A040-BF7F

This area is part of the background screen. The same considerations must be made as were for the BackScreen

region.

C128 80-column Mode

 Dedicated application space. 0

A000 Unused. Free to use by the application. 64

A040 Bottom half of background screen (Top half is at 6000). 8000

 Total bytes with no application effort . 64

 Total application space with added logic. 8064

GEOS Memory Region Map

 E-6 E: Memory Maps

I/O

D800-D9FF

C64

This area holds the Color Table for video modes not used by the GEOS Kernal. This area is free to be used by

the application as a data area. Considerations for this region:

1. In this area only the lower nibble (b3-0) of every byte are writeable.

2. When read, the top nibble will be random values and must be masked off.

3. This area is also used by the DEBUGGER as it runs in text mode and text mode uses this color table.

Note that the DEBUGGER will not allow changes to this area in interactive mode.

How useful this region may be to an application would be very application dependent.

C64

 Dedicated application space. 0

D800 Color Table for unused video modes. 1000

 Total bytes with no application effort. 0

 Total nibbles with added logic. 1000

C128

D800-D9FF

This area holds the Color Table for video modes not used by the GEOS Kernal. This area is free to be used by

the application as a data area. On the 128 this area has 2 Pages that can be swapped out using the register at

CPU_DATA ($01). Bit 0 Controls the block that is mapped into memory. 0 selects block 0 and 1 selects block

1. Bit 1 Controls which of the 2 blocks the VIC chip uses.

The DEBUGGER uses block 1 for its text colors. block 0 can therefore be used without worrying about

conflicting with the DEBUGGER.

C128

 Dedicated application space. 0

D800 Color Table for unused video modes. 2000

 Total bytes with no application effort. 0

 Total nibbles with added logic and be compatible with GEODEBUGGER 1000

 Total nibbles with added logic and not be compatible with GEODEBUGGER 2000

How useful this region may be to an application would be very application dependent.

128 BackRAM:

 E-7 E: Memory Maps

128 BackRAM:

GEOS Primary Bank is Bank 1.

BackRAM is bank 0. This allows common RAM to be turned on and have parts of bank 0 then appear into the

memory space of bank 1 as shared RAM is always Bank 0 RAM and is always visible to the CPU when active.

Bank 0:

0000-00FF: Common RAM zero page ;GEOS always uses zero page from Bank 0.

0100-01FF: Common RAM stack ;GEOS always uses stack page from Bank 0.

0200-03FF: Common code area

03E4-03EB: Soft reset handler

0400-1FFF: Soft Sprites

2000-7FFF: Swap area for Desk Accessories

If your application does not use Desk Accessories this may be used as an application data area.

8000-9FFF: Unused

A000-ABFF: GEOS Kernal

AC00-C0FF Access Cache

C100-FFFF: GEOS Kernal

Bank 0 backRAM

$0000 $400 $FF00 $FF05

 BANK 0 MMU ROM

Bank 1 GEOS Address Space

$0000 $400 $FF00 $FF05

 BANK 1 GEOS APPLICATION SPACE MMU ROM

Bank 2

$0000 $400 $FF00 $FF05

 BANK 2 (bank 0 if 128 is not expanded) MMU ROM

Bank 3

$0000 $400 $FF00 $FF05

 BANK 3 (bank 1 if 128 is not expanded) MMU ROM

Note: BANK-4 thru BANK 13 Not used by GEOS.

Bank 14

$0000 $400 $4000 $D000 $E000 $FF00 $FF05

 RAM 0 Basic ROM Char Rom Kernal

ROM

MMU ROM

Bank 15

$0000 $400 $4000 $D000 $E000 $FF00 $FF05

Common

RAM

RAM 0 Basic ROM I/O Kernal

ROM

MMU ROM

REU-BANK0

 E-8 E: Memory Maps

REU-BANK0

REU Address

0000- 38FF

0000- 78FF

C128 MoveData routine

C64 MoveData routine

C128 has a smaller area free for use with MoveData.

If not using MoveData or DMA Move Data is disabled, then an

application can use this area as desired. Note: GEODEBUGGER

disables DMA moves and uses this area when the REU debugger

is loaded. Using this area will make the application incompatible

with the REU debugger.

3900- 78FF C128 BACKRAM Kernal REU geoDebugger will destroy this area.

7900- 7DFF $8400-88FF GEOS Data

7E00- 82FF reboot code

8300
9080
9E00
AB80

disk driver for drive A

disk driver for drive B

disk driver for drive C

disk driver for drive D

Each disk driver is in 2 parts:

 Driver code: $C80 (3456) bytes

 dir3Head: $100 (256) bytes

B900- BB7F 9D80-9FFF JmpIndX+ Kernal area

BB80- BC3F BF40-BFFF Kernal tables

BC40- BCBF C000-C07F Kernal

BCC0- CC3F C080-CFFF Kernal

CC40- FC3F Kernal

D000-FFFF

Configuration changes can be made to the REU backup of the

Kernal so they will persist through a reboot.

FC40- FFFF Unused by GEOS

 C128 only Note: When the 128 DeskTop installs a print driver, it gets saved

in the RAM behind I/O.

D500- D5FF Print driver header block

D8C0-D0BF

256 bytes

D600- DC3F Print driver

D9C0-DFFF

1600 bytes

Special Locations
REU Addr Description Note:

0000-0007 Ram check area

"RAMCheck" written and

read back. Used by GEOS

1.3+ and Wheels.

If any byte in bank 0:$00-$07 matches by position with

"RAMCheck" a failure is raised and detection stops. This is a

warm start bug that can cause bank 1 detection to fail and

GEOS/Wheels will not be able to startup with only bank 0.

Overview

 F-1 F: File Formats

F: File Formats

Overview
This chapter describes the output file data formats of the Text Scrap, Photo Scrap, Notepad, geoWrite and

geoPaint files. The Photo Scrap and Text Scrap files are designed so that text and graphics data can be shared

between applications. This is the format used by the Photo Manager and Text manager desk accessories. Both the

Text and Photo Scraps are stored as sequential system files on disk. When the user performs a cut or copy

operation from inside an application, a Photo Scrap or Text Scrap file is created on the application disk. The user

can then quit the present application, start up a new one and paste the contents of the Scrap file into the new

application's document. Scraps can also be collected into Albums using the Photo Manager or Text Manager desk

accessories. The geoWrite output format is important for programmers desiring to output geoWrite format from

their programs or read geoWrite documents into their documents.

The following file formats are covered:

1. Photo Scrap 2. Text Scrap

3. geoWrite 4. geoPaint

5. notepad 6. Text Album

7. Photo Album

There is also a section in this Appendix detailing the Official Fonts that Berkeley Softworks supplied with GEOS

and various other ancillary packages.

Future Releases
The Photo and Text Scrap formats have been expanded in the past to include new features and may be expanded

in the future. To avoid problems, applications should check the version string in the File Header block of the Text

or Photo Scrap files before using the data. Checking version strings is described in "Chapter 9 File System".

Bytes 89 - 92 (decimal) of the File Header contain the ASCII string, V1.1, or a later version of it. Version 1.1 was

the first general release format contained in any data file. If the scrap file is an older format than your application

supports, it will have to be converted, something the application will probably want to provide. If the format is

newer than the application, then the application should refrain from using it.

Photo Scrap
The Photo Scrap presently supports a single Bit-Mapped Object. A Bit-Mapped Object is a GEOS object for

storing compacted bit-mapped data. Compacted data and Bit-Mapped Objects are described in detail in the

Graphics chapter. Photo Scraps consist of a Bit-Mapped Object which may be followed by compacted Color

Table for the bit-mapped area described by the Bit-Mapped Object.

In uncompacted form, the Color Table contains one byte of color information for each card generated by

uncompacting the Bit-Mapped Object. The Color Table bytes are taken from the one-thousand-byte color table

that normally determines the colors of each of the cards on the screen in standard high-resolution bit-mapped

mode. A card, as referred to here, is the same as a Programmable Character as described in the C64 manual. The

reader is referred to the description of bit-mapped graphics, cards, and color bytes starting on page 121 of

Commodore 64 Programmer's Reference Guide.

In C64 hi-res bit-mapped mode, a card takes up eight bytes and defines an eight-pixel wide by eight pixel high

square on the screen. Each card is associated with a byte which determines its color. For example, the first color

byte in the Color Table controls the color of the upper left most card on the screen. The second color byte

determines the color of the second 8x8 card which appears just to the right of the first card and so on.

Photo Scrap

 F-2 F: File Formats

A diagram of the organization of bytes in the bit-mapped mode screen is:

Byte Organization in Bit-Map Screen

Photo Scraps are not limited to the size of the screen. While most applications create scraps, which are smaller

than the full screen, there will eventually be those which will construct a Scrap from an object larger than the

screen size. The Color Table and bit-mapped data may be greater or less than full screen size for hi-res bit-mapped

mode.

Consequently, three bytes containing the dimensions of the Bit-Mapped Object appear before the first

COUNT/Bit-map pair. The first byte contains the width of the bitmap in bytes and is followed by two bytes

containing the height in scanlines. Multiplying the two together gives the total number of graphic bytes to be

generated by the following COUNT/Bit-map pairs. The height must always be divisible by 8 as only complete

card rows are cut or copied to the Photo Scrap. The width of the scrap is always in complete cards. These

restrictions are necessary because each color byte represents the color of a complete 8-byte card.

The color table is compacted using the same compaction schemes used to compact the Bitmap Object into

COUNT/Bit-map pairs. Thus, even the color information appears in the Photo Scrap as a series of COUNT/Bit-

mapped pairs. The Color Table COUNT/Bit-map starts just after the last graphics COUNT/Bit-map. After the

proper number of graphics data bytes have been uncompacted, the next COUNT/Bit-map pair begins the

compacted ColorTable. The number of data bytes divided by 8 gives you the number of ColorTable bytes to be

uncompacted. The Figure below shows the structure of the Photo Scrap.

Card 0 Card 1 Card 2 Card 3...
byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

Rest of card row 0.

Rest of card row 1.

Card Rows 2 – 24

Text Scrap V1.2

 F-3 F: File Formats

 Photo Scrap Data Format

Photo Scrap Data Format

Byte
Number

Contents

Purpose

0 Width The width in bytes of the bitmap picture.

1-2 Height The height in scanline of the bitmap picture.

3 Count Three modes for storing bitmap data depending on Count:

 0-127: use next byte COUNT times (repeat count)

 128-220: use next (COUNT-128) bytes once each (straight bitmap)

 221-255: use next byte as BIGCOUNT (a repeat count),

repeat the following (COUNT -220) bytes

BIGCOUNT times

4-end of

bitmap

Bitmap Data The bitmap data in one of the three COUNT modes

-- Count New mode byte

- Bitmap Data The bitmap data in one of the three COUNT modes

- More Count/Bitmap Pairs

- Color Table Color Table stored compacted. (optional)

One color byte generated for each uncompacted card.

To summarize, the Photo Scrap is made up of three-dimension bytes, followed by one large compacted Bit-

Mapped Object, and may be followed by a Color Table. Both the Bit-Mapped Object and the Color Table are a

collection of COUNT/Bit-map pairs in different compaction formats. A COUNT/Bit-map pair consists of a format

byte followed by a series of data bytes in the indicated compaction format. As described in the graphics chapter

in this manual, uncompacted Bit-Mapped Object data must be reordered from scanlines to cards. The Color Table

contains, in compacted form the Bit-Mapped Mode color bytes for each 8 by 8 card defined by the uncompacted

Bit-Mapped Object.

Text Scrap V1.2
This section describes the V1.2 Text Scrap. The V2.0 Text Scrap is a superset of the V1.2 Text Scrap. The only

addition to Text Scraps for V2.0 is a ruler escape that contains positioning information. The ruler escape is

described in the next section.

The Text Scrap is an ASCII string with embedded escape characters. The escape characters are requisitioned from

the nonprintable ASCII chars, sometimes called control chars¥. There are two escape chars found in Text Scraps.

First is TAB (char $9). It is up to the application to support or not to support tabs as it wishes. The second escape

character is given the constant name NEWCARDSET ($17). It signals the beginning of a 4-byte font/style escape

string. The first two bytes after NEWCARDSET are the font ID of the font to be used to display the following

text. The final byte in the string indicates the style of the following text: plain, bold, italic underline and/or outline.

Each style is controlled by a bit in the style byte. Setting the bold bit, for example turns on bold face. The

significance of each bit is shown below.

A complete NEWCARDSET escape string will appear whenever there is a change in either font or style. The

Text Manager desk accessory will not display tabs, font and style changes but they are stored within the Text

Scrap nonetheless. Applications must expect these special characters, in addition to regular ASCII characters

within the Text Scrap file. The structure of the Text Scrap is shown immediately below.

 Note: In ASCII the normal printable character set starts with the character '0' which has a number $20. The

first 32 ($20) ASCII characters ($0 - $1F), are unprintable as they don't correspond to any letter or

number like 'a' or '0'. These characters are often used to embed command strings in text.

Text Scrap V1.2

 F-4 F: File Formats

Text Scrap
The Text Scrap file, as it appears in memory, begins with two bytes which contain the total number of bytes to

follow. (Note that these bytes don't count themselves in the total). After these two count bytes follows a mandatory

NEWCARDSET escape string.

The escape string is four bytes long and begins with NEWCARDSET. The next two bytes are the font ID number.

The low 6 bits of this word contain the point size of the font. The upper 10 bits contain a unique number for the

font. The font word is followed by a style byte in which each bit signifies a style, as shown in the table below.

Setting a bit in the style byte will turn its associated function on. Clearing the bit turns the function off. All style

bits reset to 0 indicates plain text printing.

Text Scrap File Format 1.2
Byte
Number

Contents

Purpose

0-1 Length Number of bytes to follow in file.

2 NEWCARDSET NEWCARDSET ($17). Start of Font/Style command string.

3-4 Font ID The low 6 bits of font ID is the point size of the font.

The upper 10 bits is the unique number of the font in which the

following text should appear.

5 Style byte Constant Value Function

 SET_UNDERLINE 10000000 Bit 7=1: turn on underlining

 SET_BOLD 01000000 Bit 6=1: turn on bold face

 SET REVERSE 00100000 Bit 5=1: turn on reverse video

 SET ITALIC 00010000 Bit 4=1: turn on italics

 SET OUTLINE 00001000 Bit 3=1: turn on outline

 V2.0+ SET_SUPERSCRIPT 00000100 Bit 2=1: turn on superscript

 V2.0+ SET_SUBSCRIPT 00000010 Bit 1=1: turn on subscript

 SET_PLAINTEXT 00000000 All bits=0, indicates plain text

6-end Text string The ASCII text with embedded tabs, font/style, and if V2.0 ruler escapes.

The remainder of the string is composed of text with embedded tabs and possibly more NEWCARDSET escape

strings. There is no special character appearing as the last character in the scrap so the application must compare

the number of bytes read with a total as computed from the first two bytes of the file.

To summarize, the Text Scrap begins with a length word, followed by a mandatory Font/Style change command

string, and followed by ASCII chars, tabs, and possibly more Font/Style change strings. This is the V1.2 text

scrap.

Version 2.0 Ruler Escape

 F-5 F: File Formats

Version 2.0 Ruler Escape
A ruler escape was added to the V2.0 Text Scrap to maintain compatibility with geoWrite files when justification

and multiple "rulers" (formatting changes) within the page were added. A ruler escape need not appear anywhere

in the text scrap, but if it appears, it will appear at the beginning of the file, or at the beginning of a paragraph.

Paragraphs are defined as ending with a CR, so a ruler escape will always be preceded by a CR. Ruler escapes

are 27 bytes long. They contain information about the document's margins, paragraph justification, and color, if

supported. The format of the V2.0 ruler escape is shown below.

Format of Ruler Escape

Byte
Number

Content

Description

0 ESC RULER ESC RULER=$11

1-2 Left Margin Left Margin in pixel positions. Range 0-479 (639 with V2.1 data file)

3-4 Right Margin Right Margin in pixel positions. Range: Left Margin < Right Margin <=479/639

5-6

7-8

9-10

11-12

13-14

15-16

17-18

19-20

8 Tabs

tab 2

tab 3

tab 4

tab 5

tab 6

tab 7

tab 8

Each tab is one word:

 Bit 15: 0 for normal text tab

1 for decimal tab, decimal points aligned

 Bit 14-0: Tab position. Range: (> Left Margin) Tab (< Right Margin)

21-22 Paragraph

Marker

How far to indent paragraphs. Range is 0 – (< Right Margin)

23 Justification Bits for justification and line spacing

 Bits 7-4: 0 = Internal use. (should always be %0001)

 Bits 3-2: 0 = single spaced text

1 = one and a half spaced text

2 = double spaced text

 Bits 1-0: 0 = left justified text

1 = centered text

2 = right justified text

3 = left and right (fully) justified text

24 Text Color The color of the text. Currently no GEOS application uses this byte

25-26 Reserved Reserved for future use

Note: Tabs are not displayed in the Text Manager even though they appear in the ruler data in the file. In

applications that use tabs, the tab character causes spacing to the position of the next tab, if set. A

wrap to the beginning of the next line is done if no tab is defined in the currently active ruler to the

right of the position of the embedded tab character.

geoWrite

 F-6 F: File Formats

geoWrite
There are currently 2 generations of geoWrite. 1.x and 2.x. 2.x added the following abilities.

1. Superscript and subscript

2. Headers and footers

3. Ruler changes:

a. Paragraph marker

b. Decimal tabs

c. Justification

d. Multiple rulers per page

4. V2.x File header block added the following:

a. Starting page number

b. Title page

c. Variable page height

Output File Formats
Like the Text Scrap, there is a V1.1 and a V2.0/2.1 geoWrite output format. The version numbers are different

for the output file formats and the program releases. You will find geoWrite with version strings of V1.2, V1.3,

and V2.0 for the Writer's Workshop, while the output file formats are either V1.1 or V2.0. V2.1 of geoWrite

arrived with GEOS 2.0.

In both formats, documents are stored in VLIR files. In general, each record in the VLIR file stores one page of

text. Some records are used to store pictures and, in the case of V2.0 files, header and footer information. This

arrangement is show below.

VLIR Format for geoWrite Files

Record # V1.1 Format Files V2.0/2.1 Format Files

0-60 Text pages Text pages

61 Text page Header, empty for none

62 Text page Footer, empty for none

63 Text page Reserved

64-127 Pictures in BitmapUp format Pictures in BitmapUp format

The major difference between the V1.1 and V2.0 formats is that the Writer's Workshop V2.0 version supports

headers and footers. Pages 61-63 may be used to store text pages with the earlier releases of geoWrite, but these

will not be carried over when editing with the geoWrite V2.0. This is probably not a problem since no one has

ever gotten close to actually being able to store a 64-page document on a 1541 disk. When double sided support

for the 1571 becomes available this may become possible.

In geoWrite, each document is broken up into separate pages and each page stored in its own VLIR record. A

page consists of ruler information followed by text. For a V1.1 geoWrite file the ruler data consists of right and

left-margin and tab data.

The text that follows is stored as ASCII. Escape strings are used for font/style changes and for including pictures.

The data for each picture is stored in a separate record. All non-empty pages must start with a font/style escape.

A font/style escape cannot be followed immediately by another font/style escape, geoWrite files may also include

pictures with an ESC_GRAPHICS. The data for the picture is stored in its own record as a bit-mapped object.

See the graphics section for the format of a bit-mapped object.

geoWrite

 F-7 F: File Formats

Graphics Escape String

Byte Function Description

0 ESC_GRAPHICS The escape to graphics control char = $10

1 Width Picture's width in cards

2 - 3 Height Picture's height in scanlines

5 Record Number Number of the record containing the picture data

The picture data is a photo scrap

geoWrite V1.x
Early Versions of GeoWrite have a fixed ruler that only appears at the start of every page. Note: 1.x does not

have any information stored in its file header block.

geoWrite V1.x Page Layout
Byte Description

0-19 Ruler

0-1

2-3

4-20

Left Margin Range 0 – 479

Right Margin in pixel positions. Range: (> Left Margin) and (<= 479)

8 Tabs. Range (> Left Margin) Tab (< Right Margin)

21-24 NEWCARDSET = ($17) font/style escape

25- ... Text of document, may contain ruler, font/style, graphics, or page break escapes

PAGE_BREAK = $0C, causes geoWrite to begin a new page

ESC_GRAPHICS = $10, includes a picture

Last byte EOF = 0 appears as last byte of document.

Sample Ruler in geoProgrammer format.

 T_RulerV1:
 .word 0 ; left margin
 .word 479 ; right margin
 .word 72 ; tabs 1-8
 .word 112
 .word 184
 .word 224
 .word 296
 .word 336
 .word 479 ; Unused tab
 .word 479 ; Unused tab

 T_CardSet:
 .byte NEWCARDSET ; font set
 .word BSW ; $0009 font ID 0. 9 point font
 .byte SET_PLAINTEXT

geoWrite

 F-8 F: File Formats

geoWrite V2.0
Version 2.0 is similar to V1.2 but includes a more extensive ruler escape. This is the same format as found in Text

Scrap files. The file format for V2.0+ data files is as follows.

Page Layout

geoWrite V2.0+ Page Layout
Offset Description

0 - 26 Ruler escape string

27 – 30 NEWCARDSET = ($17) font/style escape

31 - ... Text of document, may contain ruler, font/style, graphics, or page break escapes.

PAGE_BREAK = $0C, Causes geoWrite to begin a new page.

ESC_GRAPHICS = $10, includes a picture

Last byte EOF = 0 appears as last byte of document.

Further information is also stored in the file header of V2.0 files. This information includes the height of the

footer and header, the page height the document was formatted with (different depending on the selected printer

driver), and flags for NLQ and title page modes.

geoWrite V2.0+ File Header Information

Offset Contents Description

$89 Page Number Page number to print on first page of this file, need not be 1.

$8B Title and NLQ Bit 7 set = make title page (no header, footer on first page)

Bit 6 set = turn NLQ fixed width spacing on.

$8C Header Height The height in pixels reserved on each page for the header.

$8E Footer Height The height in pixels reserved on each page for the footer.

$90 Page Height Different printers support different vertical resolutions. If the height

of the page as stored here does not match what the printer is capable

of, then geoWrite 2.0 reformats the file to match the printer.

Sample V2.0/2.1 Ruler

 T_RulerV2.0:
 .byte ESC_RULER ; $11
 .word 0 ; left margin
 .word 480 ; right margin
 .word 40 ; tab 1
 .word 96
 .word 152 ; tab 3
 .word 208
 .word 264
 .word 320
 .word 376
 .word 432 ; tab 8
 .word 8 ; paragraph marker
 .byte %00010000 ; justification
 .byte NULL ; text color (not implemented)
 .word NULL ; reserved

T_CardSet:
 .byte NEWCARDSET
 .word BSW ; $0009 font ID 0. 9 point font
 .byte SET_PLAINTEXT

geoWrite

 F-9 F: File Formats

geoWrite Tab Stops
Tab stops in geoWrite are set at .1" resolution. Each .1" translates to 8 dots when printed, and 8 pixels on the

display. The V1.1 Ruler starts at 1.2" and ends at 7.2" giving a print area of 7" using 560 dots. Margins,

paragraph and tab stops are all offsets of 1.2". V2.1 starts at .2" and ends at 8.2" with all stops being an offset

from .2"

V1.1/2.0 Ruler on a 40 column screen

Stop Type Inches offset in hex

Left Margin 1.2" 0 $0000 First available tab position is at 1.3" (Tabs must be inside the

margin markers)

Paragraph 1.5" 24 $0018 (Paragraph marker not available in V1.1)

Tab1 2.0" 64 $0040

Tab2 3.0" 144 $0090 Each tab is 80 dots/pixels apart

...

Right Margin 7.2" 560 $0230 Last possible tab is at 7.1" which is .1" left of the right margin

V2.1 Ruler on an 80 column screen

Stop Type Inches offset in hex

Left Margin .02" 0 $0000 First available tab position is at 1.3" (Cannot have a tab before

or on the left margin marker)

Paragraph .5" 24 $0018 Each .1" is 8 dots/pixels apart

Tab1 1.0" 64 $0040

Tab2 2.0" 144 $0090

...

Tab8 7.9" 616 $0268 Tabs must be inside the margins

Right Margin 8.0" 624 $0270 Right margin set .2" in from the hard right margin of 8.2"

geoWrite Summary
geoWrite files are divided into pages stored in different records of a VLIR file. These records may also contain

bitmap data for pictures included in the document. In addition the V2.0 format includes header, footer, and page

height as well as justification, NLQ and title page flags. In V1.1 files, there is only one small ruler at the top of

the page. A different ruler may control each paragraph in V2.0 files.

The above information should be sufficient to enable programmers to read and to create files in any of the formats.

It is important to note that each of the earlier versions of output file formats are subsets of the later versions. Thus

the V1.1 Text Scrap is a subset of the V2.0 and can be read by the later version Text Manager. The only possible

incompatibility between formats is the ability of V1.1 geoWrite to store text pages in the header, footer, and

reserved records. As mentioned above, it is unlikely that a 64-page document will fit on one disk.

Text Scraps and geoWrite files differ in that Text Scraps are meant to be only one page or less. The Text Scrap is

designed to be a more generic object, enabling a common ground between word processors.

geoPaint

 F-10 F: File Formats

geoPaint

As of the latest version of geoPaint V2.0 there is only one version of geoPaint data files: V1.1. Each geoPaint file

is comprised of an image that is 640x720 pixels. This image is organized in 8x8 cards, which forms a matrix of

80x90 cards. With one foreground / background color card for each 8x8 image card.

Sample image card

Sample Color card

 T_ColorCard: ; dark grey foreground, light grey background
 .byte (DKGREY <<4) | LTGREY

Output File Format
Like geoWrite documents, geoPaint images are stored in VLIR files. The geoPaint image is divided up into 45

different VLIR records. Each record in the VLIR file stores two card rows of image data and two rows of color

cards. It takes 45 records to store the entire 90 card rows of the image. This simple arrangement is shown below.

VLIR Format for geoPaint Files

Record # V1.1 Format Files

0-44 Card Row Sets

VLIR Records
Each VLIR record contains a card row set that contains two rows of image cards, one NULL card and the color

cards for the two rows of image cards. A NULL is saved after the card row set in the VLIR record.

Card row set

Count Contents Size in Bytes

2 80-column wide set of image cards.

(80-columns * 8 card height) * 2 rows.

1280

1 Null terminating Card (1 * 8 card height) 8

2 80-column wide sets of Color cards.

(80-columns * 1 color card size * 2 rows)

160

 Total bytes to be compressed 1448

T_ImageCard:
 .byte %11111111
 .byte %10000001
 .byte %10000001
 .byte %10000001
 .byte %10000001
 .byte %10000001
 .byte %10000001
 .byte %11111111

geoPaint

 F-11 F: File Formats

Card Row Set
The card row set is processed as one continuous stream of bytes. Example byte stream from VLIR Record 0:

Byte stream Compression

geoPaint Card Row Set Format

Offset Contents Purpose

0 CMD Compression Command

CMD = 0-63:

CMD = 65-127:

CMD = 129-255:

Three modes for storing bitmap data depending on count:

COUNT=CMD.

 Use next COUNT bytes. (Uncompressed Data)

COUNT=CMD-64

 Repeat the next card COUNT times.

COUNT=CMD-128

 Repeat the next byte COUNT times.

0-end of

stream

Bitmap data The bitmap data in one of the three COUNT modes

-- Count New mode byte

- Bitmap data The bitmap data in one of the three COUNT modes

- More count/bitmap Pairs

- Color table Color table stored compacted.

One color byte generated for each uncompacted card.

Card 0 Card 1 Card 2 Card 3...
byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

Rest of card row 0.

Rest of card row 1.

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

Card 80 Card 81 Card 82 Card 83...

NULL

CARD

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

Card 0 Card 1 Card 2 Card 3...

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

COLOR

FG | BG

CARD

Card 80 Card 81 Card 82 Card 83...

geoPaint

 F-12 F: File Formats

Sample Compression

VLIR Record 0 contains the two card rows of pattern 2 that were drawn on the image above. This pattern

started at column 1 and continued until the right-edge of the image.

geoPaint Summary
geoPaint files contain a single 640x720 image that is spread across 45 records of a VLIR file. The format is used

across all versions of geoPaint for both 64 and 128 GEOS.

Record 0 Decompression

CMD

Description

Count

Data
Byte

Count
7 String 7 2A:55:2A:55:2A:55:2A 7

127 Repeat Card 63 [55:AA:55:AA:55:AA:55:AA] 504
80 Repeat Card 16 [55:AA:55:AA:55:AA:55:AA] 128
8 String 8 55:AA:55:AA:55:AA:55:2A 8

127 Repeat Card 63 [55:AA:55:AA:55:AA:55:AA] 504
80 Repeat Card 16 [55:AA:55:AA:55:AA:55:AA] 128
1 String 1 55 1

136 Repeat byte 8 0 8
255 Repeat byte 127 BF 127
161 Repeat byte 33 BF 33

 Total Decompressed bytes 1448

notepad

 F-13 F: File Formats

notepad
The Notes data file created by notepad only has 1 version: "Notes V1.0". The data file is a very simple VLIR

file. Each page of the Notes file is stored in its own VLIR record. This limits the total number of pages to the

standard VLIR limit of 127 records.

Each page of a Notes file contains a simple NULL terminated string with the CR being the only supported control

character. There is no support for fonts / tabs / styles etc...

A page is limited in size to 1 disk block, which gives the page a max data size of BLKDATSIZE (254) including

the null terminator.

Text Album

 F-14 F: File Formats

Text Album

1.0
The 1.0 file format is used by all versions of text manager prior to V2.1. This format is a simple VLIR structure

with every page in the Album being a VLIR Record with a v1.2 Text Scrap. The Album can have a maximum of

60 Text Scraps.

2.1
The 2.1 file format adds two new features over 1.0.

1. It now can contain v2.0 Text Scraps so it now supports ruler escapes.

2. The ability to name each page in the Album.

The page name table is stored in the last VLIR record. Every time a page is added or removed from the album, or

a page name changes, this record is deleted and rewritten with the new contents. Note that the VLIR records are

always kept together without gaps. If you have a 2-page album the pages will be stored in record 0 and record 1,

with the page name table stored in record 2. If you add a new page now, it would be stored in record 2 and the

page name table record will become the new last record at record 3.

The page name table has the following format:

Page Name Table

Offset Contents Size in Bytes

0 Number of pages in the Album. 2

1 Page 1 Name. 16-character null terminate. 17
†18 Page 2 Name (If present). 17
†35 Page 3 Name (If present). 17

 ...
†xx NULL record table terminator 17

Example:

 Byte Stream in Record 2, in an album with two pages:

 This album has 2 pages the first page is not named and the second page is named. For every page there is

a 16-character field to hold the name plus a NULL-terminator. This list of page names is terminated with

a terminating 17-character field of all NULLs.

 02 number of pages
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (Page Was not named)
 4D 79 20 50 61 67 65 3A 00 00 00 00 00 00 00 00 00 My Page:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 NULL Table Terminator

Note: † The page name table always has one 17-byte name field for each page in the album. After all of the

page name fields there is another 17 bytes of NULL to end the table.

Photo Album

 F-15 F: File Formats

Photo Album

1.0
The 1.0 file format is used by all versions of photo manager prior to V2.1 of the photo manager. This format is a

simple VLIR structure with every page in the album being a VLIR record containing a photo Scrap.

2.1
The 2.1 file format adds the ability to name each page in the Album. The page names are stored in the last VLIR

record. Every time a page is added or removed from the album, or a page name changes, this record is deleted

and rewritten with the new contents. VLIR Records are always kept together without gaps. If you have a two page

album the pages will be stored in record 0 and record 1 with the page names stored in record 2. If you add a new

page, that page would be stored in record 2 and the page name record will become the new last record at record

3.

The page name record has the following format:

Page Name Table

Offset Contents Size in Bytes

0 Number of pages in the Album. 2

1 Page 1 Name. 16-character null terminate. 17
†18 Page 2 Name. (If present). 17
†35 Page 3 Name. (If present). 17

 ...
†xx NULL record table terminator 17

Example:

Byte stream in Record 3, in an album with three pages, and the second and third pages are named:

This record starts with the number of pages, followed by three 17-character fields of page names and 1 terminating

17-character field of all NULLs.

 03 number of pages
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (page Was not named)
 4D 79 20 50 61 67 65 3A 00 00 00 00 00 00 00 00 00 My Page:
 49 63 6F 6E 73 20 66 6F 72 20 44 6C 67 00 00 00 00 Icons for Dlg

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 NULL table terminator

Official Fonts
The table on the next page contains the presently supported GEOS fonts. The geoLaser fonts are designed to look

as closely as possible to the fonts inside an Apple LaserWriter®. When preparing documents to be laser printed,

these fonts should be used.

GEOS Fonts

Note: † The page name table always has one 17-byte name field for each page in the album. After all of the

page name fields there is another 17 bytes of NULL to end the table.

Official Fonts

 F-16 F: File Formats

GEOS Fonts
Font Name Number Point Sizes ID Date Permanent Name Notes

BSW 0 9 0009 40-Col System Font
BSW128 128 9 2009 80-Col System Font
University 1 †6

10

12

14

18

24

0046
004A
004C
004E
0052
0058

4/7/86 12:00 PM
3/7/86 3:00 PM

University V1.1
University V1.0

GEOS 1.1+
GEOS 1.0.

California 2 10

12
*13

14

18

008A
008C
008D
008E
0092

9/5/88 7:23 PM
4/7/86 12:00 PM
3/7/86 3:00 PM

GeoFont 1.4
California V1.1
California V1.0

GEOS 1.5+ (Adds 13
Point)
GEOS 1.1+
GEOS 1.0.
*Only in newest version.

Roma 3 9

12

18

24

00C9
00CC
00D2
00D6

4/7/86 12:00 PM
3/7/86 3:00 PM

Roma V1.1
Roma V1.0

GEOS 1.1+
GEOS 1.0.

Dwinelle 4 18 0112 4/7/86 12:00 PM
3/7/86 3:00 PM

Dwinelle V1.1
Dwinelle V1.0

GEOS 1.1+
GEOS 1.0.

Cory 5 12

13

014C
014D

4/7/86 12:00 PM
3/7/86 3:00 PM

Cory V1.1
Cory V1.0

GEOS 1.1+
GEOS 1.0.

†deskTop uses a copy of University 6 point for displaying filenames.

FONTPACK1

FONTPACK1
Font Name Number Point Sizes ID Date Permanent Name Notes

Tolman 6 12

24

018C
0198

4/7/86 12:00 PM Tolman V1.1 ¥

Bubble 7 24 01D8 4/7/86 12:00 PM Bubble V1.1 ¥
FontKnox 8 24 0218 4/7/86 12:00 PM FontKnox V1.1 †¥
Harmon 9 10

20

024A
0254

4/7/86 12:00 PM Harmon V1.1 ¥

Mykonos 10 12

24

028c
0298

4/7/86 12:00 PM Mykonos V1.1 †¥

Boalt 11 12

24

02CC
02D8

4/7/86 12:00 PM Boalt V1.1 †¥

Stadium 12 12 0230 4/7/86 12:00 PM Stadium V1.1 †¥
Tilden 13 12

24

030C
034C

4/7/86 12:00 PM Tilden V1.1 ¥

Evans 14 18 0392 4/7/86 12:00 PM Evans V1.1 ¥
Durant 15 10

12

18

24

03CA
03CC
03D2
03D8

4/7/86 12:00 PM Durant V1.1 †¥

Telegraph 16 18 0412 4/7/86 12:00 PM Telegraph V1.1 †¥
Superb 17 24 0458 4/7/86 12:00 PM Superb V1.1 †¥
Bowditch 18 12

24

048C
0498

4/7/86 12:00 PM Bowditch V1.1 ¥

Ormond 19 12

24

04CC
04D8

4/7/86 12:00 PM Ormand V1.1 The file on the FONTPACK1 †¥

disk is misspelled as Ormand.
Elmwood 20 18

36

0512
0524

4/7/86 12:00 PM Elmwood V1.1 ¥

Hearst 21 10

12

18

24

054A
054C
0552
0558

4/7/86 12:00 PM Hearst V1.1 ¥

Official Fonts

 F-17 F: File Formats

Brennens 22 18 0592 9/5/86 3:11 PM
4/7/86 12:00 PM

Brennens V1.1
Brennens V1.1

Updated in Plus †¥

FONTPACK1
Channing 23 14

16

24

05CE
05DO
05D8

4/7/86 12:00 PM Channing V1.1 ¥

Putnam 24 12

24

060C
0618

4/7/86 12:00 PM Putnam V1.1 ¥

LeConte 25 12

18

064C
0652

4/7/86 12:00 PM LeConte V1.1 †¥

† font also appears in FONTPACK Plus
¥ font also appears in International FONTPACK
geoLaser Fonts

geoLaser Fonts
Font Name Number Point Sizes ID Date Permanent Name Notes

Commodore 26 10 068A 7/1/86 10:17 AM Commodore V1.1 Used to Represent NLQ

mode output

LW_Roma

27 9

10

12

14

18

24

06C9
06CA
06CC
06CE
06D2
06D8

9/9/87 8:14 AM

GeoFont 1.4

Times Roman
geoPublish /
GEOS OS DISK 3

LW_Cal

28 9

10

12

14

18

24

0709
070A
070C
070E
0712
0718

9/9/87 8:15 AM

GeoFont 1.4

Helvetica
geoPublish /
GEOS OS DISK 3

LW_Greek

29 9

10

12

14

18

24

0749
074A
074C
074E
0752
0758

9/27/87 7:00 PM
9/9/87 18:16 AM

LW_Greek V1.1
GeoFont 1.4

Symbol
geoPublish /
GEOS OS DISK 3

LW_Barrows

30 9

10

12

14

18

24

0789
078A
07BC
078E
0792
0798

9/27/87 7:00 PM
9/22/87 7:00 PM
4/7/86 12:00 PM

LW_Barrows V1.1

Courier
geoPublish /
GEOS OS DISK 3

LaserWriter Plus Fonts

GEOS LaserWriter Plus Fonts
Font Name Number Point Sizes ID Date Permanent Name Notes

LW_Giannini

31 10

12

14

18

24

07CA
07CC
07CE
07D2
07D8

11/19/87 8:07 AM LW_PlusA V1.1 ITC Avant Garde

LW_Bacon

32 10

12

14

18

24

0810
0812
0814
0818
081E

11/19/87 8:08 AM LW_PlusB V1.1 ITC Bookman

LW_Haviland

33 10

12

14

18

24

084A
084C
084E
0852
0858

11/19/87 8:08 AM LW_PlusC V1.1 Helvetica Narrow

Official Fonts

 F-18 F: File Formats

GEOS LaserWriter Plus Fonts
Font Name Number Point Sizes ID Date Permanent Name Notes

LW_Piedmont

34 10

12

14

18

24

088A
088C
088E
0892
0898

11/19/87 8:08 AM LW_PlusD V1.1 New Century

Schoolbook

LW_Cowell

35 10

12

14

18

24

08CA
08CC
08CE
08D2
08D8

11/19/87 8:09 AM LW_PlusE V1.1 Palatino

LW_Galey

36 10

12

14

18

24

090A
090C
090E
0912
0918

11/19/87 8:09 AM LW_PlusF V1.1 Zapf Chancery

GeoWorld's †LW_Zapf

font can be substituted

for better onscreen rep-

resentation.

LW_Shattuck

37 10

12

14

18

24

094A
094C
094E
0952
0958

11/19/87 8:09 AM LW_PlusG V1.1 Zapf Dingbats

.
a

†See Laser Printing Note for more information
International FONTPACK

International FONTPACK
Font Name Number Point Sizes ID Date Permanent Name Notes

Roma_SP 41 9

12

18

24

0A49
0A4C
0A52
0A58

11/12/87 8:44 AM Roma_SP V1.1

University_FR 43 6

10

12

14

18

24

0AC6
0ACA
0ACC
0ACE
0AD2
0AD8

11/6/87 10:14 AM University_FV1.1

Roma_FR

45 9

12

18

24

0B49
0B4C
0B52
0B58

11/6/87 10:14 AM Roma_FR V1.1

University_IT 53 6

10

12

14

18

24

0D46
0D4A
0D4C
0D4E
0D52
0D58

11/11/87 4:04 PM GeoFont 1.4

Roma_IT 55 9

12

18

24

0DC9
0DCC
0DD2
0DD8

11/6/87 10:21 AM Roma_IT V1.1

University_GE 56 6

10

12

14

18

24

0E06
0E0A
0E0C
0E0E
0E12
0E18

10/21/86 1:22 PM GeoFont 1.4

California_GE 57 In GERMAN GEOS 2.5
FONTPACK 1 International FONTPACK includes all fonts from FONTPACK1 (with Ormond being spelled correctly)

https://www.lyonlabs.org/commodore/onrequest/geos/geoSpecific/GeoWorld/GWrld3B.html

Official Fonts

 F-19 F: File Formats

International FONTPACK
Font Name Number Point Sizes ID Date Permanent Name Notes

University_SW 58 6

10

12

14

18

24

E86
E8A
E8C
E8E
E92
E98

11/12/87 1:52 PM University_SV1.1

Roma_SW 60 9

12

18

24

F09
F0C
F12
F18

11/12/87 1:51 PM Roma_SW V1.1

University_SP 63 6

10

12

14

18

24

FC6
FCA
FCC
FCE
FD2
FD8

11/12/87 8:42 AM GeoFont 1.4

Roma_GE 64 9

12

18

24

1009
100C
1012
1018

10/28/87 10:27 AM GeoFont 1.4

Dwinelle_GE 65 see GERMAN GEOS 2.5 In GERMAN GEOS 2.5
Cory_GE 66 for details In GERMAN GEOS 2.5
University_UK 68 6

10

12

14

18

24

1106
110A
110C
110E
1112
1118

10/12/87 5:43 PM University_UV1.1

California_UK 69 10

12

14

18

114A
114C
114E
1152

10/28/87 3:05 PM GeoFont 1.4

Roma_UK 70 9

12

18

24

1189
118C
1192
1198

10/28/87 2:49 PM GeoFont 1.4

Dwinelle_UK 71 18 11D2 10/12/87 2:13 PM Dwinelle_UK V1.1
Cory_UK 72 12

24

120C
1218

10/12/87 2:13 PM Cory_UK V1.1

University_DA 78 6

10

12

14

18

24

1386
138A
138C
138E
1392
1398

10/21/86 1:22 PM GeoFont 2.0

Roma_DA 80 9

12

18

24

1409
140C
1412
1418

3/23/92 1:00 AM GeoFont 2.0

University_SE 83 6

10

12

14

18

24

14C6
14CA
14CC
14CE
14D2
14D8

10/21/86 1:10 PM GeoFont 2.0

Official Fonts

 F-20 F: File Formats

International FONTPACK
Font Name Number Point Sizes ID Date Permanent Name Notes

Roma_SE 85 9

12

18

24

1549
154C
1552
1558

11/6/87 10:24 AM Roma_SE V1.1

German GEOS 2.5

German GEOS 2.5
Font Name Number Point Sizes ID Date Permanent Name Notes

University_GE 56 6

10

12

14

18

24

E06
E0A
E0C
E0E
E12
E18

10/21/86 1:22 PM GeoFont 1.4 Also in
International
FONTPACK

California_GE 57 10

12

14

18

E4A
E4C
E4E
E52

11/3/87 11:28 AM GeoFont 1.4

Roma_GE 64 9

12

18

24

1009
100C
1012
1018

10/28/87 10:27 AM GeoFont 1.4 Also in
International
FONTPACK

Dwinelle_GE 65 18 1052 10/21/86 1:23 PM GeoFont 1.4
Cory_GE 66 12 108C 10/21/86 1:23 PM GeoFont 1.4
Commodore_GE 129 10 204A 11/3/87 11:28 AM GeoFont 1.4

Mega Fonts

Mega Fonts
Font Name Number Point Sizes ID Date Permanent Name Notes

Mega Roma 155 48 068A 9/27/87 7:00 PM
9/22/87 7:00 PM

GeoFont 1.4 geoPublish

Mega Cal

156 48 06C9

9/27/87 7:00 PM
9/22/87 7:00 PM

GeoFont 1.4 geoPublish

Mega

Barrows

158 48 0709

9/27/87 7:00 PM
9/22/87 7:00 PM

GeoFont 1.4 geoPublish

FONTPACK Plus

FONTPACK Plus
Font Name Number Point Sizes ID Date Permanent Name Notes

Stern 200 24 3218 10/20/87 8:15 AM GeoFont 1.4
North Gate 201 18 3252 10/20/87 8:16 AM GeoFont 1.4
Haste 202 12

18

24

328C
3292
3298

10/20/87 8:17 AM GeoFont 1.4

Bancroft 203 12

18

24

32CC
32D2
32D8

10/20/87 8:17 AM GeoFont 1.4

Solano 204 24 3318 10/20/87 8:17 AM GeoFont 1.4
Barrington 205 16

32

3350
3360

10/27/87 9:56 AM GeoFont 1.4

Braille 206 12

24

338C
3398

10/20/87 8:18 AM GeoFont 1.4

Eshlemen 207 28 33DC 10/20/87 8:19 AM GeoFont 1.4
Ashby 208 23 3417 10/20/87 8:20 AM GeoFont 1.4
Spats 209 24 3458 10/20/87 8:21 AM GeoFont 1.4
Kensington 210 27 349B 10/20/87 9:07 AM GeoFont 1.4
Flints 211 12

24

34CC
34D8

10/20/87 9:15 AM GeoFont 1.4

Official Fonts

 F-21 F: File Formats

FONTPACK Plus
Font Name Number Point Sizes ID Date Permanent Name Notes

Derby 212 9

18

3509
3512

10/20/87 9:16 AM GeoFont 1.4

Oxford 213 14

28

354E
355C

10/27/87 11:37 AM GeoFont 1.4

Lewis 214 18

26

34

3592
359A
35A2

10/20/87 9:18 AM GeoFont 1.4

Fog 215 24 35D8 10/20/87 9:16 AM GeoFont 1.4
Latimer 216 18 3612 10/20/87 9:19 AM GeoFont 1.4
McLaughlin 217 18 3652 10/20/87 9:20 AM GeoFont 1.4
Cursive 218 17

29

3691
369D

10/27/87 10:19 AM GeoFont 1.4

Sather 219 20 36D4 10/20/87 10:24 AM GeoFont 1.4
Zellerbach 220 13

18

370D
3712

10/20/87 10:25 AM GeoFont 1.4

Wurster 221 25 3759 10/20/87 10:25 AM GeoFont 1.4
Sproul 222 24 3798 10/20/87 10:26 AM GeoFont 1.4
Birge 223 18 37D2 10/20/87 10:26 AM GeoFont 1.4
Dana 224 13

24

380D
3818

8/22/88 1:02 AM GeoFont 1.4

Dwight 225 18 3852 10/20/87 10:26 AM GeoFont 1.4
Venetian 226 24 3898 10/20/87 10:29 AM GeoFont 1.4
Mulford 227 12 38CC 10/20/87 10:29 AM GeoFont 1.4
Bowles 228 24 3918 10/20/87 10:48 AM GeoFont 1.4
Euclid 229 36 3964 10/20/87 10:31 AM GeoFont 1.4
Grizzly 230 18 3992 10/20/87 10:31 AM GeoFont 1.4
Kips 231 22 39D6 10/27/87 10:32 AM GeoFont 1.4
Callaghan 232 12

20

25

3A0C
3A14
3A19

10/20/87 11:43 AM GeoFont 1.4

America 233 24 3A58 10/20/87 11:45 AM GeoFont 1.4
Etcheverry 234 24 3A98 10/20/87 11:46 AM GeoFont 1.4
Ellsworth 235 12

24

3ACC
3AD8

10/20/87 11:46 AM GeoFont 1.4

Spook 236 26 3B1A 10/20/87 11:47 AM GeoFont 1.4
Lawrence 237 12 3B4C 10/20/87 11:14 AM GeoFont 1.4
Spruce 238 12

24

3B8C
3B98

10/20/87 11:48 AM GeoFont 1.4

Moffit 239 12

24

3BCC
3BD8

10/20/87 11:48 AM GeoFont 1.4

Hilgard 1 240 28 3C1C 10/20/87 11:49 AM GeoFont 1.4
Hilgard 2 241 28 3C5C 10/20/87 11:49 AM GeoFont 1.4
Wheeler

242 9

12

14

18

24

3C89
3C8C
3C8E
3C92
3C98

10/20/87 11:51 AM GeoFont 1.4

FONTPACK1

fonts

Includes FontKnox, Mykonos, Boalt, Stadium, Durant, Telegraph, Superb, Ormond, Brennens, LeConte from

FONTPACK1. Only the Brennens font is an updated font.

Brennens 22 18 0592 9/5/86 3:11 PM Brennens V1.1
Dale

Note: If you really want to get the best print output from GEOS you need to use a PostScript equipped Laser or Inkjet printer.

In order to maximize your time and efforts the best resource for Laser Printing is Dale Sidebottom's Laser Lovers Disk

available from the LyonLabs web site. Download and digest the PostScript Printing from the Commodore PDF and then

grab the two D81 images. Modified versions of all of the LW Fonts are on the Laser Lovers Disk.

https://www.lyonlabs.org/commodore/onrequest/geos/laser-lovers/index.html

Desk Accessory

 G-1 G: Special Notes

G: Special N otes

G: Special Notes

Desk Accessory

 Responsibilities:

1. It is the job of the DA to ensure that if the current drive (curDrive) is changed, that it be returned to

its original value so that RstrAppl can find the SWAP FILE. (C64 GEOS)

2. Must fill its' screen section with the appropriate screen color.

3. Must not use the top 16 scanlines of the screen.

4. Must set its' own sprite picture data, colors, positions, and X/Y doubling information.

5. Must only use a specific, contiguous area of application memory space as defined in the DA's header

block. Any other memory used by the DA must be manually backed up and restored.

 Note: Applications are responsible for backing up and restoring sprite data if they are using that area.

DA's may freely use the area the from spr1pic thru spr7pic without needing to backup/restore the

data there.

 Restrictions:

1. Since Desk Accessories and Dialogs both save the system state to dlgBoxRamBuf, a DA cannot use

Dialog Boxes unless it does a backup of dlgBoxRamBuf (417 bytes @851F) and restores it before

the DA closes. Without backing that area up, calling a dialog box will trash the system state of the

calling application and the calling application can no longer be restored. †

2. Desk accessories larger than 24K cannot be used under GEOS 128. This is the amount of space

available in backRAM for desk accessories.

Note: r10L RECVR_OPTS is obsolete and should always be assumed to be $00. Applications must

always handle the saving and restoring of the foreground screen and color memory. See

LdDeskAcc Note for more information.

 †For workarounds to these limitations see Chapter 8 Dialog Box > Removing Limitations.

Auto Exec

 Responsibilities:

 Always check firstBoot at startup and behave accordingly based on the result:

• When firstBoot == FALSE; perform boot time logic.

• When firstBoot == TRUE; perform application mode logic. Normally this will be some

form of user setup.

 Restrictions:

1. The only available input driver is the joystick unless you load one in yourself.

2. Cannot modify RAM from $5000-5FFF when running during first boot. Kernal boot code is still active

in this area during boot time when the auto exec is running.

3. If you need full drive support you must run after CONFIGURE.

4. Kernal patches should run before CONFIGURE so that CONFIGURE will stash the changes with the

rest of the Kernal into REU bank 0 for rboot.

	Ch 1 The Hitchhiker's Guide' to GEOS
	Preface
	Bookmarks
	Links
	Search
	PDF Readers
	Introduction to v2020

	Sources
	Contributors
	Table of Contents
	Introduction
	Why Develop GEOS Applications
	Consistent User-interface
	Large Installed Base and Portability
	Application Integration
	Input and Output Technology

	What Exactly is GEOS?
	GEOS as an Operating System
	GEOS as a Graphic and User-Interface Environment
	GEOS as a Programmer's Toolbox

	Development System Recommendations
	geoProgrammer
	geoProgrammer' 2.1
	Commodore 64
	Commodore 128
	Vice Emulator

	Basic GEOS
	Introduction
	Speaking the Same Language
	The Basics
	Double Clicks through otherPressVec
	Getting Started
	Summary

	The GEOS Kernal Structure
	MainLoop

	Calling GEOS Kernal Routines
	Non-Event Code

	Steps in Designing a GEOS Application
	Hi-Resolution Bit-Mapped Mode
	Memory Map
	GEOS Kernal Version Bytes
	GEOS Kernal Information Bytes
	Bank Switching and Configuring

	Assembler Directives
	Assembler Directives Used in Examples

	What's to Come
	Compatibility of applications with GEOS 128
	GEOS V1.3+ and RAM expansions

	Ch 2 Graphics Routines
	Introduction to GEOS Graphics
	Color
	The GEOS Virtual Screen
	GEOS 128 40/80-Column Support
	Inclusive Dimensions
	Linear Bitmap
	Dividing the Screen into Cards

	Display Buffering
	dispBufferOn
	Using dispBufferOn
	Using the Background Buffer as Extra Memory
	Manual Imprinting and Recovering
	Some Possible dispBufferOn Complications

	Machine Dependencies
	Commodore 64
	Commodore 128
	Porting Considerations and Techniques
	GEOS 128 Virtual Sprites
	GEOS 128 X-position and Bitmap Doubling

	Points and Lines
	Points
	Horizontal and Vertical Lines
	Line Patterns
	Diagonal Lines

	Patterns and Rectangles
	Fill Patterns
	Rectangles

	Bit-mapped Images
	Standard Bitmap Routines

	GEOS Compacted Bitmap Format
	Packet Format
	Decompaction Walkthrough
	Compacting Strategy

	Direct Screen Access and Block Copying
	Direct Screen Access

	Special Graphics Related Routines

	Ch 3 Icons, Menus, and Other Mouse Presses
	Icons
	Icon Table Structure
	Icon Table Header
	Icon Entries
	Sample Icon Table

	Installing Icons
	MainLoop and Icon Event Handlers
	Detecting Single- and Double-clicks on Icons
	Other Things to Know About Icons
	Icon Releases and otherPressVec
	Icon Precedence
	Disabling Icons
	Inverting an Icon
	GEOS 128 Icon Doubling

	Menus
	Division of Labor with Menus
	Menu Data Structure
	Menu/Sub-menu structure
	Menu/Sub-menu Header
	Menu/Sub-menu Types (use in attribute byte OFF_M_ATTRIBUTE):
	Menu Item Structure
	Types of Menu Items (for use in item type byte):

	Example Menu: mainMenu
	Installing Menus

	MainLoop and Menu Events
	SUB_MENU
	DYNAMIC_SUB_MENU
	MENU_ACTION
	Specialized Menu Recover Routines
	Advanced Menu Ideas
	Menus and Mouse-Fault Interaction
	How GEOS uses Mouse Faults
	Application's Use of Mouse Faults

	Other Mouse Presses

	Ch 4 Process Library
	Process Nomenclature
	Process Data Structure
	Sample Process Table

	Process Management
	Installing Processes
	Starting and Restarting Processes
	Freezing and Blocking Processes
	Freezing vs. Blocking
	Forcing a Process Event

	The Nitty-gritty of Processes
	Interrupt Level and MainLoop Level
	Process Synchronization
	Disabling Processes While Menus Are Down

	Sleeping

	Ch 5 Math Routines
	Parameter Passing to Math Routines
	Double-precision Shifting
	Double-Precision Arithmetic
	Signed vs. Unsigned Arithmetic
	Incrementing and Decrementing
	Unsigned Arithmetic
	Signed Arithmetic
	Dividing by Zero

	Ch 6 Text, Fonts, and Keyboard Input
	Text Basics
	Fonts and Point Sizes
	Proportional Fonts
	Character Width and Height
	The Baseline
	Styles

	How GEOS Prints Characters
	Text and dispBufferOn
	GEOS 128 Character X-position Doubling

	Character Codes
	Printing Single Characters
	PutChar and Margin Faults

	Calculating the Size of a Character
	Partial Character Clipping
	Top and Bottom Character Clipping
	Left and Right Character Clipping with SmallPutChar
	Manual Character Clipping

	Printing Decimal Integers (PutDecimal)
	String Level Routines
	GEOS Strings

	PutString
	String Faults (Left or Right Margin Exceeded)
	Embedding Style Changes Within a String
	Position Escapes (Moving the Printing Position Mid-string)
	Escaping to a Graphics String

	GetString
	GetString and dispBufferOn
	Forcing End of String Input

	Fonts
	The Structure of a Font File
	Character Set Data Structure
	Saving and Restoring the Font Variables

	Keyboard Input
	Key-scan Conversion
	How GEOS Handles Keypresses
	Ignoring Keys While Menus are Down
	Implementing Shortcuts

	The Text Entry Prompt
	Sample Keyboard Entry Routine
	Sample Better Get String

	Ch 7 MainLoop and Interrupt Level a Technical Breakdown
	MainLoop Level
	MainLoop Service Routines
	Patching into MainLoop

	The Basics of Interrupt Level
	The Vertical Blank Interrupt
	How to Disable Interrupts

	Important Things to Know About Interrupt Level
	Two-byte Variables
	The Decimal Mode Flag

	Patching Into Interrupt Level
	System Use of intTopVector and intBotVector
	Guidelines for Interrupt Level Routines

	Interrupt Level Pseudo-Code
	GEOS 64 and GEOS 128 Interrupt Level
	GEOS 64 and GEOS 128 InterruptMain
	UpdateProcesses
	UpdateSleeps
	UpdatePrompt
	DoMouse
	FaultCheck

	MainLoop Level Pseudo-Code
	MainLoop
	KeyboardService
	ProcessService
	SleepService
	SystemMouseService
	SystemFaultService

	Quick Reference Pseudo-Code

	Ch 8 Dialog Box
	DB Structure
	Position Command
	DB Icons and Commands

	Icon Commands
	Table of icon commands

	Dialog Box Commands
	Table of DB Commands:
	DBGETSTRING
	DBGRPHSTR
	DBGETFILES
	DBOPVEC
	DBUSRICON
	DB_USR_ROUT

	Exiting from a DB
	Dialog Box RAM Buffer
	Limitations
	Removing Limitations

	Ch 9 File System
	The Foundation
	Directory Track
	Directory Header
	Disk Protection Byte
	Off Page Directory Block

	Directory Block
	Directory Entry

	File Header Block
	Icon data
	Commodore File Type
	GEOS file type
	Start Address
	End Address
	Application Initialization vector
	Permanent Filename / Permanent ClassName
	Author
	Parent Application
	Permanent Name Example

	Constants for Accessing Table Values
	Disk Variables

	Using GEOS Disk Access Routines
	Basic Disk Access
	high-level Disk Routines Page
	mid-level and low-level Routines
	Very Low-Level Primitive Routines
	Accessing the Serial Bus

	VLIR Files
	File Structure
	Records

	VLIR Routines
	Error Messages

	Creating a VLIR File

	Ch 10 Input Driver
	The Standard Driver
	What an Input Driver Does
	Location and Responsibilities of Input Driver
	Acceleration, Velocity, and Nonstandard Variables
	SlowMouse
	UpdateMouse

	Mouse Variables for Input Driver
	Required Mouse Variables
	Optional Mouse Variables

	The Mouse as Seen by the Application
	Additional Mouse Control
	Mouse Variables for Applications
	Sample Joystick Driver

	Ch 11 Printer Drivers
	The State of Printers
	ASCII and Graphic Printing
	Dot Matrix Printer Types

	Talking to Printers
	Parallel Interface Questions

	GEOS Printer Drivers
	The Interface - For Graphic Printing
	ASCII Printing

	Calling a Driver from an Application
	Using a Printer Driver from an Application
	For Graphics Printing:
	For ASCII Printing:

	SamplePrinterDriver
	Introduction to Sample Driver
	Sample printer driver for an 8-bit printer:
	Sample Printer driver for 7-bit printers:

	Ch 12 Sprites
	Hardware Sprites
	Soft Sprites
	Problem Areas to Watch Out for:
	All sprite image data
	Writing directly to the screen
	Writing directly to the VIC chip
	Reading values from the VIC chip
	Using VIC chip collision detection
	Writing to the VIC chip

	Known bugs in release 1 of GEOS 128 (1.3):

	Ch 13 RAM Expansions and GEOS 128
	Introduction
	RAM expansions
	Apps and Expansions
	Applications and compatibility with GEOS 128
	128 Flags for Applications & Desk Accessories
	80-column graphics with GEOS 128
	The little tricks of the trade

	Ch 14 WarmStart Configuration
	Initial Boot Configuration
	CIA registers
	VIC registers
	Mouse and window variables
	Time and Date
	Vectors
	Kernal Private Variables
	Sprite pointers
	Final Steps

	Dialog Box and Auto Exec Configuration
	Mouse and window variables
	Vectors
	Kernal Private Variables
	Sprite pointers

	Ch 15 Reserved for Future Use
	Ch 16 Reserved for Future Use
	Ch 17 Reserved for Future Use
	Ch 18 Reserved for Future Use
	Ch 19 Environment
	constants
	Miscellaneous:
	C128
	Fonts
	Flags
	pressFlag
	faultFlag
	Desk Accessory save foreground bit (Obsolete)

	Dialog Box:
	Descriptor table commands
	Offsets into descriptor table
	System Dialog Icon dimensions
	Default Coordinates
	Standard Text Locations
	Standard Icon Locations

	Disk:
	Directory
	DirHeader: curDirHead $8200
	DirBlock
	DirEntry: dirEntryBuf $8400
	DirEntry Offsets

	low-level GEOS disk handling routines
	Disk access commands
	Disk Errors:
	File Types:
	GEOS file structure types
	Standard Commodore file types (supported by the old 1541 DOS)

	File Header Block fileHeader $8100
	GetFile
	VLIR

	Graphics
	Constants for screen size
	Bits used to set dispBufferOn flag (controls which screens get written to)
	Values for graphics strings
	Values for PutDecimal calls
	Screen colors
	VDC Screen Colors

	Hardware
	CPU_DATA
	128 MMU
	SID
	VIC Chip
	grcntrl1 graphics control register #1 D011
	grcntrl2 graphics control resister #2 D016

	VDC

	Keyboard:
	Menu and Icon
	Icon:
	iconSelFlag
	Offsets into the icon structure
	Offsets into an icon record in icon structure

	Menu:
	Types
	Offsets
	Menu Item Offsets
	Actions

	Mouse
	Bit flags for mouseOn variable
	Default Reset Count for dblClickCount

	Memory Map
	Process:
	Possible values for processFlags

	pseudoregisters
	Text
	Bit flags in mode
	PutChar constants

	variables
	By Name
	By Address

	structures
	dlgBoxRamBuf
	Breakdown of Dialog Box RAM buffer
	SRAM_ZP Zero Page variables.
	SRAM_GL Global Variables
	SRAM_LC Kernal Internal Local Variables
	MENU_SPACE Break Down.
	PROC_SPACE Break Down.

	SRAM_SP Sprite Data
	SRAM_FT Future use filler bytes
	Saved RAM Buffer Variables by Name

	dialog/Icons/Menus/Graphics
	DIALOG
	Position Commands
	Dialog Box Icons
	Dialog Box Commands

	GraphicsString
	Icon Table
	Menu

	disk
	DirHeader: curDirHead $8200
	Directory Entry: dirEntryBuf $8400
	File Header Block: fileHeader $8100
	Disk Errors:

	Keyboard
	GEOS Input Control Codes keyData
	GEOS Text Escape Character Codes
	GEOS ASCII Character Codes

	Memory Map

	Ch 20 GEOS Kernal 2.0
	dialog box
	DoDlgBox: (C64, C128) C256
	RstrFrmDialog: (C64, C128) C2BF

	disk
	AllocateBlock: (C64, C128) mid-level 9048
	BldGDirEntry: (C64, C128) mid-level C1F3
	BlkAlloc: (C64, C128) mid-level C1FC
	CalcBlksFree: (C64, C128) mid-level C1DB
	ChangeDiskDevice: (C64, C128) very low-level C2BC
	ChkDkGEOS: (C64, C128) mid-level C1DE
	DeleteFile: (C64, C128) high-level C238
	DoneWithIO: (C64, C128) very low-level C25F
	EnterDeskTop: (C64, C128) high-level C22C
	EnterTurbo: (C64, C128) very low-level C214
	ExitTurbo: (C64, C128) very low-level C232
	FastDelFile: (C64, C128) mid-level C244
	FindBAMBit: (C64, C128) mid-level C2AD
	FindFile: (C64, C128) high-level C20B
	FindFTypes: (C64, C128) high-level C23B
	FollowChain: (C64, C128) mid-level C205
	FreeBlock: (C64, C128) mid-level C2B9
	FreeFile: (C64, C128) mid-level C226
	Get1stDirEntry: (C64, C128) mid-level 9030
	GetBlock: (C64, C128) low-level C1E4
	GetBufBlock: (C64, C128) low-level 903C
	GetDirHead: (C64, C128) mid-level C247
	GetFHdrInfo: (C64, C128) mid-level C229
	GetFile: (C64, C128) high-level C208
	GetFreeDirBlk: (C64, C128) mid-level C1F6
	GetNxtDirEntry: (C64, C128) mid-level 9033
	GetOffPageTrSc: (C64, C128) mid-level 9036
	GetPtrCurDkNm: (C64, C128) high-level C298
	InitForIO: (C64, C128) very low-level C25C
	LdApplic: (C64, C128) mid-level C21D
	LdDeskAcc: (C64, C128) mid-level C217
	LdFile: (C64, C128) mid-level C211
	NewDisk: (C64, C128) mid-level C1E1
	NxtBlkAlloc: (C64, C128) mid-level C24D
	OpenDisk: (C64, C128) high-level C2A1
	PurgeTurbo: (C64, C128) very low-level C235
	PutBlock: (C64, C128) low-level C1E7
	PutBufBlock: (C64, C128) low-level 903F
	PutDirHead: (C64, C128) mid-level C24A
	ReadBlock: (C64, C128) very low-level C21A
	ReadByte: (C64, C128) mid-level C2B6
	ReadFile: (C64, C128) mid-level C1FF
	ReadLink: (C64, C128) very low-level 904B
	RenameFile: (C64, C128) high-level C259
	RstrAppl: (C64, C128) high-level C23E
	SaveFile: (C64, C128) high-level C1ED
	SetDevice: (C64, C128) high-level C2B0
	SetGDirEntry: (C64, C128) mid-level C1F0
	SetGEOSDisk: (C64, C128) high-level C1EA
	SetNextFree: (C64, C128) mid-level C292
	StartAppl: (C64, C128) mid-level C22F
	VerWriteBlock: (C64, C128) very low-level C223
	WriteBlock: (C64, C128) very low-level C220
	WriteFile: (C64, C128) mid-level C1F9
	VLIR
	AppendRecord: (C64, C128) C289
	CloseRecordFile: (C64, C128) C277
	DeleteRecord: (C64, C128) C283
	InsertRecord: (C64, C128) C286
	NextRecord: (C64, C128) C27A
	OpenRecordFile: (C64, C128) C274
	PointRecord: (C64, C128) C280
	PreviousRecord: (C64, C128) C27D
	ReadRecord: (C64, C128) C28C
	UpdateRecordFile: (C64, C128) C295
	WriteRecord: (C64, C128) C28F

	graphics
	BitmapClip: (C64, C128) C2AA
	BitmapUp:, i_BitmapUp (C64, C128) C142, C1AB
	BitOtherClip: (C64, C128) C2C5
	ColorCard: (C128) C2F8
	ColorRectangle: (C128) C2FB
	DrawLine: (C64, C128) C130
	DrawPoint: (C64, C128) C133
	FrameRectangle:, i_FrameRectangle (C64, C128) C127, C1A2
	GetScanLine: (C64, C128) C13C
	GraphicsString:, i_GraphicsString (C64, C128) C136, C1A8
	HorizontalLine: (C64, C128) C118
	InvertLine: (C64, C128) C11B
	ImprintRectangle:, i_ImprintRectangle (C64, C128) C250, C253
	InvertRectangle: (C64, C128) C12A
	NormalizeX: (C128) C2E0
	RecoverLine: (C64, C128) C11E
	RecoverRectangle:, i_RecoverRectangle (C64, C128) C12D, C1A5
	Rectangle:, i_Rectangle (C64, C128) C124, C19F
	SetColorMode: (C128) C2F5
	SetNewMode: (C128) C2DD
	SetPattern: (C64, C128) C139
	TestPoint: (C64, C128) C13F
	VerticalLine: (C64, C128) C121

	icon/menu
	DoIcons: (C64, C128) C15A
	DoMenu: (C64, C128) C151
	DoPreviousMenu: (C64, C128) C190
	GotoFirstMenu: (C64, C128) C1BD
	RecoverAllMenus: (C64, C128) C157
	RecoverMenu: (C64, C128) C154
	ReDoMenu: (C64, C128) C193

	input driver
	InitMouse: (C64, C128) FE80
	SetMouse: (C128) FE89
	SlowMouse: (C64, C128) FE83
	UpdateMouse: (C64, C128) FE86

	internal
	BootGEOS: (C64, C128) C000
	FirstInit: (C64, C128) C271
	GetSerialNumber: (C64, C128) C196
	InterruptMain: (C64, C128) C100
	MainLoop: (C64, C128) C1C3
	Panic: (C64, C128) C2C2
	Reset: (C128) 03E4
	ResetHandle: (C64, C128) C003

	math
	BBMult: (C64, C128) C160
	BMult: (C64, C128) C163
	Dabs: (C64, C128) C16F
	Ddec: (C64, C128) C175
	Ddiv: (C64, C128) C169
	DMult: (C64, C128) C166
	Dnegate: (C64, C128) C172
	DSdiv: (C64, C128) C16C
	DShiftLeft: (C64, C128) C15D
	DShiftRight: (C64, C128) C262

	memory
	AccessCache: (C128) C2EF
	ClearRam: (C64, C128) C178
	CmpFString: (C64, C128) C26E
	CmpString: (C64, C128) C26B
	CopyFString: (C64, C128) C268
	CopyString: (C64, C128) C265
	DoBOp: (C128) C2EC
	DoRAMOp: (C64 v1.3+, C128) C2D4
	FetchRAM: (C64 v1.3+, C128) C2CB
	FillRam:, i_FillRam: (C64, C128) C17B, C1B4
	InitRam: (C64, C128) C181
	MoveBData: (C128) C2E3
	MoveData:, i_MoveData: (C64, C128) C17E, C1B7
	StashRAM: (C64 v1.3+, C128) C2C8
	SwapBData: (C128) C2E6
	SwapRAM: (C64 v1.3+, C128) C2CE
	VerifyBData: (C128) C2E9
	VerifyRAM: (C64 v1.3+, C128) C2D1

	mouse/sprite
	ClearMouseMode: (C64, C128) C19C
	HideOnlyMouse: (C128) C2F2
	IsMseInRegion: (C64, C128) C2B3
	MouseOff: (C64, C128) C18D
	MouseUp: (C64, C128) C18A
	SetMsePic: (C128) C2DA
	StartMouseMode: (C64, C128) C14E
	TempHideMouse: (C128) C2D7

	print driver
	GetDimensions: (C64, C128) 790C
	InitForPrint: (C64, C128) 7900
	PrintASCII: (C64, C128) 790F
	PrintBuffer: (C64, C128) 7906
	SetNLQ: (C64, C128) 7915
	StartASCII: (C64, C128) 7912
	StartPrint: (C64, C128) 7903
	StopPrint: (C64, C128) 7909

	process
	BlockProcess: (C64, C128) C10C
	EnableProcess: (C64, C128) C109
	FreezeProcess: (C64, C128) C112
	InitProcesses: (C64, C128) C103
	RestartProcess: (C64, C128) C106
	Sleep: (C64, C128) C199
	UnblockProcess: (C64, C128) C10F
	UnfreezeProcess: (C64, C128) C115

	sprite
	DisablSprite: (C64, C128) C1D5
	DrawSprite: (C64, C128) C1C6
	EnablSprite: (C64, C128) C1D2
	PosSprite: (C64, C128) C1CF

	text
	GetCharWidth: (C64, C128) C1C9
	GetNextChar: (C64, C128) C2A7
	GetRealSize: (C64, C128) C1B1
	GetString: (C64, C128) C1BA
	InitTextPrompt: (C64, C128) C1C0
	LoadCharSet: (C64, C128) C1CC
	PromptOff: (C64, C128) C29E
	PromptOn: (C64, C128) C29B
	PutChar: (C64, C128) C145
	PutDecimal: (C64, C128) C184
	PutString:, i_PutString (C64, C128) C148, C1AE
	SmallPutChar: (C64, C128) C202
	UseSystemFont: (C64, C128) C14B

	utility
	Bell: (Apple GEOS) n/a
	CallRoutine: (C64, C128) C1D8
	CRC: (C64, C128) C20E
	DoInlineReturn: (C64, C128) C2A4
	GetRandom: (C64, C128) C187
	ToBasic: (C64, C128) C241

	Ch 21 Wheels Kernal 4.4
	Introduction
	Environment
	Terms
	Constants
	Equates
	Internal Equates

	variables
	Kernal
	Driver

	Kernal Jump Table
	Driver Jump Table
	ddriveType = $904e
	driverVersion = $904f
	OpenRoot = $9050 ; OpenRoot-OpenDirectory: This is just like in GateWay for compatibility
	OpenDirectory = $9053 ; open any directory on a native partition
	GetBamBlock = $9056
	PutBamBlock = $9059
	dirHeadTrack = $905c
	dirHeadSector = $905d
	curBamBlock = $905e
	lastBamByte = $905f
	lastBamSector = $9060
	bamAltered = $9061
	highestTrack = $9062
	GetHeadTS = $9063 ; Get the Track and Sector of the directory header.
	PutHeadTS = $9066
	GetLink = $9069
	GetSysDirBlk = $906c
	startBank = $906f
	startPage = $9070
	pagesUsed = $9071

	Structures
	Internal Structures

	Memory Maps
	Local RAM Kernal Group load area. Occupied as a result of a call GetNewKernal

	All Kernal Groups by Name
	Jump Table additions
	OpenDirectory: (C64, C128) 9053
	GetHeadTS: (C64, C128) 9063
	GetNewKernal: (C64, C128) $9D80
	RstrKernal: (C64, C128) $9D83

	KG0_REU
	AllocAllRAM: (C64, C128) $5006
	AllocRAMBlock: (C64, C128) $5009
	DelRamDevice: (C64, C128) $501B
	FreeRAMBlock: (C64, C128) $500C
	GetRAMBam: (C64, C128) $5000
	GetRAMInfo: (C64, C128) $500F
	PutRAMBam: (C64, C128) $5003
	RamBlkAlloc: (C64, C128) $5012
	RamDevInfo: (C64, C128) $501E
	RemoveDrive: (C64, C128) $5015
	SvRamDevice: (C64, C128) $5018

	KGDEVICE
	DevNumChange:

	KG9COPY
	CopyFile: 09:5000

	Examples
	Copy File:
	Miscellaneous

	Appendix
	A: Atoms
	Building Blocks of an Application
	atom
	Creating an atom
	Optimizing
	Libraries

	quick reference
	Categories
	Sources
	by name

	atom definitions by name
	BCD2Bin: conv
	Bin2bin: text
	Bin2Bin: text
	Bookmark: flow
	DoDlg: size
	IsAlphaN: text
	Lower: text
	Nib2Hex: text
	Hex2Nib:, Hex2NibF: text
	DiskName: util
	SetSys: util
	SwpNib: util
	SwZp: util
	Upper: text

	B: Examples
	atoms
	KeyTrap:
	ImpBin:

	dialog boxes
	getFileDB:
	GetWorkFile:
	openBoxDB:

	disk
	CheckDiskSpace:
	DeleteDirEntry:
	GrabSomeBlocks:
	MyFreeBlock:
	MyPutBlock:
	MyReadBlock:
	MySetGDirEntry:
	MySetNextFree:
	NewAllocateBlock:
	ReadAndDelete:
	SaveRecord:

	drivers
	Joystick
	app.lnk
	app.hdr.s
	app.driver.s
	Jump Table
	o_InitMouse:
	o_SlowMouse:
	o_UpdateMouse:
	UpdYMouse:
	UpdMouseVels:
	ComputeMouseVels:
	UpdXMouse:
	C64Joystick:
	SineCosine:

	app.con
	app.sym
	app.mac
	app.Inc

	128 COMM 1351(a)
	app.lnk
	app.hdr.s
	app.driver.s
	Jump Table
	o_SlowMouse:
	o_UpdateMouse:
	o_SetMouse:
	AccelDist:
	GetDistance:

	app.con
	app.sym
	app.mac
	app.Inc

	64_128 COMM 1351(a)
	ReadMe
	1351.cfg
	1351.64.lnk
	1351.128.lnk
	1351.hdr
	1351.driver.s
	Overview Page: 2
	Jump Table Page: 3
	_SetMouse: Page: 4
	Locals Page: 5
	_InitMouse: Page: 6
	_UpdateMouse: Page: 7
	UpdBtns Page: 8
	UpdateX Page: 9
	UpdateY Page: 10

	AccelDist: Page: 11
	endDriver Page: 12

	1351.con
	1351.sym
	1351.mac
	1351.Inc

	8-Bit FX-80 Printer Driver
	app.lnk
	app.hdr
	app.driver.s
	Jump Table
	_StartPrint:
	_PrintBuffer:
	_StopPrint:
	_GetDimensions:
	_StartASCII:
	_SetNLQ:
	_PrintASCII:
	PrnPrintBuffer:
	TestBuffer:
	InitPrinter:
	SetGraphics:
	SendBuff:
	Greturn:
	FormFeed:
	Rotate:

	app.Inc
	app.con
	app.sym
	app.mac

	7-Bit MPS-801 Printer Driver
	app.lnk
	app.hdr.s
	app.driver.s
	Jump Table
	_StartPrint:
	_PrintBuffer:
	IPrintBuffer:
	_StopPrint:
	_GetDimensions:
	_StartASCII:
	_PrintASCII:
	PrnPrintBuffer:
	TopRollBuffer:
	BotRollBuffer:
	RollaCard:
	TestBuffer:
	Roll8BIn:
	Roll8BOut:
	SetGraphics:, UnSetGraphics:
	SendBuff:
	Greturn:
	FormFeed:
	Rotate:

	app.Inc
	app.con
	app.sym
	app.mac

	Print Driver Support Library
	prndrv.lib.s
	OpenFile:
	CloseFile:
	OpenPrint:
	ClosePrint:
	Strout:

	app.inc
	app.con
	app.sym
	app.mac

	graphics
	BitOtherClip Example
	DrawPhoto:
	ClearWindow:
	SetUpPhoto:
	PutUpPhoto:
	AppInput:
	Sync:
	GetPicSize:
	SetUpReadByte:
	ReadSizeBytes:

	Compact Bitmap
	BitCompact:
	CountRepeat:
	GetUnique:

	ChangeMode:
	Check128:
	DblDemo1:
	DisplayImage:
	FilledRect:
	GrphcsStr:
	MseToCardPos:
	ShowBitmap:
	StopMenus:
	i_VerticalLine:

	hardware
	GetFPS:
	C64Model:
	VDC
	Sta80Fore:
	Lda80Fore:
	NewVDCAddress:

	icons & menu
	IconsUp:
	mainMenu:
	NoIcons:

	keyboard
	Keyboard Entry Routine
	Constants and Variables
	Table of control keys
	StartText:
	KeyIn:
	ShortKey:
	NormalKey:
	KillPrompt:
	DoReturn:
	DoBackspace
	EraseCharacter:
	BufOverflow:
	TextFault:

	KeyHandler:
	DoNewKeys:

	KillPrompt:
	NewGetString
	StringPatch:

	ShortKey:

	math
	8BitMultiply:
	16x8Multiply:
	ConvToUnits:
	DdecvsDecW:
	DecCounter:
	Divide By Zero:
	NewDdiv:
	NewDSdiv:

	DSmult:
	Kernal_CRC:
	NewSDSdiv:

	memory
	CopyBuffer:
	Find:
	Find2:
	InitBuffers:

	mouse & sprite
	ArrowUp:
	MouseInit:
	NewIsMseInRegion:
	IsMseInMargins:
	OPVector:
	ResetMouse:

	text
	ClipChar:
	Print:
	PutStrFault:
	SmartPutString:
	FaultFix:

	utility
	BeepThrice:
	FatalError:
	HandleCommand:
	LoadBASIC:
	RoadTrip:

	C: Hardware
	C64
	6510 data register
	Keyboard (C64, C128)

	C128
	128 Keyboard - additional Keys
	MMU: Configuration Register D500, FF00
	Bank Configurations config (D500/FF00)
	GEOS configurations
	Commodore standard configurations

	Miscellaneous

	REU
	17XX RAM Expansion:
	GEORAM

	6502 Instruction Set

	D: Macros
	Quick Reference
	Terms
	Categories
	Sources
	Category
	bit operations
	branching
	comparisons
	flow
	math
	utility

	By Name

	Macro Definitions by name
	add: math
	AddAW: math
	AddB: math
	AddBS: math
	AddBSW: math
	AddBW: math
	AddBWS: math
	AddCB: math
	AddRW: utility
	AddVB: math
	AddVW: math
	AddVWS: math
	AddW: math
	AddWS: math
	AddYW: math
	AddYWS: math
	bbeq: branch
	bbmi: branch
	bbne: branch
	bbpl: branch
	bbr: branch
	bbrf: branch
	bbs: branch
	bbsf: branch
	bge: branch
	bgt: branch
	ble: branch
	blt: branch
	bra: branch
	bweq: branch
	bwne: branch
	bxeq: branch
	bxne: branch
	clda: flow
	cldx: flow
	cldy: flow
	CmpB: cmp
	CmpBI: cmp
	CmpW: cmp
	CmpWI: cmp
	DecW: Math
	Dialog: util
	IncW: utility
	jsr_a: utility
	jsr_x: utility
	LdNull: utility
	LdWW: utility
	LoadB: utility
	LoadW: utility
	MoveB: utility
	MoveW: utility
	MvWW: utility
	PopB: utility
	PopW: utility
	PopX: utility
	PopY: utility
	PushB: utility
	PushW: utility
	PushX: utility
	PushY: utility
	rmb: bit
	rmbf: bit
	setbit: bit
	smb: bit
	smbf: bit
	sub: math
	SubB: math
	SubBS: math
	SubBW: math
	SubBWS: math
	SubVW: math
	SubVWS: math
	SubW: math
	SubWS: math
	SubWVS: math
	tmb: bit
	tmbf: bit

	E: Memory Maps
	GEOS Memory Region Map
	Zero Page
	Stack Page
	AppLowVar APP_LVAR
	AppLowRAM APP_LRAM
	BackScreen
	OsVars
	ColorMatrix
	Forescreen
	I/O

	128 BackRAM:
	REU-BANK0

	F: File Formats
	Overview
	Future Releases
	Photo Scrap
	A diagram of the organization of bytes in the bit-mapped mode screen is:
	Byte Organization in Bit-Map Screen

	Text Scrap V1.2
	Text Scrap

	Version 2.0 Ruler Escape
	geoWrite
	Output File Formats
	geoWrite V1.x
	Sample Ruler in geoProgrammer format.

	geoWrite V2.0
	Page Layout
	Sample V2.0/2.1 Ruler
	geoWrite Tab Stops
	geoWrite Summary

	geoPaint
	Sample image card
	Sample Color card
	Output File Format
	VLIR Records
	Card Row Set
	Byte stream Compression
	Sample Compression
	geoPaint Summary

	notepad
	Text Album
	1.0
	2.1

	Photo Album
	1.0
	2.1

	Official Fonts
	GEOS Fonts
	FONTPACK1
	geoLaser Fonts
	LaserWriter Plus Fonts
	International FONTPACK
	German GEOS 2.5
	Mega Fonts
	FONTPACK Plus

	G: Special Notes
	Desk Accessory
	Auto Exec

