
COMMODORE

mODULE ■

Increases your RAM

by 256K Bytes

commodore 64

1764 RAM EXPANSION

User's

Guide

1=1 BBS

Commodore® 1764 RAM

Expansion Module

User's Guide

Copyright 1986 by Commodore Electronics Limited.

All rights reserved.

This software product is copyrighted and all rights reserved by Commodore Electronics,

Ltd. The distribution and sale of this product are intended for the use of the original

purchaser only. Lawful users of this program are hereby licensed only to read the program,

from its medium into memory of a computer, solely for the purpose of executing the

program. Duplicating, copying, selling, or otherwise distributing this product is a violation
of the law.

This manual is copyrighted and all rights are reserved. This document may not, in whole or

in part, be copied, photocopied, reproduced, translated or reduced to any electronic

medium or machine readable form without prior consent, in writing, from Commodore

Electronics Limited.

COMMODORE ELECTRONICS LIMITED ("COMMODORE") MAKES NO WARRANTIES,

EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE PROGRAM DESCRIBED

HEREIN, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY

PARTICULAR PURPOSE, THIS PROGRAM IS SOLD "AS IS". THE ENTIRE RISK AS TO ITS

QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAM PROVE

DEFECTIVE FOLLOWING ITS PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE

PROGRAM, COMMODORE, THEIR DISTRIBUTORS OR THEIR RETAILERS) ASSUMES THE

ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION AND ANY

INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL COMMODORE BE

LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES

RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION

OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT

APPLY.

Commodore® is a registered trademark of Commodore Electronics Limited.

Commodore 64® is a registered trademark of Commodore Electronics Limited.

GEOS™ is a trademark of Berkeley Softworks.

Contents

Section 1: Getting Started I

Section 2: 1764 Test/Demo Software 5

Section 3: RAMDOS 11

Section 4: Programmer's Reference Notes 17

Appendix A: 1764 Diagnostic Test Program 25

How to Use This Guide

Section 1 introduces you to the 1764 RAM Expansion Module, and tells

you a little bit about what you can do with it. There are installation

instructions, and a few warnings you'll need to be aware of.

If you are a beginning to intermediate level programmer, you will find

the programs on the 1764 Test/Demo disk indispensible in utilizing the

additional memory. Section 2 concentrates on the software programs

included that were specifically designed for use with your 1764, and

should be helpful for all users, regardless of level of programming

experience.

The software also enables you to run the RAMDOS, an operating system

based in the RAM Expander that lets you perform disk operations

quickly and easily. Section 3 provides technical and programming de

tails on the RAMDOS, for both experts and novices.

If you intend to write your own programs to use the 1764, you will also

find the programmer's reference notes useful. In addition to the mem

ory map and details about the 1764 registers, this section has a sample

program to load and recall a text screen using the 1764. Section 4 also

includes information about the RAM Expansion Controller and other

technical features of the 1764.

Section 1: Getting Started

Introduction

A RAM Expansion Module is a device that increases the amount of

memory of your computer, giving you more room for storing programs

and data. Your computer has two kinds of memory, Random Access

Memory (RAM) and Read Only Memory (ROM). RAM is used for tempo

rary storage of data. Programs stored in RAM only stay there as long as

the computer stays on. ROM stores the operating system of your com

puter, and cannot be changed. The 1764 increases the amount of RAM

of your Commodore 64 or Commodore 64C.

The RAM Expansion Module contains indirectly accessible RAM, mean

ing that programs stored in the 1764 cannot be executed directly by the

C64. You must first transfer the program into the computer's main

memory, which takes only the time to type in the command.

Keep in mind that RAM is not permanent storage; the information held

in RAM is gone when you turn off the computer. If you want to save

something permanently, make sure you store it on disk.

The 1764 RAM Expander increases the memory capacity of your C64

from 64 kilobytes (64K) by 256K, for a total of 320K. To give you an idea

of how much space your 1764 gives you, an entire word processor takes

up under 30K. A complex game with over 50 levels takes up about the

same amount of memory. So you see how much extra memory your

1764 provides for your use.

But the 1764 gives you more than memory—it gives you speed and

convenience. You won't have to wait for the computer to access the disk

drive for parts of programs, or to use utilities. You can store these in the

extra RAM, for immediate access. You can also use this added speed to

perform animation by cycling sequences of pictures or graphics that you

wouldn't ordinarily be able to manage on a C64 because of memory

limitations. In short, you'll find your 1764 RAM Expansion Module a

useful, convenient addition to your computer system.

— 1 —

Included with your 1764, you'll find a software disk and a new power
supply. The software disk includes utilities and demonstration pro

grams designed to help you use the capabilities of the RAM Expander

and demonstrate some ways to use the 1764 in programming. Section 2
tells more about the software on this disk.

The power supply is more powerful than the one that originally came
with your computer. Since the RAM Expansion Module hooks directly

into the 64, it draws its power from the computer. The new deluxe power
supply is needed to provide that extra power.

Before you use the 1764, change the power supply you have hooked

to the computer. Plug in the deluxe power supply that came with the

1764 in place of the original power supply that came with your comput

er. The new power supply will provide the extra power your computer

needs for the 1764. You can use this power supply all the time; you
won't need to hook up the old one again.

Connecting the 1764 RAM Expander

1) Turn off your computer and all peripherals.

2) Replace old power supply with the new one if you have not done so
already.

— 2—

3) Insert the 1764 into the Expansion port on the back of your Commo

dore 64 or 64C.

Remember the 1764 was designed only for the 64, and can NOT be used

with the Commodore 128.

4) Turn the computer and all peripherals back on.

Your expansion module is now ready to use.

— 3—

Section 2: 1764 Test/Demo Software

Even if you know nothing about writing programs or memory maps, you

can do a lot with your RAM Expander by running the programs on the

Test/Demo software disk. You can install the RAM Expander, the RAM

operating system, transfer information from disk into RAM, run anima-9

tions, use your 1764 with the GEOS software package, and more.

The software disk that came with your RAM expander contains programs

for the following applications:

• RAMDOS

• DOS wedge

• File copying

• Change unit numbers

• Animated sequences (pound and globe)

• Diagnostic testing

• GEOS configuration (on the flip side of the disk)

All of these programs are explained in this section except RAMDOS and

GEOS configuration.

The RAMDOS is an elaborate 1764-based disk operating system. It is

explained in detail in Section 3 of this manual.

The GEOS configure program is not part of the demo software. It is

located on the flip side of the disk. This is used with the GEOS operating

system, and creates an icon for the RAM expander so it can be easily

used with GEOS. There is a separate set of instructions (included in this

box).

The rest of the programs can be loaded from the Startup Menu.

Loading the Startup Menu

The best way to get started with your RAM expander is to load the

Startup Menu from the disk, which lets you select any of the programs

by typing:

L0AD'*",8 <RETURN>

RUN <RETURN>

— 5—

The program to load the Startup Menu is the first program on the disk.

The Startup Menu lets you automatically load the specific program you

select when you enter a number. The Startup Menu options:

1 INSTALL RAM DISK

2 INSTALL DOS WEDGE

3 FILE COPY UTILITY

4 CHANGE UNIT NUMBERS

5 RAM-PAK TEST PROGRAM

6 RAM-PAK POUND DEMO

7 RAM-PAK GLOBE DEMO

8 QUIT

Installing the DOS Wedge

The DOS wedge adds commands to C64 BASIC 2.0. These commands

make it easier to display directories, send instructions to disk drives,

and manipulate files. All commands in the DOS wedge may be used

with the 1541/1571 series of disk drives, as well as the 1764 RAMDOS.

You can load the DOS wedge by selecting Option 2 from the Startup

Menu. After you select option 2, the wedge boot message and help

screen appear.

The help screen lists syntax for commands you can use. This typical

form for a DOS command is:

Character <Unit #,> <Filename>

The unit number is optional. If there is no unit number specified in the

command, the last unit number referenced is assumed by the DOS.

The wedge symbols you can use and examples of syntax are displayed

on the help screen.

DOS Wedge Technical Information

The DOS wedge replaces DOS 5.1, which was located at $CC00-$CFFF in

the C64 memory. The 1764 DOS wedge is located at $CC00-$CEFF. It

interfaces via IERROR vector in BASIC 2.0. Note that DOS 5.1 is incom

patible with 1764 DOS.

— 6—

File Copy Utility

Option 3 is a very handy utility, which you can use to copy files from

your disk drive to RAM, from RAM to disk drive, or from one disk drive to

another.

The file copy reads a disk drive file (or files), and then stores the block of

information in the RAM expander. That information can now be used

immediately when you recall the file. The file still remains on disk, but is

now accessible within the computer's memory. Remember that the file

is available, but not automatically loaded up when it sits in RAM. You

still have to load and run the file as you would from a disk drive. The

difference is the speed at which the program is loaded.

Note: This program can copy PRG, SEQ, REL and USR files.

Load the file copy program by selecting option 3 from the Startup Menu.

At the first two prompts, specify your SOURCE unit number and DESTI

NATION unit number. If you are copying a file from a disk in the drive to

the RAM expander memory, your source is unit 8 and destination is unit

9 (assuming you installed the 1764 as unit 9).

Then you are prompted:

ENTER TEMPLATE OR <RETURN> ?

If you press the <RETURN> key, the entire directory is read, and you

are asked, one file at a time, whether you want to copy that particular

file, Answer Y or N for each. After the last file, you are asked CONTINUE?

(Y/N): If you still wish to copy the files, answer Y. If you've changed your

mind, answer N.

Instead of pressing <RETURN>, you could enter a template, either a

wild card name (like BAS.*) or an asterisk. Typing * loads everything

from the directory and skips to the CONTINUE? prompt. Answer N to

abort, or answer Y to copy the entire contents of the disk into RAM.

After the copying is completed, you are prompted MORE? (Y/N) for

additional files to copy.

— 7—

Change Unit Numbers

Sometimes you'll need to change the unit numbers of the 1764 or disk

drive. Even though you can choose the unit number when you install

the 1764, you may find it necessary to change to a different number. You

may want the RAM expander to be unit number 8 when you no longer

need to use a disk drive.

Option 4 of the Startup Menu is used to change unit numbers. It's pretty

straight-forward: you are asked for the old number of the unit you want

to change, then the new number. The change is almost instant, and a

line describing the unit type and DOS. An initialization message (DOS

error #73) lets you know the change is complete.

You are prompted for additional changes. If you answer N, you exit the

program.

Tutorial Example

The file copy program provides you with one way to store data in the

RAM expander for your convenience. For example, you can load a game

into the 1764 by copying the files. Some games utilize the unit number 8

in their code, and you must re-number the 1764 as unit 8 after you copy

the file. Here's the procedure to follow to load such a game:

Install the RAM expander as unit 9 using option 1 of the Startup Menu.

Answer Y to initialize the 1764.

Load the File Copy Utility by selecting option 3 from the Startup Menu.

When the prompt ENTER TEMPLATE OR PRESS <RETURN> is dis

played, change the disk in the drive to the one you wish to load. Then

type * <RETURN> to copy every program on the disk.

There is a brief pause while the directory of the disk is read from the

drive into the RAM. At the prompt CONTINUE? (Y/N), answer Y, which

begins the copying process. Had you answered N, no files would have

been copied.

After the programs have been stored in the RAM expander, answer N to

the MORE? prompt, unless there are additional files you want to copy.

Now do a directory for unit 9 (to make sure the programs are all in RAM)

— 8—

Change disks back to the 1764 Test/Demo Disk.

If the unit number is referenced in the program, there's one more

change you have to make. Since the 1764 is installed as unit 9, that is

where the program is now. However, many programs reference unit

number 8 in the code. In this instance, change the unit number of the

1764 from 9 to 8, using option 4 of the Startup Menu.

Perform a directory for unit 8 (which is now the 1764). You should get

the same listing as you did when you ran a directory for unit 9.

Load and RUN the program from the RAM expander, and it will begin

almost instantly.

1764 Diagnostic Test

Option 5 is a test to check if the 1764 is operating properly. The test

wipes out everything in RAM storage, and you are given a chance to

abort the test. It takes about one minute for the test to be completed.

When the test is done and the 1764 passes, the screen looks like this:

4

4

4

4

7

8

After the test is completed, you may re-run it by pressing the space bar,

or exit by pressing RUN/STOP. Be careful not to press RUN/STOP while

test is running. Full explanations of each of these diagnostic tests can

be found in Appendix B of this manual.

The Animation Demos

The disk contains two animation demos, which you can select from

options 6 and 7 of the Startup Menu. Both programs are documented,

so when you list them, you can see for yourself how the cycling of
images is done.

— 9—

256K

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

EXPANSION

55AA

55AA

55AA

55AA

0000

0000

0000

0100

RAM TEST

0000

3000

3000

0100

1000

0400

0400

0001

0

1

2

3

00

00

00

00

Option 6 is the POUND demo, consisting of 32 separate images which

are stored and cycled from RAM. GLOBE, option 7, features 36 images.

Both demos work similarly.

DO NOT use option 1 to install the RAMdisk before running either

option 6 or 7. Prompts to install the RAMdisk are included within these

programs. If you install the RAMdisk using option 1, there will not be

enough space left in RAM to load all the images in POUND and GLOBE.

So instead, select option 6 or 7 from the Startup Menu, and when you

are prompted LOAD RAM? (Y/N), so answer Y.

A message then appears on the screen, telling you which image is being

loaded. When all the images are loaded, the animation starts.

Here are what each of the demos should look like on your monitor

screen:

If you halt the demo by pressing RUN/STOP RESTORE, you can start it

again by typing 'RUN' <RETURN>. Answer 'N' to the LOAD RAM? (Y/N)

prompt.

Quitting the Startup Menu

Select option 8 to exit from the Startup Menu and back into BASIC.

— 10—

Section 3: RAMDOS

The 1764 RAMDOS is software which allows the 1764 to emulate a disk

drive. The software is installed into the C64 kernel, causing the G64 to

treat the RAM Expander as an additional disk drive. This dramatically

increases the speed of disk operations.

RAMDOS is a compatible subset of the 1541/1571 disk drive operating

system. In effect, RAMDOS is a DOS without disks. The RAMDOS con

sists of two programs, which in effect allow you to use the 1764 as a disk

drive. It is much faster, however, because once the program is held in

the extra RAM made available by the 1764, it's no longer necessary to

access the disk drive; every part of the program is instantly available.

Some applications (especially games) may not work with the RAMDOS

installed. This is because the games depend on the physical aspects of

the disk drive, sometimes executing proprietary code within the disk

drive itself.

Those applications that directly read and write tracks and sectors or

attempt to execute proprietary code within the 1541/1571 disk drive

cannot be run properly with 1764 RAMDOS.

RAM Expander Installation

You initiate RAM DOS by selecting option 1 from the Startup Menu,

installing the RAM Expander.

After the program loads, you are asked for a unit number to give the

RAM expander. Normally, you will install the RAMdiskas unit 9, which is

the default. This allows you to use the filecopy utility on the Test/Demo

disk to copy files into the RAMdisk from a normal disk drive (which

would be unit 8). You can always change the unit number of the

RAMdisk to 8 later, using the change unit number option of the Startup

Menu program.

— 11 —

While it is possible to make the RAM expander unit 8 (assuming you are

currently using a 'real' unit 8 drive), you should realize that unless you

have previously placed programs on the 1764 or have a second 'real'

drive, you will have nothing to load.

Next, you can specify where the RAMDISK INTERFACE PAGE is to be

installed. Unless you have a good reason for putting it elsewhere in

memory, accept the default, which is 207 ($CF00). See the technical

information section for further details.

You are then prompted to initialize (clear) the RAM expander. Normally,

you will answer yes (the default, which is Y) to initialize the 1764. If you

wish to retain the information in the RAM expander, answer N.

Always initialize the RAMdisk after power-up. If your computer has

crashed or been reset via external hardware, you may use this option to

reinstallthe RAM driver without losing any information in the RAMdisk.

Once the RAMDOS is installed, you can press any key to return to the

Startup Menu, unless the 1764 is installed as unit 8 (in which case the

program simply ends).

Using the RAMDOS

The RAMDOS behaves like any normal disk drive. It has a directory file,

and supports PRG, SEQ, REL and USR files. It has a command channel

and an error channel, just like a 1541 or 1571 drive. However, not all

1541/1571 commands are supported, due to a different track and sector

organization.

The following DOS commands are supported:

Rename

Copy

Scratch

New

Init

Validate

Pointer

UJ

UJO

UI

U0>chr$(n)

(only one file; no concatenation)

(closes all files)

(returns OK)

(used for REL files)

(same as init)

(full init)

(same as init)

(set unit number, where n = unit number)

— 12 —

The following DOS commands are NOT supported:

B-R Block-Read

B-W Block-Write

B-A Block-Allocate

B-F Block-Free

B-P Buffer-Pointer

M-R Memory-Read

M-W Memory-Write (see note below)

M-E Memory-Execute

Note: The M-W command may be used to change the unit number of

the disk drive by using it to write to locations 119 or 120. The RAMDOS

designates this single area to write to. Attempts to write to different

areas in RAMDOS memory are trapped as syntax errors. Note that the

colon is mandatory.

1541/1571 DOS Emulation

The following 1541/1571 operations are emulated by 1764 DOS.

• The DOS supports fifteen concurrent channels, specified by the sec

ondary address. Channels 0 and 1 are treated like channels 2-14.

Channel 15 is the command/error channel.

• All accesses to the directory file are treated as the interpreted ver

sion, which has a memory format similar to a BASIC program (i.e.,

line numbers and links are included).

• Wild cards are supported.

• Save with replace is supported.

• DOS supports file level activity. Direct access to tracks and sectors is

not supported.

• PRG, SEQ, REL, and USR file types are supported.

• The DOS interface to the kernel is through the standard indirection

vectors for the following standard kernel calls:

OPEN, CLOSE, CHKIN, BASIN, BSOUT, GETIN, LOAD SAVE, INMI

■13 —

RAMDOS Software Technical Details

The RAMDOS software comes in two parts:

• RAMDOSxxxxxx.BAS

• RAMDOSxxxxxx.BIN

where xxxxxx represents the date the software was generated at Com

modore.

RAMDOSxxxxxx.BAS is a small BASIC program that guides the user

through the process of installing the RAMDOS into the C64 kernel. It

provides workarounds for more advanced users should software incom

patibility problems arise.

RAMDOSxxxxxx.BIN is the actual RAMDOS binary code which is loaded

into the C64 RAM by the RAMDOSxxxxxx.BAS program. After loading, it

is transferred to the REC (RAM Expansion Controller; see Section 4 for

detail), thereby freeing up C64 memory for other uses.

DOS Operation

DOS installation overwrites system memory. Once the DOS is installed,

that system memory is again free for usage, with two exceptions:

1) Indirection vectors—These vectors now point to the DOS interface

block, and the DOS interface block contains the vectors' former values.

2) DOS interface block—This page of code may be installed on almost

any page in the system provided it is not under any ROMs. The default is

the page starting at $CF00 (HEX).

Execution of System I/O Calls

All system I/O calls are made through the indirection vectors which

point to the DOS interface block. Code in the interface block determines

whether the call is for the 1764 or another system device. If the call is

not for the 1764, control is passed on according to the values of the

indirection vectors prior to DOS installation.

If the call is for the 1764, code in the interface block swaps the DOS with

some normal system RAM and passes control to the DOS. The DOS then

processes your call (which can involve several swaps of DOS and user

RAM), which upon completion returns control to the interface block.

— 14 —

The interface block swaps out the DOS, restoring the user's memory

map, and returns control to the caller.

Interrupt Operation

The DOS never creates interrupts. During the time the DOS is swapped

in, IRQ's are disabled, to prevent DOS operation from interfering with

your programs.

NMI's cannot be disabled. Any NMI code used by your programs should

never access or reference data within the area under DOS control. To

counter this, use a DOS image which does not use memory accessed by

your NMI routine.

Note that the only NMI's caused by the system are for RS-232 and

RUN/STOP RESTORE operation.

Concurrent DOS and RS-232 operation is not possible because of the

time required by the swapping process, which is not interruptable. Do

not attempt to use the RS-232 to receive or transmit while accessing the

RAM expander.

If you wish to use the RS-232, be careful not to install the 1764 in

memory used by the RS-232.

RUN/STOP RESTORE

RAMDOS intercepts this operation, therefore is unaffected when you

press RUN/STOP RESTORE. During DOS calls, RUN/STOP RESTORE is

disabled. You may have to press these keys several times to get it to

work during intense disk activity.

— 15 —

Section 4: Programmer's Reference

Notes

Memory transfers involving the 1764 are accomplished through the

RAM Expansion Controller (the REC), which is an I/O device. You cannot

directly access the RAM in the 1764. Instead, you instruct the REC to

transfer data between the 1764 memory and C64 memory. This may be

accomplished using POKEs or via machine language.

The demo programs and the ones you'll write set the REC registers

directly. This type of memory transfer is known as Direct Memory Access

(DMA). To see examples of this process, look at the programs on the

demo disk.

Remember that you can use either DMA or RAMDOS—they are NOT

compatible.

RAM EXPANSION

CONTROLLER

6510

MICROPROCESSOR

INTERNAL RAM

Figure 4.1. Illustration of REC function

— 17—

Sample Program: Storing and Retrieving

a Text Screen

Here's a functional example of how to change the REC register values in

a program to perform memory manipulations using the 1764. This

program lets you save and retrieve a screen of text to and from the

external memory.

10 REM SAVE TEXT SCREEN (NOTES)

20 BA= 13*4096+15*256 ($DF00 = REC IN I/O SPACE)

30 POKE BA+2,0:POKE BA + ($400 = C64 TEXT SCREEN)

3,4:REM CPU ADDRESS

40 POKE BA+ 4,0:POKE BA + ($000 = EXPANSION RAM ADDRESS)

5,0:REM DISK ADDRESS

50 POKE BA + 6,0:REM DISK ($000 = EXPANSION RAM BANK)

BANK

60 POKE BA+7,0:POKE BA + (1024 BYTES = SIZE OF SCREEN)

8,4:REM NUMBER OF BYTES

70 POKE BA + 9,0:REM RESET INTERRUPT CONTROL BITS

80 POKE BA+ 10,0:REM INCREMENT BOTH REGISTERS

90 POKE BA+1,252:REM SAVE SCREEN

100 PRINT THE SCREEN IS SAVED'

110 PRINT 'PRESS A KEY TO RETRIEVE'

120 GETA$:IFLEN(A$) = 0 THEN GOTO 120

130 POKE BA+ 2,0:POKE BA+ 3,4:REM CPU ADDRESS

140 POKE BA + 4,0:POKE BA+5,0:REM DISK ADDRESS

150 POKE BA + 6,0:REM DISK BANK

160 POKE BA+7,0:POKE BA + 8,4:REM NUMBER OF BYTES

170 POKE BA+ 1,253:REM READ SCREEN

Line 20 specifies the BASIC address for the beginning of the REC

registers. The rest of the program utilizes this value in the POKE

statements. Line 30 POKEs the address of the text screen. Lines 40 and

50 set the RAM expander address and bank, respectively. Line 60 POKEs

the number of bytes to transfer, which is 1024 for the entire screen of

text (only 1000 are actually used for the text screen). Line 70 resets the

interrupt control bits. Line 80 specifies both C64 and REC address

registers are to increment, and line 90 actually performs the 'save,'

storing the text screen in the 1764 memory area.

Lines 130 to 160 are preparation for recalling the screen from RAM, and

line 170 'loads' the screen.

— 18 —

Memory Locations

In order for a safe transfer, you must be aware of the C64 memory map.

You are moving blocks of data in and out of main and expansion

memory, so you must know the correct addresses to retrieve the blocks

of data you intend to and store them in the proper places. You'll have to

be careful not to put things in memory where they don't belong, e.g.

over another program or memory allocated for a hardware function. If

you transfer data into an area that is already occupied by a program or

other data, you will overwrite the original data, which may affect the
success of the transfer.

All the standard rules for C64 banking and I/O apply for the 1764 as well.
For example, you may have to swap out the ROM to use the RAM, to

HEX

EFFF

E000

DFFF

D000

CFFF

COOO

BFFF

A000

9FFF

8000

7FFF

4000

8FFF

0000

8K KERNEL ROM

or

RAM

4K I/O or RAM

or

CHARACTER ROM

4KRAM

8K BASIC ROM

or

RAM

or

ROM PLUG-IN

8KRAM

or

ROM PLUG-IN

CODE

DATA

16KRAM

16KRAM

\ DOS INTERFACE PAGE

/ $CF00-$CFFF

$7FFF i

> DOS

$6300 J

$6000

• SWAPPED

Figure 4.2 C64 Memory Map

— 19 —

avoid a bleed-through if you try to write to ROM. The Commodore 64

Programmer's Reference Guide thoroughly explains these topics.

REC Operation

The REC has four primary operating modes:

1) Transfer a block of data from main memory to expansion memory

2) Transfer a block of data from expansion memory to main memory

3) Exchange a block of main memory with a block of expansion memory

4) Verify a block of main memory with a block of expansion memory

The REC has several internal registers which can be used to set up a

particular operating mode. Modes can be selected by setting the appro

priate bits in the command register (see Figure 4.3). The starting C64

address, expansion RAM address, expansion RAM bank and number of

bytes are all programmable values.

Direct Memory Access Operation

Direct Memory Access (DMA) is the process the REC uses to transfer

data to and from the computer's memory. During DMA, the C64's

computer processor is temporarily halted so the REC may access the

computer's memory.

There are two different events which cause the REC to begin a transfer

sequence.

1) If the FFOO option in the command register ($01) is disabled, the DMA

begins right after the execute bit is set in the command register.

2) If the FFOO option is enabled, the DMA begins immediately after a

write to address FFOO is detected - providing the execute bit was

previously set in the command register.

The prupose of the FFOO option is to allow the REC to access the RAM

beneath I/O space. The REC registers are I/O mapped on the C64

expansion bus, which means that, without the FFOO option, I/O space

would be enabled when DMA was initiated. This option, therefore,

allows the user to bank out the the C64 I/O space, replacing it with RAM,

before the DMA takes place. The FFOO option is cleared each time it is

used.

— 20—

REC Command Register

ADDRESS

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

BITS

7-0

7-0

7-0

7-0

7-0

7-0

2-0

7-0

7-0

7-5

7-6

FUNCTION

Status Register— Read Only

7 - Interrupt Pending 1 = Interrupt waiting to be serviced

6 - End of Block 1 = Transfer complete

5 - Fault 1 = Block verify error

4 - Size 1 = 256K

3-0 - Version

Note: Bits 7-5 are cleared when this register is read

Command Register — Read/Write

7 - Execute 1 = Transfer per current config.

6 - Reserved

5 - Load 1 = Enable AUTOLOAD option

4 - FFOO 1 = Disable FFOO decode

3 - Reserved

2 - Reserved

1 - Transfer type 00 = Transfer C64 > RAM module

01 = Transfer C24 < RAM module

10 = Swap C64 <> RAM module

11 = Verify C64 — RAM module

C64 Base Address. LSB — Read/Write

Lower 8 bits of base address. C64

C64 Base Address. MSB — Read/Write

Upper 8 bits of base address. C64

Expansion RAM address, LSB — Read/Write

Lower 8 bits of base address, expansion RAM

Expansion RAM address. MSB — Read/Write

Upper 8 bits of base address, expansion RAM

Expansion RAM bank — Read/Write

Expansion RAM bank pointer.

Bits 2 (MSB) to 0 (LSB) are significant

Transfer Length. LSB — Read/Write

Lower 8 bits of the byte counter

Transfer Length. MSB— Read/Write

Upper 8 bits of the byte counter

Interrupt Mask Register— Read/Write

7 - Interrupt enable 1 = Interrupts enabled

6 - End of Block mask 1 = Interrupt on end of block

5 - Verify error 1 = Interrupt on verify error

Address Control Register— Read/Write

0.0 = Increment both addresses (default)

0.1 = Fix expansion address

1.0 = Fix C64 address

1,1 = Fix both addresses

Figure 4-3

Note: The base address of the REC registers in the C64 memory map is

DFOO in I/O space. The addresses of the REC registers can be obtained

by adding the value in the Address column in the above figure to the

base address of DFOO.

— 21 —

Special Features

AUTOLOAD—When you select this option in the command register, the

C64 base address registers, the expansion memory base address regis

ters, the expansion memory bank and the byte counter registers at the

end of a transfer are automatically reloaded.

This is useful if one operation is to be executed repeatedly on one

particular block of data. Note that if AUTOLOAD is selected in verify

mode, the address where the verfiy error occurred is lost. Ordinarily,

upon finding a verify error, the REC halts the DMA cycle and both

address registers and the bank register point to one location above the

address that failed.

Address Control—Another special feature of the REC is the ability to

hold a source and/or destination fixed in any mode. This is accom

plished by setting the appropriate bits in the address control register

($0A). The default is that addresses will increment for both source and

destination. It is possible, with a fixed C64 address, to DMA to any I/O

device.

Interrupts—An interrupt can be generated on an end of block condition

or verify error by enabling interrupts and setting the corresponding

mask bits in the interrupt mask register ($09). In either case, the

corresponding flag is set in the status register. Interrupt flags are

cleared upon reading the status register. The interrupt mask register

bits stay as they were before the interrupt/clear sequence. For proper

operation, the status register ($00) must be read at least once before a

DMA is initiated with interrupts enabled. It is important to clear out the

previous status before any mode is used with the interrupt option.

Operation Details

If a specified address range exceeds the address range in the selected

expansion bank, a 'wrap' occurs into the next bank. This happens

whenever the given byte counter exceeds the number of bytes left in the

selected bank. The C64 side always wraps to the beginning of the same

bank.

— 22 —

Under normal operation (no AUTOLOAD, addresss increment), both

address registers point to the next sequential memory location outside

the selected transfer range at the end of the transfer. This is true for any

mode and applies to both base address pointers except one that is held

fixed. The bank pointer is also updated (if necessary) at the end of the

transfer. Also note that under normal operation, the byte counter decre

ments to the value 1. Care should be taken, therefore, to check the

transfer complete bit in the status register and not rely on the byte

counter value to indicate an end to the transfer condition. A byte

counter of 0 results in a transfer of a full 64 K bytes. Again, wrapping

occurs in all modes of operation.

— 23 —

Appendix A: 1764 Diagnostic

Programs

The diagnostic test program runs a series of tests, then passes or fails

the 1764 based on its performance.

TEST 1 Checks all memory on the expansion RAM. Four data patterns,

$00, $AA, $55 and $FF, are written in every memory location. The verify

mode of operation checks the data transfer.

TEST 2 To check the RAM expander memory, a checker pattern, $AA and

$55, is written into alternating memory locations. All locations of every

bank are checked.

TESTS 3 and 4 This checks the capabilities for data transfer from the

RAM expander to the C64. Data patterns of $FF's are stored in C64

memory in the following areas:

$0002—$004F

$0080—$0136

$0200—$03FF

$0800—$7FFF

$C000—$CFFF

$E000—$FEFF

Data transfers from the RAM expander to the C64 memory fill locations

$1000-$2FFF and $3OOO-$5FFF with the alternating $55 $AA data pat

terns. A thorough check of all filled memory in the C64 checks for RAM

corruption in the computer memory. Test 4 repeats this procedure,

using $00 pattern for background fills before the data transfer occurs.

TEST 5 Checks the AUTOLOAD feature of the RAM expander. After a

data transfer, the RAM expander registers should reset themselves to

the setting prior to the transfer. This test checks the Base Address

Register, the RAM Expansion Base Register, the Byte Transfer Length

Register and the RAM Bank Register.

TEST 6 The previous test checks 3 of the 4 transfer modes; this test

checks the remaining transfer mode, RAM expander to C64 transfer with

fixed expander address. A IK byte transfer occurs to C64 locations

— 25 —

$3000-$33FF. The data should be the same in all these locations,

indicating the RAM expander read from the proper locations.

TEST 7 This checks the $FF00 decode option selectable in the command

register. The data transfer should not occur until a WRITE TO $FF00.

After a time out subroutine executes, the program checks to see that the

transfer did not occur before the WRITE TO $FF00.

TEST 8 This checks the interrupt generating capability of the RAM

expander. If an interrupt is generated at the end of the block transfer,

the status register interrupt pending bit goes high.

— 26—

COMMODORE-
Commodore Business Machines, Inc Commodore Business Machines. Limned

1200 Wiison Drive ■ West Chester PA 19380 3470 Pharmacy Avenue- Agmcoun. Ontario. M1W3G3

PRINTEDINUSA

