1 COMMODORE 64
CP/M
= OPERATING SYSTEM

USER’S
GUIDE

R

hERERERR

s i

USER’'S MANUAL STATEMENT

“This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer’s instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with
the limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC rules, which are designed
to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the
following measures:

— reorient the receiving antenna
— relocate the computer with respect to the receiver
— move the computer away from the receiver

— plug the computer into a different outlet so that computer and
receiver are on different branch circuits.

“If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: "How to Identify and Resolve Radio-TV
Interference Problems.’ This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4."

Published by
Commodore Business Machines, Inc.
and
Howard W. Sams & Co., Inc.

First Edition—1983
First Printing— 1983

Copyright © 1983 by Commodore Business
Machines, Inc.
All rights reserved.

CP/M is a registered trademark of Digital Research

This manual is copyrighted and contains proprietary
information. No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise,
without the prior written permission of
COMMODORE BUSINESS MACHINES. Inc.

Printed in the United States of America

TABLE
OF
CONTENTS

1. INTRODUCTION TO
CP/M ON YOUR
COMMODORE 64

¢ 1.1 Overview of CP/M on Your

Commodore 64c..0vvvunnnn.
1.2 How To Use This Manual.................
1.3 Digital Research License Information

1.3.1 Digital Research License

Agreement00,

® 1.4 Registration Information
® 1.5 Warranty and Service Information
® 1.6 Get More out of Your Commodore

Computer.......ocoviiiiiiiiiinniennennn,

1.6.1 Power/Play: The Home Computer
Magazine

1.6.2 Commodore: The Microcomputer
Magazine0.0iiiaa

1.6.3 Commodore Information Network:
The Paperless User Magazine

2. SETTING UP YOUR

COMMODORE 64................. 19

® 2.1 Unpacking and Connecting the
Z80 Cartridge................ooiiiiinn.,
® 2.2 Installing the Z80 Cartridge
2.2.1 Using the Z80 Cartridge with
VIC Peripherals

TABLE OF CONTENTS 3

2.2.2 Using the Z80 Cartridge with

CBM Series Peripherals............ 22
® 2.3 Connecting Disk Drives 24
2.3.1 Connecting VIC 1541
Disk Drives0vo.0 24
2.3.2 Connecting CBM Series)
Disk Drives 24

3. USING YOUR COMMODORE
64 PERIPHERALS FROM
CP/M ...oaeoeiiiiiiieiieeieienneeee. 2B

® 3.1 Printer Interface 26
¢ 3.2 The Commodore 64 Serial Interface 27
® 3.3 The IEEE Interface Cartridge 27
® 3.4 Daisy Chaining Peripherals............... 28
® 3.5 The Commodore 64 User Port 29

4. GETTING STARTED a1

® 4.1 Bringing CP/M onto Your Commodore 64 . 32

4.1.1 Starting CP/M 33
4.1.2 Making Copies of Your CP/M

System Disk 34

® 42 The COPY Utilitycooviit 35

4.2.1 Formatting a Disk with the

COPY Utilityonuns. 35
4.2.2 Creating a Disk Backup with the

COPY Utility 37
4.2.3 Copying the System Tracks

with the COPY Utility 38

® 4.3 The CONFIG Utilityooovivn. 39

4.3.1 Using CONFIG to Change the

Number of Disk Drives 40
4.3.2 Using CONFIG to Change the

Printer Typec..ooviat. 41
4.3.3 Using CONFIG to Change the

Initial Caps Mode 41
4.3.4 Using CONFIG to Change the

Function Key Assignments 42
4.3.5 Using CONFIG to Change the

KeyCodes..............coivinnnn, 44

4 TABLE OF CONTENTS

4.3.6 Using CONFIG to Save the New

I/0Setup ..o i 45
® 4.4 Generating a New CP/M System with
SYSGENottt 45
4.4.1 Relocating CP/M 46
4.4.2 Saving the New System............ 47
4.4.3 Using SYSGEN 48

® 4.5 The Commodore 64 Keyboard and Screen

WithCP/M ... 49

5. CP/M OPERATION............... 51

® 5.1 How to Use This Chapter................. 52
® 5.2 CP/M File Naming Conventions........... 52
® 5.3 Input/Qutput Hardware Conventions 55
5.3.1 Loading Programs from Disk:
Single Drive 56
5.3.2 Loading Programs from Disk:
Dual Drivecoviiinnt. 57
® 5.4 CP/M Command Structure 57
® 55 CP/M Commandsccovveunnn. 61
5.5.1 pgm-name (Load and Run a
CP/M Program}.................... 61
5.5.2 x: (Change the Currently
Logged Disk) 63
5563 ASM ... 64
554 DDT it 66
555 DIR ..., 71
5566 DUMP.............coiiiiiivnnnnn.. 73
5.5.7 ED.covviii i e e 73
558 ERAcooiiiiiiiiii i 82
55,9 LOAD i 83
5.5.10 MOVCPMcoiiiiiinnnnn, 83
5511 PIP, 85
55,12 RENo, 91
55,13 SAVE ... i 92
5.5.14 STATt 93
5.5.15 SUBMITcvii... 97
5516 SYSGEN...........coiiiiiiannn. 100
55.17 TYPE ...t 102
5518 USERcoiiiiiirininnnn.. 103
5519 XSUB ..o, 104

TABLE OF CONTENTS 5

6. CP/M ON THE
COMMODORE 64 107

6.1 The Structure of CP/M
6.1.1 How CP/M Works on Your

Commodore 64

6.1.2 6510 Memory Use.................

6.1.3 Addresses under CP/M............

6.1.4 Z80 Memory Use..................

6.2 The BOOT Programs...........covvneeenn.

6.3 The BIOS Programs

6.4 CP/M Disk Organization

6.5 The CP/MBDOSovvvinnnnn,

6.5.1 Sample BDOS Function Call

6.6 Calling a Z80 Program from the 6510....

6.6.1 Some Examples...................

6.7 Calling a 6510 Program from the Z80....

6.7.1 Switching on the 6510............

6.8 Program Execution under CP/M

108

7. APPENDICES....................... 141

e oo o0
Sow>

.
=

Commodore 64 Memory Map
Bibliography.......... ... oo
CP/M Command List
ASCII, CHR#, and Hexadecimal

Character Codescvunn.
BIOS and BOOT Listings (both 6510

and Z80) e e

8. HARDWARE SCHEMATICS .239

Z80 Schematic

® Commodore 64 Schematic

6 TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION
TO CP/M

ON YOUR
COMMODORE 64

e Overview of CP/M on Your
Commodore 64

e How To Use This Manual

e Digital Research License
Information

e Registration Information

e Warranty and Service

Information

e Get More out of Your

Commodore Computer

Your purchase of the Commodore Z80 add-on microproces-
sor cartridge puts you in the elite group of owners of a dual
processor home microcomputer. No one but Commodore—
the originator of the home microcomputer—could design
and manufacture an inexpensive home or personal compu-
ter that accommodates the two most common microproces-
sors in the microcomputer industry:

® the Commodore MOS 6510 (6502 type)
microprocessor
® the Z80A microprocessor

The 6510 microprocessor is the main processor on your
Commodore 64. The 6510 is a specially designed variation
of the widely distributed 6502 microprocessor found in
many popular home and office computers. The 6510 runs
the same instruction set as the 6502 but includes some
special features that make it work more efficiently in your
Commodore 64.

It is the 6510 main processor that is active when your
Commodore 64 is running in native mode. In native mode,
your Commodore 64 is controlled by its Commodore 64
Kernal operating system, Screen Editor, and the BASIC
V2.2 interpreter. Native mode gives you access to a vast li-
brary of Commodore 64 applications packages from Com-
modore or from one of the many independent Commodore
64 software developers around the world.

When you add your Z80 cartridge to the system and start
Digital Research’s CP/M® operating system, you open the
door to more than 15,000 CP/M-based application pro-
grams. CP/M is the most popular 8-bit operating system
and is used for business applications throughout the world.

If you have a special application need, it’s very likely that
a CP/M package exists to meet it. CP/M applications are
available in such areas as:

financial reporting
financial analysis
investment planning
word processing

law

real estate

8 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

farm management

restaurant management

data base

exotic language compilers (PL/I, PASCAL, C)
and many, many more

1.1 OVERVIEW OF CP/M ON YOUR
COMMODORE 64

CP/M on your Commodore 64 can run in a maximum of
48K (1K = 1024 characters) of memory. The rest of memory
is occupied by the Commodore 64 Kernal routines that
provide input/output support for CP/M.

While you are running CP/M under the Z80 processor,
the 6510 main processor acts as an input/output proc-
essor. When the 6510 is active, your Commodore 64 is
executing in native mode. When it's running in native
mode, your Commodore 64 “knows” how to handle its
keyboard, screen, and peripherals (disks and printer).
Rather than duplicate this facility to run under the Z80
processor, CP/M simply calls on the 6510 main processor to
perform these tasks.

In addition to CP/M, you get a set of custom utilities that
make it easy for you to run CP/M on your Commeodore 64.
You get:

® The COPY utility that formats diskettes in the CP/M
format; easily produces backups of CP/M diskettes,
even on single-drive systems; and copies the impor-
tant CP/M system tracks.

® The CONFIG utility that makes it easy for you to in-
form CP/M of changes to your system peripherals,
load the Commodore 64 function keys for use under
CP/M, and re-define keyboard characters to yield
any code you want.

® The MOVCPM utility that allows you to create a dif-
ferent sized version of CP/M without the need to
learn Z80 Assembler language. MOVCPM relocates
all of CP/M, including the BOOT and BIOS pro-
grams.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 9

You can load anything you like into the eight Commo-
dore 64 Function Keys. When CP/M is started, the eight
function keys are loaded with the following CP/M com-
mands (<CR> stands for)

F1 Z DIRXCRZ

F2 Z DIR B:XCRZ

F3 Z STAT *.*XCRZ
F4 Z STAT B:*.*XCRZ
F5 Z COPYXCRZ

F6 Z CONFIGXCRZ
F7 Z DDTXCRZ

F8 Z DDT

CP/M on your Commodore 64 supports upper and lower
case characters. You can toggle between upper case only
and upper/lower case using the Commodore () key. For
special applications, you can redefine the codes returned
to your CP/M programs from the keyboard or sent to the
screen from your programs.

1.2 HOW TO USE THIS MANUAL

The very first thing to do is to read the Digital Research
License Agreement in Section 1.3. Next, fill in and mail
the Digital Research CP/M Registration Card at the end of
this manual as soon as possible.

With those tasks accomplished, it's time to start running
CP/M on your Commodore 64. Chapter 2 tells you how to
use your Z80 cartridge. Read this chapter before you try
to plug it in.

The distribution version of Commodore 64 CP/M as-
sumes that you have a VIC 1515/1525 printer and a single
VIC 1541 disk drive. If your Commodore 64 is equipped
with some other combination, consult Chapter 3 for in-
formation on using your peripherals.

Chapter 4 is where things really get started. Read this
chapter to learn how to bring up CP/M on your system.
This chapter also tells you about the Commodore 64 spe-
cific CP/M utilities that you'll need and talks about using
the Commodore 64 keyboard with CP/M.

10 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

IMPORTANT! BE SURE TO MAKE A BACKUP COPY OF YOUR CP/M DIS-
TRIBUTION DISKETTES BEFORE YOU BEGIN PLAYING WITH CP/M. IF
YOU DESTROY THESE DISKETTES, YOU LOSE CP/M. SO BE CAREFUL!

ONCE YOU HAVE MADE A COPY OF THE DISTRIBUTION DISKETTES (USE
THE FORMAT AND BACKUP FEATURES OF THE COPY UTILITY), PUT THE
ORIGINALS IN A COOL, DRY PLACE, AWAY FROM MAGNETIC FIELDS.
DON'T USE THEM AGAIN UNLESS YOU ABSOLUTELY HAVE TO (FOR
EXAMPLE, IF YOU ACCIDENTALLY DESTROYED ALL OF YOUR OPERATING
COPIES)!

The distribution version of CP/M (the one that you get on
the distribution diskette) is for a 44K CP/M system. You
should use this version if you have the IEEE interface car-
tridge. If you don't, look in Chapter 4 to learn how to con-
struct a 48K version that can take advantage of the addi-
tional 4K of RAM available on your system.

Chapter 5 is a reference section which includes de-
scriptions of all of the CP/M commands and utility pro-
grams that you need to function in the CP/M environment.
Chapter 5 shows you how to execute programs under CP/M
and talks about CP/M files and file naming conventions.

Chapter 8 is for those of you who want to get involved in
the technical workings of CP/M on your Commodore 64.
You DO NOT have to know any of this material to use CP/M.
If interested, you can look into the first few sections of
Chapter 6 to get an idea of how CP/M is implemented on
the Commodore 64 and how CP/M itself is structured.

The balance of Chapter 6 is for the technically sophisti-
cated user. You can learn about the BOOT and BIOS pro-
grams written to support CP/M on the Commaodore 64 and
you can learn how to cross-call routines between the two
processors. To understand these sections fully, you should
have a strong working knowledge of both 6510 (6502) and
Z80 Assembler language.

Chapter 7 provides you with the engineering details of
your Z80 cartridge and your Commodore 64. If you
understand computer hardware, you can look here to see
how they did it.

This manual is intended to get you started in CP/M. If
you want to explore the depths of the CP/M operating sys-
tem, look in your local bookstore for one (or more) of the

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 11

many CP/M books published in the last few years. We've
listed some of them in the Bibliography, Appendix B. Skim
the books to see which one you like best.

Likewise, this manual does not provide a tutorial in the
use of the Z80 microprocessor. If you're interested in pro-
gramming the Z80 in Assembler, you'll need detailed refer-
ences. The Bibliography contains a list of some of the Z80
books you can find in your bookstore.

1.3 DIGITAL RESEARCH
LICENSE INFORMATION

IMPORTANT: Commodore’s license with Digital Research
requires that each purchaser of the Commodore 64 CP/M
system register with Commodore so that accurate records
can be maintained of all CP/M users.

Because Digital Research requires this information, we
have provided a post card for you to fill out and send in. The
serial number of your CP/M system disk is stamped on the
labels of the disks you receive with your Z80 cartridge and
CP/M information. Please fill out the card and send it to us.

READ THE LICENSE AGREEMENT CAREFULLY.

1.3.1 Digital Research License Agreement

DIGITAL RESEARCH
Box 579, Pacific Grove, California 93950

SOFTWARE LICENSE AGREEMENT

IMPORTANT:
All Digital Research programs are sold only on the condition that the
purchaser agrees to the following license. READ THIS LICENSE CARE-
FULLY. If you do not agree to the terms contained in this license,
return the packaged diskette UNOPENED to your dealer and your
purchase price will be refunded. If you agree to the terms contained
in this license, fill out the REGISTRATION information and RETURN by
mail to Commodore.

DIGITAL RESEARCH agrees to grant and the Customer agrees to
accept, on the following terms and conditions, nontransferable and

12 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

nonexclusive licenses to use the software program(s) (Licensed Pro-
grams) herein delivered with this agreement.
TERM:

This agreement is effective from the date of receipt of the above
referenced program(s) and shall remain in force until terminated by
the Customer upon one month’s prior written notice, or by Digital Re-
search as provided below.

Any license under this Agreement may be discontinued by the Cus-
tomer at any time upon one month’s prior written notice. Digital Re-
search may discontinue any license or terminate this Agreement if the
Customer fails to comply with any of the terms and conditions of this
Agreement.

LICENSE:

Each program license granted under this Agreement authorizes the
Customer to use the Licensed Program(s) in any machine-readable
form on any single computer system (referred to as System). A sepa-
rate license is required for each System on which the Licensed Pro-
gram(s) will be used.

This Agreement and any of the licenses, programs, or materials to
which it applies may not be assigned, sublicensed, or otherwise trans-
ferred by the Customer without prior written consent from Digital Re-
search. No right to print or copy, in whole or in part, the Licensed
Program(s) is granted except as hereinafter expressly provided.
PERMISSION TO COPY OR MODIFY LICENSED PROGRAMS:

The Customer shall not copy, in whole or in part, any Licensed
Programs which are provided by Digital Research in printed form
under this Agreement. Additional copies of printed materials may be
acquired from Digital Research.

Any Llicensed Program which is provided by Digital Research in
machine-readable form may be copied, in whole or in part, in
printed or machine-readable form in sufficient number for use by the
Customer with the designated System, to understand the contents of
such machine-readable material, to modify the Licensed Program as
provided below, for backup purposes, or for archive purposes, pro-
vided, however, that no more than five (5) printed copies will be in
existence under any license at any one time without prior written con-
sent from Digital Research. The Customer agrees to maintain appro-
priate records of the number and location of all such copies of
Licensed Programs. The original, and any copies of the Licensed Pro-
grams, in whole or in part, which are made by the Customer shall be
the property of Digital Research. This does not imply, of course, that

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 13

Digital Research owns the media on which the Licensed Programs are
recorded. The Customer may modify any machine-readable form of a
Licensed Program for his or her own use and merge it into other pro-
gram material to form an vpdated work, provided that, upon discon-
tinuance of the license for such Licensed Program, the Licensed Pro-
gram supplied by Digital Research will be completely removed from
the updated work. Any portion of the Licensed Program included in
an updated work shall be used only if on the designated System and
shall remain subject to all other terms of this Agreement.

The Customer agrees to reproduce and include the copyright notice
of Digital Research on all copies, in whole or in part, in any form,
including partial copies of modifications, of Licensed Programs made
hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make available
any Licensed Program including but not limited to program listings,
object code, and source code, in any form, to any person other than
the Customer or Digital Research employees, without prior written con-
sent from Digital Research, except with the Customer’s permission for
purposes specifically related to the Customer’s use of the Llicensed
Program.

DISCONTINUANCE:

Within one month after the discontinuance of any license under this
Agreement, the Customer will furnish to Digital Research a certificate
certifying that through his or her best effort, and to the best of his or
her knowledge, the original and all copies, in whole or in part, in
any form, including partial copies in modifications, of the Licensed
Program(s) received from Digital Research or made in connection with
such license have been destroyed, except that, upon prior written
authorization from Digital Research, the Customer may retain a copy
for archive purposes.

DISCLAIMER OF WARRANTY:

Digital Research makes no warranties with respect to the Licensed
Programs. The sole obligation of Digital Research shall be to make
available all published modifications or updates made by Digital Re-
search to Licensed Programs which are published within one (1) year
from date of purchase, provided the Customer has returned the Re-
gistration Card delivered with the Licensed Program.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRAN-

TIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

14 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. IN NO EVENT WILL DIGITAL RESEARCH BE
LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
GENERAL:

If any of the provisions, or portions thereof, of the Agreement are
invalid under any applicable statute or rule of law, they are to that
extent to be deemed omitted.

1.4 REGISTRATION
INFORMATION

Please fill out the CP/M Registration Card that is enclosed
with your Z80 cartridge and CP/M system. Mail the com-
pleted card to:

DIGITAL RESEARCH
P.O. Box 579
Pacific Grove, CA 93950

We need the information on the card to provide informa-
tion on system updates and to inform you of related new
products. The serial number of your CP/M system is the
number stamped on the label of the CP/M disks.

1.5 WARRANTY

If your unit is defective when you buy it, return it im-
mediately to the original place of purchase. Your dealer will
be able to give you the fastest service if you have problems.
You can also send your unit directly to Commodore for re-
placement. The warranty card enclosed in your unit's pack-
age lists addresses for service. Be sure to enclose your re-
ceipt and a note explaining the problem. See your warranty
card for more information.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 15

1.6 GET MORE OUT OF YOUR
COMMODORE COMPUTER

Commodore wants you to know that our support for users
only starts with your purchase of a Commodore computer.
That’s why we’ve created two publications with Commodore
information from around the world, and a “two-way” com-
puter information network with valuable input for users in
the U.S. and Canada from coast to coast.

In addition, we wholeheartedly encourage and support
the growth of Commodore User’s Clubs around the world.
They are an excellent source of information for every Com-
modore computer owner, from the beginner to the most ad-
vanced. The magazines and network, which are more fully
described below, have the most up-to-date information
about how to get involved with the User’s Club in your area.

Finally, your local Commodore dealer is a useful source of
Commodore support and information.

1.6.1 POWER/PLAY: The Home Computer
Magazine

For entertainment, learning at home and practical home
applications, POWER/PLAY is the prime source of infor-
mation for Commodore home users. From it you will learn
where your nearest user clubs are and what they're doing.
You’ll also learn about software, games, programming
techniques, telecommunications, and new products.
POWER/PLAY is your personal connection to other Com-
modore users, outside software and hardware developers,
and to Commodore itself. Published quarterly, it sells for
$10.00 a year.

1.6.2 COMMODORE: The Microcomputer
Magazine

Widely read by educators, businessmen, and students as
well as by home computerists, COMMODORE Magazine is
our main vehicle for sharing information on the more
technical use of Commodore systems. Regular departments
cover business, science and education, programming tips,
and “excerpts from a technical notebook.” There are many
other features of interest to anyone who uses or is thinking

16 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

about purchasing Commodore equipment for business, sci-
entific, or educational applications. COMMODORE is the
ideal complement to POWER/PLAY. It is published bi-
monthly, and subscriptions are $15.00 a year.

1.6.3 COMMODORE INFORMATION NET-
WORK: The Paperless User Magazine

This is the magazine of the future. To supplement and
enhance your subscriptions to POWER/PLAY and COM-
MODORE magazines, the COMMODORE INFORMATION
NETWORK —our “paperless magazine”—is available now
over the telephone using your Commodore computer and
modem.

Join our computer club, get help with a computing prob-
lem, “talk” to other Commodore friends, or get up-to-the-
minute information on new products, software, and educa-
tional resources. Soon you will even be able to save yourself
the trouble of typing in the program listings you find in
POWER/PLAY or COMMODORE by downloading direct
from the Information Network (a new user service planned
for early 1983). The best part is that most of the answers
are there even before you ask the questions.

To call our electronic magazine, you need only a modem
and a subscription to CompuServe™, one of the nation’s
largest telecommunications networks. (To make it easy for
you, Commodore includes a FREE one year subscription to
CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServe™ data
bank and connect your phone to the modem. When the
CompuServe™ video text appears on your screen, type
G CBM on your computer keyboard. When the COMMO-
DORE INFORMATION NETWORK table of contents, or
“menu,” appears on your screen, choose from one of our
sixteen departments, make yourself comfortable, and enjoy
the paperless magazine that other magazines are writing
about.

For more information, visit your Commodore dealer or
contact CompuServe™ customer service at 800-848-8990
(in Ohio, 614-457-8600).

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 17

COMMODORE INFORMATION NETWORK

Main Menu Description Commodore Dealers
Direct Access Codes Educational Resources
Special Commands User Groups

User Questions Descriptions

Public Bulletin Board Questions and Answers
Magazines and Newsletters Software Tips

Products Announced Technical Tips
Commodore News Direct Directory Descriptions

18 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

CHAPTER 2

SETTING
UP YOUR
COMMODORE 64

e Unpacking and Connecting
the Z80 Cartridge

e Installing the Z80 Cartridge

¢ Connecting Disk Drives

It's very easy to set up your Commodore 64 to run CP/M.
You turn off your computer, plug in the Z80 cartridge, turn
on your disks and computer and get started. Follow the
directions in this chapter carefully.

REMEMBER: YOU MUST TURN OFF YOUR COMMODORE 64 BEFORE YOU
INSERT THE Z80 CARTRIDGE IF YOU INSERT THE CARTRIDGE WITH THE
POWER ON, YOU WILL DESTROY THE CARTRIDGE!!

2.1 UNPACKING AND CONNECT-
ING THE Z80 CARTRIDGE

Before using CP/M on your Commodore 64, you must cor-
rectly connect your Commodore 64 to your TV and periph-
erals. For instructions on connecting your Commodore 64
to your TV, disk, and printer, read the manual that comes
with your computer.

When you purchase CP/M for your Commodore 64, you
get these ltems:

1. Z80 cartridge.

2. CP/M system disk.
3. Other disk.

4. User’'s manual.

Before you can connect your Z80 cartridge, you must
know where to connect it. Figure 2.1 shows a diagram of
the side and back panel connections for your computer.

Your Commodore 64 has these side panel connections:

1. Power socket. The free end of the cable from the
power supply is attached here to supply power to
your Commodore 64.

2. Power switch. This turns the power to your
Commodore 64 on and off.

3. Game ports. These accept a joystick, one or more
game controllers, or lightpen equipment. The
lightpen plugs into port 1 only.

20 SETTING UP YOUR COMMODORE 64

CONTROL ' NTE DL
PORT 1 &7 2

C i
S &
® @
GAME POWER POWER
PORTS SWITCH SOCKET

LS LN AN LA LD

R

<-Ch 3 Ch 4>

AR

CARTRIOGE CHANNEL ™ AUDIONIDEQO SERIAL CASSETTE USER

SLoT SELECTOR CONNECTOR CONNECTOR ~ PORT INTERFACE PORT

Figure 2.1 Commodore 64 Panel Connections Diagrom

Your Commodore 64 has these back panel connections:

4.

Cartridge slot. The rectangular slot to the left ac-
cepts program or game cartridges. This is the con-
nection for your Z80 cartridge.

. Channel selector. Use this switch to select the TV

channel that will display your computer’s picture.

. TV connector. This connector supplies the picture

and sound to your TV.

. Audio & video output. This connector supplies

direct audio (which you connect to your stereo sys-
tem) and “composite” video (which you connect to
a monitor).

. Serial port. This is the connection for your VIC

peripherals (1541 drives and 1515/1525 printer).
You must connect your VIC disk drive to this port
and your VIC printer to your VIC disk drive.

. Cassette interface. This is the connection for

your DATASSETTE™ recorder.

SETTING UP YOUR COMMODORE 64 21

10. User port. This is a port for various interface car-
tridges such as the VICMODEM or RS-232 com-
munications cartridge.

2.2 INSTALLING THE Z80
CARTRIDGE

Now that you know where your Commodore 64 connections
are, you're ready to install your Z80 cartridge. You connect
the Z80 cartridge directly to your Commodore 64 if you are
using the VIC 1541 disk drive. You connect the Z80 car-
tridge to an IEEE interface cartridge if you're using the
CBM 4040 disk drives or the CBM 4022 printer.

2.2.1 Using the Z80 Cartridge
with VIC Peripherals

If you're using VIC peripherals like the VIC 1541 disk drives
and the VIC 1525 printer, follow these easy steps:

1. TURN OFF THE POWER TO YOUR COMPUTER!

2. Install the Z80 cartridge in the cartridge slot
marked 4 in the diagram in Figure 2.1.

3. Turn on your computer and you're ready to start
using CP/M on your Commodore 64.

REMEMBER! IF YOU INSERT THE Z80 CARTRIDGE WITH THE POWER TO
THE COMPUTER TURNED ON, YOU WiLL DAMAGE THE CARTRIDGE!

2.2.2 Using the Z80 Cartridge
with CBM Series Peripherals

If you're using CBM series peripherals like a CBM 4040
disk drive or a CBM 4022 printer, you follow a slightly dif-
ferent procedure for connecting the Z80 cartridge. Re-
member, you need to use the IEEE interface cartridge if
you're using a CBM peripheral.

The IEEE interface cartridge has a connector for other

22 SETTING UP YOUR COMMODORE 64

cartridges (like the Z80 cartridge) and also has a connector
for the CBM peripherals. Figure 2.2 shows a diagram of the
IEEE cartridge connections.

Follow these easy steps to connect your Z80 cartridge to
your Commodore 64 when you're using the IEEE Interface
cartridge and CBM series peripherals:

1. TURN OFF THE POWER TO YOUR COMPUTER!

2. Install the IEEE interface cartridge in the cartridge
slot marked 4 in the diagram in Figure 2.1.

3. Install the Z80 cartridge into the IEEE cartridge slot
as shown in the diagram in Figure 2.2.

4. Connect your CBM peripherals to the connector on
the IEEE cartridge.

5. Turn on your computer and you're ready to start
using CP/M on your Commodore 64.

REMEMBER: IF YOU INSERT THE Z80 CARTRIDGE WITH THE POWER TO
THE COMPUTER TURNED ON, YOU WILL DAMAGE THE CARTRIDGE!

——lf® d L

. THIS ENP IMTA THE IEEE 488 SLOT OF YOUR
& 1 JTER
o E HERE
ADI % ccE CONNECTORS HERE

W =

Figure 2.2 IEEE Interface Cartridge Diagram

SETTING UP YOUR COMMODORE 64 23

2.3 CONNECTING DISK DRIVES

The method you use to connect your disk drives depends on
the types of drives you use. You can use either a VIC series
disk drive (like the 1541) or a CBM series single or dual disk
drive (like the 4040) with your Commodore 64.

You don’t have to write any special code to use your disk
drives under CP/M. The system accesses your disk drives as
Drive A and Drive B, regardless of which type of drive you're
actually using.

If you use a single disk drive, CP/M uses Drive A and uses
a virtual drive for Drive B (CP/M will prompt you to change
the physical disk in the drive when you ask for Drive B). If
youre using a CBM series dual drive, CP/M uses Drive A
and Drive B.

2.3.1 Connecting VIC 1541 Disk Drives

You can use one VIC 1541 disk drive. Like all Commodore
peripherals, the VIC 1541 disk drive can be “daisy chained.”
That is, you can connect your VIC disk drive to a VIC print-
er.

Connect the single VIC disk drive to the serial port
(marked 8 in the diagram in Figure 2.1). For full details on
connecting a VIC 1541 disk drive to your Commodore 64,
see the manual that comes with the drives.

If you're also using a VIC 1525 printer, connect the
printer to the connector in the back of your VIC 1541 disk
drive.

2.3.2 Connecting CBM Series Disk Drives

When using CBM series peripherals (like the CBM 4040
disk drive or the CBM 4022 printer), you need to connect
your peripherals to the IEEE interface cartridge. Figure 2.2
shows a diagram of the IEEE interface cartridge.

You can daisy chain your CBM printer to your CBM disk
drive. For more details on connecting your CBM disk drive,
see the manual that comes with your IEEE interface car-
tridge.

24 SETTING UP YOUR COMMODORE 64

CHAPTER 3

USING YOUR
COMMODORE 64
PERIPHERALS
FROM CP/M

e Printer Interface

® The Commodore 64 Serial
Interface

e The IEEE Interface Cartridge

® Daisy Chaining Peripherals

® The Commodore 64 User Port

25

CP/M, as implemented on your Commodore 64, can access
any standard Commodore 64 peripheral (except the RS-232
port and the modem) using standard CP/M device access
protocols. This involves calls to the appropriate CP/M BDOS
functions. (You can also call the BIOS directly, although
this is not recommended.)

The actual peripheral interface drivers reside in the CP/M
BIOS. This special BIOS, unique to your Commodore 64, is
in two parts. One part executes under the Z80 add-on proc-
essor and the other under the 6510 main processor.

Peripheral device access is set up through a series of pa-
rameters by the Z80 part of the BIOS. The actual device
access is carried out by the 6510 part of the BIOS operating
in Commodore 64 native mode.

You must configure CP/M—using the CONFIG utility—so
that it knows what kind of printer you have and how many
disk drives you have. If you change the type of printer or the
number of disk drives on the system, you must use the
CONFIG utility to inform CP/M of the change.

3.1 PRINTER INTERFACE

CP/M must know what type of printer you have. Generally
you will have a VIC 1515, VIC 1525, or CBM 4022 printer.
For purposes of the CONFIG utility, the 1515 and 1525 are
the same, and the 4022 represents any CBM series printer.

The VIC 1515 and 1525 printers use the standard Com-
modore 64 serial bus. The 4022 printer (or any other CBM
series printer) requires the optional IEEE interface car-
tridge.

Once you have properly attached the printer to your
Commodore 64 and have run the CONFIG utility under
CP/M, you can print using programs that run under CP/M
or using standard CP/M BDOS calls from Z80 Assembler
language programs.

26 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M

3.2 THE COMMODORE 64
SERIAL INTERFACE

Your Commodore 64 comes standard with a bit serial inter-
face through which you communicate with the Commodore
64 disk drives and printers. Access to the Commodore 64
serial interface is handled automatically under CP/M.

If you attach a nonstandard device to the Commodore 64
bit serial interface, you must prepare code to handle that
device. The actual device handling code must execute in
Commodore 64 native mode (under the 6510 main proc-
essor). Of course, you also need device handling code to run
under the Z80, controlling execution of the native mode
device-handling routine.

3.3 THE IEEE INTERFACE
CARTRIDGE

If you want to connect your Commodore 64 to IEEE bus
compatible devices. you can do that using the IEEE inter-
face cartridge.

The IEEE interface cartridge plugs into the cartridge slot
on the rear of your Commodore 64. The interface cartridge
includes a slot for plugging in your Z80 cartridge. (See the
instructions that come with your IEEE interface cartridge.)

The interface cartridge allows you to attach Commodore’s
own IEEE-compatible peripherals. These more capable,
more expensive peripherals are usually available only for
Commoeodore’s business computers. The IEEE interface car-
tridge also provides a link to a multitude of IEEE-bus-
based products. For example, many industrial and scien-
tific instruments and devices are controlled using the IEEE
bus protocols. With the IEEE interface cartridge, your
Commodore 64 can control and collect data from these
devices.

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 27

NOTE: If you do acquire the IEEE interface cartridge, you will have
44K—NOT 48K—available for CP/M Be sure to generate a 44K version
of CP/M before you install the IEEE interface cartridge

If you are also installing IEEE bus peripherals, especially disk drives,
remember to run the CONFIG utility an your 44K CP/M, informing 1t of
your new peripherals

3.4 DAISY CHAINING
PERIPHERALS

The advanced architecture of the standard Commodore 64
serial bus and of the Commodore IEEE serial bus permits
peripherals to be linked to one another in a “daisy chain.”

Daisy chaining of peripherals means that you need not
buy another interface card or connector every time you add
a peripheral to your Commodore 64. The peripherals simply
connect to each other to be accessed through a single port
on your Commodore 64.

You can daisy chain VIC peripherals on the standard
Commodore 64 serial bus or CBM series peripherals
through the IEEE interface cartridge, as shown in Figure
3.1.

VIC PERIPHERALS SYSTEM
(Uses Standard Commodore 64 Serial Port)

Computer —> VIC Disk Drive —> VIC Printer

CBM PERIPHERALS SYSTEM
(Requires IEEE Interface Cartridge)

Computer ——> CBM Dual Disk Drive —> CBM Printer
or

Computer ™ CBM Printer ™ CBM Dual Disk Drive

Figure 3.1 Daisy Chaining Peripherals.

28 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/Mm

NOTE: You can also aftach the single drive (2031) version of the CBM
4040 disk drive to the IEEE interface cartridge on your Commodore 64.

3.5 THE COMMODORE 64
USER PORT

Your Commodore 64 user port can accommodate some use-
ful optional devices. Most interesting from CP/M are the
VICMODEM and the RS-232 communications cartridge.

If you acquire one of these cartridges and you want to
access it from CP/M, you must write the processing code for
execution in native mode under the 6510 main processor.
This is necessary because these cartridges generate non-
maskable interrupts which must be handled by the 6510
processor.

You can gain access to special code for handling these
cartridges through BIOS65 function codes 7, 8, or 9. (See
the discussion of the CP/M BIOS in Chapter 6 for details on
using these function codes.)

In designing this code, you should consider receiving a
certain number of characters—say 128 or 256—into a
shared buffer. When you have received these characters, in-
form the device you are communicating with that you are
not ready to receive data. You can then safely switch control
from the 6510 main processor to the Z80, which can do
whatever is required with those characters.

For detailed information on programming for the RS-232
port, see the Commodore 64 Programmer’s Reference
Manual.

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 29

CHAPTER

GETTING
STARTED

Bringing CP/M onto Your
Commodore 64

The COPY Utility

The CONFIG Utility
Generating a New CP/M
System with SYSGEN

3

This chapter tells you how to start using CP/M on your
Commodore 64. Read it carefully. It's very easy to bring
CP/M onto your computer, but you should be sure that you
understand the information in this chapter before you start
CP/M or run any programs under it.

In this chapter you will learn:

® how to load and run your CP/M system

& how to format new disks and make backup copies of
your system

® how to use the special Commodore 64 CP/M utilities

how to generate a new version of CP/M

® how to use the special Commodore 64 keyboard
under CP/M

The distribution 44K version of CP/M assumes that you
are using the IEEE interface cartridge. If you don’t have the
IEEE interface cartridge, you can generate a 48K version of
CP/M by following the instructions in Section 4.4.

4.1 BRINGING CP/M ONTO YOUR
COMMODORE 64

It is easy to bring CP/M onto your Commodore 64. Before
you load CP/M, be sure that you've correctly installed your
Z80 cartridge and your disk drive(s) and printer. If you
haven’t done this, read Chapter 2 for installation instruc-
tions.

After installing your Z80 cartridge and peripherals, follow
the instructions in Section 4.1.1 to load your CP/M system.
Ongce you've loaded CP/M and made copies of the system
disks for backup, you're ready to try any of the commands
in Chapter 5.

NOTE: Remember to make copies of your CP/M disks before you do any
other processing. You need a backup copy of the disks that you pur-
chased.

32 GETTING STARTED

4.1.1 Starting CP/M

To bring CP/M onto your Commodore 64 system, you start
the computer and load the CP/M system. Just follow these
easy steps and make a backup copy of your system disks
right after you get CP/M to start for the first time:

1. Turn on your equipment (peripherals and compu-
ter). Your Commodore 64 will print its usual “sign
on” message:

¥5 COMMODORE 64 BASIC V2 ****

64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

2. Put the disk marked Commodore CP/M®*V.64 into
your disk drive. This disk contains your CP/M sys-
tem.

3. Your Commodore 64 is in native mode. Type the
following:
LOAD “*~,8 <CR>

or

LOAD ““CPM”, 8
4. Your Commodore 64 reads the disk and answers:

SEARCHING FOR * (or CPM instead of *)
LOADING
READY.

5. The Commodore 64 segment of CP/M is now
loaded into your computer. To load the Z80 seg-
ment and begin executing CP/M, type:

RUN <CR>

6. Your Commodore 64 now reads the disk again to
load the CP/M system into your Z80. While it is
loading CP/M, your computer will print a row of 27
asterisks (*) across the top of the screen. When
CP/M is loaded, your Commodore 64 will print:

GETTING STARTED 33

COMMODORE 64 nnK CP/M vers 2.2
Copyright © 1979, Digital Research
Copyright © 1982, Commodore
A>
7. Your CP/M system is now loaded and ready to run.

Enter the following CP/M command to get a list of
the files on your CP/M disk:

DIR <CR>

CAUTION! BEFORE PROCEEDING, MAKE A BACKUP COPY OF YOUR
CP/M DISKS!

4.1.2 Making Copies of Your CP/M System
Disk

Now that you've started CP/M, you must make backup
copies of your system disks. It is bad practice to use the
disks that you purchased as your standard operating disks.
You could accidentally destroy the disk and then you would
not be able to run your CP/M system.

So, make a backup copy and use the copy as your CP/M
system disk. After you make the backup copy, store your
original disk in a cool, dry place, away from magnetic
fields.

To make your backup copy:

1. Use the COPY utility on your CP/M disk to format a
new disk. The COPY utility is discussed in detail in
Section 4.2.

2. Then use the COPY utility to copy your CP/M disk
to the backup disk. The COPY utility prompts you
along the way. depending on the number of drives
you're using. Just follow its instructions.

3. Store your original disks in a safe place, some-
where cool, dry, and away from magnetic fields.

34 GETTING STARTED

4.2 THE COPY UTILITY

The COPY utility is a special Commodore 64 CP/M utility
that allows you to:

® FORMAT a diskette for use with CP/M,

® Make a BACKUP of a CP/M diskette.

¢ Copy the CP/M SYSTEM TRACKS from one diskette
to another.

You should use this utility to make a backup copy of your
CP/M system disks as soon as you get CP/M up and run-
ning. Each COPY utility function is described in a separate
section below.

To load the COPY utility, enter:

COPY<CR>
CP/M loads the COPY.COM file and writes:

COMMODORE 64 COPY UTILTY 1.0
FORMAT DISK

BACKUP DISK

COPY SYSTEM TRACKS ONLY

EXIT

PLEASE CHOOSE FUNCTION (1-4)

AW N -

You then choose which COPY utility function you want to
use and answer the questions that COPY asks.

4.2.1 Formatting a Disk with the COPY Utility

You must format a diskette before you can write any infor-
mation on it. You must format disks that you’ll use under
CP/M with the COPY utility.

You format disks when:

® You get new disks and you want to prepare them to
be used with CP/M.

® You want to erase all of the information currently
on a disk.

GETTING STARTED 35

To use the COPY function to format disks, you enter 1 as
follows:

...COPY utility messages...
PLEASE CHOOSE FUNCTION (1-4) !
FORMAT DISK UTILITY
INITIALIZES DISK FdR CP/M
CAUTION! FORMAT ERASES ALL DATA
PLACE DISK TO BE FORMATTED IN
DRIVE 0 AND PRESS ENTER
OR
PRESS SPACEBAR TO RETURN TO MENU
Now, remove your system disk from the drive and place

the new disk (the one that you want to format) into the
drive.

CAUTION! REMEMBER THAT YOU MUST REMOVE YOUR SYSTEM DISK
OR ELSE YOU WILL ERASE YOUR SYSTEM DISK!!

COPY now writes formatting information to your disk.
Any information on the disk will be erased and all of the
tracks are made available for data. No files remain on the
disk after you run COPY's FORMAT. COPY writes these
messages during the formatting:

FORMATTING DISK, PLEASE WAIT...
FORMAT COMPLETE
PRESS ANY KEY TO CONTINUE

You can now format another disk, copy information to
your newly formatted disk, or exit back to CP/M, depending
on your answer. If you want to format another disk, you
need to insert the disk to be formatted into the drive. If you
want to copy information, follow the instructions from
COPY. If you're exiting back to CP/M, you should put your
CP/M system disk into the drive.

NOTE: Remember that COPY erases all information from the disk when
you use the COPY FORMAT option.

36 GETTING STARTED

4.2.2 Creating a Disk Backup with the COPY
Utility

You can also use the COPY utility to make backup copies of
an entire diskette. While making a backup copy, COPY uses
a master disk and a slave disk. The master disk is the disk
that you want to make a copy of (the original disk); the
slave disk is a formatted disk that will be written to (the
copy).

If you are using a single-drive system. the COPY utility
will prompt you to insert the master or slave disk into the
drive. Be careful when making copies of a disk. Keep track
of your master disk so that you don’t accidentally copy gar-
bage over your information (and erase your master disk in
the process).

To use COPY’s BACKUP function, enter a 2 in response to
the “choose function” message and follow the instructions
from COPY:

PLEASE CHOOSE FUNCTION (1-4) 2
DISK BACKUP UTILITY

THE ENTIRE MASTER DISK IS

COPIED TO THE SLAVE DISK

INSERT MASTER DISK IN DRIVE 0

PRESS RETURN (OR SPACEBAR FOR MENU)

Now insert the disk that you want to copy from into the
disk drive. If you decide that vou don’t really want to copy
your disk, simply press the [EZX8 bar and COPY returns
to its original menu.

Once the master disk is ready, press the key.
COPY then reads a number of sectors from the disk into
memory and writes:

INSERT SLAVE DISK IN DRIVE 0
PRESS RETURN

Put the disk you want to copy to into the drive and press
the carriage return. Be careful to keep the master and
slave disks in order.

COPY now writes the information from memory onto the

GETTING STARTED 37 .

slave disk and then asks that the master disk be replaced in
the drive. This alternating master/slave disk placement will
continue until the entire master disk is copied onto the
slave disk. At that time, COPY returns to its main menu.

4.2.3 Copying the System Tracks with the
COPY Utility

You can copy the CP/M system tracks to another disk
through the COPY system track copy function. This func-
tion copies only the system tracks, not any other informa-
tion, from a master disk to a slave disk.

You need the CP/M system tracks on any disk from which
you intend to “warm start” CP/M (start CP/M without hav-
ing to reinsert the system disk). You may want to copy the
system tracks to a disk containing a program that you will
run often. That way, when you hit a -C to warm
start CP/M, you don't have to replace the disk with your
system disk.

To copy the system tracks using COPY, enter 3 for your
selection from COPY's main menu. Then follow the instruc-
tions:

PLEASE CHOOSE FUNCTION (1-4) 3
SYSTEM TRACK COPY UTILITY

COPIES SYSTEM TRACKS FROM MASTER DISK
TO SLAVE DISK

INSERT MASTER DISK IN DRIVE 0

PRESS RETURN (OR SPACEBAR FOR MENU)

The disk with the COPY utility contains the CP/M system
tracks (otherwise, you wouldn’'t have been able to start your
system). Simply press the kev or, if you really
don't want to make a copy. press Llie bar.

When you press the key, COPY reads the sys-
tem tracks into memory and then writes:

INSERT SLAVE DISK IN DRIVE 0
PRESS RETURN

3B GETTING STARTED

Remove the master disk from the drive and insert the
disk on which you want the svstem tracks copied into the
drive. When you press the key, COPY will write
the CP/M system tracks (tracks O and 1) to the disk in the
drive. After the system tracks are written, COPY returns to
its main menu.

4.3 THE CONFIG UTILITY

You use the Commodore CP/M CONFIG utility to change
the current I/0 configuration for your CP/M system. Com-
modore provides the CONFIG utility so that you can add
peripherals to your CP/M system quickly and easily.

CP/M needs to know what peripherals you're using. For
example, if you're using only a single disk drive, CP/M will
prompt you to change the diskette in the drive when you log
to another disk. If you're using two drives, a properly con-
figured CP/M will simply use the second physical drive.

NOTE: You CANNOT mix VIC (serial) peripherals and CBM (IEEE inter-
face) peripherals on the same system.

Each of the CONFIG changes is described in a separate
section below. To use the CONFIG utility, you enter:

CONFIG <CR>
CP/M then loads the file called CONFIG.COM and writes:

COMMODORE 64 I/O CONFIGURATION UTILITY
THE CURRENT VO ASSIGNMENTS ARE:
NUMBER OF DRIVES: 1
PRINTER TYPE: 1515
INITIAL CAPS MODE: ON
DO YOU WISH TO:
1. CHANGE NUMBER OF DISK DRIVES
2. CHANGE PRINTER TYPE
3. CHANGE INITIAL CAPS MODE

GETTING STARTED 39

CHANGE FUNCTION KEY ASSIGNMENTS
CHANGE KEY CODES
SAVE CURRENT /O SETUP ON DISK
7. RETURN TO CP/M
PLEASE ENTER SELECTION (1-7)

A

You simply select the type of change that you want to
make and answer the questions that CONFIG asks. CONFIG
makes all the necessary changes to your CP/M system, for
both the Commodore 64 native code and the Z80 code. Add-
ing or changing peripherals to your Commodore 64 CP/M
system is as easy as running CONFIG and answering the
questions.

4.3.1 Using CONFIG to Change the Number of
Disk Drives

The CP/M system that you receive assumes that you are
using a single disk drive. You may actually have the CBM
4040 dual disk drives. CONFIG toggles back and forth be-
tween one and two disk drives.

To change the number of drives, you run CONFIG like
this:

CONFIG<CR>
when the CONFIG Messages are printed, choose selection 1.
CONFIG then processes your answer and changes the
number of drives available to CP/M. If you originally had
one disk drive, CONFIG prints:
COMMODORE 64 1/O CONFIGURATION UTILITY
THE CURRENT 1/O ASSIGNMENTS ARE:
NUMBER OF DRIVES: 2
PRINTER TYPE: 1515
INITIAL CAPS MODE: ON
DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

40 GETTING STARTED

If you had two disk drives when you started CONFIG, you
will see this for the number of drives:

NUMBER OF DRIVES: 1

4.3.2 Using CONFIG to Change the Printer
Type

Your original CP/M system assumes that you will be using a
VIC 1515 or (1525) printer. You may want to add a CBM
4022 (or other CBM) printer. CONFIG toggles back and
forth between 1515 and 4022 printer types.

To change the printer type, you run CONFIG like this:

CONFIG<CR>
when the CONFIG Messages are printed, choose selection 2.

CONFIG then processes your answer and changes the
printer type. If you originally had a VIC 1515 printer, CON-
FIG prints:

COMMODORE 64 /O CONFIGURATION UTILITY
THE CURRENT I/O ASSIGNMENTS ARE:
NUMBER OF DRIVES: 1
PRINTER TYPE: 4022
INITIAL CAPS MODE: ON
DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

If you had a CBM 4022 printer when you started CONFIG,
you get this for the printer type:

PRINTER TYPE: 1515

4.3.3 Using CONFIG to Change the Initial
Caps Mode

Your original CP/M system assumes that you will be using
the all caps mode (all upper case letters when you press the

GETTING STARTED 41

keys). CONFIG toggles back and forth between initial caps
ON and OFF.

With initial caps ON, you get only upper case letters. With
initial caps OFF, you get upper and lower case letters. Re-
member that you can also toggle between caps ON and OFF
at any time by pressing the key.

To change the initial caps mode, you run CONFIG like
this:

CONFIG<CR>
when the CONFIG Messages are printed, choose selection 3.

CONFIG then processes your answer and changes the
printer type. If you originally had initial caps ON, CONFIG
prints:

COMMODORE 64 1/O CONFIGURATION UTILITY
THE CURRENT I/O ASSIGNMENTS ARE:
NUMBER OF DRIVES: 1
PRINTER TYPE: 1515
INITIAL CAPS MODE: OFF
DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

If you had initial caps OFF when you started CONFIG, you
will see this:

INITIAL CAPS MODE: OFF

4.3.4 Using CONFIG to Change the Function
Key Assignments

Your CP/M system loads initial values into the eight Com-
modore 64 function keys. You can change any of these
function key values through CONFIG.

If you save the new I/O configuration to disk, the new
values will be loaded into the function keys when you next
start CP/M. If you don’t save the new configuration to disk,

42 GETTING STARTED

the function keys are loaded with the new values but are
reset to the original values when you next start CP/M.

To change the function key values, you run CONFIG like
this:

CONFIG<CR>
when the CONFIG Messages are printed, choose selection 4.

CONFIG then prints:

F1: “DIR”<<CR>

F2: “DIR B:”<CR>

F3: “STAT * *”<CR>

F4: “STAT B:* . *<CR>

F5: “COPY”“<CR>

F6: “CONFIG"<<CR>

F7: “DDT”<CR>

F8: “DDT"

ENTER FUNCTION KEY NUMBER (1-8)
TO CHANGE PRESET VALUES.

ENTER 9 TO LEAVE FUNCTION
KEY UTILITY.

To change function key 8 to “PIP<CR>", use CONFIG like
this:

ENTER FUNCTION KEY NUMBER (1-8) 8

TYPE IN TEXT USING “RETURN”
OR “CTRL-Z* AS TERMINATOR

F8: “PIP<<RETURN KEY>"
ENTER FUNCTION KEY NUMBER (1-8) 9

This changes the value in function key 8 to PIP<CR>
while you are using CP/M.

If you end vour new key entry with a -Z , instead
of a the function key is loaded without a ter-
minating carriage return.

GETTING STARTED 43

If you want to save this value as the initial value for func-
tion key 8 for the next time you start CP/M, you must also
choose CONFIG selection 6 to save the new I/0 configura-
tion to disk. Otherwise, the next time you boot CP/M, your
function keys will contain the same initial values as they
did this time; any changes you made through CONFIG will
be lost.

4.3.5 Using CONFIG to Change the Key Codes

Your CP/M system loads a table containing the hexadecimal

values for each of the Commodore 64 keyboard keys. You

can change any of these function key values through CON-

FIG. Appendix D contains a table of ASCII characters,

hexadecimal values, and the Commodore 64 keyboard char-
~ters.

NOTE: Be careful if you change the alphabetic characters. You may not
be able to recover if you change characters that you need to run CP/M
programs or commands If you SAVE the character changes on disk
(through CONFIG selection 6), you may have trouble recovering ot all.

To change the keyboard key values, you run CONFIG like
this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 5.

CONFIG then prints:

PRESS KEY TO EXAMINE KEY CODE

TO CHANGE KEY CODE, ENTER DATA IN
HEXADECIMAL AFTER “CHANGE TO”

TO EXIT KEY CODE MODE, TYPE “RETURN”
TWICE AFTER “PRESS KEY”

TO KEEP CURRENT KEY CODE, TYPE
“RETURN” AFTER “CHANGE TO”

44 GETTING STARTED

PRESS KEY (you press the “Q” key)
IS 51 IN CAPS MODE—CHANGE TO 71

You just changed the capital @ (hexadecimal value 51} to
a lower case q (hexadecimal value 71). You won't be able to
enter a capital Q unless you use CONFIG to change it back
again. If you don’t want to make any more changes, just
press the key twice to return to the CONFIG
main menu.

4.3.8 Using CONFIG to Save the New I/0
Setup

Once you've made changes to your 1/O assignments
through CONFIG, you may or may not want to save the new
assignments. You will probably want to save the new infor-
mation if you've changed the disk drive or printer data. You
may not want to save the I/0 information if you've changed
the function key assignments for a special run and don’t
want the new values to be used the next time you start
CP/M.

To save your new I/O assignments to disk, select 6 from
the CONFIG menu. CONFIG then writes information to your
CP/M system data and the next time you start CP/M, the
new information will be used.

Remember, you can make changes that only affect the
current CP/M version (the one in memory when you make
the changes) if you want some special-purpose alterations.
If you don’t select CONFIG choice 6, the alterations will not
be in effect the next time you load CP/M.

4.4. GENERATING A NEW CP/M
SYSTEM WITH SYSGEN

You can generate CP/M on your Commodore 64 to run in
any memory size from 20K to 48K. If you are using the
standard Commodore 64 serial bus to attach your periph-
erals—disk and printer—you should use a 48K version of
CP/M. If you acquire the IEEE interface cartridge, you must

GETTING STARTED 45

use a 44K version of CP/M. You may also want to generate a
smaller version of CP/M if you need space to load a 6510
routine that you are invoking from a CP/M program.

NOTE: If you don’t intend to save the new CP/M on an existing CP/M
disk, the first step in generating a new version of CP/M is to format a
disk. Disk formatting is discussed in detail in Chapter 4 under the COPY
utility

Once you have the disk formatted for CP/M, you must use the COPY
utility to copy the System tracks from one of your existing CP/M disks to
the new disk. This operation places the 6510 loader into its proper place

Once you have properly initialized your disk, you use a
series of CP/M utility programs to generate the new version
of CP/M and save it on your disk. These utilities are:

¢ MOVCPM
¢ SAVE
¢ SYSGEN

These utilities have a number of options on their use. In
the following discussions, we consider only the most fre-
quently used options. A more detailed exploration of all the
utility options is found in Chapter 5.

In general, you will be generating either a 44K or a 48K
version of CP/M on your Commodore 64. We'll use generat-
ing a 48K version as an example. Other versions are gener-
ated in exactly the same way but with a different memory
size specified.

4.4.1 Relocating CP/M

MOVCPM is a system utility that relocates the CP/M
operating system to execute in any memory size you specify.
To generate a 48K version of CP/M, you enter:

MOVCP, 48 *

where:
48 is the memory size

* instructs MOVCPM to leave the relocated CP/M
image in memory.

46 GETTING STARTED

MOVCPM responds with:

CONSTRUCTING 48K CP/M vers 2.2
READY FOR “SYSGEN” OR
“SAVE 37 CPM48.COM"

This is the end of MOVCPM execution. You follow this by
running either the SYSGEN or the SAVE utility. Normally,
you use the SYSGEN utility. Use the SAVE utility if you
want to “patch” the operating system.

NOTE: Your Commodore 64 version of MOVCPM properly adjusts all of
the CP/M code, including the BOOT80 and BIOS80 programs. You do
NOT have to reassemble these programs and use DDT to patch them into
the new version of the operating system as you do on less capable CP/M
systems.

Execution of MOVCPM as shown above leaves a copy of
the relocated CP/M operating system, including BOOT80,
CCP, BDOS, and BIOS80, in the Transient Program Area
(TPA) ready to be saved as a file on your disk or written
directly to the system tracks. (To learn more about CP/M
structure, read Chapter 6.}

If you choose to save a copy, you can SYSGEN it later.

4.4.2 Saving the New System

The SAVE built-in command writes the content of the TPA
(in this case, a copy of your newly relocated CP/M) to the
specified disk file. The MOVCPM command tells you how
many 256-byte pages to save. MOVCPM on your Commo-
dore 64 always tells you to save 37 pages.

To save your relocated verion of CP/M, enter:

SAVE 37 CPM48.COM

This command will write the relocated CP/M to a file
named “CPM48.COM”, This is a full copy of a 48K version of
the CP/M operating system. You can use the saved copy of
CP/M in subsequent SYSGEN commands or for direct alter-
ation under DDT.

GETTING STARTED 47

4.4.3 Using SYSGEN

A version of CP/M that you have saved in a disk file cannot
be directly executed. You must first SYSGEN it to the sys-
tem tracks of a CP/M disk.

SYSGEN writes the specified version of the CP/M operat-
ing system to the proper locations on the system tracks of a
CP/M disk. SYSGEN can read a version of the operating sys-
temn from one of two places:

® The system tracks of diskette.
¢ A memory image of CP/M loaded into the TPA by the
MOVCPM or DDT programs.

If you are using a file containing a SAVEd version of
CP/M, you must first bring it into memory with the DDT
program. In our example, you enter:

DDT CPM48.COM

then exit from DDT with a GO command.

If your source for the new version of CP/M is the system
tracks of your disk or a memory resident image, you simply
enter:

SYSGEN
and SYSGEN responds with:

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

At this point you can specify the drive (A or B) whose sys-
tem tracks you want read. If you simply hit the
key, SYSGEN assumes that a copy of CP/M is already lvaded
into the TPA.

Whatever way you get the CP/M version loaded into mem-
ory, SYSGEN will ask you:

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

If you respond with a destination drive name (A or B),
SYSGEN will write CP/M to the system tracks of that drive.

48 GETTING STARTED

If you simply hit the key, SYSGEN will reboot
from whatever disk is currently in Drive A.

NOTE: IF you SYSGEN a CP/M system that is different in size from the
one you ran the SYSGEN under, DO NOT try to reboot from a disk con-
taining the new system. This will cause the operating system to crash
Re-insert the disk from which you loaded SYSGEN before you tell it to
reboot

To test a newly SYSGENed version of CP/M, you'll have to
start it from native mode on your Commodore 64.

4.5 THE COMMODORE 64
KEYBOARD AND SCREEN WITH
CP/M

The Commodore 64 has a full typewriter-style keyboard that
behaves as such when you are running CP/M. All of the
CP/M shifted control codes operate as they are
supposed to. In addition, the key on your
Commodore 64 keyboard acts like a G5 -C to produce
a warm boot of the CP/M operating systeut.

In the Commodore 64 version of CP/M, you have the op-
tion of using only upper case or both upper and lower case.
You toggle between them using the Commodore key
on the keyboard. You can use the CONFIG utility to tell
CP/M to start with upper only or with upper/lower case en-
abled.

Table 5.3 contains a complete list of the special CP/M
control keys. These are identical to those defined for CP/M,
with a few additional functions taken from your Commo-
dore 64 keyboard.

The Commodore 64 graphics characters and screen color
control are not generally available to CP/M. But there is no
reason that you can't store values into your Commodore 64
6567 Video Interface Chip’s control registers just as you do
when running in native mode. To arrive at the proper ad-
dresses for the control registers, examine Section 6.1.3,
which explains the address mapping between the Z80 and
6510 processors.

GETTING STARTED 49

The control values that you insert into the registers are
the same as those you use in native mode. As an example,
suppose you want to use your Commodore 64 graphics
character set. Running in native mode, you simply touch
the graphics key to switch on the graphics character set.
From a CP/M program running under the Z80, you have to
control it directly through a store into the appropriate 6567
control register.

The character set selection control register is at

6510 address 53,272 decimal or $D018 hexadecimal
which converts to the Z80 address base:
Z80 address 49,176 decimal or $C018 hexadecimal

The character set control register normally contains a $17.
To invoke the graphics character set, you must store a $15
in the register:

MVI A,15H ;LOAD THE CONTROL VALUE IN A
STA 0C018H ;STORE $15 IN THE 6567 CONTROL REGISTER

Once you've executed this code, the graphics character set
is available to you. This operation does not change the
character codes reaching your CP/M programs from the
keyboard—only the display is changed.

You can use the same technique to alter colors, activate
Sprites, or even play music through your Commodore 64
6581 Sound Interface Device. If you want to store char-
acters directly into the screen matrix, remember to store
Commodore 64 screen codes, not ASCII codes.

To use the dynamic features of your Commodore 64 from
CP/M. all you have to do is remember that the 6510 ad-
dresses for the control registers must be reduced by $1000
(4096) in your CP/M programs.

50 GETTING STARTED

CHAPTER

CP/M
OPERATION

How to Use This Chapter
CP/M File Naming
Conventions
Input/Output Hardware
Conventions

CP/M Command Structure
- CP/M Commands

3%

This chapter tells you how to use CP/M on your Commodore
64. It is not a detailed lesson on CP/M and its internal work-
ings. It is an introduction to CP/M’s conventions and nota-
tions, and an introduction to the commands that you can
use under CP/M.

If you want detailed information on the internal workings
of CP/M, get one of the many fine books listed in Appendix
B, the Bibliography. That level of detail is far beyond the
scope of this book.

5.1 HOW TO USE THIS CHAPTER

Section 5.2 describes the CP/M file naming conventions.
You should follow some reasonable conventions for naming
your own files so that you can easily identify their contents.

Section 5.3 discusses the CP/M disk identification con-
ventions. CP/M uses disk A and disk B; your Commodore
64 identifies these disks as disk 0 and disk 1. Section 5.3
also tells you how CP/M differs when you use the VIC 1541
or the CBM 4040 drive.

Section 5.4 describes the CP/M command structure and
gives a table of all the CP/M commands that you get with
your Commodore 64 CP/M system.

Section 5.5 provides brief descriptions of the CP/M com-
mands. If you need more detail, see one or more of the CP/M
books listed in Appendix B. Some books are more technical
than others, so find the one with the amount of detail you
are most comfortable with.

5.2 CP/M FILE NAMING
CONVENTIONS

When you are using CP/M on your Commodore 64, you
should follow the CP/M file naming conventions. CP/M files
have the general format:

[DISK-ID:] FILENAME [.TYPE]

52 CP/M OPERATION

where:

DISK-ID is an optional disk drive identifier (such
as A or B) that is needed when you want to use a
file not on the currently logged disk.

FILENAME is a one- to eight-character name used
to identify your file to CP/M.

TYPE is an optional one- to three-character name
used to further identify your file.

Some examples of CP/M filenames are:

A:SAMPLE.BAS A BASIC sample program stored on
the disk on Drive A.

MY.TXT A text file.
PROGRAM.COM A program that is executable.
10/25/82.DRY A diary entry.

CP/M lets you use any alphabetic or numeric character in
your file names, as well as some special characters. CP/M
reserves a few of the special characters for its own use. You
cannot use the following characters in a CP/M file name:

<>.,3:0=?*[]

With some software packages, files must be named with
specific types, such as SUB for a SUBMIT file or ASM for an
Assembly Language source file. Read the information with
your software packages to see if you need to follow any nam-
ing conventions for that package’s files.

Even if you don't have to follow any specific rules in nam-
ing your files, you should try to use reasonable naming con-
ventions. In this way, when you get a directory listing (a list
of all the files on a disk), you will have some idea of what'’s
in the files.

A file named MORTGAGE.BAS is easier to recognize as
the set of source statements for a BASIC program that cal-
culates mortgage rates than a file named X127GY9.123. In
other words, it makes sense to name your data files in ways
that represent their contents. For example, a file named

CP/M OPERATION 53

01/15/83.DTA could contain the data you collected on Jan-
uary 15, 1983.

Since there are so many CP/M users (over 500,000 to
date), certain standard filename types have been adopted.
The most commonly used types are shown in Table 5.1.

Table 5.1 Commeonly Used CP/M File Types

TYPE FUNCTION OR CONTENTS
*.ASM Assembly language source file
.BAK Backup file
.BAS BASIC program source file (for some
BASIC interpreters like CBASIC)
*.COM Directly executable transient pro-
gram
.DAT Data file
.DOC Document or text file (required by

some word processing packages)

* HEX File containing data in hexadecimal
format; an Intel HEX format object
code file

ANT Output file from some compilers

(CBASIC, JRT PASCAL) that contains
intermediate code

*.LIB Library file

LST Program listing (usually output from
a language processor like a compiler,
Interpreter, or assembler)

.PRN Print file (usually output from an as-
sembler or compiler)

.PRT Print file (usually output from an in-
terpreter or compiler)

54 CP/M OPERATION

Table 5.1 Commonly Used CP/M File Types

TYPE FUNCTION OR CONTENTS

.SRC Source file from the CP/M User's
Group

*.8UB Command file for a SUBMIT run

.SYM Symbol table file (generated by some
compilers, assemblers, and inter-
preters)

.TEX Text file (required by some word pro-
cessors)

TXT Text file (required by some word pro-
Cessors)

*. 888 Either a temporary file or an improp-

erly saved (and unusable) file

NOTE: Those filename types marked with an asterisk (*) must be
adopted if you want to use associated software packages or sys-
tem functions. That is, all CP/M directly executable programs must
be named “filename.COM.”

5.3 INPUT/OUTPUT HARDWARE
CONVENTIONS

CP/M has certain conventions that must be followed when
you are reading files from a disk or writing files to a disk.

The first disk drive physically attached to the system is
called drive A. The next is drive B. When you are using a
single 1541 disk drive, your Commodore 64 CP/M uses a
slightly different way of telling which disk is in the drive
(this is described in some detail below).

When you begin CP/M, you will be “logged” to drive A and
you will see the prompt “A>" on your screen. This means
that if you specify a filename in a command and you don’t

CP/M OPERATION 55

specify a disk-id before the filename, the disk on drive A will
be searched for the file.
You can log to drive B by entering the command:

B:

After entering the B: command, any filename that you
specify without a disk-id preceding the filename will be read
from or written to drive B.

You can change back and forth between drive A and drive
B by simply entering the above command. You can tell
which drive you're currently accessing by looking at the
prompt: it will be A> when you're using drive A or B> when
you're using drive B.

Your Commodore 64 CP/M can use either the VIC 1541
single disk drive or the CBM 4040 dual disk drive. Read the
sections below that cover the type of disk drive you have
attached to your Commodore 64.

5.3.1 Loading Programs from Disk: Single
Drive

It is easy to load and run a CP/M program. You first place
the program disk into your disk drive and then enter the
filename followed by a carriage return, for example:

MYPROG <CR>

CP/M then goes to the currently logged disk and looks for
the file called MYPROG.COM. If CP/M finds this file, the
data in the file are read into the computer’'s memory and
CP/M begins executing those instructions.

If the file is not found on the disk, then CP/M prints the
filename followed by a question mark:

MYPROG?

In such cases, check to see if you have the correct disk in
the drive, log to the correct disk, or correct the program
name.

For a single-drive system., if you are logged to drive A and
your program is on drive B, then remove disk A from the
drive, insert disk B, and enter:

56 CP/M OPERATION

B:OTHERPGM <CR>

CP/M will first ask that the appropriate disk be placed in
the drive by writing:

INSERT DISK B INTO DRIVE O, PRESS RETURN

You should put the appropriate disk into the drive and
press the key. CP/M will then search the disk
for the file called OTIHHERPGM.COM, load the file, and run it.

5.3.2 Loading Programs from Disk: Dual
Drive

When using the CBM 4040 dual disk drive, you don’t have
to physically change the disk in the drive when you want to
log to another disk. Since there are two drives, you can in-
sert two disks into the drive: disk A and disk B.

When you enter the B> command to log to disk B, CP/M
will not ask you to insert a disk into the drive. Instead,
CP/M will use the disk already in drive B.

If you want to change which disk is in a drive, you should
change the disk and then tell CP/M that a different disk is
in the drive by entering a -C command. This makes
CP/M read the directory from the disk and keeps you from
writing over information that you want to keep.

You must have the Commodore 64 IEEE interface car-
tridge when you use the CBM 4040 dual disk drive. You
cannot plug the dual disk drive into the Commodore 64
without the interface cartridge.

5.4 CP/M COMMAND
STRUCTURE

Your Commodore 64 CP/M system includes a Console
Command Processor (CCP) through which you interact with
CP/M. The CCP reads and interprets the commands you
enter at the keyboard.

The CP/M commands are listed in Table 5.2 and de-
scribed in some detail later in this chapter.

CP/M OPERATION 57

In general, the CP/M commands are of two types:

® Built-in commands which are a part of the CCP it-
self. Being part of the CP/M operating system,
built-in commands are included whenever you load

CP/M.

® Transient commands which are loaded into the
Transient Program Area (TPA) from a disk and then
executed. Transient commands reside on the disk
as COM files.

Table 5.2 CP/M Commands

COMMAND BUILT-IN (B) COMMAND FUNCTION

NAME or
TRANSIENT (T)

pgm-name T Load and execute the program
stored on the disk as file pgm-
name.COM.

x: B Change the currently logged disk
to disk x.

ASM T Load the CP/M assembler and as-
semble the specified program from
the disk.

DDT T Load the CP/M debugger (DDT)
and begin executing the debugger.

DIR B List the filenames in the disk di-
rectory.

DUMP T Dump the contents of the specified
file to the screen in hexadecimal
format.

ED T Load and execute the CP/M text
editor program.

ERA B Erase the specified file(s) from the

58 CP/M OPERATION

disk.

Table 5.2 (Continued)

COMMAND BUILT-IN (B) COMMAND FUNCTION

NAME or
TRANSIENT (T)

LOAD T Produce an executable (COM) file
from an assembled (HEX) file.

MOVCPM T Recreate the CP/M system for the
specified memory size.

PIP T Copy specified file(s).
REN B Rename the specified file.
SAVE B Save the contents of memory as

the specified file on the disk.

STAT T Provide status information about
specified files, no file, or all files,
and list the number of available
bytes remaining on the disk.

SUBMIT T Read the specified file and execute
the commands in a batch process-
ing mode.

SYSGEN T Create a new CP/M system dis-
kette.

TYPE B Type the contents of the specified
file onto the screen.

USER B Change the currently logged user
number to the specified value.

XSUB T Allow the entering of data as well
as CP/M commands in a SUBMIT
file.

In addition to the commands listed in Table 5.2, your
CP/M system includes a number of built-in line editing

CP/M OPERATION 59

commands. The CP/M line editing commands, shown in
Table 5.3, have the general form:

Corn.

where:

[means hold down the CONTROL key on your
Commodore 64.

x is one of the keys on your Commodore 64
keyboard.

Table 5.3 CP/M Built-in Line Editing Commands
COMMAND FUNCTION

= c
1

Perform a CP/M warm-start.

Move to the beginning of the next line.

Delete one character and erase it from the
screen.

Perform a carriage return and line feed.

Perform a carriage return.

Toggle printer/console output. On first use,
send all screen messages to the printer; one
next use, send all screen messages to the
screen.

Repeat the current command line.

Temporarily halt listing of data on the
screen. Press any key to continue listing.

Cancel current command line.

Toggle between all upper case and upper/
lower case letters. [§ is the Commodore key.

60 CP/M OPERATION

5.5 CP/M COMMANDS

This section gives you a brief description of the Commodore
64 CP/M commands. It is not intended to be a detailed de-
scription of how CP/M commands operate, nor does it at-
tempt to describe every possible way you can use the CP/M
commands.

If you need to learn how CP/M works or if you need more
detail on how the commands work, you should purchase
one or more of the excellent CP/M teaching texts on the
market. Skim these books and pick those that present the
information in a way that you can easily understand.

The following notation is used in describing the CP/M
commands:

® Underlined words show arguments (parameters)
which you replace with your own values.

e BOLDFACE keywords must be entered exactly as
shown.

® A vertical bar []) separates arguments where you
may select any one of the list of arguments.

® Sguare brackets ([]) are used to show optional
arguments. You select any or none of the arguments
listed, depending on your needs.

® Braces ({ }) show that you must choose one of the
arguments.

5.5.1 pgm-name (Load and Run a CP/M
Program)
Format: [disk-id:] filename <CR>

where:

disk-id is an optional disk identifier.

Jfilename is the name of the file containing the pro-
gram to be loaded and run. Programs must be
stored in files named filename.COM.

Description:
CP/M programs are stored in files named
filename.COM. When you type the name of one of

CP/m OPERATION 61

these program files and hit the carriage return key,
CP/M does the following:

1. Searchs the currently logged disk or the disk
specified by disk-id for the program file
Sfilename.COM.

2. Loads the program file into memory.

3. Begins executing the instructions in the program.

If the file is not found on the disk, CP/M prints a
message like this:

FILENAME?

When you get this message, make sure you have the
correct disk in the disk drive, that you've spelled the
program filename correctly, and that the program is
stored in a COM file.

Example 1:
To load and execute your program which is stored in
the file MYPROG.COM, enter:

MYPROG <CR>

CP/M searches the currently logged disk for the file
MYPROG.COM, loads the file, and begins executing the
instructions. If the file is not on the disk, you will see
the error message:

MYPROG?
Example 2:
You have a single drive system and are currently logged

to disk A. You want to load and run the program XYZ
from disk B. Enter the CP/M command:

B:XYZ <CR>
CP/M then responds with:
PLACE DISK B INTO THE DISK DRIVE AND HIT RETURN

62 CP/M OPERATION

Put the appropriate disk into the disk drive and press the
key. Then, CP/M searches for the file named
XYZ.COM, loads the file, and begins executing its instruc-
tions.

5.5.2 x: (Change the Currently Logged Disk)
Format: disk-id:

where:
disk-id is the disk identifier

Description:
Under CP/M, you are always “logged” to a disk. You
can tell which disk CP/M is using by looking at the
prompt message. If it's “A>", you're logged to disk A; if
it's “B>", you're logged to disk B.
You can change the logged disk by entering:

DISK-ID:
CP/M then asks you to insert the appropriate disk into
the disk drive and hit the carriage return. CP/M re-
members which disk you're currently logged to and will

request another disk if you ask for a file or program
and use the disk-id qualifier.

Example:
You have a single drive system and are currently logged
to disk A. You want to log to disk B. To do this, you
would enter:

B: <CR>
CP/M then writes:
INSERT DISK B INTO DRIVE 0, PRESS RETURN

When you insert the disk into the drive and hit the
carriage return, CP/M is logged to that disk. The CP/M
prompt will now be:

B>

CP/M OPERATION 63

5.56.3 ASM

Format: ASM filename[.parms |

where:
filename is the name of the file containing the pro-
gram to be assembled. The file must be named
Jilename.ASM.
parms contains up to three characters specifying
the drive(s) for the source file, HEX file, and PRN
file.

Description:
The ASM command loads and executes the CP/M As-
sembler which processes 8080 instructions. The CP/M
Assembler:

1. Assembles the assembly language statements con-
tained in the file filename.ASM.

2. Generates an object file in hexadecimal format and
places the object file in filename . HEX.

3. Produces a print file in filename.PRN.

The parms string is an optional character string which tells
the assembler where to read and write its files. You can
specify up to three characters in parms. Each character
position has a special meaning:

e Position 1: The source drive for the file containing
the assembly language statements.

® Position 2: The destination drive for the object
(HEX) file.

® Position 3: The destination drive for the print (PRN)
file.

If you specify a “Z” for positions 2 and/or 3. the assembler
will not generate a HEX (position 2) or PRN (position 3] file.
If you specify an “X” for position 3, the listing will appear on
your screen instead of in a file. Table 5.4 lists the ASM error
messages.

64 CP/M OPERATION

NOTE: CP/M was written for the Intel 8080 microprocessor. The Z80 pro-
cessor in your Commodore 64 is compatible with the 8080 processor but
offers a much larger instruction set, more internal registers, and other
advantages.

If you want to use the full Z80 instruction set, you'll have to get an
assembler that recognizes the Z80 instructions.

Table 5.4 ASM Error Messages

ERROR CODE MEANING

D

Data error. The data element cannot be
placed into the specified data area. For
example, you cannot put the value 500 in
a one-byte area.

Expression error. The assembler could not
evaluate the expression.

Label error. The label is used out of con-
text. This could be a duplicate label.

Not implemented. You tried to use a fea-
ture that is not implemented, such as
using rnacros.

Overflow. The expression is too compli-
cated to evaluate.

Phase error. A label's value changed be-
tween passes of the assembler.

Register error. The value specified as a
register does not match the value needed
by the op code.

Syntax error. The statement contains a
syntax error and could not be evaluated.

Undefined lable. You used a label which
does not exist in the program.

Value error. There is an improperly
formed operand in the expression.

CP/M OPERATION 65

Examples:
ASM APROG.BBB

ASM PGM2.BZZ

ASM PGMFOR.AAX

5.5.4 DDT

Assemble the assembly language
program contained in the file
B:APROG.ASM and put the object
file in B:APROG.HEX and the print
file in B:APROG.PRN.

Assemble the assembly language
program contained in the file
B:PGM2.ASM. Do not generate
either the object (HEX) file or the
print (PRN) file.

Assemble the assembly language
program contained in the file
A:PGMFOR.ASM. Put the object
file (PGMFOR.HEX) onto Disk A.
Print the listing on the screen.

Format: DDT | [disk-id:] filename].type]]

where:

disk-id is an optional disk identifier.

filename.type is a valid CP/M filename for the file
containing the information to be loaded and proc-

essed by DDT.

Description:

DDT is the CP/M Dynamic Debugging Tool which you
can use to interactively test and debug programs. You
can load any file into memory using DDT. If you load
an executable file, you can directly control its execu-
tion from your console.

NOTE: You can also use DDT to look at a file in both ASCIl and

hexadecimal format.

66 CP/M OPERATION

DDT loads the file into the TPA (Transient Program
Area) in memory. You can then use the commands
shown in Table 5.5 to operate on the information in
the TPA.

You must know 8080 assembly language instruc-
tions to use DDT. If you don't know the assembly lan-
guage instructions, don’t try to use DDT. Appendix B
gives a list of some of the currently available Z80 as-
sembly language books.

NOTE: DDT recognizes only the subset of Z8Q instructions that is identi-
cal to the Intel 80B0 microprocessor instruction set.

Table 5.5 DDT Commands

COMMAND MEANING
As Assemble. Begin entering assem-
bly language instructions at ad-
dress s.
D[s[.f]] Display. Display the contents of

memory in both hexadecimal and
ASCII formats. Begin at address s
and end at address f. If you don't
specify f, 16 display lines are
shown. If you don't specify s, the
starting address is the current
display address.

Fs f.c Fill memory. Fill memory with the
hexadecimal byte c. Begin storing
the byte ¢ at location s and end at
location f. You nuse the F command
to fill a block of memory with one
value, for example, all zeros or
blanks.

G[s] [[b1[.b2]] Go. Begin executing the instruc-
tions at location s with optional

breakpoints at locations bl and

CP/M OPERATION 67

Table 5.5 (Continued)

COMMAND

MEANING

Hcl,c2

Ifilename|[.type |

Ms,f.d

68 CP/M OPERATION

b2. If you don't specify location s,
execution begins at the current
address.

Hexadecimal sum/difference. Add
(or subtract, depending on the
signs) the hexadecimal constants
cl and c2.

Input. Insert the filename
filename.type into the default file
control block for the TPA. You
must use an R command to actu-
ally read the file.

List. List the assembly language
mnemonics beginning at address s
and ending at address f. If you
don’t specify a value for s, the list-
ing begins at the current address.
If you don't specify a value for f, 12
lines are listed.

Move a block of information. Move
the contents of a block of memory.
Begin moving data from address s
and end at address f. Move the in-
formation to address d.

Read a disk file. Read the file
whose filename and type are in the
file control block into the program
area beginning at offset 0. You use
an [command to set the file in-
formation in the file control block.
If you don’t specify an offset value,
the file is read into memory be-
ginning at address 100H.

Table 5.5 (Continued)

COMMAND MEANING

Ss Examine and modify memory
values. DDT begins processing at
location s. All addresses and their
contents are listed. If you hit a
carriage return, the contents are
not changed. If you want to change
the value, enter a new value before
you hit the carriage return. To
stop the listing, hit a period (.).

T[n] Trace program execution. DDT
traces execution and displays reg-
isters and flags for n steps. n may
be 1 through 65535. If you don’t
specify a value for n, DDT executes
and traces one statement.

U[n] Untrace. This performs the same
processing as the T command ex-
cept that the registers and flags
are not displayed for each step.

X[r] Examine and modify CPU regis-
ters. The examine command lets
you examine and optionally modify
the contents of the CPU registers
shown in Table 5.6. If you don’t
specify a value for r, all of the CPU
registers are displayed in the for-
mat shown in Table 5.7.

Table 5.6 DDT CPU Registers/Status Flags

NAME MEANING VALUE
STATUS FLAGS:
C Carry flag 0/1
Z Zero flag 0/1
M Minus flag 0/1

CP/m OPERATION 69

Table 5.6 (Continued)

NAME MEANING VALUE
STATUS FLAGS:
E Even parity flag 0/1
I Interdigit carry 0/1
REGISTERS:
A Accumulator O-FF
B BC register pair O-FFFF
D DE register pair O-FFFF
H HL register pair O-FFFF
S Stack pointer O-FFFF
p Program counter O-FFFF
Examples:
DDT Loads DDT and waits for you to

DDT PROG.COM

enter commands.

Loads DDT and reads the file
PROG.COM into the TPA (address
100H). DDT then waits for you to
enter commands.

Table 5.7 DDT CPU Register/Flag Display Format

CfZfM{EfIf A=bb B=dddd D=dddd H=dddd S=dddd

P=dddd inst

where:

C, Z, M, E, and I are processor status flags
shown in Table 5.6

A, B, D, H, S, and P are the registers shown

in Table 5.6

fis a Oor 1 flag value

bb is a byte value (O through 255)
dddd is a double byte value

inst is the disassembled 8080 instruction at
the location addressed by program counter

(P)

70 CP/M OPERATION

5.5.5 DIR
Format: DIR [disk-id:] [filename.type]

where:
disk-id is an optional disk identifier.

Jilename is an optional valid one- to eight-character
CP/M filename.

type is a valid one- to three-character CP/M file type.
You need to specify a type if you use the filename
parameter.

Description:

You use a DIR command to display the directory of files
on a certain disk disk-id. If you don’t supply a disk-id
parameter, DIR lists the directory of the disk in the
drive currently logged to the system.

You can use the CP/M wildcard (* and ?) characters
in your filename and type parameters. These char-
acters are acted upon as follows:

® gquestion mark (?)

Use a question mark (?) to represent a single char-
acter in a filename or type. DIR will use the ? to
match on any character that occupies that position
in the filename or type. For example,

DIR PGM?.COM

will display all files that have the first three char-
acters PGM, any fourth character and the type COM.
This format will match only files with names
PGMx.COM. It will not match PGMxxx.COM.

® asterisk (*)

Use an asterisk (*) to represent an entire filename or
type or the remainder of a filename or type. DIR will
match on any characters in the positions indicated
by the *. For example,

DIR PGM*.COM

CP/M OPERATION 71

will display all files that have the first three char-
acters PGM, regardless of the length of the file-
name, and the type COM.

If you use a disk-id value, DIR will display only those files
on the indicated disk. If you omit the disk-id value, DIR
displays the files on the currently logged disk.

Examples:
DIR

DIR B:
DIR B:TEST.COM

DIR *.BAK

DIR TEST*.BAK

DIR TEST??.BAK

72 CP/M OPERATION

Display the directory of the currently
logged disk. The names of all files on
the disk are shown.

Display the directory of Disk B.

Display the directory information for
file TEST.COM on Disk B. You can
use this form of the DIR command to
check whether the file you want is on
that disk.

Display the information from the
currently logged disk for all files
which are of the type BAK.

Display the information from the
currently logged disk for all files that
are of the type BAK and whose
filenames contain the first four char-
acters TEST. This will display the
files TEST.BAK, TEST1.BAK,
TESTXXX.BAK, TEST1234.BAK, or
any other file with the first four
characters TEST and type BAK.

Display the information from the
currently logged disk for all files that
are of type BAK and have a four- to
six-character filename beginning
with the letters TEST. This will dis-
play the files TEST.BAK, TEST]1.
BAK, or TESTXX.BAK but will not
display the file TEST1234.BAK.

5.5.6 DUMP
Format: DUMP [disk-id:]filename.type

where:
disk-td is an optional disk identifier.

filename is valid CP/M filename of the file whose
contents are to be displayed.

type is a valid one- to three-character CP/M file type.

Description:
You use a DUMP command to display the contents of a
file in hexadecimal format. The file information is
shown on the screen.

Examples:

DUMP A:DATA.TST Dump the contents of the DATA.TST
file on Drive A to the screen. The file
information is shown in hexadecimal
format.

DUMP MY.DTA Dump the contents of the MY.DTA
file, which is on the currently logged
disk, to the screen.

5.5.7 ED

Format: ED [disk-id:]filenamel[.type] [[disk-id2:] [filena-
me2|[.type2]]]

where:
disk-id is an optional disk identifier.

filename is the name of the file containing the data
to be edited.

type is a valid CP/M file type for the file containing
the data to be edited.

CP/M OPERATION 73

disk-id2 is an optional disk identifier needed when
you want the edited file to be written to a disk other
than the disk being edited.

filenameZ2 is the name of the output file when you
want the edited filename to differ from the original
filename.

type2 is the type for the output file when you want
the edited file to have a different type than the orig-
inal file.

Description:
You use the ED command to run the CP/M context
editor to create or change CP/M source language, data,
and text files. ED works on the data in its buffer, using
a character pointer to keep track of its current posi-
tion. Be sure that you understand how to use ED; you
could lose your edited file if you're not careful!

If the file exists when you enter the ED command,
CP/M opens it and prepares to operate on it. If the file
does not exist, CP/M creates a new file with the
specified name. CP/M names its temporary file
filename.88 while you are editing the information.

When you are finished editing the file, CP/M changes
the name of the original file to filename.BAK and
writes the edited information to the file named
filename.type when you tell ED to write the data. If
you don't tell ED to write the edited information to the
file, you will lose the edited data. You must tell ED ev-
erything!

If you want to write the edited file to a disk other
than the one containing the original file, specify a
disk-id2 parameter.

If the file that you are editing is too large to fit in
memory, you must tell CP/M’s ED processor when to
swap information to its work files. The amount of data
that can be processed without swapping depends on
the size of your CP/M system. The standard Commo-
dore 64 CP/M system is a 44K version.

You use the control characters shown in table 5.8
and the commands shown in table 5.9 when you are
editing a file using ED.

74 CP/M OPERATION

Remember that the CP/M ED editor is not a very
complex editor. It works in its buffers, and you must
tell it everything. After you enter the command that
telis ED what file to edit. you must tell ED to read in a
specified number of lines from the file. In the same
way, after you have finished editing, you must be sure
to close the processing with an E command to save
your edited data.

NOTE: Some ED commands (F, I, N, and S) when enfered in upper case,
automatically translate all subsequent lower case entries fo upper case.
If you enter these commands in lower case (f, i, n, s), the automatic
translation to upper case is not done, and data can be entered in both
upper and lower case

Table 5.8 CP/M ED Control Characters

CHARACTER MEANING

-L Used as a logical carriage
return/line feed within a
string.

-X Line delete.

[ctru 4 String terminator/separator.

Delete the previous character.

Table 5.9 CP/M ED Commands*

COMMAND FUNCTION

n:

Move the character pointer to the
beginning of line n.

[+/=In Move the character pointer up (—)

nA

or down (+) n lines and type the
line.

Append n lines from the original
file filename to the buffer in mem-

ory.

CP/M OPERATION 75

Table 5.9 (Continued)

COMMAND

FUNCTION

OA

#A

[+/-]B

[+/~]nC

[+/=InD

nFstring["Z]

76 CP/M OPERATION

Append enough lines from the file
to half fill the buffer.

Append enough lines from the file
to fill the buffer or reach the end of
file.

Move to the top (B) or bottom (—) of
the buffer.

Move the buffer character pointer
forward (+) or backward (-) n
characters in the buffer.

Delete n characters from the buf-
fer. Delete the characters before
(—1) or after (+) the character
pointer.

End the ED session. Rename the
original file to filename.
BAK. Close the files and save the
new file.

Find the character string string n
times. If you don’t supply a value
for n, the string is found only once.
You use the -Z (*Z) toend
the string when you want to enter
another ED command on the same
line as the F command. This com-
mand performs an automatic
translation to upper case. To find a
character string that includes
lower case letters, use the f form of
this command.

Save the new (edited) file. Rename
the original file to filename.BAK.

Table 5.9 (Continued)

COMMAND FUNCTION

Re-edit the file using the new file as
the original file. This is the same
as entering an E (end edit) com-
mand and then running the ED
editor again on the newly saved
file.

I<CR> Enter insert mode. You must enter
a -Z (*Z) to end insert
mode. When you use an I com-
mand, you can enter only upper-
case characters. The character
pointer is moved to the end of the
inserted text when you enter the
-Z. To enter both upper-
case and lower-case information,
use the I command described be-
low.

Istring (" Z) Insert the character string string at
the position in the buffer pointed
to by the character pointer, The
-Z marks the end of the
string Lo be inserted. The character
pointer is moved to the end of the
inserted string. You can enter only
upper-case characters with the 1
command. To insert both upper-
case and lower-case information,
use the istring command described
below.

i<CR> Enter insert mode. You must enter
a -Z ("Z) to end insert
mode. When you use an i com-
mand, you can enter both upper-
case and lower-case characters.
The character pointer is moved to

CP/M OPERATION 77

Table 5.9 (Continued)

COMMAND

FUNCTION

istring [" Z]

the end of the inserted text when
you enter the -Z.

Insert the character string string at
the position in the buffer pointed
to bv the character pointer. The
-Z marks the end of the
string Lo be inserted. The character
pointer is moved to the end of the
inserted string. You can enter both
upper- and lower-case characters
with the i command.

ndstring “Zstring2 " Zstring3 ["Z]

[+/-InK

[+/—-]InL

Juxtapose strings. Find stringl.
Add string2 to the end of stringl
and delete all characters from the
end of string2 up to but not includ-
ing the first character of string3.
You use the optional final
-Z (*Z) when you want to enter an-
other ED command on the same
line.

Delete the following (+) or previous
(=) n lines.

Move the character pointer up (—)
or down (+) n lines. If n is zero (0),
move the character pointer to the
beginning of the current line.

nMcommands[“Z]Execute the ED commands n

78 CP/M OPERATION

times. If n is zero (0) or one (1), re-
peat the ED commands until an
error occurs. You use the terminat-

ing -Z (*Z) to enter an-

Table 5.9 (Continued)
COMMAND FUNCTION

other ED command on the same
line. Any ED commands after the
"Z are executed only once and are
not treated as part of the M com-
mand.

nNstring [" Z] Find the nth occurrence of the
character string string. Yo 1se the
optional terminating -Z
("Z) when you want to enter an-
other ED command on the same
line. The N command performs an
automatic translation from lower
case to upper case. If you want to
find a string containing lower-case
letters, use the n form of this
command.

O End the ED session and keep the
original file. Do not apply any of
the changes made during the ses-
sion.

[+/-=nP Display n pages. Each page is 24
lines. Display the n pages before
(—) or after (+) the current position
of the character pointer. If you
supply a zero (0) for n, the current
line and the next 23 lines are
listed.

Q Abandon the editing session. Do
not save the new (edited) file. Re-
turn to CP/M.

R[filename] Read the file and insert the text
into the buffer. Move the character
pointer to the end of the inserted

CP/M OPERATION 79

Table 5.9 (Continued)

COMMAND

FUNCTION

text. If you supply a filename, ED
reads the file filename.LIB. If you
don't supply a value for filename,
ED reads the file X$$$8$88$$ LIB.

nSstringl “Zstring2 [*Z]

[+/~InT

[+/-1U

[+/~-/0}V

[nTW

80 CP/M OPERATION

Find stringl and replace it with
string2. Repeat this substitution n
times. If you do not supply a value
for n, the substitution is performed
once. You use the terminating
-Z (*Z) when you want to
enter another ED command on the
same line. The S command per-
forms an automatic translation
from lower case to upper case. If
you want to use lower-case letters
in your strings, use the s form of
this command.

Display the previous (—) or follow-
ing (+) n lines. If n is zero (0), or if
n is not supplied, display the cur-
rent line. B#T displays the entire
buffer.

Translate all characters in the buf-
fer to upper case. Plus (+) turns on
the translation. Minus (—) turns off
the translation.

Turn on (+) or off (—) the line
number display. The O displays the
amount of free buffer space in
bytes and the total buffer size.

Write the following n lines to the
temporary output file

Table 5.9 (Continued)
COMMAND FUNCTION

filename.$$$. If you do not specify
a value for n, only the current line
is written to the file.

nIX Write the following n lines to the
temporary file X$$$8$88 LIB. You
can retrieve these lines with an R
command (this is an easy way to
move a block of lines). If n is zero
(0), ED will DELETE the
X$$38888 LIB file.

nz Wait n seconds before resuming
ED processing.

*NOTES: You can use the operand n1:n2 for any n or n operand in the
ED commands shown in this table. If you use the n1::n2 form, the ED
processor will operate on the lines n! through n2. If you use this form
and omit either n1 or n2, ED assumes the current line for the missing

operand.

You can use a # for n in the ED commands. # means to use the largest
possible value (65535) for n

Many of the ED commands show a +/— form. You do not need to specify
the plus (+) sign. You do need to specify the minus (—) sign if you want
to move backward in the file

The F, I, N, and S commands perform an automatic translation to upper
case. If you want to enter both upper and lower case data, use the
commands f, i, n, and s.

Example:

ED PGMTST.ASM Edit the file PGMTST.ASM. If the file
exists, you must remember to read in
the data with an A command before
attempting to edit it.

CP/M OPERATION 81

5.5.8 ERA
Format: ERA [disk-id:]filename.type

where:
disk-id is an optional disk identifier.

filename is a valid CP/M filename.

type is a valid CP/M file type.
Description:

You use an ERA command to erase one or more files
from your disk. If you don’t specify a disk-id parame-
ter, the file is erased from the currently logged disk.

ERA accepts the wildcard (*) notation for the
Jilename and type parameters. This allows you to
erase a group of files with a single command. Be care-
ful that you don’t erase files that you want to keep
when you use the wildcard notation.

Examples:

ERA TEST.DTA Erase the file TEST.DTA from the
currently logged disk.

ERA B:MY.PGM Erase the file MY.PGM from disk B.

ERA *.BAK Erase all files with a type BAK from
the currently logged disk.
ERA A:*.* CAUTION. Erase all files from disk A.

(CP/M asks you whether you really
want to erase all fimes from the disk.)

ERA TEST.* Erase all files with the filename TEST
from the currently logged disk. This
would erase, for example, TEST.DTA,
TEST.PGM, TEST.ASM, TEST.BAK,
TEST.xxx.

82 CP/M OPERATION

5.5.9 LOAD
Format: LOAD [disk-id:]}filename

where:
disk-id is an optional disk identifier.

Jilename is the name of the file containing output
from the assembler.

Description:
You use a LOAD command to process the output from
the assembler (see the description of the ASM com-
mand) and produce an executable program file. The
input file must be named filename.HEX. The output
file is named filename.COM.

You run the output from the LOAD processor by
entering the filename and hitting a carriage return
(see the description on loading and executing a CP/M
program in Section 5.5.1).

Example:

LOAD ASMPGM2 Process the file ASMPGM2.HEX
(which was created by the assembler)
and produce an executable program
in the file ASMPGM2.COM.

5.5.10 MOVCPM
Format: MOVCPM [{ * Isize }][*]

where:
the first * tells CP/M to calculate the amount of
memory available for its use.

size is a two-digit number from 20 through 48
which is the maximum amount of memory available
for CP/M in your Commodore 64. You use 44 for a
44K version of CP/M.

CP/M OPERATION 83

the second * tells CP/M to leave the new version in
memory for later SYSGEN or SAVE command proc-
essing.

Description:
You use a MOVCPM command to configure (prepare) a
new copy of your CP/M system. Changing CP/M to ex-
pect a different memory size is called “moving” the sys-
tem. The MOVCPM command operates in either of
these ways, depending on which parameters you use:

1. “"Move” CP/M and immediately execute the new,
different sized system. Do not save it on disk.

2. “Move” CP/M and prepare the new system to be
saved to disk by a later SYSGEN or SAVE com-
mand. The new CP/M system is NOT written to
the disk. You must use a SYSGEN or SAVE com-
mand to actually write out the new version of the
system.

If you do not specify any parameters and use a
MOVCPM command like this:

MOVCPM <CR>

CP/M will determine how much memory is available,
create a new system, and immediately use the new sys-
tem.

If you specify the first parameter, you can tell CP/M
how much memory it can use by:

¢ Using the * which tells CP/M to use all available
memaory.

® Using the size parameter which tells CP/M to use
sizeK bytes of memory.

You can use any decimal integer between 20 and 48 for
the size value.

If you want to save the new version of CP/M on a
disk, you must use the second * parameter and you
must supply a first parameter {either size or *). You
can use this type of command:

MOVCPM * * <CR>

84 CP/M OPERATION

CAUTION: MOVCPM WILL ONLY CREATE A NEW VERSION OF CP/M.
THE NEW VERSION IS NOT SAVED TO A DISK UNTIL YOU USE A SAVE

OR SYSGEN COMMAND!

Examples:

MOVCPM

MOVCPM 40 *

MOVCPM 28

5.5.11 PIP

Format: PIP
or

Create a new version of CP/M, use all
available memory, and immediately
execute the new version. Do not save
this version.

Create a new version of CP/M using
40K of memory. Do not execute the
version but prepare it to be saved to
disk through a SAVE or SYSGEN
command.

Create a 28K version of CP/M and
execute it. Do not save this version.

PIP destination =source[parameter]

where:

destination tells where you want to copy the file to.
destination is in the form:

[disk-id:]Jfilename.type

source tells which file to copy. source has the same
format as destination.

parameter is one or more valid PIP parameters sepa-
rated by zero or more blanks and enclosed in square

brackets [].

Description:

You use PIP, CP/M'’s Peripheral Interchange Program,
to copy files. It doesn’'t matter what’s in the file. PIP

CP/M OPERATION 85

simply copies from the destination file to the source
file. The source and destination files can be on the
same disk or can be on different disks.

You can specify only the disk-id for the destination
when the file is to be copied to a file with the same
filename.type on another disk. You can use the
wildcard (*) notation for any part of the source
Jilename and/or type.

You use the parameters, or PIP commands, shown
in Table 5.10 to have PIP perform some operations on
the file during the copy process.

You can use PIP in two different ways:

1. Invoking PIP as a program by entering:

PIP <CR>

In this use, PIP is loaded and returns an * on the next
line. You can then enter PIP commands, one per line,
until you have finished copying all the files you want to
copy. You end the PIP session by hitting a carriage re-
turn when PIP prints its * prompt message.

2. Invoking PIP with a command string, by entering:

PIP A:NEW.DTA=B:OLD.DTA <CR>

In this use, PIP is loaded and copies the file
B:OLD.DTA to the new file A:NEW.DTA. After the copy-
ing is complete, PIP reboots CP/M and returns control
to CP/M.

PIP can also copy from device to device. For this type of op-
eration, you can use any of the devices shown in Table 5.11.
PIP also uses some “devices” to perform special operations.
These are shown in Table 5.12.

You can use PIP to copy the contents of several files to one
file (concatenate several files). You do this by specifying the
source filenames, separated by commas. For example, to
copy files FILE1.DTA, FILE2.DTA, and FILE3.DTA to the
single file ALLDATA.BAK. you use the command:

PIP ALLDATA.BAK=FILE1.DTA,FILE2.DTA,FILE3.DTA

In the above example, the entire contents of FILE1.DTA are
copied to ALLDATA.BAK. Next, PIP copies the entire con-

86 CP/M OPERATION

tents of FILE2.DTA to ALLDATA.BAK, beginning the copy at
the end of the current contents of ALLDATA.BAK (the end
of the copied FILE1.DTA). FILE3.DTA is then copied at the
end of the FILE2 DTA data in ALLDATA.BAK.

NOTE: Be careful when concatenating ASCH files. ASCIi files end with a
~Z(-Z) that PIP copies, along with the data, into your output
file. This produces a file with multiple end-of-file markers embedded in
it. Many programs will stop reading the file at the first ~ Z.

Table 5.10 PIP Command Parameters
COMMAND FUNCTION

Dn Delete all characters after the nth
column. Use this when you want to
send data to your printer and the
data are longer than your printer’s
carriage. You get only the first n
characters.

E Echo the characters to the console
during the copy operation.

F Remove form feed characters dur-
ing the copy operation. For feed
characters are ASCII value OCH or

G L ("L

Gn Get the file from a different user
area. The n can be any decimal in-
teger between O and 15.

H Check the files for correct Intel
Hexadecimal format records.

I Ignore any null records when
transferring Intel Hexadecimal rec-
ords. Null records are those that
contain only OOH.

CP/M OPERATION 87

Table 5.10 (Continued)

COMMAND

FUNCTION

88 CP/m OPERATION

Convert all upper-case letters to
lower-case letters during the copy
operation. Only the letters A-Z are
converted to a-z. All other char-
acters are unchanged.

Append a line number to the be-
ginning of each copied line. A line
is a record that ends in an ASCII
CR/LF (carriage return/ line feed),
which you usuallv insert when you
press the key. The line
numbers begin aL one {1) and are .
incremented by one (1).

Copy object files and non-ASCII
files. Treat the -Z (2
end-of-file marker as any other
character.

Add a page feed (form feed) every n
lines copied. The ASCII form feed
character is -L (*L) or
OCH. You use this when you are
copying from a file to your printer.

Copy only a section of the file. Stop
the copy operation when PIP finds
the string s. The J[GL0l-Z (*Z)
marks the end of the string to be
found. The characters in string s
are converted to upper case only
when you specify the destination
and source parameters when you
invoke PIP. The conversion to
upper case is not done when you
load PIP into memory and enter
several commands to PIP’s prompt
of *.

Table 5.10 (Continued)
COMMAND FUNCTION

R Copy system files. System files have
the SYS attribute.

Ss~Z Copy only a section of the file be-
ginning with the first occurrence of
the string s. The -Z (" 2)
marks the end of the string s. See
the description of lower- to upper-
case conversion for the s string in
the @ command description.

Tn Set tab stops at every n column.
This is useful when you are send-
ing output to your printer from a
file. The ASCII tab character is 09H

or GEH ("1

v Verify the copy operation by com-
paring the source and destination
files after the copy is complete.

w Override the read only attribute
and copy into a read only (R/O) file.

z Zero the parity bit (8th bit) on
ASCII characters.

Examples:

PIP A:FIRST.DTA=B:TEST.DTA
Copy the file from disk B called
TEST.DTA to the file on disk A called
FIRST.DTA.

PIP B:=A:*.* Copy all files from disk A to disk B.

CP/M OPERATION 89

PIP CHAPT1.BAK=CHAPT.ONE
Copy the file CHAPT.ONE to the file
CHAPT1.BAK. Both files are on the
same disk.

PIP CON:=TEST.DTA
Print the file TEST.DTA on the con-
sole.

PIP B:BACKUP.PGM=A:PROG234.COMI[R]
Copy the system file PROG234.COM
on disk A to BACKUP.PGM on disk B.

PIP X.Y=A.B,C.D Copy the two files A.B and C.D to the
file X.Y.

PIP

*B:=A:SYSFILE.XXX[R]

*A:=B:WORDPROG.COM

B:=A:.BAK

*<CR> Copy several files. First, copy the sys-
tem file SYSFILE.XXX from disk A to
disk B. Then copy the program
WORDPROG.COM to disk A. Finally,
copy all files that have the type BAK
from disk A to disk B.

Table 5.11 PIP Logical Devices

NAME DEVICE

CON: Console display as PIP output.
Keyboard as PIP input.

LST: The CP/M list device (printer) for PIP
output.

PRN: A special form of the CP/M LST

device. PRN handles tabs, determines
page breaks, and number lines.

90 CP/M OPERATION

Table 5.12 Special PIP Devices

NAME DEVICE
NUL: Send 40 null characters (ASCII value
is zero) to the file or device.
EOF: Send an end-of-file mark (ASCII

value is 1AH) or ~Z Il Z) to the
ASCII (not binary) file or device.

5.5.12 REN
Format: REN
Format: REN[disk-id:new-file =old-file

where:
disk-id is an optional disk identifier.

new-file is the new filename, This must be a valid
CP/M filename of the form filenamel.typel.

old-file is the current filename. This must be a valid
CP/M filename of the form filename[.type}.

Description:
You use a REN command to change the name of an
existing file. The current filename old-file is changed
to the new filename new-file. You cannot use the
wildcard form of a CP/M filename when you use the
REN command. You must specify a valid CP/M file-
name, but you can specify a blank type.

If you are renaming a file that is on the currently
logged disk, you don’t need to specify the disk-id pa-
rameter. You cannot specify two disk-id parameters.
REN changes the name of the file on the same disk on
which the file resides; it does not copy the file to an-
other disk. If you want to change the filename and also
move the file to another disk, use the PIP command.

Examples:

REN A:PRODPGM.COM=TESTPGM.COM
Change the name of the file

CP/M OPERATION 91

TESTPGM.COM on disk A to
PRODPGM.COM.

REN DATA.ARC=DATA.182
Change the name of the file DA-
TA.182 on the currently logged disk
to DATA.ARC.

REN B:DATAFILE=TEST.DTA
Change the name of the file
TEST.DTA on disk B to DATAFILE.

5.5.13 SAVE

Format: SAVE page-num [disk-id:]Jfilenamel.typel
where:
page-num is the number of 256-byte pages from the
TPA to save to the specified file.

disk-id is an optional disk identifier.

filename.type is the name of the file to which CP/M
will write the page-num*256 bytes.

Description:
You use a SAVE command to save page-num pages
(where 1 page = 256K bytes) to the specified file. CP/M
copies the information from the TPA which begins at
location 100H. You also use the SAVE command when
you use the MOVCPM command to create a new ver-
sion of CP/M.

You must calculate the number of pages to be saved
by dividing the amount of data by 256. You can use
DDT to determine the size of your program. When you
load a program into the TPA using DDT, DDT will tell
you the size of the loaded data. Then, calculate the
number of 256-byte pages that this represents.

For example, if you want to save the information
from location 100H through 4FFH into the file
NEWPGM.CM, you would use the command:

92 CP/M OPERATION

SAVE 4 NEWPGM.COM

You use the disk-id parameter when you want to save
the information to a disk that is not the currently
logged disk.

Examples:
SAVE 1 A.B Save the contents of memory loca-
tions 100H through 1FFH to the file
A.B.

SAVE 10 B:PGM.TST
Save the contents of memory loca-
tions 100H through AFFH to the file
PGM.TST on disk B.

SAVE 5X Save the contents of memory loca-
tions 100H trough 5FFH to the file X
on teh currently logged disk.

5.5.14 STAT

Format: STAT
or
STAT command
where:
command is a valid STAT command as described
below.

Description:
You use a STAT command to display or change status
information for a CP/M disk, file, group of files, device,
or user number.
To display status information, you use one of these
forms of the STAT command:

® STAT [disk-id:]

This shows the number of bytes remaining on disk
disk-id. If you omit disk-id, STAT provides the in-

CP/M OPERATION 93

formation on the currently logged disk. The STAT
message is (see Table 5.13 for the valid options):

disk-id: Option, Space: nnK
e STAT [disk-id:]DSK:

This shows the drive characteristics for disk disk-
id. If you omit disk-id, STAT provides information
related to the currently logged disk. The STAT in-
formation is:

disk-id: Drive Characteristics
1088: 128 Byte Record Capacity
136: Kilobyte Drive Capacity
64: 32 Byte Directory Entries
64: Checked Directory Entries
128: Records / Extent

8: Records / Block

34: Sectors / Track

2: Reserved Tracks

e STAT [disk-id:]filenamel[.type]

This shows the characteristics of the file(s)
specified. You can use the wildcard (*) notation for
the filename and/or type parameters. If you don’t
specify a disk-itd parameter, STAT uses the cur-
rently logged disk.

The STAT information for the specified file(s) is
shown as:

Recs Bytes Ext Acc
nnn nK e Options disk-id:filename.type

...for each file specified...
Bytes Remaining on disk-id: nnK

where:
nnn is the number of 128-byte records for the file.

nK shows the file size in 1024-byte blocks.

e shows the number of extents used for the file.

94 CP/M OPERATION

Options shows a valid STAT option from Table 5.13.

disk-id;filename.type shows the filename.

If you specify a file which is not on the disk, STAT re-
turns an error message:

FILE NOT FOUND
e STAT {DEV: | VAL: | USR:}

This shows the information for the CP/M devices
(DEV:), STAT commands and external peripheral
options (VAL:), or user numbers (USR:). This func-
tion refers to the I/0 byte, which is not implemented
and always returns the default device assignments.

Table 5.13 STAT Command Options

OPTION MEANING

DSK: Show the characteristics of the
specified drive.

DEV: Show the characteristics of the
CP/M system devices.

USR: Show the files related to each
USER number on the specified
disk.

VAL: Show the possible STAT com-

mands and devices.

NOTE: The DEV- and VAL options refer to the I/O byte, which is not
implemented in the Commodore 64 BIOS.

To change status information, you use one of these forms
of the STAT command (valid STAT attributes are shown in
Table 5.14):

® STAT disk-id:=R/0
This changes the disk disk-id to a temporary read
only mode (R/O).

CP/M OPERATION 95

® STAT [disk-id:}filenamel.type]=$x
where x is {R/O | R/W | SYS | DIR}

This changes the specified file(s) to read only (R/0),
read/write (R/W), system (SYS), or nonsystem (DIR).
You can use the wildcard (*) notation for the
filename and/or type parameters. To change all
your program files on disk A to read only, you enter

the command:

STAT A:*.COM $R/O

Table 5.4 STAT Command Attributes

ATTRIBUTE MEANING

DIR Set the non-SYSTEM attribute for
the file(s).

R/O Set the file or disk to read only.

R/W Set the file to read/write.

S Show the size(s) of the file(s) based
on the file last record number(s).

SYS Set the SYSTEM attribute for the
file(s).

Examples:

STAT *.* Show the statistical information for
all files on the currently logged disk.

STAT A.B Show the statistical information for
the file A.B on the currently logged
disk.

STAT DSK: Show the statistical information for

the currently logged disk.

STAT *.COM $R/O Set all files on the currently logged

disk which have a type COM (CP/M
program files) to read only.

STAT NEW.DTA $R/'W

96 CP/M OPERATION

Set the file NEW.DTA to read/write.

5.5.15 SUBMIT
Format: SUBMIT [disk-id:}filename [parameters]

where:
disk-id is an optional disk identifier.

filename is the name of the file containing the
CP/M commands. This file must be named
filename.SUB.

parameters are optional parameters passed to the
SUBMIT commands.

Description:

You use a SUBMIT command to send a group of com-
mands to CP/M for execution. SUBMIT makes your
Commodore 64 operate in batch mode where, with a
single command. you can execute any number of pro-
grams or utilities.

The file containing the commands must have a type
SUB. This file can contain any CP/M commands.
CP/M creates a file called $$8 SUB as a temporary
work file when you execute a SUBMIT command.

NOTE: All commands in o SUBMIT file must be in upper case.

For example, you could have these commands in file DISK
DTA.SUB:

DIR

STAT * *
ERA *.BAK
STAT DSK:

To execute all four of these CP/M commands, you simply
enter:

SUBMIT DISKDTA <CR>

CP/M OPERATION 97

Remember, CP/M then executes the commands in the file in
the order in which the commands appear in the file.
SUBMIT processing only executes commands. It does not
pass any information to the programs it executes. If you
want to pass data to the programs, use the XSUB com-
mand.

You can chain from one .SUB file to another. Whenever a
SUB file finds another SUBMIT command, the first file is
stored and the second file becomes active. When the second
file’'s commands are finished, the first .SUB file becomes
active at the command following the SUBMIT command.
For example, you could have these two files:

File A.SUB contains:
STAT DSK:
SUBMIT B
STAT DSK:

File B.SUB contains:

ERA *.BAK
DIR

When you enter the command:

SUBMIT A

the following commands are executed:

STAT DSK:

ERA *.BAK

DIR

STAT DSK:
You can also pass parameters to the .SUB file. The parame-
ters are sequentially numbered in the file and have the

form:

$n

98 CP/M OPERATION

where:
n starts at 1 and is incremented by 1.

The parameters can be any information required by the
commands in your .SUB file. They can be filenames, disk
id's, file types, or anything that you need. SUBMIT does a
straight substitution of the parameter values for the pa-
rameter indicators (#n) in the .SUB file before passing the
commands to CP/M. The first parameter goes to all occur-
rences of 81; the second to $2, etc.

Suppose you want to check the status of your disk and
then edit a file. You could have a file called DSKEDIT.SUB
that contains this information:

STA $1:DSK:
ED $2.$3
STAT $1:$2.$3

Then, to check the status of Disk A and edit the file
MY.DTA, you would use this submit command:

SUBMIT DSKEDIT A MY DTA

SUBMIT processing replaces the parameter indicators with
the values in your SUBMIT command and the data in file.
When passed to CP/M for processing, DSKEDIT.SUB looks
like this:

STAT A:DSK:
ED MY.DTA
STAT A:MY.DTA

When you are using SUBMIT parameters, you can enter
these special characters through the parameter string:

e To enter a # as data, you must enter two consecutive
$$. This is transferred to the command line as a &.
Thus, to enter the value”$XY” as a parameter, you
must use $3XY.

e To enter a control character, use the up-arrow sym-
bol (~)] followed by the control character. To enter

-X, you would enter the character string *~ X.

CP/M OPERATION 99

You can have a SUBMIT command as the last command in
a .SUB file. This lets you chain from one .SUB command
file to another.

Examples:

SUBMIT STARTUP This executes the CP/M commands
in the file called STARTUP.SUB.

SUBMIT NEW A B This executes the CP/M commands
in the file called NEW.SUB. The value
“A” is passed to any $1 indicators in
the file. The value “B” is passed to
any $2 indicators.

5.5.16 SYSGEN
Format: SYSGEN [[disk-id:]filename.type]

where:
disk-id is an optional disk identifier.

filename.type is the name of the file that will con-
tain the new copy of the system.

Description:
You use a SYSGEN command to create a new copy of
your CP/M operating system. The CP/M system is
stored on special tracks called the system tracks
(tracks O and 1). These tracks never appear in the file
directory listing and you cannot read or write to these
tracks as part of processing any normal program.

You need the system tracks on any disk from which
you may do a warm or cold start. It's a good idea to
have a copy of the system on most disks that contain
programs. Whenever you enter a [fg3ul)-C (“C), CP/M
reloads part of its system tracks {the BDOS and CCP)
in a warm start.

You use the SYSGEN command to copy these tracks
from one disk to another or to create a new copy of the
system after you have used a MOVCPM command.

You use a SYSGEN command in one of these three
ways:

100 CP/M OPERATION

1. To copy your CP/M system from one disk to an-
other. You do not make any changes to the system;
you simply copy it.

2. You use MOVCPM to create a different sized ver-
sion of CP/M and you use SYSGEN to copy it to a
disk.

3. You use DDT to make special changes to your copy
of CP/M and you use SYSGEN to write the system
to a disk.

SYSGEN does not destroy any information currently
on the user area of a disk. SYSGEN simply writes a
new copy of the CP/M system on the disk.

If you specify a disk-id parameter, SYSGEN does not
ask for the source drive but uses the value you selected
for disk-id.

If you want to create a new copy of CP/M after using
MOVCPM to create a new version, you follow this pro-
cedure. The text that you enter is shown in boldface.
The messages from CP/M are shown in italics.

SYSGEN <CR>

COMMODORE 64 SYSGEN VERSION 2.0
SOURCE DRIVE NAME

(OR RETURN TO SKIP) <CR>

DESTINATION DRIVE NAME

(OR RETURN TO SKIP} B<CR>

DESTINATION ON B, THEN TYPE RETURN <CR>
FUNCTION COMPLETE

To copy a version of CP/M from one disk to another,
follow the above procedure but supply the appropriate
answers for the source and destination drives.

NOTE: If you SYSGEN onto your current system disk a version of CP/M
that is a different size from the one you're running, you CANNOT warm
start the system. The location of operating system components will not
match and the CP/M will crash.

CP/M OPERATION 101

Example:
To copy the system tracks from your current disk to an-
other disk, enter:

SYSGEN <CR>

and answer the questions that CP/M asks.

5.5.17 TYPE
Format: TYPE {disk-id:]filename.type

where:
disk-id is an optional disk identifier.

filename.type is the name of the file to be listed on
your screen.

Description:
You use a TYPE command to list an ASCII format file
on your screen. If you don’t specify a disk-id value,
CP/M uses the currently logged disk. You must specify
a valid CP/M filename. TYPE does not accept the
wildcard (*) notation.

You can use a -P (*P) before you enter your
TYPE command and the listing will appear on your
screen and on your printer. All commands and data
continue to appear on both the screen and the printer
until you enter another P,

You can stop the TYPE listing by pressing any key.
You can temporarily stop the listing by pressing a
-s (* S); you restart the listing by pressing any
key.

Remember that TYPE displays the contents of the
specified file, assuming that the file contains ASCII
characters. If you TYPE a program file (.COM), you will
see garbage on your screen. Be sure that you are list-
ing a text file when you use TYPE.

Examples:

TYPE A:BILLS.LST List the contents of the file on disk A
called BILLS.LST.

102 CP/M OPERATION

TYPE X List the contents of the file called X
on the currently logged disk.

5.5.18 USER

Format: USER [user-num]
where:
user-num is a decimal integer between O and 15.

Description:

You use a USER command to display and change the
current user number. CP/M assumes a default user
number of zero (0).

Once you change the user number, you can access
only those files associated with the new user number.
You can always enter a user number O to return to the
default setup.
To display the current user number enter:

USER <CR>
To change the current user number to 5 enter:
USER 5

You should not change the user number unless you
want to protect certain files from use by those who do
not know the associated user number. In a single-user
CP/M system, it's generally unnecessary to change the
user number.

Examples:
USER 2 Change the user number to 2.
USER Display the current user number.

CP/M OPERATION 103

5.5.19 XSUB

Format: XSUB

Description:

You use an XSUB command when you want to enter
more than commands in a .SUB file. XSUB is a subset
of SUBMIT processing and CANNOT be entered as a
response to the CP/M prompt. XSUB may appear only
in a SUBMIT (.SUB) file. Read the description of the
SUBMIT command for full details on how .SUB files are
processed.

XSUB must be the first command in your .SUB file.
You can enter parameters on an XSUB command in
the same way as for a SUBMIT command.

XSUB allows you to enter data that would normally
be entered through the keyboard for some programs. If
you are using a program that accepts buffered console
input (uses BDOS function 10), then the program will
accept the answers from the XSUB file instead of walit-
ing for you to enter data from the keyboard. Not all
programs do this, but all the CP/M utilities and com-
mands do accept data in this manner.

Example:
You want to submit a file that will run DDT and load
the file you specify. Your file called DDTRUN.SUB con-
tains:

XsuB
DDT
1$1.$2
R

You can submit this file and specify that the file
WORDPROC.DTA be read into memory through DDT
by entering:

SUBMIT DDTRUN WORDPROC DTA

104 CP/M OPERATION

This SUBMIT command accepts the DDT commands to
read the file WORDPROC.DTA into memory by process-
ing the information after the XSUB command.

CP/M OPERATION 105

CHAPTER

CP/M ON THE

COMMODORE 64

The Structure of CP/M

The BOOT Programs

The BIOS Programs

CP/M Disk Organization
The CP/M BDOS

Calling a Z80 Program from
the 6510

Calling a 6510 Program from
the Z80

Program Execution under
Cp/M

Z80 Schematic
Commodore 64 Schematic

O

In this chapter, you will find technical information about
implementing CP/M on your Commodore 64. You will need
this information only if you intend to make changes or ad-
ditions to CP/M as supplied with your Commodore 64 and
its Z80 cartridge.

CP/M was one of the first microcomputer operating sys-
tems designed to run on machines of more than one manu-
facturer. It is written in Intel 8080 Assembler language. The
Z80 add-on processor on your Commodore 64 executes a
superset of the 8080 machine language. Any program writ-
ten for the 8080 processor will run on the Z80, but the re-
verse may not be true.

When CP/M is running on your Commodore 64, the 6510
main processor and the Z80 add-on processor are alter-
nately active. The two processors trade control of the com-
puter according to what operations are required. Because
device drivers already reside in your Commodore 64 operat-
ing system, all input and output is performed by the 6310.
The Z80 runs only the CP/M operating system, its utilities,
and applications.

In addition to the standard functions required by the
CP/M operating system, you can access your own special
purpose routines running in 6510 native mode. This is use-
ful, for example, if you want to attach an instrument to the
optional IEEE interface cartridge on your Commodore 64.
You could then easily code a driver for the instrument and
gain access to it through a well defined, and protected,
interface.

6.1 THE STRUCTURE OF CP/M

The principal component of CP/M is the Basic Disk Operat-
ing System (BDOS). All requests for operating system ser-
vices — disk input/output, printer output, screen output —
are carried out through a set of standard calls to the BDOS.

NOTE: 1t is possible to call entry points in the CP/M BIOS directly. This
technique is NOT recommended unless you are very sure of what you are
doing. WARNING. Direct BIOS calls may be incompatible with furure
CP/M releases.

108 CP/M ON THE COMMODORE 64

A second major component of CP/M is the Console
Command Processor (CCP). The CCP analyzes and inter-
prets the commands that you enter from the keyboard, ini-
tiating whatever action you request. Of the resident CP/M
system, the CCP occupies the lowest memory areas (see
Figure 6.3).

Transient programs (those not a permanent part of the
BDOS]) are loaded into the Transient Program Area (TPA)
and may, if they need the space, overlay the CCP when
executing,

If a program executing in the TPA does overlay the CCP,
the CCP must be reloaded when the transient program
terminates. You will see this CCP reload operation (a “warm
boot”) as a line of asterisks appearing on your screen after a
program has finished.

The final major component of CP/M is the Basic Input/
Output System (BIOS). This has nothing to do with the
BASIC language. The BIOS is the component of CP/M that
allows CP/M to be run on a variety of machines. The BIOS
forms a bridge between the BDOS and the individual char-
acteristics of the machine that it runs on. Each machine
has a specially tailored BIOS that supports the hardware
and peripherals attached to it.

The CP/M BIOS is much like the CBM Kernal in your
Commodore 64. Like the Kernal, the BIOS contains a set of
standard routines that give you access to hardware func-
tions.

Your Commodore 64 has a unique BIOS that provides
easy access to the standard Commodore 64 peripherals,
either serial or IEEE.

6.1.1 How CP/M Works on Your Commodore
64

Four specially tailored assembly language programs and the
CP/M operating system are required to run CP/M on your
Commodore 64. Two of the assembly language programs
run under the 6510 microprocessor and two under the Z80
microprocessor:

® 6510 CP/M BOOT program (BOOT65)

® Z80 CP/M BOOT program (BOOT80)

CP/M ON THE COMMODORE 64 109

® 6510 BIOS (BIOS65)
e 780 BIOS (BIOS80)

The BOOT programs “bootstrap” CP/M. That is, they load
it into memory, initialize some areas, and begin its execu-
tion. Once the BOOT programs have completed their tasks,
they are no longer needed and the memory they occupied is
used for other purposes.

CP/M comes from Digital Research as a core operating
system. It needs an add-on software component called a
BIOS (Basic Input/Output System). The BIOS contains a
set of entry points that perform specific “primitive” tasks
for CP/M, such as:

® Set the track number for the next read or write op-
eration.

® Write a character to the printer.

® Read a character from the keyboard.

CP/M is not concerned with how these tasks are per-
formed. All this work is taken care of in the custom BIOS
written specifically to support a certain hardware environ-
ment. It is this BIOS that allows CP/M to run many differ-
ent machines equipped with many different peripherals.

On your Commodore 64, the CP/M BIOS is in two parts.
One part runs under the Z80 add-on processor (BIOS80)
and the other under the 6510 Commodore 64 main proc-
essor (BIOS65). This arrangement allows the 6510 to serve
as an input/output processor for the Z80, handling all disk,
printer, keyboard, and screen input or output.

The 6510 part of the BIOS initiates execution of CP/M
under the Z80 processor by transferring control to the 280
BOOT program, which loads CP/M and BIOS80. Whenever a
processor is switched on, it resumes execution at the in-
struction immediately following the instruction that
switehed it off. This means that when the Z80 returns con-
trol to the 6510, execution will resume within BIOS65.

When a CP/M program, running on the Z80, requests an
input/output operation, the Z80 BIOS places a function
code and any required parameter values at predetermined
locations in memory. Remember, memory is shared be-
tween the two processors, which makes it very easy for
them to pass data back and forth.

110 CP/M ON THE COMMODORE 64

Once these parameter values are in place, BIOS80
switches the Z80 out and the 6510 in. The 6510 resumes
execution in the 6510 portion of the BIOS. BIOS65 exam-
ines the function code passed to it by BIOS80 and initiates
the indicated action.

Once the 6510 has completed the action, BIOS65 places
return values and/or flag values into predetermined loca-
tions and switches control back to the Z80 processor.

Under the Z80 processor, execution resumes where it left
off in BIOS80. BIOS80 examines the shared memory areas
to determine the success or failure of the requested func-
tion and carries out any other action necessary to complete
the function.

6.1.2 6510 Memory Use

Figure 6.1 shows the memory allocation as seen from the
6510 running in native mode. Figure 6.2 shows details on
the BIOS65 memory area.

6510 CP/M Memory Map

6510
ADDRESS
$FFFF
8F000
6510 KERNAL ROM
8E000
6510 I/0 SYSTEM
$D00O
48K RAM AVAILABLE FOR Z80
RUNNING CP/M
$1000
BIOS65 AND SHARED DATA AREAS
80800
0400 TO O7FF SCREEN RAM
0000 TO O3FF ZERO PAGE AND 6510 STACK
30000

CP/M ON THE COMMODORE 64 111

The addresses shown are for the 6510 microprocessor. For
Z80 addresses, subtract $1000 hexadecimal from the ad-
dresses shown (see Section 6.1.3 for an explanation of Z80/
6510 address conversion).

NOTE: If you add the IEEE interface cartridge to your Commodore 64
system, you can run only a 44K version of CP/M The top 4K ($C000—
$D000) of the CP/M 48K area is used to handle the IEEE interface car-
tridge

BIOS65 Memory Map

6510
ADDRESS

$1000
$0F00
$OE00
80DO0O
BIOS65
$0C00
$0B00
$0A00

SHARED DATA
$0900

DISK I/0 BUFFER
80800

The addresses shown are for the 6510 microprocessor. For
Z80 addresses, add $F000 hexadecimal to the addresses
shown (see Section 6.1.3 for an explanation of Z80/6510
address conversion).

112 CP/M ON THE COMMODORE 64

6.1.3 Addresses under CP/M

You can see from the memory map in Figure 6.3 that the
Z80 processor uses the memory between $1000 and
$BFFF—a 48K byte area. CP/M, however, makes use of fixed
areas in the zero page (30000-80100) of memory. This area
is also required by the Commodore 64 operating system.

To avoid a conflict in the use of the zero page and to pro-
vide space for BIOS65, all Z80 addresses have $1000 added
to them. Thus, the Z80 address $0000 becomes actual ad-
dress $1000. Table 6.1 shows the mapping between Z80
addresses and actual memory addresses.

NOTE: If you are using the optional IEEE interface cartridge, you have
only 44K bytes available for CP/M. The IEEE bus access routines require
on additional 4K at the high end of the CP/M memory ($B000— $BFFF).

Table 6.1 Z80 to 6510 Actual Address Mapping
Z80 ADDRESS ACTUAL (6510) ADDRESS

0000->0FFF 1000->1FFF
1000-> 1FFF 2000->2FFF
2000->2FFF 3000->3FFF
3000->3FFF 4000->4FFF
4000->4FFF 5000->5FFF
5000->5FFF 6000->6FFF
6000->6FFF 7000->7FFF
7000->7FFF 8000->8FFF
8000->8FFF 9000->9FFF
9000->9FFF AO00->AFFF
AO00->AFFF B0O0OO->BFFF
BO0OO->BFFF C000->CFFF
C000->CFFF DO0O->DFFF
DOO0O->DFFF EOOO->EFFF
EOOO->EFFF FOOO->FFFF
FOOO->FFFF 0000->0FFF

NOTE: Notice that to access the 6510 low addresses, you reference the
280 high addresses.

CP/M ON THE COMMODORE 64 .113

6.1.4 Z80 Memory Use

The amount of memory available to CP/M on your Commo-
dore 64 depends on your hardware configuration. If you are
using the standard Commodore 64 serial disk drives and
printer, CP/M can occupy a maximum of 48K bytes. If you
have acquired the IEEE interface cartridge, CP/M can oc-
cupy a maximum of 44K bytes. The IEEE interface car-
tridge consumes 4K at the high end of the CP/M address
space (see Figure 6.1).

You can, of course, generate a CP/M system that is
smaller than the maximum available space. You can do that
if you need space for a routine that must run in Commo-
dore 64 native mode (under the 6510 processor). You can,
for example, generate a 40K CP/M version and have 8K (or
4K if you have the IEEE cartridge) available for your Com-
modore 64 native mode routine. Figure 6.3 shows a dia-
gram of the Z80 address space.

Z80 Memory Map

ADDRESS

44K 48K
SAFFF $BFFF

BIOS80
8AA00 $BB0OO

BDOS
$9C06 8ACO6

CCp
89400 8A400

TPA

(44K --33,792 bytes)
(48K—37,888 bytes)
80100 #0100

ZERO PAGE
80000 $0000

Many microcomputer operating systems use the zero page
of memory (addresses between $0000 and $0100) to hold
important values. Both CP/M and your Commodore 64

114 CP/M ON THE COMMODORE 64

operating system do this. Table 6.4 shows the contents of
the CP/M Zero Page.

Table 6.2 CP/M Zero Page
ADDRESS CONTENT
80000~ 30003

Contains a jump instruction to the
warm start entry point in the BIOS.

80004

Contains the current default disk
drive number (0=A and 1=B) in the
low order 4 bits and the I/O byte in
the high order 4 bits.

80005 — #0007

Contains a jump instruction to the
BDOS main entry point. The value
stored in locations $0006— $0007 is
the lowest address required by CP/M.

You also use this jump instruction
(or the address) when you make di-
rect BDOS calls.

$0038- 8003A
This is Restart Location 7 and is
used by DDT for programmed break-

points (an RST 7 instruction causes
a call to this location).

8005C - $006C

This is the first default file control
block for use by transient programs.

8006C— 8007C

This is the second default file control
block for use by transient programs.

CP/M ON THE COMMODORE 64 115

Table 6.2 (Continued)
ADDRESS CONTENT

8007D - $007F

This location contains the random
record position for random file access
via the first default file control block.

$0080~ $00FF
This is the default 128-byte disk
input/output buffer.

This area also receives the command
line that you enter when your pro-
gram is loaded by the CCP.

NOTE: The areas of the zero page not shown in this table are reserved
for future use. You should not use any of these areas in programs you
wnite unless you are sure of their use

6.2 THE BOOT PROGRAMS

The BOOT programs — BOOT65 and BOOT80 — are used
to load CP/M from disk. Once they have completed this
task, the memory they occupy is used for other purposes.

The BOOT65 program is in the file called “CP/M" that you
LOAD and RUN to start execution of the CP/M operating
system on your Commodore 64. You can find a listing of
this program in Appendix E. The actual assembly language
program source is available on one of your CP/M system
diskettes.

You LOAD and RUN BOOT65 as you would any BASIC
program on your Commodore 64. If you LIST it, you will see
that it contains a single BASIC statement:

10 SYS (2036)

This statement transfers control to the actual BOOT65 code
located at decimal address 2036.
The program then reads in the BIOS65 and BOOTS80 pro-

116 CP/M ON THE COMMODORE 64

grams and places them at the correct locations in memory.
Finally, BOOT65 transfers control to the startup code in
BIOS65.

The BOOTS80 program is a Z80 assembly language pro-
gram that is the first program to execute when the Z80
processor is switched on. You can find a listing of this prog-
ram in Appendix E. The actual assembly language program
source is available on one of your CP/M system diskettes.

BOOTS80 is loaded by the BOOT65 program at the Z80
reset address $0000 (6510 address $1000). When the Z80 is
first turned on, it always begins execution at address
$0000.

BOOTB80 loads:

e 780 BIOS (BIOS80)
e CP/M CCP (CP/M Command Processor)
® CP/M BDOS (Basic Disk Operating System)

When these programs are loaded, BOOT80 transfers control
to the cold start entry point in BIOS80, thus beginning ac-
tual CP/M operating system execution.

6.3 THE BIOS PROGRAMS

The BIOS (Basic Input/Output System) is the specially tai-
lored link between the CP/M operating system and the in-
dividual peripherals — printer, disk drives, screen —
attached to your Commodore 64.

Each computer that runs CP/M has its own unique BIOS.
On your Commodore 64 the BIOS is in two parts:

® BIOS65 executes under the 6510 main processor.
® BIOS80 executes under the Z80 add-on processor.

These two portions of the BIOS operate together to make
your Commodore 64 peripherals available to CP/M.

Why are there two programs for the BIOS? Your Commo-
dore 64 already has code in place to handle its peripherals.
Thus more memory is made available for CP/M and your
CP/M-based applications by simply providing a link to that
existing code, rather than trying to re-implement the
peripheral-handling code on the Z80.

In operation, BIOS80 is called from CP/M with a request

CP/M ON THE COMMODORE 64 117

for an input/output operation. BIOS80 places required pa-
rameter values and a function flag in certain memory loca-
tions, then switches control from the Z80 back to the 6510
Commodore 64 main processor.

The 6510 resumes execution where it left off in BIOS65.
BIOS65 examines the function code stored in memory to
find out what it should do, carries out the task (usually an
input/output request), places the result in a predetermined
memory location, and switches the Z80 back on.

The Z80 resumes execution where it left off in BIOS80.
BIOS80 retrieves the results passed to it from BIOS65 and
returns the proper information to CP/M.

BIOS80 is called from the CP/M BDOS to perform the fol-
lowing functions:

cold start boot

warm start boot

console (keyboard) status check

get keyboard character (console input)
write character to screen (console output)
print a character (lister output)

move disk head to the home position
select disk

set track to read/write

set sector to read/write

read disk sector

write disk sector

check printer status (lister status)
sector translation

The punch and reader functions of the BIOS are meaning-
less on your Commodore 64. These are null routines in
BIOS80.

Some of the functions listed above simply cause values to
be placed in predefined memory locations. Others result in
a transfer to the 6510 portion of the BIOS where the actual
work is performed.

Before BIOS80 switches control back to the 6510, it
places a function code at location $F900 (#0900 relative to
the 6510). This code, which currently ranges from O to 9
and 255, tells BIOS65 what action is required. These func-
tion codes and their meanings are shown in Table 6.3.

118 CP/M ON THE COMMODORE 64

Table 6.3 BIOS80/BI0S65 Function Codes

NUMBER

©CONOOWN—~O

10—>254
255

FUNCTION

Read the specified sector

Write the specified sector

Get a character from the keyboard

Write a character to the screen

Check the printer status

Write a character to the printer

Disk format command

Jump to 6510 address $0E00

Jump to 6510 address $0F00

Jump indirect via a 6510 address stored
at 8F906

Reserved for future use

Execute a cold start reset on your
Commodore 64

Table 6.4 BI0OS80/BI10S65 Communication Addresses

ADDRESS
Z80 6510
8F900 $0900
8F901 80901
$FQ02 $0902
$F903 %0903
$F904 $0904
$F905 #0905

CONTENT

Command register: contains
one of the function codes as
shown in Table 6.2.

Data register: used to pass data
and error indicators between
the two BIOS.

Sector register: contains the
current sector number for disk
read and write requests.

Track register: contains the cur-
rent track number for disk read
and write requests.

Drive register: contains the disk
drive number for disk read and
write requests.

Keyboard register: contains the
last character read from the
keyboard.

CP/M ON THE COMMODORE 64

119

BIOS65 and BIOS80 communicate with each other

through a series of contiguous memory locations as shown
in Table 6.4.

6.4 CP/M DISK ORGANIZATION

Your Commodore 64 CP/M BIOS programs provide a com-
pletely compatible interface between your disks and the
CP/M BDOS. All disk-related functions expected by the
CP/M BDOS are available through your BIOS programs.

The organization of a CP/M disk is different from the
organization of a standard Commodore 64 disk. The CP/M
disk has somewhat less capacity than a Commodore 64
format disk.

A Commodore 64 CP/M disk is formatted as 35 tracks
containing 17 256-byte sectors (0~ 16) where track 1 is
the outermost track and track 35 is the innermost track. A
Commodore 64 CP/M disk can hold a maximum of 136,000
characters of user data.

Notice that the full disk capacity (152,320 characters) is
not available for user data storage.

Table 6.5 shows the allocation of tracks on your Commo-
dore 64 CP/M format disk.

Table 6.5 CP/M Disk Track/Sector Allocations

TRACK SECTOR CONTENT

1 0 BOOT65 (Commodore 64 file
“CPM")

1 1->4 BIOS65

5 BOOTS80

1 6—->13 CP/M CCP (Command Proc-
€ssor)

1& 14->16 CP/M BDOS

2 0->10

2 11->16 BIOS80

3 0—>7 CP/M Disk Directory

3 8->16 CP/M Disk Space

4->17 0->16 CP/M Disk Space
18 0->16 Commodore 64 Directory
19-35 0->16 CP/M Disk Space

120 CP/M ON THE COMMODORE 64

NOTE: The Commodore 64 Directory written on track 18 allows you to
start CP/M from Commodore 64 running in native mode This directory
shows that only a single file—CPM—exists on the disk. The standard
Commodore 64 Block Availability Map (BAM) indicates that the disk is
completely full.

6.5 THE CP/M BDOS

The CP/M Basic Disk Operating System (BDOS) provides a
standard interface between CP/M application programs and
the hardware on which they run. All input/output and
operating system service requests are routed through the
BDOS. Because of this, you don’t have to write device-
specific code into your application program for every system
that it might run on. The device-specific code for a particu-
lar system is written only once — in the CP/M BIOS.

The standard BDOS interface means that software can be
written and run on any system able to support CP/M, as
long as the software developer stays within the BDOS stan-
dard.

The 39 BDOS functions (numbered 0—-37 and 40 dec-
imal} perform tasks valuable in almost any application. For
example, they

® Read a character from the keyboard.
Write a character to the keyboard.
Open a disk file.

Print a string.

Write to the printer.

Delete a file.

Create a file.

For a list of the BDOS functions, see Table 6.6.

You call the BDOS from Z80 Assembler or other lan-
guages through the BDOS jump vector at Z80 address
$0005. This jump vector contains a single jump instruc-
tion:

JMP BDOS-ADDRESS

CP/m ON THE COMMODORE 64 121

The bdos-address varies with the size of the CP/M system
you have generated. The JMP instruction itself is placed at
location #0005 when CP/M is loaded.

To use the BDOS functions, you code:

CALL 5

When the BDOS has completed the function, it returns con-
trol to the statement following the CALL statement.

NOTE: Bytes 6 and 7 of the BDOS jump vector contain the lowest address
required by CP/M (stored as low byte/high byte). This means that your
application program can use memory up to, but not including, this ad-
dress.

BDOS functions are numbered. Some require that you
pass to them the parameter values or the address of a pa-
rameter in certain registers. Some return an indicator or
error code in a register.

When calling a BDOS function, you always load the
BDOS function code in register C. If the function requires
that you pass it parameters, you place:

® Single-byte parameters in register E.
® Double-byte parameters in register pair DE.

If the function returns a value to you, you find:

¢ Single-byte returns in register A.
® Double-byte returns in register pair HL.

NOTE: The BDOS does NOT preserve values stored in the Z80Q registers.
If you want to protect values stored in registers, you should push them
onto the stack before you call the BDOS. You can then pop them off the
stack on return from the BDOS call.

122 CP/M ON THE COMMODORE 64

6.5.1 Sample BDOS Function Call

As an example of a BDOS function call, we will use Function
1, the Console (keyboard) Input function. Function 1 re-
turns in register A the last character entered from the
keyboard. To use Function 1, you can write code like the
following:

MVI C,1 ;LOAD FUNCTION 1 INTO REGISTER C

; CALL 0005H ;CALL THE BDOS JUMP VECTOR

; WHEN THE BDOS HAS A CHARACTER, IT RETURNS HERE
; REGISTER A CONTAINS THE INPUT CHARACTER

STA KEYCHAR ;STORE REGISTER A IN KEYCHAR
VARIABLE

Table 6.6 BDOS Functions

FUNCTION DESCRIPTION
(Register C)

0 SYSTEM RESET

INPUT: NONE
RETURN: NONE

Returns control to the CCP and resets CP/M
as though you rebooted.

1 CONSOLE INPUT

INPUT: NONE
RETURN: A « character input

Reads a character from the keyboard. Exam-
ines the character to see if it is a CP/M con-

trol character.

CP/M ON THE COMMODORE 64 123

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

2 CONSOLE OUTPUT

INPUT: E <« character to display
RETURN: NONE

Writes a character to the screen.

3 READER INPUT

INPUT: NONE
RETURN: A « character read

This function is not supported on your
Commodore 64.

4 PUNCH OUTPUT

INPUT: E « character to punch
RETURN: NONE

This function is not supported on your
Commeodore 64.

85 LIST OUTPUT

INPUT: E « character to print
RETURN: NONE

Writes a character to your printer.

124 CP/M ON THE COMMODORE 64

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)
6 DIRECT CONSOLE 1/0

INPUT: E « character to display (output)
E « OFFH (input}
RETURN: A <« character (input)
A « status (output)

Performs raw console input (read from
keyboard} and output (write to screen}.

Characters are transferred through the
BDOS without being examined or changed.

GET I/O BYTE

INPUT: NONE
RETURN: A « I/O byte

The I/0 byte function is not supported on
your Commodore 64.

SET 1/0 BYTE

INPUT: E « new I/O byte
RETURN: NONE

The 1/0 byte function is not supported on
your Commodore 64.

PRINT STRING

INPUT: DE <« string address
RETURN: NONE

Writes the character string to the screen.
The string must terminate with a “$”,

CP/M ON THE COMMODORE 64

125

Table 6.6 (Continued)

FUNCTION DESCRIPTION
{Register C)

10 READ CONSOLE BUFFER

INPUT: DE « buffer address
RETURN: characters in buffer

Reads from the keyboard until a carriage re-

turn or CTL-M is entered or until the
keyboard buffer overflows.

11 GET CONSOLE STATUS

INPUT: NONE
RETURN: A « console status

Checks the keyboard status. A contains
OFFH if a character is ready; O0H if not.

12 RETURN VERSION NUMBER

INPUT: NONE
RETURN: HL <« version number

Returns the CP/M version number.

13 RESET DISK SYSTEM

INPUT: NONE
RETURN: NONE

Resets the entire disk system to its initial
state.

126 CP/M ON THE COMMODORE 64

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

14

18

16

17

SELECT DISK

INPUT: E « disk number to select
RETURN: NONE

Selects a disk (A=0 and B=1).

OPEN FILE

INPUT: DE « address of FCB
RETURN: A « directory code

Opens a disk file for processing. Returns a
255 in A if the file could not be found.

CLOSE FILE

INPUT: DE « address of FCB
RETURN: A « directory code

Closes a disk file. Returns a 255 in A if the
file could not be found.

SEARCH FOR FIRST

INPUT: DE « address of FCB
RETURN: A « directory code

Searches for the first file matching the name
given in the FCB. Returns a 255 in A if no

match was found.

CP/M ON THE COMMODORE 64

127

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

18 SEARCH FOR NEXT

INPUT: NONE
RETURN: A « directory code

Similar to Function 17, but begins search

where 17 left off. Also returns a 255 in A if
no match was found.

19 DELETE FILE

INPUT: DE « address of FCB
RETURN: A « directory code

Deletes a disk file. Returns a 255 in A if the
file could not be found.

20 READ SEQUENTIAL

INPUT: DE « address of FCB
RETURN: A « directory code

Reads the next 128-byte record into the
memory pointed to by the current DMA ad-
dress. Returns a O0OH in A if the read suc-
ceeded; non-zero if end-of-file was
encountered.

21 WRITE SEQUENTIAL

INPUT: DE « address of FCB
RETURN: A « directory code

128 CP/M ON THE COMMODORE 64

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

Writes the 128-byte record pointed to by the
current DMA address. Returns a O0OH in A {f
the write succeeded; a non-zero for a full
disk.

22 MAKE FILE

" INPUT: DE « address of FCB
RETURN: A « directory code

Creates the disk file named in the FCB. Re-
turns a 255 in A if the create failed.

23 RENAME FILE

INPUT: DE « address of FCB
RETURN: A « directory code

Renames a disk file. The name of the file is
in the first 16 bytes of the FCB, the new
name is in the next 16 bytes. Returns a 255
in A if the rename fails.

24 RETURN LOGIN VECTOR

INPUT: NONE
RETURN: HL « login vector

Returns the disk login vector. The least sig-
nificant bit of L represents Disk A and the
next Drive B. When set to 1, the drive is on-
line.

CP/M ON THE COMMODORE 64 129

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

23 RETURN CURRENT DISK

INPUT: NONE
RETURN: A « current disk number

Returns the number of the currently logged
disk (0=A and 1=B).

26 SET DMA ADDRESS

INPUT: DE « DMA address
RETURN: NONE

Sets the address of the 128-byte disk sector
buffer.

27 GET ADDR (ALLOC)

INPUT: NONE
RETURN: HL « ALLOC address

Returns the address of the allocation vector
of the current disk.

28 WRITE PROTECT DISK

INPUT: NONE
RETURN: NONE

Protects the current disk from being written
to.

130 CP/M ON THE COMMODORE 64

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

30

31

32

GET READ ONLY VECTOR

INPUT: NONE
RETURN: HL < read only vector

Returns a vector indicating which drives are
temporarily write-protected. The least signif-
icant bit of L represents Disk A and the next

Drive B. When set to 1, the drive is write-
protected.

SET FILE ATTRIBUTES

INPUT: DE < address of FCB
RETURN: A « directory code

Sets read only and system file attributes.

GET ADDR (DISK PARMS)

INPUT: NONE
RETURN: HL « address of DPB

Returns the address of the Disk Parameter
Block.

SET/GET USER CODE
INPUT: E < user code (SET)

E <« OFFH (GET)
RETURN: A « user code (GET)

CP/M ON THE COMMODORE 64

131

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

Returns or sets the current user code (user
number).

33 READ RANDOM

INPUT: DE <« address of FCB
RETURN: A « return code

Performs a random record read on a disk
file. Return codes are:

01 reading unwritten data

03 cannot close current extent
04 seek to unwritten extent
06 seek past end of disk

34 WRITE RANDOM

INPUT: DE <« address of FCB
RETURN: A « return code

Performs a random record write to a disk
file. Return codes are:

01 reading unwritten data

03 cannot close current extent
04 seek to unwritten extent
05 out of directory space

06 seek past end of disk

132 CP/m ON THE COMMODORE 64

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

35

36

37

38

39

COMPUTE FILE SIZE

INPUT: DE <« address of FCB
RETURN: file size

Returns the size of the file, in records, to the
random record field of the FCB.

SET RANDOM RECORD

INPUT: DE « address of FCB
RETURN: NONE

Sets the random record number of a record
that was read sequentially. The random rec-

ord number is placed into the random record
field of the FCB.

RESET DRIVE

INPUT: DE «- drive vector
RETURN: NONE

Resets the disk drives indicated in the drive
vector. The least significant bit of L repre-

sents Disk A and the next Drive B, When set
to 1, the drive is reset.

NOT USED

NOT USED

CP/M ON THE COMMODORE 64

133"

Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

40 WRITE RANDOM WITH ZERO FILL

INPUT: DE « address of FCB
RETURN: A « return code

Identical to WRITE RANDOM (Function 34),
except that new blocks are zero-filled before
data is moved into them.

6.6 CALLING A Z80 PROGRAM
FROM THE 6510

You sometimes may want to call a Z80 routine from your
Commodore 64 while it is running in native mode. You
may, for example, want to take advantage of the Z80 regis-
ter structure or its extended instruction set, which make
some routines easier to write or more efficient to execute.

When you first switch on your Z80 processor, it will al-
ways begin execution at its reset address:

6510 ADDRESS $1000—Z80 ADDRESS $0000

To call a Z80 routine from the 6510, you must either:

® Load the routine at 6510 address $1000.
® Place a Z80 jump instruction at 6510 address $1001
that transfers control to the actual code location.

In BOTH cases, 6510 address $1000 (Z80 $0000) must con-
tain a NOP instruction ($#00). This is a requirement of the
processor switching hardware. Of course, if you place a
jump instruction at 6510 address $1001, you must load the
actual Z80 routine elsewhere in memory.

On subsequent calls to the Z80, routine execution will re-
sume at the instruction following the last instruction exe-
cuted before the Z80 switched itself off. It does NOT resume
execution at the reset address.

134 CP/M ON THE COMMODORE 64

6.6.1 Some Examples

Suppose you load some Z80 code at 6510 address $1000.
You can transfer control to that code by switching on the
Z80 processor:

LDA #0 ;:LOAD ZERO INTO A

STA $DEOD ;STORE ZERO IN THE MODE SWITCH
LOCATION

NOP ;REQUIRED BY THE SWITCH
HARDWARE

The first time this code is executed, the Z80 will start
executing instructions at $0000 (6510 address $1000); that
address must contain a NOP instruction. Subsequent
executions of the code (without turning off your Commo-
dore 64) will cause the Z80 to resume execution where it left
off when it switched the 6510 back on.

Assume now that you have loaded your Z80 code at 6510
address #B000. This corresponds to a Z80 address of
$A000. You can get to this routine by using code similar to
the following:

LDA #3$00 ;OPCODE FOR A NOP INSTRUCTION

STA $1000 ;MEET THE SWITCHING
REQUIREMENT

LDA #$C3 ;780 JUMP INSTRUCTION OPCODE

STA $1001 ;FIRST BYTE OF JUMP INSTRUCTION

LDA #3%00 ;LOW BYTE OF Z80 JUMP ADDRESS

STA $1002 ;NEXT BYTE OF JUMP INSTRUCTION

LDA #$A0 ;HIGH BYTE OF Z80 ADDRESS

STA $1003 ;LAST BYTE OF JUMP INSTRUCTION

LDA #0 ;LOAD ZERO INTO A

STA $DEOO ;STORE ZERO IN THE MODE
SWITCH LOCATION

NOP ;REQUIRED BY THE SWITCH
HARDWARE

CP/M ON THE COMMODORE 64 135

Subsequent executions of this code (without turning off
your Commodore 64) will cause the Z80 to resume execu-
tion where it left off when it switched the 6510 back on. You
could thus use address $1000 for other purposes after
calling the Z80 routine the first time.

You can return from your Z80 routine by using the code
below:

MVL Al ;LOAD ONE INTO A

STA OCEOOHM ;STORE ONE IN MODE SWITCH
LOCATION
;TO TURN ON THE 6510

NOP ;REQUIRED BY THE HARDWARE

AFTER A MODESW
;THE NEXT TIME IT IS SWITCHED ON, THE Z80 RESUMES
EXECUTION HERE

i

NOTE: You MUST follow the mode switching store instruction with a NOP
instruction.

6.7 CALLING A 6510 PROGRAM
FROM THE Z80

There may be times when you want the 6510, running in
Commodore 64 native mode, to perform some special tasks
for you.

For example, suppose you add the IEEE expansion car-
tridge to your Commodore 64 in order to attach an IEEE
standard instrument. Instruments require special control
commands that can be issued only by the 6510 main proc-
€SSOr.

The 6510 portion of the BIOS (BIOS65) includes a facility
for calling your own code. This facility is implemented
through the BIOS function codes 7, 8, and 9.

136 CP/M ON THE COMMODORE 64

® BIOS function code 7 instructs BIOS65 to transfer
control to:

6510 ADDRESS $0E00—Z80 ADDRESS $FE00

® BIOS function code 8 instructs BIOS65 to transfer
control to:

6510 ADDRESS $0F00—Z80 ADDRESS $FF00

e BIOS function code 9 instructs BIOS65 to transfer
control indirectly to the instruction whose address
is stored at:

6510 ADDRESS $0907—1Z780 ADDRESS $F907

The code that you load at these locations MUST end with a
6510 RTS instruction. This instruction returns control to
BIOS65, which can then switch the Z80 processor back on.

As you see, function codes 7 and 8 always transfer control
to the same location. If you use both functions 7 and 8,
your programs cannot be larger than $100 bytes (256 dec-
imal). If you use only function code 7, you can expand your
program into the function code 8 space. This gives you a
maximum program size of $200 bytes (512 decimal).

If you need more space than you can get under function
codes 7 and 8, you can use function code 9. When you pass
function code 9 to BIOS6S5, it transfers control to the ad-
dress stored at 6510 location $0F07. This address can be
anywhere in the 6510 address space.

NOTE: When you use BIOS function 9, the indirect address you store at
Z80 address $FFO7 (6510 address $0F07) MUST be a 6510 base address.

6.7.1 Switching on the 6510

If you are going to use a 6510 routine, you have to know
how to switch on the 6510 processor. The two processors

CP/M ON THE COMMODORE 64 137

cannot operate at the same time. When you switch one of
them on, the other is automatically switched off.

Processor switching is controlled by storing a mode
switch value in:

6510 ADDRESS $DE0O—Z80 ADDRESS $CEO00

The mode switch values are:

0 — activates the Z80 processor
1 — activates the 6510 processor

Suppose you load some 6510 code at 6510 address $0E0OO
that you wish to execute from a Z80 program. You can do
that using code like the following:

MVI A7 ;LOAD THE FUNCTION CODE INTO A
STA OF900H ;STORE THE FUNCTION CODE IN
COMMAND REGISTER

; PREPARE ANY OTHER PARAMETERS
REQUIRED
BY THE CODE YOU HAVE

; PLACED AT 6510 ADDRESS $0E00—Z80
ADDRESS $FE00

MVLE A ;LOAD ONE INTO A

STA OCEOOH ;STORE ONE IN MODE SWITCH
LOCATION
;TO TURN ON THE 6510

NOP ;REQUIRED BY THE HARDWARE

AFTER A MODESW

; AFTER COMPLETION OF THE 6510
ROUTINE, Z80 RESUMES
EXECUTION HERE

’

From the example above, you can see that it's easy to call
a 6510 routine from the Z80. The 6510 routine that you
write does not have to switch control back to the Z80. The
BIOS65 program takes care of the return to the Z80.

138 CP/M ON THE COMMODORE 64

NOTE: You MUST follow the mode-switching store instruction with a NOP
instruction.

You must, of course, load your 6510 routine into the cor-
rect memory location before you transfer control to it. If you
use BIOS function 9, you must also load the 6510 address
of the code to be executed in indirect address location
$F907 (Z80).

6.8 PROGRAM EXECUTION
UNDER CP/M

Programs destined to execute under CP/M must be stored
in a disk file and have a file name extension of .COM (see
Chapter 5 for an explanation of CP/M file-naming con-
ventions and details on executing programs). User pro-
grams running under CP/M are loaded into the Transient
Program Area (TPA) for execution.

You execute a program under CP/M simply by entering its
name (without the extension). The general form is:

[DISKID:IPROGRAM-FILENAME

where diskid is an optional disk identifier (A or B) and
program-filename is the name of the file that contains your
program. The program file MUST have the extension .COM.

Suppose, for example, that you have a program stored in
a flle named STARTREK.COM. To execute that program,
you respond to the CP/M prompt (usually A>) with:

STARTREK

CP/M will then load the file STARTREK.COM into the TPA
(Transient Program Area) and transfer control to it (at loca-
tion $100). When STARTREK completes its execution, it re-
turns to CP/M via a Z80 RET instruction or via a jump to
location $0000. The return via a jump to location $0000
causes a warm start reboot of CP/M.

CP/M ON THE COMMODORE 64 139

{ He

APPENDICES

APPENDIX A

COMMODORE 64
MEMORY MAP

The following charts list which memory locations control placing char-
acters on the screen, and the locations used to change individual char-
acter colors, as well as showing character color codes.

SCREEN MEMORY MAP

COLUMN
0 10 20 30 39
1063
{
1024 —— n T 0
1064 1
1104 T
1144 il
1184 1 1]
1224 i T]
1264 i T 1L L
i O fEEeiainisim s e
e T SEESEENERREE RS
_E { 10 2
1464 [I 17 T T N =
1504 1T 17 [AREEEEEARRNS! L
% T
|
1624 Ll i 1 R 1 Bl
1664 [RN (L JIT0 1111
1704] IARERE 1T N
1744 [! IHREES RN RREN
iy 1 T T N
1824 I ! T 0 2
1864 1 1 B
1904 I)
1944 ;!
1384 L] 1] 2
§
2023

142 APPENDIX A

The actual values to POKE into a color memory location to change a
character’s color are:

$ BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 1¢ Light RED
3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upper
left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN
0 10 20 30 39
55335
— 1] 0
33340
55416 b
55456
55496 +
55536 !
RER7R !
I =
39030 L -]
55736 1 =
55776)
.]
anAwn 1
|
)
3016
56056
SANOR L 20
J0L10 J
56256 J 24
4
56295

APPENDIX A 143

APPENDIX B
BIBLIOGRAPHY

This bibliography lists a variety of currently available CP/M
and Z80 books. Look at several books covering the topics
that interest you before you make your selection.

Each author covers the topics from a different viewpoint.
Find the book that you feel most comfortable with. Some
people prefer a more technical discussion and should select
a book with in-depth technical detail. Others like a less
technical approach and should seek a book that is easy to
understand.

You also can subscribe to a new magazine devoted exclu-
sively to CP/M:

The User’s Guide to CP/M Systems and Software
Box 3050
Stanford, CA 94305

You may be interested in joining the CP/M User’s Group,
which provides software written by members for their CP/M
systems. Software is often available for only a copying
charge. You can contact the CP/M User’s Group through:

CP/M User's Group

c/o Lifeboat Associates
1651 Third Avenue
New York, NY 10028

B.1 CP/M Books

This list gives some of the most recent CP/M books in
alphabetical order by title. It is by no means a list of all the
CP/M books available today. The prices shown are subject
to change.

CP/M Handbook With MP/M by Rodnay Zaks, SYBEX, pa-
per, $14.95

144 APPENDIX B

This is a reference guide to CP/M, written in a readable
style for beginners.

CP/M Primer by Stephen Murtha. Howard W. Sams, paper,
$14.95
This book helps both the first-time microcomputer
user and the experienced user who is just beginning to
use CP/M.

CP/M Word Processing by Chris DeVoney, Que Corporation,
paper, $16.50
This book covers the use of word processing packages
developed to run under the CP/M operating system. It
contains detailed evaluations of 17 popular CP/M word
processing packages and tells how to decide which
word processor best meets your needs.

How to Get Started with CP/M by Carl Townsend, Dilithium
Press, paper, $13.95
This book describes the CP/M operating system in an
easy, comfortable style. It eases the reader into under-
standing the details of this widely used microcomputer
operating system,

Osborne CP/M User Guide by Thom Hogan, Osborne, pa-
per, $12.99
One of the most complete and up-to-date CP/M books
available. This book contains easy-to-understand de-
scriptions of the CP/M operating system and com-
mands. It also contains detailed technical information
for more experienced users.

Using CP/M by Judi Fernandez and Ruth Ashley, John
Wiley, paper, 812.95
This is a complete, detailed introduction to the use of
CP/M, written in an easy-to-understand style.

APPENDIX B 145

Vanloves CP/M Software Directory edited by Rolland Love

and Gerald Van Diver, Vital Information, paper, $24.95.
This up-to-date computer resource for CP/M describes
peripherals, software, and accessories for CP/M sys-
tems. It includes a bibliography and lists of user
groups, magazines. supplies, and computer acces-
sories.

B.2 Z80 Books

8080/Z80 Assembly Language by Alan Miller, John Wiley,
paper, $10.95
A step-by-step guide to programming the 8080 and
Z80 microprocessors. This book helps intermediate
and advanced programmers to get even more out of
their 8080/Z80.

Programming the Z80 by Rodnay Zaks, SYBEX, paper,
$15.95
This book covers the Z80 from basic concepts
through advanced programming techniques. Exercises
are offered to measure reader comprehension along the
way. The book’s topics range from hardware organ-
izations to data structures.

Z80 and 8080 Assembly Language Programming by Kathe
Spracklen, Hayden Book Co., paper, $9.70
This book covers programming techniques and gives
complete instruction sets for the 8080 and Z80 mic-
roprocessors. Each chapter includes exercises and an-
swers to help readers learn to use the Z80 and 8080
more efficiently.

Z80 Microcomputer Design Projects by Willlam Barden,
Howard W. Sams, paper, $13.95

146 APPENDIX B

This book gives a solid, in-depth look at the popular
Z80 microprocessor. It provides a complete look at the
internal architecture of the Z80.

Z80 Microcomputer Handbook by Willlam Barden, Howard
W. Sams, paper, $11.95
This book is designed to teach you about the Z80.
There is extensive coverage of Z80 machine language
and the Z80 assembler language.

Z80 Microcomputer Programming and Interfacing, Books 1
and 2 by Elizabeth Nichols, Howard W. Sams, paper, Book
1—$12.95, Book 2—$12.95, Book 1 & 2—$24.95
Book 1 introduces computers to readers who have
no background in computer science. Book 2 assumes a
familiarity with Book 1 and continues an in-depth dis-
cussion of the design and use of the popular Z80 mi-
croprocessor. Both volumes are written in a self-
teaching format with exercises and answers.

Z80 User's Manual by Joseph Carr, Prentice-Hall, paper,
$15.95
An all-in-one guide to the Z80. This book is useful
for both beginning and advanced Z80 users. It in-
cludes in-depth technical details for the Z80.

APPENDIX B 147

APPENDIX C

cCp/M COMMAND
LIST

This appendix is a simple listing of CP/M commands. For
details on these commands, see Chapter 5.

Load and execute a program:
[disk-id:Jfilename <CR>

Change the currently logged disk:
disk-id:

Assemble a Z80 assembler program:
ASM filename[.parms]

ASM error codes are given in Table 5.4.

Run the CP/M debugger:
DDT [[disk-id:Jfilenamel.type]]

DDT commands are given in Table 5.5.

Get a directory listing:
DIR [disk-id:][filename.type]

Dump a file in ASCII and hexadecimal format:
DUMP [disk-id:] filename.type

148 APPENDIX C

Edit a file:
ED [disk-id:] filename[.type] [[disk-id2:]
[filename2[.type2]l]

ED control characters are given in Table 5.8.
ED commands are given in Table 5.9.

Erase a file:
ERA [disk-id:] filename.type

Create an executable module from ASM output:
LOAD (disk-id:Jilename

Copy a new version of CP/M:
MOVCP [{ * |size } 1[*]

Copy a file or disk:
PIP destination =source[command-parameters]

Table 5.10 gives PIP logical devices.
Table 5.11 gives special PIP devices.
Table 5.12 gives PIP command parameters.

Rename a file:
REN [disk-id: [new-file= old-file

Save page-num 256-byte pages of memory beginning at the
start of the TPA (100 hexadecimal):
SAVE page-num [disk-id: Jfilenamel. type]

APPENDIX C 149

Get disk and 1/0 device status information:
STAT command

Table 5.13 shows STAT command options.
Table 5.14 shows STAT command attributes.

Submit a file for batch execution:
SUBMIT [disk-id:]filename [parameters]

Generate a new CP/M system:
SYSGEN [[disk-id:] filename.type]

Print a file to the screen:
TYPE [disk-id: Jfilename.type

Change the user number:
USER {user-num]

Include keyboard data in your SUBMIT file:
XSUB

150 APPENDIX C

APPENDIX D

ASCII, CHR 8,
AND HEXADECIMAL
CHARACTER CODES

When running in native mode your Commodore 64 uses
two sets of character codes:

e CHR# Codes (see Appendix F of your Commodore 64
User’s Guide).

® Screen Display Codes (see Appendix E of your
Commodore 64 User’s Guide).

CP/M employs another character code set called the ASCII
Character Codes (shown in Table D.1 below).

NOTE: The CTRL-Shifted column of Table D.1 shows the values generated
when you hold the key down and press the character key.

When you use the CONFIG utility to alter character code
values, you must supply the ASCII hexadecimal value of
the new character. Therefore, the character code values
shown in Table D.1 are expressed in hexadecimal.

If you're not sure what a hexadecimal value is. don't
worry. Look up the character in Table D.1 and use the value
shown (including the letters).

Table D.1 ASCII Character Codes (Hexadecimal Values)

CHARACTER HEX VALUE CTRL SHIFTED

03 03
08 18
oD oD
1B 7F
1C/1D 1D

UP/DOWN 1E/1F 1F

20 20

APPENDIX D 151

Table D.1 (Continued)

CHARACTER HEX VALUE CTRL SHIFTED
E 21 21
] 22 22
23 23
KN 24 24
25 25
& | 26 26
27 27
] 28 28
29 29
= 2A 2A
2B 2B
] 2C 7B
e 2D 2D
[2E 7D
2F 5C
30 00
31 31
32 32
33 33
En 34 34
5 | 35 35
6 | 36 36
37 37
8| 38 7B
KR 39 7D
] 3A 7B
i 3B 7D

40 60
S 41 01
(b 42 02
43 03
KN 44 04
[| 45 05
46 06

47 07
E 48 08
R 49 09
4A 0A

152 APPENDIX D

Table D.1 (Continued)

CHARACTER HEX VALUE CTRL SHIFTED
4B 0B
- 4C oC
ﬂ 4D oD
4E OE
4F OF
n 50 10

51 11

52 12
[s | 53 13
t 54 14
55 15
56 16
ﬂ 57 17
EN 58 18
59 19
EN 5A 1A
5C 7C
[] 5E 7E
5F 5F
61 01
E 62 02
63 03
m 64 04
E 65 05
66 06
67 07
68 08
(1] 69 09
6A 0A
6B 0B
6C oC
ER 6D oD
“ 6E OE
EX 6F OF
ﬂ 70 10
ﬂ 71 11
R | 72 12
73 13

APPENDIX D 153

Table D.1 (Continued)

CHARACTER HEX VALUE CTRL SHIFTED
74 14
75 15
76 16
77 17
78 18
79 19
7A 1A
80 81
81 81
82 83
83 83
84 85
B 85 85
86 87
[Fs | 87 87

154 APPENDIX D

APPENDIX E

BIOS AND BOOT
LISTINGS

This appendix gives the source listings for the BIOS and
BOOT programs on the 6510 and the Z80.

Xerox to Commodore 64 Receive Utility

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

0100 = TPA EQU 100H ;START ADDRESS OF PROGRAM
005C = FCB EQU 005CH ;FILE CONTROL BLOCK

0080 = DMADDR EQU 0080H ;DMA ADDRESS

000D = CR EQU ODH ;CARRIAGE RETURN

0006 = ACK EQU O6H

0015 = NAK EQU 15H

0000 = BOOT EQU 0000H

BDOS EQU 0005H
0E00 = SIO EQU OEOOH

g

FFOO = MEM EQU OFFOOH ;BUFFER MEMORY
0300 = PGM65 EQU 0300H
0080 = SIZE6S EQU 128
; SYNTAX FOR COMMAND (S
; RECEIVE FILENAME.EXT
0100 ORG TPA
0100 31D802 LXi SP,STACK ;SET UP LOCAL STACK
; CHECK FOR VALID FILENAME
0103 113802 i D,NONAME ;NONAME MESSAGE
0106 3A5D00 LDA FCB+1

APPENDIX E 155

0109
0108

010E
om
ot14
0116

o1
ot

or1c
ono
O11E

0121
0124

0127
0129
012C

012F
0130
01N
0134
0135
0136
0137
0138
0139

013C
013F
0142
0145

156

FE20
CAE201

115802
215C00
3E3F
0610

BE
CAE201

23
05
c2180

118000
CD1702

210003
1100FE

78
A7
CA3Cot
7E
12
23
13
05
C23401

115C00
CD1D02
115C00
CD2302

APPENDIX E

QLOOP:

LOADLP

SKIP:

CPI o

Jz DONE JIF SPACE, NO NAME GIVEN

X1 D,BADNAM ;CHECK FOR AMBIGUOUS NAME
Xi H,FCB

MvI A

MvI B,16 ;COUNTER

CmpP M S

Jz DONE ;IF SO, BAD NAME

INX H

DCR B

JNZ QLOOP ;DO 16 TIMES

X D,DMADDR
CALL SETDMA

TRANSFER 6510 CODE TO $E00 (OFEOOH)

Mvi B,SIZEGS
X H,PGM65
X1 D, OFEQOH
MOV A,B

ANA A

Jz SKIP
MOV AM
STAX D

INX H

INX D

DCR B

INZ LOADLP
GET READY BY OPENING FILES

X D.FCB
CALL DELETE
X D,FCB
CALL MAKE

0148
0148
014C

O14F
0152

0155
0156

0159
0158

015E
0160
0163
0165
0168

0169
016C
016D

0170
0173
0176
0177
0178
0178
017C
Ol7E

o181
0182
0185
orgs
0189

117602
3C
CAE20)

118000
CD1702

AF
328702

3E06
32FFFE

3E07
3200F9
3E01
3200CE
00

3AFFFE
A7
C2C401

118000
3AB702
B3

5F
2100FF
7E
FE3A
C2C401

AF
32B602
CDES8O1
A7
CAD901

READS:

GNEXT:
GBLK.

X
INR
Jz

X1
CALL

STA

MVI
STA

M .
STA
MVI
STA
NOP

D,NODIR
A ;WAS 255 {F NO FILE SPACE
DONE

D,DMADDR
SETDMA

POINT

A ,ACK ;SEND INITIAL ACK
OFEFFH /O LOCATION

A7
OF900H
Al
OCEOOH

NEED TEST FOR ERROR

LDA
ANA
JNZ

Xi
LDA
ORA
MOV

MOV
CPI
INZ

XRA
STA
CALL
ANA
JZ

OFEFFH
A
AGAIN

D,DMADDR
POINT

E

EA
H,MEM
AM

X3

AGAIN

A
BADDAT
GYBTE
A
FINISH

APPENDIX E

157

018C
018E

o
0193

0194
0195

o198
0199
019A
0198
019C
0190
019E

O1A1
01A2
01A5
01A6
01A7

01AA
01AD
OlAE

01B1
0184
01B6
0189
01BB

01BE
01C1

01C4
01C6

158 APPENDIX E

FE20
C2C401

0ECO
47

Cc5
CDE8O01

12

1C

Cl

81

4F

05
C29401

C5
CDEO1
Q]

81
C2C401

3ABS602
B7
C2C401

3AB702
Cé620
32B702
FE80
C25901

CDC901
C35501

3E15
C35801

GETQ:

GQLP:

AGAIN:

Cpl
INZ

MVi
MOV

PUSH
CALL

STAX
INR

ADD
MOV

INZ

PUSH
CALL

ADD
INZ

DA
ORA
INZ

LDA
AD!
STA
crl

INZ

CALL
JMP

MVI
IMP

32
AGAIN

C,0
B,Z

GBYTE

GQLp

CBYTE
B

C
AGAIN

BADDAT
A
AGAIN

POINT
32
POINT
128
GNEXT

SWRITE
READS

A, NAK
GBLK

;CHECKSUM
;COUNTER

01C?
01CC
01CF
01D2
01D3

01D6
0107
0108

01D9
01DC
Q1DF

01E2
01E5

O1E8
Ol1EB
01EC
OIED
O1EE
OVEF
01F0
01F3
OIF4

01F5
01F6
01F7
O1F9
01FC
O1FE
0201
0203
0206
0208

0208

115C00
CD2902
119502
B7

C2E200

(4
00
00

115C00
CD2F02
11A102

CD3502
C30000

CDF501
87
87
87
87
47
CDF501
80
Cce

23

7E

FE30
DA1102
FE3A
DAOEO2
FE41
DA1102
FE47
D21102

D637

SWRITE:

i

FINISH:

DONE.

GBYTE:

GNIB:

i

ALPHA:

X
CALL

ORA
JNZ

RET
NOP
NOP

X1
CALL
X1

CALL
JMP

CALL
ADD

ADD

ADD

ADD

MOV
CALL
ADD

RET

INX
MOV
CP
Jc
CPI
JC
CPt
JC
CPpI
INC

Sut

D,FCB
WRITE
D,DFULL
A

DONE

D,FCB
CLOSE
D,EOTRAN

PRINT
BOOT

GNig

BA
GNIB

H

AM

o
NOTHEX
?+1
NUMBER
A
NOTHEX
F+1
NOTHEX

‘A-10

APPENDIX E

159

020D C?

020E D630 NUMBER:
0210 C9

0211 3EFF NOTHEX:
0213 328602

0216 €9

0217 OQE1A SETDMA:
0219 CD0500

021C C9

021D OE13 DELETE:
021F CDO500

0222 C9

0223 OEl6 MAKE.
0225 CDO500
0228 C9

0229 OE15 WRITE:
0228 CDO0500
022E C9

022F OEV0 CLOSE-
0231 CD0500
0234 C9

0235 OEQ? PRINT-
0237 CDO0500
023A C¢9

i

RET

Sul
RET

MVI
STA
RET

Myl
CALL
RET

MV
CALL
RET

MV
CALL
RET

MVI
CALL
RET

MVt
CALL
RET

MV
CALL
RET

023B 46494CA54E NONAME: DB

;

0258 414D424947 BADNAM: DB

160 APPENDIX E

A, OFFH
BADDAT

C.26
BDOS

ce
BDOS

Cc,22
BDOS

C.21
BDOS

cl6
BDOS

Cc.9

BDOS

‘FILENAME MUST BE SPECIFIED’,0DH,0DH,’$’

'AMBIGUOUS FILES NOT
ALLOWED’,0DH,0DH,’$’

0276
0292

0295

029E

02A1

02B6
0287

0288
0208

4E4F204449 NODIR:
0D0D24

4449534820 DFULL:
0DOD24

5452414E53 EQTRAN-

BADDAT:
POINT-

H

= STACK

DB ‘NO DIRECTORY SPACE AVAILABLE
DB ODH,O0DH, '$’

DB ‘DISK FULL’

DB ODH,0DH,"$’

DB “TRANSFER COMPLETE.’,ODH, ODH, ‘$*
Ds 1

Ds 1

Ds 32

EQU $

Commodore 64 Copy Utility 1.0

COPYRIGHT © 1982

COMMODORE INTERNATIONAL

0100

F800
F900
F901

F903

;

i

;

= BUFFER
= CMD

= DATA

= SECTOR

= TRACK

= DISKNO
= OFF

MODESW
= VICRD

= VICWR
= VICFMT

= BDOS

= BOOT

= CR
= LF

ORG 100H

EQUATES

EQU OF800H
EQU OF900H
EQU OF901H
EQU OF902H
EQU OF903H
EQU OF904H

EQU 1

EQU OCEOOH

EQU 0

EQU 1

EQU 6

EQU 0005H

EQU 0000H

EQU ODH ;CARRIAGE RETURN
EQU 0AH ;LINE FEED

APPENDIX E

161

0100
0103
0106
0109

010C
010E

o1
0113

0116
0118

0118
011D

0120

0123
0126

0129
012C

012F
0132

0135
0137

013A
013D
013E

0141
0144
0146

162 APPENDIX E

316B06
111403
CD0503
CD0003

FE31
CA2301

FE32
CAD701

FE33
CA7B01

FE34
CA0000

C30901

11A603
CD0503

CDDBO2
CA0001

116104
CD0503

3E06
CDOAO3

3A01F9
A7
C27501

2100F8
3EE
77

CLs

START:

IN1TO4:

FORMAT

FMTO:

EQU

LXI

WXl

CALL
CALL .

CPI
Jz

CPl
Jz

Cpl
iz

CPI
Jjz

JMP

XI
CALL

CALL
JZ

I
CALL

MVI
CALL

LDA
ANA
JNZ

L
MVi
MoV

OCH

SP,STACK
D,COPMSG
PRINT
CONIN

0
FORMAT

%
BACKUP

oy
SYSTEM

g
BOOT

IN1TO4

D, FMTMSG
PRINT

CRORRS
START

D.FMTING
PRINT

AVICFMT
106510

DATA
A
FMTERR

H.BUFFER
A,OE5H
MA

;CLEAR SCREEN

;PROGRAM NAME, ETC.

;FORMAT A DISK

;GET KEYBOARD INPUT
JIF RUN/STOP, GO TO MENU

;FORMATTING MESSAGE

;SEND FORMAT COMMAND TO
6510

;CHECK FOR ERROR

sFILL DISK BUFFER WITH E5’s
; FOR DIRECTORY SECTORS

0147
0148

0148
014D

0150
0152

0155

0157
015A
015C
O15F
0162
0163

0166
0169
016A
016C

016F
0172

0175
0178

0178
017E

0181
0184

0187
018A
018D
$190

0193

2C
C24601

3E03
3203F9

3E00
3204F9

3E00

3202F9
3E01
CDOAO3
3A01F9
A7
C27501

3A02F9
3C
FEOB
C25701

118704
C37502

119A04
C37502

11D304
CDO503

112905
CDO503

116905
CD0503
CDDBO2
CA0001

CDEAD2

FMT1:

i

FMTERR:

;i

SYSTEM:

INR

L

JNZ FMTO ;DO THIS 256 TIMES
MVl A3

STA TRACK ;DIRECTORY TRACK
MV A0

STA DISKNO ;FORCE DRIVE O

Mvi A0 ;INITIAL SECTOR

STA SECTOR ;SET SECTOR

Mvi A VICWR ;GET READY FOR WRITE
CALL 106510 ;GODOIT

LDA DATA ;A=0IF OK

ANA A

JNZ FMTERR

LDA SECTOR

INR A

CPI 8 ;DO ONLY SECTORS 0-7
INZ FMT1 ;LOOP UNTIL DONE

LXI D,FMTDON

ImpP DONE

LXI D,FMTERM

JMP DONE

LXI D,SYSMSG ;SYSTEM TRACKS ONLY
CALL PRINT

XI D,SRCMSG

CAILL PRINT

X D,PRSMSG

CALL PRINT

CALL CRORRS

Jjz START ;IF SPACEBAR, GO TO MENU
CALL CRLF

APPENDIX E

163

0196 216B06

0199 3EO01

0198 CD8402

019E 3E02
01A0 CD8402

01A3 3Ei2
01A5 CDB402

01A8 114905
01AB CDO503

01AE 110F06
01B1 CDO0503

01B4 CDOQO03

01B7 FEOD

0189 C2B401

01BC CDEAO2

O1BF 216B06

01C2 3E01
01C4 CDAEO2

01C7 3E02
01C9 CDAEO02

01CC 3E12
01CE CDAEOD2

0i1D1 118E05
01D4 C37502

0107 11AC05
01DA CDO503

164 APPENDIX E

Sysi.

i

BACKUP:

LXI

MV

CALL

M|
CALL

MV
CALL

X
CALL

i
CALL

CALL

CPi

INZ

CALL

X!

mvi
CALL

Mvi
CALL

MV
CALL

X
JMP

LXi
CALL

H,MEM ;BEGINNING OF MEMORY SPACE

ok k

Al

RDTRK ;READ TRACK 1
A2

RDTRK ;READ TRACK 2
A, 18

RDTRK ;READ TRACK 18

D,DSTMSG ;PRINT DESTINATION MESSAGE
PRINT

D, RTNMSG
PRINT

CONIN

CR WAIT FOR CARRIAGE RETURN
Sysi

CRLF

H,MEM ;SETUP FOR WRITE ***

Al
WRTRK

A2
WRTRK

A, 18
WRTRK

D,SYSDON
DONE

D,BAKMSG ;BACKUP DISK
PRINT

01DD 116905

01E0
01E3
01E6
01E9

01EC
O1EE

01F]
01F3

01F6
O1F9

01FC
OIFE

0201
0204

0207
020A

020D
0210
0212

0215

0218
0218
021E
0221

0222
0225
0228
0229
022C

022F

CD0503
CDDBO2
CA0001
CDEAO2

3E01
3203F9

3E05
324A06

3A03F9
324806

3EQ7
324906

112905
CD0503

110F06
CD0503

CD0003
FEOD
C20D02

216B06

3A03F9
CD8402
3A03F9
3C
3203F9
3A4906
3D
324906
C21802

3A4806

BKLP:

BKRD1-

BKRD:

LX1
CALL
CALL
Jjz
CALL

MVI
STA

MV
STA

LDA
STA

MV
STA

LXi
CALL

LXI
CALL

CALL
CPI
JNZ

LXi

LDA
CALL
LDA
INR
STA
LDA
DCR
STA
INZ

LDA

D,PRSMSG
PRINT
CRORRS
START
CRLF

Al ;START WITH TRACK 1
TRACK

A5 ;DO QUTER LOOP 5 TIMES
QUTER

TRACK
WTRACK ;SAVE FOR WRITE TRACK

A7
INNER ;INNER LOOP COUNTER

D,SRCMSG
PRINT

D,RTNMSG
PRINT

CONIN
CR
BKRD1

H,MEM ;START OF AVAILABLE MEMORY

TRACK
RDTRK
TRACK
A
TRACK
INNER
A
INNER
BKRD

WTRACK

APPENDIX E 165

0232 3203F9
0235 3E07
0237 324906

023A 114905
023D CDO503
0240 110F06
0243 CDO503

0246 CDO0O3
0249 FEOD
0248 C24602

024E 216B06

0251 3A03F9
0254 CDAEO2
0257 3A03F9
025A 3C

025B 3203F9
025E 3A4906
0261 3D

0262 324906
0265 C25102

0268 214A06

0268 35
026C C2F601

026F 11FCO5

0272 C37502

0275 CDO503

0278 11B804

0278 CDO0503

0278 CDO0003

0281 (30001

0284 3203F9

166 APPENDIX E

BKWRI:

BKWR:

DONE.

;

RDTRK:

STA
MVI
STA

XI
CALL
LXI
CALL

CALL
CPI
INZ

LDA
CALL
LDA
INR
STA
LDA
DCR
STA
INZ

DCR
JNZ

LXI

JMP

CALL

LXi

CALL

CAaLL

Jmp

STA

TRACK ;RESTORE TRACK POINTER
A7
INNER INNER COUNTER

D,DSTMSG
PRINT
D,RTNMSG
PRINT

CONIN
ODH
BKWR1

H,MEM ;START OF MEMORY AGAIN

TRACK
WRTRK
TRACK
A
TRACK
INNER
A
INNER
BKWR

H,OUTER
M
BKLP

D,BAKDON
DONE

PRINT PRINT DONE MESSAGE

D, ANYKEY

PRINT

CONIN /WAIT FOR ANY KEY
START

TACK ,A=TRACK ON ENTRY

0287

0289
028C
028E
0291
0294
0295

0298
0298
029C
029D
029E
029F
02A0
02A1

02A4
02A7
02A8

3E00

3202F9
3E00
CDOAO3
3A01F?
A7
C2FA02

1100F8
1A
77
13
23
78
A7
C29802

3A02F9
3C
FE11

02AA C28902

02AD C9

02AE
0281

0283
02B6
0289
02BA
0288
028C
028D
02BE
02BF

02C2
02C4

3203F9
3E00

3202F9
1100F8
7E
12
23
13
7B
A7
C2B902

3EO0!]
CDOAO3

RD1:

RD2:

WRTRK:

WRI:

WR2:

MVI

STA
MVI
CALL
LDA
ANA
JNZ

i
LDAX
MOV
INX
INX
Mov
ANA
INZ

LDA
INR
CPl

JNZ

RET

STA
MVI

STA
I
MOV
STAX
INX
INX
MoV
ANA
INZ

MV
CALL

A0

SECTOR
A,VICRD
106510
DATA

A

RDERR

D,BUFFER
D

MA

D

H

AE

A

RD2

SECTOR
A

17

RD1

TRACK
A0

SECTOR
D,BUFFER
AM

D

H

D

AE

A

WR2

A, VICWR
106510

;START WITH SECTOR 0

;READ SECTOR COMMAND
;GO DOIT

,READ ERROR IF <>0

;GET CHARACTER FROM BUFFER

; AND PUT IN MEMORY

;BUMP PQINTERS
;DONE 256 YET?

:JUMP IF NO

,17=LAST SECTOR+ 1

;A=TRACK ON ENTRY

,PUT CHAR IN BUFFER

JINCREMENT POINTERS
;DONE 256 YET?

:JUMP IF NO

;SECTOR WRITE COMMAND
;GODOIT

APPENDIX E

167

02C7 3A01F9 LDA DATA

02CA A7 ANA A

02CB C2F402 INZ WRERR ;JUMP IF WRITE ERROR
02CE 3A02F9 LDA SECTOR

02D 3C INR A

02D2 FEN CPI 17 ;17 =LAST SECTOR+ 1
02D4 C2B302 JNZ WR1 ;KEEP READING
0207 C9 RET

02D8 FE20 CR1. CPI 20H ;SPACEBAR?

02DA C8 RZ

02DB CDO003 CRORRS- CALL CONIN

02DE FEOD Cpl CR ;CARRIAGE RETURN
02E0 C2DB02 INZ CR1

02E3 A7 ANA A ;KILL ZERO FLAG
02E4 C9 RET

02E5 OE02 CONOUT: Vi c2

02€7 C30500 Jmp BDOS

02EA 1EOD CRLF: Mmvi E.CR

02EC CDE502 CALL CONOUT

02EF TEOA MV! ELF

02F1 C3E502 JMP CONOUT

02F4 111D06 WRERR: Xl D, WRMSG

02F7 (37502 JMP DONE ,
02FA 113306 RDERR: X! D,RDMSG

02FD (37502 JMP DONE

0300 OEQ1 CONIN: MVvi (oR]

0302 C30500 JmP BDOS

0305 OE09 PRINT: MVI c?

0307 C30500 JMP BDOS

030A 3200F9 106510: STA CMD LPUT A IN 6510 COMMAND

REGISTER

168 APPENDIX E

030D 3E01
030F 3200CE
0312 00
0313 C9

0314 OCOA434F4D COPMSG-

0333 0DOADA

0336 2020312E20
0349 2020322E20
035C 2020332E20
0378 2020342E20
0388 504C454153

03A6 OCOA464F52 FMTMSG:

03BE 494E495449
03D9 0A43415554

03FD 504C414345
041C 4452495645
0436 202020204F
043F 5052455353

0461 ODOAOA464F FMTING:

0483 0DOAOA24

0487 464F524D41 FMTDON:

049A 492043414E FMTERM:

04B8 5052455353 ANYKEY:

04D3 O0COA535953 SYSMSG-

04F1 434F504945

0518 544F20534C

0529 494E534552 SRCMSG:
0549 494E534552 DSTMSG:

;

;

i

i

’

H

’

;

i

H

mvi A,OFF
STA MODESW ;TURN OFF Z80

NOP

RET

TEXT AND MESSAGES:

DB CLS, LF,'COMMODORE 04 UTILITY 1 0/

DB CRLF,LF

DB 1. FORMAT DISK’,CR,LF

DB * 2. BACKUP DISK',CR, LF

DB * 3. COPY SYSTEM TRACKS ONLY',CR,LF

DB " 4, EXIT',CR,LF,LF

DB "PLEASE CHOOSE FUNCTION (i-4) §'

D8 CLS,LF,'FORMAT DISK UTILITY’,CR,LF,LF

DB INITIALIZES DISK FOR CP/M,CR,LF

DB LF,'CAUTION! FORMAT ERASES ALL

DATA’,CR, LF, LF

DB ‘PLACE DISK TO BE FORMATTED IN',CR,LF
DB "DRIVE 0 AND PRESS ENTER',CR, LF,LF

DB " OR',CR, LF,LF

DB ‘PRESS SPACEBAR TO RETURN TO MENU §'
DB CR,LF,LF, FORMATTING DISK, PLEASE WAIT. .’
DB CR,LF,LF,'$

DB "FORMAT COMPLETE",CR, LF,LF,’§'

DB 'l CANNOT FORMAT THIS DISK!',CR, LF,LF,’$’
DB ‘PRESS ANY KEY TO CONTINUE $'

DB CLS, LF,’SYSTEM TRACK COPY UTILITY,CR, LF,LF
DB ‘COPIES SYSTEM TRACKS FROM MASTER

DISK’,CR,LF

DB “TO SLAVE DISK',CR,LF,LF,'$’
DB “INSERT MASTER DISK IN DRIVE 0',CR,LF,’$"
DB 'INSERT SLAVE DISK IN DRIVE 0",CR, LF,'$’

APPENDIX E 169

0569

058E

05AC 0COA444953 BAKMSG:

05C4
05E0
05FB

05FC

5052455353 PRSMSG-

H

5359535445 SYSDON:

i

5448452045
434F504945
24

;

4241434855 BAKDON:

;

5052455353 RTNMSG:

;

ODOADA4449 WRMSG:

O0DOAOA4449 RDMSG:
WTRACK
INNER
OUTER

= STACK
= MEM

DB

DB

DB
DB
DB
DB

DB

DB

DB

DB

DS

Ds

DS

Ds

QU
EQU

'PRESS RETURN (OR SPACEBAR FOR MENU) §
'SYSTEM TRACK COPY COMPLETE',CR, LF,LF,'$
CLS,LF,’DISK BACKUP UTILITY",CR,LF,LF

‘THE ENTIRE MASTER DISK IS *,CR,LF

'COPIED TO THE SLAVE DISK’,CR, LF,LF

l$l

'BACKUP COMPLETE’,CR,LF,LF,’$’

‘PRESS RETURN &

CR,LF,LF,'DISK WRITE ERROR",CR, LF,'$’

CR,LF,LF,'DISK READ ERROR’,CR,IF,'$’

Z80 Bootstrap Routine
for the Commodore 64

COPYRIGHT © 1982

COMMODORE INTERNATIONAL

This routine is loaded from Track 1, Sector 5 of the
Commodore 64 CP/M disk by a routine in BIOS65.

The load address is 0000H (with respect to the Z80 CPU).
When the Z80 is enabled this program loads the Z80 BIOS
and CCP and BDOS into RAM and jumps to it.

3400

001C

170

cce
;CCP
:CCP

= NSECTS

APPENDIX E

EQU
EQU
EQU
EQU

3400H

0000H ;FOR MAKING BOOTO.HEX
0100H ;FOR MAKING BOOT1.HEX
1CH

F903
F902
F904
FCFF
4A33

F900

CE0O
F901

F800
4A00

0000

0000

0024

0027
0029
002C
002E
0031

00
110034
3E00
3204F9
2601
2E06
7C
3203F9
7D
3202F9
3E00
3200F9
3E01
3200CE
00
3A01F9
B7
C20D00

3E2A
3201F9
3E03
3200F9
3E01

TRACK
SECTOR
DISKNO
IOTYPE
KYBDMD
VICRD
CMD
OFF
MODESW
DATA
BUFFER
800T

i

LOAD1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG

NOP
X
MvI
STA
MVl
MVI
MOV
STA
MOV
STA
MVl
STA
MVI
STA
NOP
LDA
ORA
INZ

OF903H

OF902H

0F904H

OFCFFH :JO SETUP BYTE IN 8I0S65
CCP+1633H ;CAPS LOCK FLAG
0

OF900H

01H

OCEOOH

OF901H

OFBOOH

CCP + 1600H

0000H ;280 RESET LOCATION

;NOP REQUIRED FOR HARDWARE
D,CCP ;START OF LOAD ADDRESS
A0
DISKNO ;LOAD IN FROM DRIVE A
H1 ;READ BEGINNING TRK 1, SEC 6
L6
AMH
TRACK
AL
SECTOR
A,VICRD :SECTOR READ COMMAND
CMD
A,OFF
MODESW :TURN OFF SELF

DATA ;WAS TRANSFER OK?
A
LOAD1 ;JUMP IF NO

OUTPUT ‘** TO SHOW LOADING

MVI
STA
MVl
STA
MVI

A,
DATA
A
CMD
A, OFF

APPENDIX E 171

0033 3200CE STA MODESW
0036 00 NOP

MOVE SECTOR TO MEMORY

0037 D100F8 I B,BUFFER
003A 0A LOAD2: IDAX B

003B 12 STAX D

003C 0C INR C

003D 1€ INR E

003E C23A00 INZ LOAD2

UPDATE POINTERS

CP/M Version 2.2 System
Relocator —2/80

CP/M Relocator Program, Included with the Module To
Perform the Move from 900H to the Destination
Address

COPYRIGHT © 1980
DIGITAL RESEARCH

Modified for Use on the Commodore 64

MODIFICATIONS COPYRIGHT © 1982
COMMODORE INTERNATIONAL

0041 INR D
0042 2C INR L
0043 7D MOV Al

CHECK FOR END OF TRACK

0044 FE11 CP 17
0046 DA4COO0 JC LOAD3
0049 24 INR H
004A 2E00 MVl L,0

172 APPENDIX E

O11E C21801

0121 118000
0124 CDODO2

0127 3E07
0129 D300

0128 3E18

012D D306

O12F 210001
0132 CD0602
0135 21C103
0138 CDO602
0138 214404
O13E CD0602
0141 216805
0144 CDO602

0147 115C00
O14A CD1302
014D 116002
0150 3C

0151 CAA201

0154 CDFCOI
0157 FEOS
0159 C25401

015C 3E00
O15E 328F02

0161 115C00
0164 CD1902
0167 B7

0168 C28801

0168 CDA8OY

016E CDFCOI1
0171 FEI5

WTACK:

RDNEXT:

AGAIN-:

WTANS:

INZ

X
CALL

MVl
out

MVl
out
X
CALL
X
CALL
LXI
CALL
X
CALL

X
CALL
X
INR
Jz

CALL
CPI
INZ

MVI
STA

X
CALL
ORA
JNZ

CALL

CALL
CPl

QLOOP

D,DMADDR

SETDMA

A,07H
0

A, 18H

-]
H,0100H
SETUP
H,03CLH
SETUP
H,0444H
SETUP
H,0568H
SETUP

D,FCB
OPEN
D,NOFILE
A

DONE

SIN
ACK
WTACK

A0
POINT

D,FCB
READ

EOF

SEND

SIN
NAK

;DO 16 TIMES

;1200 BAUD DATA

sWAS 255 IF NO FILE

;WAIT FOR INITIAL ACK

;QUARTER SECTOR POINTER

;SEND 32 8YTES

APPENDIX E

185

0173 CA6801

0176 FEOS
0178 C26E01

0178 3A8F02
017E C620
0180 328F02
0183 FE8O
0185 CA5CO1

0188 C36B01

0188 3E3A
018D CDF001

0190 3E30
0192 CDF0O1

0195 3E30
0197 CDF0O1

019A 3EOD
019C CDF0O01

019F 117A02

01A2 CDIF02
01A5 C30000

01A8 3E3A
01AA CDFOO1

01AD 3E20
O1AF CDD9%01

0182 OECO
01B4 218000
0187 3A8F02
01BA B5
O1BB 6F

186 APPENDIX E

EOF:.

DONE-

SEND:

Jz

CPI
JNZ

LDA
ADI
STA
CPl
Jjz

JMP

Mt
CALL

MvI
CALL

mvi
CALL

MV
CALL

LXi

CALL
JMP

MVI
CALL

MVI
CALL

MvI
X
LDA
ORA
MOV

AGAIN

ACK
WTANS

POINT
32
POINT
128
RDNEXT

AGAIN

A%
SOUT

A0
SouT

A0
SOUT

A.CR
SOUT

D,EOTRAN

PRINT
BOOT

AL
SOUT

A,32
SHOUT

c,0

H,DMADDR

POINT
L
LA

;BAD CHECKSUM, SEND AGAIN

;IF NOT ACK, KEEP WAITING

;POINT TO QUARTER

;IF 0, READ ANOTHER SECTOR

;SEND NEXT QUARTER

;OUTPUT START OF STRING

;NUMBER OF DATA 8YTES

;CLEAR CHECKSUM

;POINT TO SECTOR QUARTER

JOR DATA INTO LSB

01BC 79
01BD 86
OIBE 4F
01BF 7E

01C0O E5
01C1 CDD%01
01C1 El

01C5 2C
01C6 7D
01C7 E6IF
01C9 C2BCO1

01cC 79
0iCD EEFF
OICF 3C
01D0 CDD?901

01D3 3EOD
01D5 CDFOO
0108 C9

01D? F5
O1DA OF
01DB OF
01DC OF
01DD OF
OIDE CDE201

OIEl F1
01E2 E4OF
O1E4 FEOA
01E6 DAEEOY
O1E® C637
OVEB C3FOO1

OlEE C630

01F0 F5
01F1 DBOS

SEND1:

SHOUT:

SNOUT:

SNUM:
SOUT:
SOUTT:IN

PUSH
CALL
POP

INR
MOV
ANI
INZ

MOV
XRI
INR
CALL

Mvi
CALL
RET

PUSH
RRC
RRC
RRC
RRC
CALL

POP
ANI
CPI
Jc
ADI
JMP

ADI

PUSH

AC ;FORM CHECKSUM

CA
AM ;GET CHARACTER

H ;SAVE ADDRESS
SHOUT ;OUTPUT HEX DIGITS

L ;NEXT 8YTE

Al

1FH ;CHECK FOR MOD 32
SEND!1 ;DO 32 TIMES

AC ;FIX CHECKSUM
OFFH

SHOUT
A,ODH

SOUT

PSW

SNOUT ;OUTPUT HIGH NIBBLE

PSW

OFH :MASK OFF BITS
10

SNUM

‘A-10

SOuUT

o

PSW
06H XEROX CHANNEL A CONTROL

APPENDIX E 187

O1F3
O1F5

01F8
OTF9
O1FB

01FC
OVFE
0200
0203
0205

0206
0207
0209

020C

020D
020F
0212

0213
0215
0218

0219
0218
021E
021F
0221
0224

0225

0242

0260

188

E604
CAF101

F
D304
Cc9

DBO6
E601
CAFCO?
DBO4
ce

7C
D306
D
D306
ce

OE1A
CDO500
ce
OEOF
CDO0500
ce
OE14

CD0500
ce

OE09

CD0500
co

46494C454E

414D424947

492043414E

APPENDIX E

SIN:

SETUP:

i

SETDMA:

OPEN:

READ:

PRINT-

NONAME:

BADNAM:

NOFILE:

H

AN
iz

POP
out
RET

ANI
JZ

RET

MvI
CALL
RET

mvi
CALL
RET

MVI

CALL
RET

MVI
CALL
RET

DB

D8

SOuUT

PSW
04H ;XEROX CHANNEL A DATA

O1H
SIN

AH

Al

C.26
BDOS

C.15
BDOS

C.20
BDOS

ce
BDOS

'FILENAME MUST BE SPECIFIED’,0DH.ODH.'$’

'AMBIGUOUS FILES NOT
ALLOWED',0DH,0DH, '$’

' CANNOT FIND THAT FILE’,0DH,0DH,$’

027A 5452414E53 EOTRAN:

028F

0290
02B0

POINT:

i

STACK

DB

DS

DS
EQU

‘TRANSFER COMPLETE.’,0DH,0DH, '$*

32

1/0 Configuration Utility for Commodore 64

COPYRIGHT © 1982

COMMODORE INTERNATIONAL

FCO0
F800
FCFF
FC10

0001
CEOO

0005 =

000D =

0100

IOMEM
BUFFER
IOTYPE
FNBASE
KYBASE
VICWR
CMD
DATA
SECTOR
TRACK
DISKNO
KYCHAR
KYBDMD
CRPOS
SHFTST
LASTKY
MSGPTR
CONINV
OFF
MODESW
BOOT
BDOS
CLs

CR

LF

EQU
EQU
EQU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQuU
EQU
EQU
EQU
ORG

OFCOOH
OF800H
OFCFFH
OFC10H
OFDOOH
1
OF900H
OF901H
F902H
OF903H
OF904H
OF905H
334

1
OF28DH
63H
66H
09H
OlH
OCEOOH

0000H
0005H

ODH
OAH

APPENDIX E 189

0100 318308 START: X SP,STACK ;INITIALIZE STACK PTR

0103 115E04 X D,IOMSG

0106 CD7101 CALL PRINT

0109 3AFFFC LDA IOTYPE

010C E601 AN} OiH :# OF DISKS
010E C631 AD!} v ,FORM ASCII
0110 5F MOV E.A

onl Cb7601 CALL CONOUT

0114 1i1C204 X D,PRTMSG

0117 CD7101 CALL PRINT

011A 11D604 X D.P1515

011D 3AFFFC LDA IOTYPE

0120 E602 AN 02H ;CHECK PRINTER TYPE
0122 CA2801 iz ST ;15151F=0
0125 11DDO4 LXi D.P4022 ;4022 IF =1
0128 CD7101 ST1: CALL PRINT

0128 11E404 i D.CAPMSG

0128 CD7101 CALL PRINT

0131 11FBO4 i D,ONMSG ;ASSUME ON
0134 3AFFFC LDA {OTYPE

0137 E620 AN} 20H BITS

0139 CAS3FO1 Jz ST2

013C 110005 i D,OFFMSG

013F CD7101 ST2: CALL PRINT

0142 110605 X D,MENU

0145 CD7101 CALL PRINT

0148 CD7801 ST3: CALL KEYIN

0148 FE3) CPI T

014D CA9201 Jz CHGDRY

190 APPENDIX E

0150
0152

0155
0157

015A
015C

015F
0161

0164
0166

0169
0168

016E

0171
0173

0176
0178

0178
017D
O17F

0182
0185
0187

0188
01BB
018D
0190
1154

0192

FE32
CA9DO1

FE33
CAB601

FE34
CACO01

FE35
CACDO2

FE36
CA1A04

FE37
CAQ000

C34801

OEO9
C30500

0E02
C30500

1EFF
0E06
€30500

2A0100
2E09
34

3200F9
3E01
3200CE
00

c9

3AFFFC

PRINT:

i

CONOUT-

KEYIN:

CONIN:

106510:

.

CHGDRYV:

CPI
Jz

CPl
Jjz

CPl
iz

CPi
iz

CPI
Jz

CPI
iz

JMP

mvi
IMP

MVI
JMP

MVI
MVI
JMP

LHLD
MV
PCHL

STA
MVl
STA
NOP
RET

LDA

190
CHRPRT

%
CHGCAP

g
CHGFNC

5
CHGKEY

&
SAVDSK

7
BOOT

ST3 ;NOT A VALID RESPONSE

c.9
BDOS

C.2
BDOS

E,OFFH
C.6
BDOS

BOOT+1
L,CONINY

CMD
A, OFF
MODESW

IOTYPE

APPENDIX E

191

0195
0197
019A

019D
01A0
01A1
01A3

01A6
01A7
01A9
O1AA

01AD
O1AE
0180
0182
01B3

01B6
0189
01BA
01BC
01BD

01Co
01C3

01C6
01C8
01C8
01CE
01D

01D4
01D6
0o7
01DA
010D

01E0

192

EEQ1
32FFFC
C30001

21FFFC
7€

E602
CAADO1

7E

E6F1
77
C30001

7€
E6FB
F60A
77
C30001

21FFFC
7E
EE20
77
€30001

11707
cD710

3E00
325F08
11A0Q07
CD7101
3A5F08
Cé31

5F
CD760
11A407
CD7101

CDAB02

APPENDIX E

:

CHGPRT:

CHGP1:

H

CHGCAP:

CHGENC:

ENNEXT:

XRI
STA
Jmp

LXi
MOV
AN}
iz

MOV
ANI
MOV
imp

MOV
ANI
ORI
MOV
IMP

i
MOV
XRi
mOv
Imp

i
CALL

MVI
STA
X
CALL
LDA
ADI
MOV
CALL

CALL

CALL

01H
IOTYPE
START

H,IOTYPE
AM

02H
CHGP1

AM
OF1H
M.A
START

AM
OFBH
0AH
MA
START

HOTYPE
AM

20K

MA
START

D,FNKMSG

PRINT

A0
KYMODE
D,EM1
PRINT
KYMODE
Y

E.A
CONOUY
D,FmM2
PRINT

CALCAD

;GET IOTYPE
;CLEAR BITS FOR 1515 PRINTER

7GET I0TYPE
;CLEAR BIT 2
;SET BITS FOR 4022 PRINTER

ANVERT BIT

01E3
01E4
O1ES
01E7

01EA
O1€EB
01EC
OIEF
01F0

01F3
01F4
01F6
O1F9
O1FA
01FC

O1FF
0202
0205
0208

0208
020E
020F
0210
0212

0215
0218

021B
021E
0220

0223
025
0228

022B

7E

23
FE20
DAF301

5F
ES
CD7601
3]
C3E301

F5

1E22
CD7601
F1

FEOO
CA0502

11A907
£o7ol
11AE07
co7101

215F08
34

7E
FEQ8-~
C2CBO1

118107
o710

CD7801
D631
DA1B02

FEO8
CA0001

D21B02

325F08

FN2

;

CONTRL,

CRLF:

ASKAGN.

MOV
INX
CPl
JC

MOV
PUSH
CALL
POP
Jmp

PUSH
mvi
CALL
POP
Cpl
Jz

CALL
X
CALL

INR
MOV
CPI
INZ

X1
CALL

CALL
Sul
IC

CPI
JZ

INC

STA

AM

H

20H
CONTRL

E.A

H
CONOUT
H

FN2

PSW

E, "
CONOUT
PSW

0

CRLF

D,.CRM
PRINT
CD,CRLFM
PRINT

H,KYMODE
M

AM

8

FNNEXT

D, FNINST
PRINT

KEYIN

g
ASKAGN
8

START
ASKAGN

KYMODE

APPENDIX E

193

022E
0231

0234
0237

023A
023D
023F
0240
0243
0246
0249
024C

024F
0251

0254
0257
0259

025C
025€

0261
0263

0266
0268

0268
026D

0270
0271
0274
0276

0279
027A

194 APPENDIX E

111Co8
Cb7101

11A007
cD7101

3A5F08
Cé31

5F
CD7601
11A407
CD7101
CDA802
225D08

3E00
326208

CD7B01
FEOD
CAB502

FEO8
CAB902

FE1A
CA9102

FE20
DA5402

FEBO
D25402

47
3A6208
FEOF
D25402

Ccs
58

INLOOP:

i
CALL

i
CALL

LDA
ADI

CALL
X

CALL
CALL
SHLD

M|
STA

CALL
CPl
JZ

CP!
JZ

CPI
Jz

CPI
Jc

CPI
INC

MOV
LDA
CPl
IJNC

PUSH
MOV

D,FM3
PRINT

D,FMI1
PRINT

KYMODE
e

E,A
CONOUT
D,Fm2
PRINT
CALCAD
KYADDR

A0
NUMCHR

KEYIN
ODH
ITSCR

08H
ITS8S

1AH
ITSCZ

20H
INLOOP

80H
INLOOP

B,A
NUMCHR
15
INLOOP

;GET CURRENT FN #
;FORM ASCII

SAVE CHAR

;IF ALREADY 15 CHAR,
; NO ROOM FOR 00H

0278
027E

027F
0282

0285
0286
0289
028B

028E

029
0293
0296

0299
029C
029F

02A0
02A3
02A4
02A5
02A6
02A7

02A8
02AB
02AD
0280
0281

0282
0283
0284
0286
0287
0288

0289
028C

CD7601
C1

CD9902
C35402

47
3A6208
FEOF
D25402

CD9902

0600
CD9902
C3C001

2A5D08
3A6208
3C
326208
3D

85

6F

70

Cco

2110FC
1600
3AS5F08
17

17

3A6208
FEOO

ITSCR:

ITSCZ:

[

OUTPUT.

i

CALCAD:

ITSBS:

CALL
POP

CALL
JMP

MOV
LDA
CPl
INC

CALL

L\
CALL
JMP

LHLD
LDA
INR
STA
DCR
ADD

MOV
RET

DAD
RET

LDA
CPI

CONOUT

QUTPUT
INLOOP

B,A
NUMCHR
15
INLOOP

OUTPUT

B0
OUTPUT
CHGFNC

KYADDR
NUMCHR
A
NUMCHR
A

L

LA

M,B

H,FNBASE

D,0
KYMODE

OFOH
E.A

NUMCHR

,GO FOR MORE

;SAVE CHAR

;NO ROOM IF 15 CHAR

;ADD IN OFFSET

APPENDIX E

195

02BE

02C1
02C2
02C5
02C5
02C7

CA5402

3D
326208
326208
1EO8
CD7601

02CA C35402

02CD
0200

0203
02D6

0209

114306
CDh7101

112F07
CD7101

CD8201

02DC 2A0100

02DF
02E1
02E2
02E5
02€7

02EA
02EC
02EF
02F1

02F4
02F6
02F9
02FB
02FC
02FF
0300
0301
0302
0305
0306

196

2E33

46
3A8DF2
E601
CAECO2

0602
3A8DF2
E604
CAF602

0603
2A0100
2E63
7€
326008
87

87

80
2100FD
85

6F

APPENDIX E

¢
¢
H

CHGKEY-

CKo.

CK1.

CK2.

Jz

DCR
STA
STA
Mvi
CALL
JMP

X
CALL

X
CALL

CALL
LHLD
Mvi
MOV
LDA
AN}
JZ

Myl
LDA
AN
Jz

Mmvi
LHLD
MV
MOV
STA
ADD
ADD
ADD
Xt
ADD
MOV

INLOOP

A
NUMCHR
NUMCHR
E.08H
CONOCUT
INLOOP

D, KYINST
PRINT

D .PRSMSG

PRINT

CONIN
BOOT+1
L.KYBDMD
B.M
SHFTST
0tH

CK1

B.2
SHFTST
04H
CK2

B.3
BOOT +1
L,LASTKY
AM
KYCHK

A

A

B
H.KYBASE
L

LA

AF 0 JUST GO TO LOOP

,BACKSPACE

JUNSHIFT=0, CAPS=1

,GET MODIFIER STATUS
S SHIFT KEY DOWN?
[JUMP IF NO

JSHIFT =2

;1S THE CONTROL KEY DOWN?
JUMP IF NO

;CONTROL=3

;SAVE FOR EXIT TEST
*2

4

;ADD IN OFFSET

;HL NOW HAS ADDRESS OF KEY

0307
030A
0308

030E
0311
0313
0315
0316

0318
031B

031E
0321
0322

0325
0328

0328
032E
0331
0333

0336
0339
0338

033E
034
0343

0346

0349

034C
034F

0352

225D08
78
325F08

2A0100
2E66
3600
23
3600

113C07
CD7101

2A5D08
7E
CD6A03

114107
cb7101

3A5F08
115€07
FEOO

CA4903

114607
FEO1
CA4903

114€07
FEO2
CA4903

115607

Cb7101

116607
cD7101

CD8603

PMODE:

SHLD
MOV
STA

LHLD
L\
Mvi
INX
L\

X
CALL

LHLD
MOV
CAlL

X
CALL

LDA
LX|
CP{
JZ

CPI
3z

X
CPI
Jz

CALL

LXi
CALL

CALL

KYADDR ;ADDRESS OF KEY
AB .8 1S THE MODE
KYMODE

BOOT +1
L,MSGPTR
M,0

H

M0 ,DISABLE MESSAGE MODE IF ANY

D,ISMSG
PRINT

KYADDR
AM ;GET KEY CODE
PHEX , AND PRINT IN HEX

D, INMSG
PRINT

KYMODE

D,UNSH ;UNSHIFT MODE IF O
0

PMODE

D,CAPS
1
PMODE ;CAPS MODE IF 1

D, SHIFT
2
PMODE ;SHIFT MODE IF 2

D,CONT ,MUST 8E CONTROL MODE

PRINT

D,MODE
PRINT

GHEX

APPENDIX E

197

0355 C26303 INZ ASGKEY

0358 3A4008 DA KYCHK NO CHARACTERS, 2 CR'S?

0358 FEO! cPl CRPOS JIS IT CR KEY POSITION?

035D CA000! iz START ;RESTART IF 2 CR'S

0360 C3D302 IMP cKo ANEXT KEY

0363 2A5D08 ASGKEY. LHLD KYADDR

0366 77 MOV MA ;PUT NEW CHARACTER IN
MEMORY

0367 C3D302 IMP cKo

036A F5 PHEX: PUSH PSW :SAVE CHARACTER

036B OF RRC

oB6C OF RRC

036D OF RRC

036E OF RRC

036F €D7303 CALL HEX ;PRINT TOP NIBBLE

0372 F1 POP PSW ;PRINT LOWER NIBBLE

0373 E6OF HEX: ANI OFH /4 BITS

0375 FEOA cPl 10 AETTER OR NUMBER?

0377 DAB0O3 i NUMSER

037A C637 ADI ‘A10 ;MAKE HEX LETTER

037C fF MOV EA

037D C37601 IMP CONOUT

0380 €630 NUMBER. ADI o ,MAKE ASCIl NUMBER

0382 5F MOV EA

0383 C37601 IMP CONOUT

0386 3E00 GHEX: MVI A0

0388 326208 STA NUMCHR

0388 CD8201 GHO: CALL CONIN

03BE FEOD CPI ODH
0390 C2A503 INZ GHI1
0393 3A6208 LDA NUMCHR

198 APPENDIX E

0396
0398

0399
0398

039E
03A0
03A1
03A4

03A5
03a7

03AA
03AD
03AF

0382
0383
0386
0389
03BA
0388
03BC
03BD
03BF
03C2
03C4
03C7

03CA
03CB
03CE
0300

0303
03D4
0306
0309
03DB

FEOO
c8

FEO2
C28803

3EFF
A7
3A6108
co

FEO8
C2CA03

JA6208
FEOO
CA8BO3

30
326208
3A6108
OF

OF

OF

OF

E6OF
326108
1E08
CD7601
C38803

47
3JA6208
FEO2
CA8BO3

78

FE30
DA8BO3
FE3A
DAFFQ3

GH1:

GH4:

CPI
RZ

CPI
JNZ

MVI
ANA
LDA
RET

Cpl
INZ

LDA
CPI
Jz

DCR
STA
LDA
RRC
RRC
RRC
RRC
ANI
STA
L\
CALL
IMP

MOV
LDA
CPI
Iz

CPl
JC
CPl
JC

GHO

A,OFFH

HEXIN

08H
GH4 JUMP NOT B8ACKSPACE

NUMCHR

GHO

A
NUMCHR
HEXIN

OFH
HEXIN

E 08H
CONOUT
GHO

B.A
NUMCHR
2

GHO

AB

o

GHO
¥+1
GOTNUM

APPENDIX E

199

O3DE FE41
03EC DAB8803

O3E3 FE47
03E5 DAF203

03E8 FE61
O3EA DABS03

03ED FE&7
03EF D28803

03F2 F5
03F3 5F
03F4 CD7601
03F7 F1
03F8 EOOF
03FA C609
03FC C30504

O3FF F5
0400 5F
0401 CD7601
0404 F1

0405 E60F
0407 47
0408 3A6108
0408 87
040C 87
040D 87
040E 87
040F 80
0410 326108

0413 216208

0416 34
0417 C38803

200 APPENDIX E

GOTLET

GOTNUM.

MAKNUM:

CpP
IC

CPi
JC

CPI
JC

CPI
INC

PUSH
MOV
CALL
pPOP
ANI
ADI
JMP

PUSH
mov
CALL
POP

ANI
MOV
LDA
ADD
ADD
ADD
ADD
ADD
STA

Lxi
INR
JMP

GHO

o
GOTLET

A
GHO

F+1
GHO

PSW

EA
CONOQUT
PSW

OFH

9
MAKNUM

PSW

E.A
CONOUT
PSW

OFH

B.A
HEXIN

A
A
A
A
B
HEXIN

H,NUMCHR
M
GHO

041A
041D
041F
0422

0425
0426
0427
0428
0429
042A
042B

042E
0430

0434

0437
0439
043C
043F
0440

2100FC
3E03

3202F9
1100F8

7E
12
23
13
7D
A7
C22504

3ECO
3204F9

3C
3203F9

3EO1
CD88o1
3A01F9
A7
C25204

3A02F9
3C
3202F9
FEO5
C22204

30001

111306
CD7101
CD8201
C30001

SAVDSK

SAV2:

SAV1:

WRERR:

LX! H,IOMEM
MV A3

STA SECTOR
LXi D,BUFFER
MOV AM
STAX D

INX H

INX D

MOV Al

ANA A

INZ SAV1 ;256 TIMES
MV A0

STA DISKNO
INR A

STA TRACK
MVi A,VICWR
CALL 106510
LDA DATA
ANA A

INZ WRERR
LDA SECTOR
INR A

STA SECTOR
CPl 5

INZ SAV2 ;WRITE SECTORS 3 AND 4
Jmp START

B4 D, WERMSG
CALL PRINT
CALL CONIN
JMP START
MESSAGES

APPENDIX E

201

045E OCOA434F4D IOMSG:
0489 5448452043
04AC 20204E554D

04C2 0DOA PRTMSG:
04C4 2020505249

04D6 313531350D P1515:
04DD 3430323200 P4022

04E4 2020494E49 CAPMSG:

04FB 4F4EODOA24 ONMSG
0500 4F46460D0A OFFMSG:
0506 OADA MENU.
0508 444F20594F

051A 2020312E20

053E 2020322E20

0559 2020332£20

0579 2020342E20

05A0 2020352E20

0588 2020362E20

05DE 2020372E20

05F5 504C454153

0613 ODOAOA4449 WERMSG:
0628 5052455353

0643 OCOA KYINST:
0645 5052455353

0665 544F204348

0688 2020204845

06AB 544F204558

—_

06D1 2020205457
O6EE 544F204B45

202 APPENDIX E

DB
DB

DB
DB

DB

DB
DB

DB
DB
DB
DB
DB
DB

DB
DB

DB
DB

DB

DB

DB
DB

CLS,LF,'COMMODORE 64 I/O CONFIGURATION
UTILITY” CR,LF,LF

‘THE CURRENT /O ASSIGNMENTS
ARE;",CR,LF,LF

" NUMBER OF DRIVES. §'

CRLF
' PRINTER TYPE: §'

‘1515, CR,LF,'$’
'4022',CR,LF,'$’

* INITIAL CAPS MODE. §

‘ON’, CRLF,'§
‘OFF',CR,LF,'$'

LF LF

‘DO YOU WISH TO-,CR,LF,LF

" 1. CHANGE NUMBER OF DISK DRIVES',CR, LF
‘2. CHANGE PRINTER TYPE',CR,LF

* 3. CHANGE INITIAL CAPS MODE',CR LF

' 4. CHANGE FUNCTION KEY
ASSIGNMENTS’, CR LF

" 5. CHANGE KEY CODES’, CR,LF

' 6 SAVE CURRENT I/O SETUP ON DISK’,CR,\F
‘7. RETURN TO CP/M’,CR,LF LF

‘PLEASE ENTER SELECTION (1-7) §

CR,LF,LF,’DISK WRITE ERROR’,CR,LF

‘PRESS ANY KEY TO CONTINUE §'

CLS,LF

‘PRESS KEY TO EXAMINE KEY CODE’,CR AF,LF
‘TO CHANGE KEY CODE, ENTER DATA
IN',CR,LF

' HEXADECIMAL AFTER “"CHANGE

10" *,CRLF AF

'TO EXiT KEY CODE MODE. TYPE

“RETURN" *.CR,LF

' TWICE AFTER "PRESS KEY" *, CR,LF,LF

‘TO KEEP CURRENT KEY CODE, TYPE',CR,LF

070E
072E

072F

073C

0741
0746
074€
0756
075€E
0766

0779

079F
07A0

07A4

07A9
07AE

07B1

07D3
07F0
0808

081C

083D

085D
OB5SF

0860
0861

0862
0863
0883

2020202252
24

0D0AS505245
0D49532024
20494E2024
4341505320
534849465
434F4E5452
554E534849
204D4F 4445

0C0A544845

24
20204624

3A20202224

3C43523E24
0DOA24

0A454E5445

2020544F20

454E544552
20204B4559

PRSMSG:
ISMSG:
INMSG:
CAPS
SHIFT:
CONT.
UNSH:
MODE.

FNKMSG:

FM1
FM2
CRM
CRLFM

FNINST

i

ODOAQAS5459 FM3

20204F5220

KYADDR
KYMODE
KYCHK
HEXIN
NUMCHR

STACK

DB
DB

DB

DB

DB
DB
DB
DB
DB
DB

DB

DB
DB

DB

DB
DB

DB

DB
DB
DB

DB

DB

Ds
Ds
DS
Ds
DS
DS
EQU

‘ “RETURN" AFTER “CHANGE TO" *,CR,LF,LF
l$l

CR,LF,'PRESS KEY §

CR1S §' ™~

INS

'CAPS §'

'SHIFT $§'

'CONTROLY’

‘UNSHIFT$

* MODE — CHANGE TO §'

CLS,LF,' THE FUNCTION KEY ASSIGNMENTS
ARE *,CR,LF,LF

f$l

i Fsl

s u$:

'<CR>$'
CR,LF,'$’

LF,"ENTER FUNCTION KEY NUMBER
(1-8),CR,LF

“TO CHANGE PRESET VALUES.’,CR,LF,LF
'ENTER 9 TO LEAVE FUNCTION’,CR LF

" KEY UTILITY. §

CR,LF.LF,'TYPE IN TEXT. USING
“RETURN" *,CR,LF
‘ OR "CTRL-Z” AS TERMINATOR.’,CR,LF LF,'$’

;KEYBOARD LOOKUP ADDRESS
;KEYBOARD MODE

—_ - - - N

APPENDIX E 203

SYSGEN — System Generation Program 8/79

System Generation Program, Version for MDS

COPYRIGHT © DIGITAL RESEARCH
1976, 1977, 1978, 1979

MODIFICATIONS COPYRIGHT © 1982
COMMODORE INTERNATIONAL

Modified for use on Commodore 64. The system sectors
run linearly from Track 1 Sector to Track 2 Sector 16.

0022 = NSECTS EQU 34 ,NO. OF SECTORS PER TRACK

0002 = NTRKS EQU 2 ;LAST OS TRACK +1

0003 = NDISKS EQU 3 /NUMBER OF DISK DRIVES

0080 = SECSIZ EQU 128 ,SIZE OF EACH SECTOR

0007 = LOG2SEC EQU 7 LOG 2 SECSIZ

0001 = SKEW EQU 1 ,SECTOR SKEW FACTOR

005C = FCB EQU 005CH ;DEFAULT FCB LOCATION

007C = FCBCR EQU FCB+32 ;CURRENT RECORD LOCATION

0100 = TPA EQU 0100H ,TRANSIENT PROGRAM AREA

0900 = LOADP EQU 900H :LOAD POINT FOR SYSTEM
DURING LOAD/STORE

0005 = BDOS EQU 5H ;DOS ENTRY POINT

0000 = BOOT EQU 0 ;JMP TO ‘BOOT TO REBOOT
SYSTEM

0001 = CON! EQU 1 ;CONSOLE INPUT FUNCTION

0002 = CONOC EQU 2 ;CONSOLE OUTPUT FUNCTION

000E = SELF EQU 14 ;SELECT DISK

000F = OPENF EQU 15 ,DISK OPEN FUNCTION

0014 = DREADF EQU 20 ;DISK READ FUNCTION

000A = MAXTRY EQU 10 ;MAXIMUM NUMBER OF RETRIES
ON EACH READ/WRITE

000D = CR EQU ODH LCARRIAGE RETURN

000A = LF EQU OAH ,LINE FEED

0010 = STACKSIZE EQU 16 ,SIZE OF LOCAL STACK

0001 = WBOOT EQU 1

204 APPENDIX E

0018 =
001B =

001E =

0021 =

0024 =

0027 =

0100
0100 C32302
0103 434F505952

0128 02
0129 22

012A OEQ1CDO500

O12F FE61D8

0132 FE78
0134 DO

0135 E65FC?

013B 5FOE02CDOS

013F 3E0D
0141 CD3801
0144 3E0A

SELDSK
SETTRK

SETSEC
SETDMA
READF

WRITF

osT
SPT:

GETCHAR:

H

PUTCHAR.

i

CRLF-

EQU
EQU

EQU

EQU

EQU

EQU

ORG
JMP
DB

DB
DB

,LADDRESS OF WARM BOOT
(OTHER PATCH ENTRY
POINTS ARE COMPUTED RELATIVE

TO WBOOT)

24 ;WBOOT + 24 FOR DISK SELECT

27 SWBOOT + 27 FOR SET TRACK
FUNCTION

., 130 ,WBOOT + 30 FOR SET SECTOR
FUNCTION

33 /WBOOT + 33 FOR SET DMA
ADDRESS

36 ;WBOOT + 36 FOR READ
FUNCTION

39 SWBOOT + 39 FOR WRITE
FUNCTION

TPA ;TRANSIENT PROGRAM AREA

START
'COPYRIGHT (@ 1978, DIGITAL RESEARCH '

NTRKS JOPERATING SYSTEM TRACKS
NSECTS ,SECTORS PER TRACK (CAN BE
PATCHED)

READ CONSOLE CHARACTER TO REGISTER A
MVI C,CONIT ' CALL BDOS!

CONVERT TO UPPER CASE BEFORE RETURN

CPI ‘A’ OR 20H ! RC ;RETURN IF BELOW LOWER CASE A
CPI {'Z* OR 20H) + 1

RNC

;RETURN IF ABOVE LOWER CASE Z

AN! 5FH! RET

WRITE CHARACTER FROM A TO CONSOLE
MOV E,A! MVI C,CONO! CALL BDOS! RET

;SEND CARRIAGE RETURN, LINE FEED

MV
CALL
MVI

A,CR
PUTCHAR
A,LF

APPENDIX E 205

0146
0149

014A

O14F

0152
0158

0158

0164
0167
016A
016B

016C
O16F
0172
0173

0174
0177
O17A
0178

017C
017F
0182
0183

206

CD3801
ce

E5CD3FOIET

7EB7C8

E5CD3801E1
C34F01

4F2A010011

2A0100
111800
19
E9

2A0100
111ECO

E9

2A0100
112100
19

2A0100
112400
19
E9

APPENDIX E

CRMSG:

OUTMSG:

SEC:

READ:

i

WRITE.

CALL PUTCHAR
RET

;PRINT MESSAGE ADDRESSED BY H,L TIt ZERO
iWITH LEADING CRLF
PUSH H! CALL CRLF! POP H

;OROP THRU TO OUTMSGO

MOV A ,M! ORA A} RZ

MESSAGE NOT YET COMPLETED

PUSH H! CALL PUTCHAR! POP H! INX H
JMP OUTMSG

SELECT DISK GIVEN BY REGISTER A
MOV C,A! LHLD WBOOT! LXI D,SELDSK! DAD D! PCHL

;SET UP TRACK

LHLD WBOOT ;ADDRESS OF BOOT ENTRY
X D,SETTRK ;OFFSET FOR SETTRK ENTRY
DAD D

PCHL ;GONE TO SETTRK

:SET UP SECTOR NUMBER
LHLD WBOOT

XI D,SETSEC
DAD D
PCHL

;SET DMA ADDRESS TO VALUE OF B,C
LHLD WBOOT

Xt D,SETDMA

DAD D

PCHL

;PERFORM READ OPERATION
LHLD WBOOT

LX) D,READF

DAD D

PCHL

:PERFORM WRITE OPERATION

0184 2A0100 LHLD WBOOT

0187 112700 X D, WRITF

018A 19 DAD D

0188 OEQO MV! C,0 ,SET UP NORMAL SECTOR WRITE
018D E9 PCHL

DREAD: :DISK READ FUNCTION
O18E OE14 MV C,DREADF
0190 C30500 JMP BDOS

OPEN: ,FILE OPEN FUNCTION
0193 OEOFC30500 MVI C,OPENF ! JMP BDOS
GETPUT
' GET OR PUT CP/M (RW =0 FOR READ, 1 FOR WRITE)
i DISK IS ALREADY SELECTED

0198 218008 X H,LOADP-80H ;SET UP INITIAL DMADDR
0198 225204 SHLD

; CLEAR TRACK TO 00

O19E 3E0O MVI A0 ;START WITH TRACK 0+ 1
01A0 324F04 STA TRACK

01A3 4F MOV CA

01A4 CD6401 CALL TRK ,TRACK NUMBER TO BIOS
01A7 3E09 MV A9 .SECTOR 10 (—1)

01A9 325004 STA SECTOR

01AC C3C301 JMP RWSEC

RWTRK: ;READ OR WRITE NEXT TRACK

O1AF 214F04 LXI H.TRACK

0182 34 INR M ,JRACK = TRACK + 1

01B3 3A2801 LDA OsT sNUMBER OF OPERATING SYSTEM
TRACKS

01B6 BE CMP M ;= TRACK NUMBER ?

01B7 CA2202 JZ ENDRW ;END OF READ OR WRITE

O1BA
O1BB
O1BE

4E
CD6401
3EFF

OTHERWISE NOTDONE, GO TO NEXT TRACK

MOV
CALL
MV

C,M
TRK
A, OFFH

,TRACK NUMBER
;TO SET TRACK
,COUNTS O, 1,.. 33

APPENDIX E 207

01Co

01C3
01C6
01C?

325004

3A2901
215004
34

01CA BE

01C8
01CE
01D
01D4
0105

0108
01DB
010C
01DF

01E2
01E3
01e4

01E7
O1EB

O1EB
O1EE
01F0

01F3
O1F6
01F9
01FC
O1FE

208 APPENDIX E

CAAFO!
2A5204
118000

225204

215004
4€

CD6CON
2A5204

44
4D
CD7401

AF
325404

3A5404
FEOA
DA0702

21C303
CD4FO1
CD2A01
FEQD

C20E03

RWSEC.

'

TRYSEC:

STA SECTOR ,SECTOR INCREMENTED BEFORE
READ OR WRITE

;READ OR WRITE SECTOR

LDA SPT ;SECTORS PER TRACK

L H,SECTOR

INR M ;TO NEXT SECTOR

CMP M A=34 ANDM=012 .33
{USUALLY)

)z RWTRK

tHLD DMADDR ;SET UP DMA FOR NEXT ADDR

X! D.80H ,SECTOR SIZE

DAD D ,DMADDR = DMADDR + 80H

SHLD DMADDR

READ OR WRITE SECTOR TO OR FROM CURRENT DMA
ADDR

XI H,SECTOR

MOV CM ;VALUE TO C READY FOR SELECT

CALL SEC ,SET UP SECTOR NUMBER

LHLD DMADDR :BASE DMA ADDRESS FOR THIS
TRACK

MOV B.H

MOV C.L ;TO BC FOR SEC CALL

CALL DMA ,DMA ADDRESS SET FROM B,C

DMA ADDRESS SET, CLEAR RETRY COUNT

XRA A

STA RETRY ;SET TO ZERO RETRIES

;TRY TO READ OR WRITE CURRENT SECTOR
LDA RETRY

CPl MAXTRY ;5TOO MANY RETRIES?
JC TRYOK

PAST MAXTRIES, MESSAGE AND IGNORE
X H ERRMSG

CALL OUTMSG

CALL GETCHAR

CPI CR

INZ REBOOT

0201
0204

0207
0208
0208
020E
020F

0212

0215

0218

0218

021C

021F

0222

0223
0226
0229

022C
022F
0231

CD3FO1
C3C301

3C
325404
3A5104
B7
CA1802

CD8401

C31B02

Cp7¢o1

B7

CAC301

C3EBOI1

c9

317504
212003
CD4FO1

3A5D00
FE20
CA8102

TRYOK:

TRYREAD-

CHKRW:

START.

TYPED A CR, OK TO IGNORE
CALL CRLF
JMP RWSEC

OK TO TRY READ OR WRITE

INR A

STA RETRY ,REDAY = RETRY + 1
LDA RW ;READ OR WRITE?
ORA A

JZ TRYREAD

MUST BE WRITE

CALL WRITE

JMP CHKRW ;CHECK FOR ERROR RETURNS

CALL READ
ORA A
)z RWSEC ;ZERO FLAG IF /W OK

ERROR, RETRY OPERATION
JMP TRYSEC

;END OF READ OR WRITE, RETURN TO CALLER
RET

LXI SP,STACK ;SET LOCAL STACK POINTER
LXI H,SIGNON
CALL OUTMSG

CHECK FOR DEFAULT FILE LOAD INSTEAD OF GET

DA FCB+1 BLANKIF NO FILE

cpl X

iz GETSYS ;SKIP TO GET SYSTEM MESSAGE
IF BLANK

APPENDIX E 209

0234 115C00
0237 CD9301
023A 3C

023B C24702

023E 212004
0241 CD4AD1
0244 C30E03

0247 AF
0248 327C00

024B OE10

024D C5
024E 115C00
0251 CD8EO!1
0254 C1
0255 B7
0256 C27802

0259 0D
025A C24D02

025D 210009

0260 E5
0261 44
0262 4D
0263 CD7401

210 APPENDIX E

PRERD

RDINP:

LX) D,FCB ;TRY TO OPENIT

CALL OPEN ;

INR A 255 BECOMES 00

INZ RDOK ;OK TO READ IF NOT 255

FILE NOT PRESENT, ERROR AND REBOOT
X1 H,NOFILE

CALL CRMSG

JMP REBOOT

FILE PRESENT

READ TO LOAD POINT
XRA A
STA FCBCR ,CURRENT RECORD = 0

PRE-READ AREA FROM TPA TO LOADP

L\ C,(LOADP-TPA)/SECSIZ

PRE-READ FILE

PUSH B ,SAVE COUNT

X1 D,FCB SNPUT FILE CONTROL COUNT

CALL DREAD ;ASSUME SET TO DEFAULT BUFFER

POP B ;RESTORE COUNT

ORA A

INZ BADRD ,CANNOT ENCOUNTER END-OF
FILE

DCR C ;COUNT DOWN

INZ PRERD ;FOR ANOTHER SECTOR

SECTORS SKIPPED AT BEGINNING OF FiLE

IXi H,LOADP

PUSH H

MOV B,H

MOV CL ;READY FOR DMA
CALL DMA ;DMA ADDRESS SET

0266 115C00 X1 D,FCB ;READY FOR READ

0269 CDB8EO1 CALL DREAD ;
026C E1 POP H :RECALL DMA ADDRESS
026D B7 ORA A ;00 IF READ OK
026E C2C702 INZ PUTSYS ,ASSUME EOF IF NOT.
; MORE TO READ, CONTINUE
0271 118000 X1 D,SECSIZ
0274 19 DAD D ;HL IS NEW LOAD ADDRESS
0275 C36002 JMP RDINP

BADRD: ,EOF ENCOUNTERED IN INPUT FILE

0278 213704 X H,BADFILE
0278 CD4A01 CALL CRMSG
027E C30E03 JMP REBOOT
GETSYS-
0281 212F03 Xi H,ASKGET ;GET SYSTEM?
0284 CD4AO1 CALL CRMSG
0287 CD2A01 CALL GETCHAR
028A FEOD CPl CR
028C CAC702 Jz PUTSYS ;SKIP IF CR ONLY
028F D641 Sul ‘A ;NORMALIZE DRIVE NUMBER
0291 FEO3 CP! NDISKS ;VALID DRIVE?
0293 DA9CO02 JC GETC ;SKIP TO GETC IF SO

; INVALID DRIVE NUMBER

0296 CD1903 CALL BADDISK
0299 C38102 IMP GETSYS ;TO TRY AGAIN
GETC
; SELECT DISK GIVEN BY REGISTER A
029C C641 ADI ‘A
029E 325F03 STA GDISK ;TO SET MESSAGE
02A1 D641 Sul ‘A
02A3 CD5801 CALL SEL ;TO SELECT THE DRIVE
i GETSYS, SET RW TO READ AND GET THE SYSTEM
02A6 CD3FO1 CALL CRLF
02A9 215503 X H,GETMSG
02AC CD4FO01 CALL QOUTMSG

APPENDIX E 211

02AF CD2A01 CALL GETCHAR

0282 FEOD CPI CR

02B4 C20E03 JNZ REBOOT

0287 CD3FO1 CALL CRLF

02BA AF XRA A

02BB 325104 STA RW

02BE CD9801 CALL GETPUT

02C1 21EA03 X H,DONE

02C4 CD4FO1 CALL OUTMSG
; PUT SYSTEM
PUTSYS:

02C7 217303 LXI H, ASKPUT

02CA CD4A01 CALL CRMSG

02CD CD2A01 CALL GETCHAR

02D0 FEOD CPI CR

02D2 CAOEO3 iz REBOOT

02D5 D641 sul ‘A

0207 FEO3 CPl NDISKS

0209 DAE202 JC PUTC

, INVALID DRIVE NAME

02DC CD1903 CALL BADDISK

02DF C3C702 JMP PUTSYS ,TO TRY AGAIN
PUTC.
; SET DISK FROM REGI!STER C

02E2 Cé41 ADI ‘A

02E4 32AF03 STA PDISK ;MESSAGE SET

02E7 D641 sul ‘A

02E9 CD5B01 CALL SEL ;SELECT DEST DRIVE
. PUT SYSTEM, SET RW TO WRITE

02EC 21A003 X H,PUTMSG

02EF CD40A01 CALL CRMSG

02F2 CD2A01 CALL GETCHAR

02F5 FEOD CPi CR

02F7 C20E03 INZ REBOOT

02FA CD3FO1 CALL CRLF

02FD 215104 X H,RW

212 APPENDIX E

0300 3601
0302 CD9801

0305 21EAO03
0308 CD4FO1
030B C3C702

030E 3EQ00

0310 CD5801
0313 CD3F01
0316 C30000

0319 21FCO3
031C CD4A01
031F C9

0320 5359534745
032B 322E30
032E 00

032F 534F555243
0340 0D284F5220
0355 534F555243
035F

0360 2C20544845
0373 4445535449
0389 0D284F5220
03A0 4445535449
O3AF

03B0 2C20544845
03C3 5045524D41

O3EA 46554E4354
O3FC 494E56414C
0420 4E4F20534F

REBOOT:

BADDISK-

i
i

SIGNON:-

ASKGET

GETMSG-
GDISK:

ASKPUT

PUTMSG.
PDISK:

ERRMSG:

DONE:
QDISK:
NOFILE
BADFILE:

Mvi M1
CALL GETPUT ;TO PUT SYSTEM BACK ON
DISKETTE

LXi H,DONE

CALL OUTMSG

JMP PUTSYS ;FOR ANOTHER PUT OPERATION

MVl A0

CALL SEL

CALL CRLF

JMP BOOT

,BAD DISK NAME

X1 H,QDISK

CALL CRMSG

RET

DATA AREAS

MESSAGES

[>]:] 'SYSGEN VER

DB VERS/0 +0","., VERS MOD 10+ 0

[>]:] 0

[>]:] ‘SOURCE DRIVE NAME'

[>]:] ODH, ‘(OR RETURN TO SKIP) *,0

[>]:] ‘SOURCE ON *

Ds 1 ;FILLED IN AT GET FUNCTION

o1} ‘, THEN TYPE RETURN',0

[>]:] ‘DESTINATION DRIVE NAME’

DB ODH, ‘(OR RETURN TO REBOOT) *,0

[>]:] 'DESTINATION ON *

Ds 1 ,FILLED IN AT PUT FUNCTION

D8 ’, THEN TYPE RETURN',0

DB ‘PERMANENT ERROR, TYPE RETURN TO
IGNORE',0

o] ‘FUNCTION COMPLETE’,0

[>]:] INVALID DRIVE NAME (USE A, B, ORC)’,0

o] ‘NO SOURCE FILE ON DISK',0

APPENDIX E 213

0437

0451
0452
0454

0475

534F555243

SDISK-

TRACK:
SECTOR:
RW:
DMADDR-
RETRY:

STACK:

D8 'SOURCE FILE INCOMPLETE’,0

VARIABLES

DS 1 ;SELECTED DISK FOR CURRENT
OPERATION

bs 1 JCURRENT TRACK

Ds 1 ;CURRENT SECTOR

DS 1 :READ IF 0, WRITE IF 1

DS 2 ;CURRENT DMA ADDRESS

DS 1 ;NUMBER OF TRIES ON THIS
SECTOR

DS STACKSIZE*2

END

Custom BIOS for CP/M 2.2 On Commodore 64

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

This version has the following attributes:

002C

214

1. Memory map set up for 52K RAM system with 1/0O
and drivers by BOOT65

Disk tables and vectors included for 2 drives

The Intel 1/0 byte is not implemented

Punch and reader are null routines

Keyboard and message tables are part of BIOS65
A 20K to 48K byte CP/M environment can be sup-

ported on the Commodore 64 (44K with IEEE)

2.

3.

4.

5.

6.

7.

8.
= BASE
= MSIZE

APPENDIX E

Virtual Drive B is supported for 1540
Drive B is not virtual on IEEE disk

EQU 0000H ;BEGINNING OF ADDRESSABLE
RAM

EQU 44 :CP/M VERSION MEMORY SIZE IN
KILOBYTES

"BIAS" IS ADDRESS OFFSET FROM 3400H FOR MEMORY
SYSTEMS

9400
9C06
AAQO

0018

0038 =

0030
0028
0020

F800
F900
F901
F902

F903 =

F904
F905

IOBYTE
TRANS
ENTRY

JRC
JRNC
JRZ
JRNZ

HSTBUF
CMD
DATA
SECTOR
TRACK
DISKNO
KYCHAR

THAN 20K (REFERRED TO AS “B” THROUGHOUT THE

TEXT)

EQU

(MSIZE-20) *1024

NOTE: TO CREATE MOVCPM, THE FOLLOWING CCP
EQUATES ARE USED-

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU

0000H
0100H

;FOR BIOSQ.HEX
;FOR BIOS1.HEX

3400H +BIAS ;BASE OF CCP

CCP + 806H

BASE OF BDOS

CCP+1600H BASE OF BIOS
BASE +0004H CURRENT DISK NUMBER 0= A,

..., 15=P

BASE +0003H INTEL /O BYTE

0000H
0005H

280 INSTRUCTIONS

EQU
EQU
EQU
EQU
EQU

18H
38H
30H
28H
20H

;0 IMPLIES NO TRANSLATION
;BDOS ENTRY VECTOR

THE FOLLOWING EQUATES DEFINE THE COMMON
MEMORY FOR PASSING DATA TO AND FROM THE 6510

1/O ROUTINES

EQU OFS800H
EQU OF900H
EQU OF901H
EQU OF902H
EQU OF903H
EQU OF904H
EQU OF905H

;256 BYTE DISK BUFFER
;COMMAND REGISTER
;DATA REGISTER

;SECTOR REGISTER
;TRACK REGISTER

;DRIVE NUMBER REGISTER
;KEYBOARD CHARACTER
REGISTER

APPENDIX E 215

it

FCFF

CEO0 =

0016 =

AAOO C36CAA
AAQ3 C31DAB
AAQ6 C39AAB
AAQ9 C3FEAB
AAQC C376AC
AAOF C3B1AC
AA12 C3FAAC
AA15 C3FDAC
AA18 C302AD
AA1B C30CAD
AAI1E C320AD
AA21 C326AD
AA24 C32BAD
AA27 C334AD

216 APPENDIX E

IOTYPE

1
H
’

OFF
MODESW

i

VICRD
VICWR
VICIN
VICOUT
VICPST
VICPRT
VICEMT
AUXI
AUX2
INDIR

'

i

NSECTS

WBOOTE:

EQU OFCFFH 10 CONFIGURATION BYTE
THE Z80 SHUTS ITSELF OFF BY WRITING “OFF” TO THE

LOCATION “MODESW*

EQU 1
EQU OCEOQOH

THE FOLLOWING ARE THE COMMANDS TO THE 6510 I/O
ROUTINES

EQU 0 ;READ SPECIFIED SECTOR

EQU 1 sWRITE SPECIFIED SECTOR

EQU 2 ;DO A KEYBOARD SCAN

EQU 3 ,OUTPUT DATA TO SCREEG
EQU 4 ;GET PRINTER STATUS

EQU 5 ;SEND CHARACTER TO PRINTER
EQU 6 ,FORMAT DISK COMMAND

EQU 7 ,JUMP TO $0EQO IN 6510 SPACE
EQU 8 :JUMP TO $OFQO0 IN 6510 SPACE
EQU 9 ;JUMP INDIRECT VIA OF906
ORG BIOS ,ORIGIN OF THIS PROGRAM
EQU ($-CCP)/256 :WARM START SECTOR COUNT

JUMP VECTOR FOR INDIVIDUAL SUBROUTINES

JMP BOOT ,COLD START

Jmp WBOOT WARM START

JMP CONST :CONSOLE STATUS

Jmp CONIN /CONSOLE CHARACTER IN
JMP CONOUT ;,CONSOLE CHARACTER OUT
JMP HsT ;LIST CHARACTER OUT

JMP PUNCH ;PUNCH CHARACTER OUT
JMP READER ;READER CHARACTER OUT
JMP HOME ;MOVE HEAD TO HOME POSITION
JMP SELDSK ;SELECT DisK

JmP SETTRK ,SET TRACK NUMBER

JMP SETSEC ;SET SECTOR NUMBER

JMP SETDMA ;SET DMA ADDRESS

IMP READ ;READ RISK

AA2A C347AD
AA2D C3D1AC
AA30 C331AD

AA33 00 KYBDMD-

AA34 00000000 DPBASE
AA38 00000000
AA3C FOAE54AA
AA40 AEAF70AF

AA44 00000000
AA48 00000000
AAAC FOAE54AA
AA50 BEAFBFAF

DPBLK
AAS4 2200
AA56 03
AA57 07
AA58 00
AA59 8700
AAS5B 3F00
AA5D Co
AASE 00
AA5F 1000
AA6Y 0200

LASTKY:
TOGGLE-
CSTAT:
MSGPTR:
TBLPTR.

AA63 40
AA64 00
AA65 00
AA66 0000
AA68 00FD

IMP WRITE ;WRITE DISK
JmP uSTST ,RETURN LIST STATUS
IMP SECTRAN ;SECTOR TRANSLATE
DB O0H {CAPS LOCK FLAG
FIXED DATA TABLES FOR TWO DRIVES

DISK PARAMETER HEADER FOR DISK 00

DW TRANS, 0000H

DW 0000H, 0000H

DW DIRBF, DPBLK

DW CHKO0O, ALLOO

DISK PARAMETER HEADER FOR DISK 01

DW TRANS,0000H

DwW 0000H,0000H

Dw DIRBF, DPBLK

DW CHKO1,ALLO?

:DISK PARAMETER BLOCK, COMMON TO ALL DISKS
DWW 34 .SECTORS PER TRACK
DB 3 ;BLOCK SHIFT FACTOR
DB 7 ;BLOCK MASK

DB 0 ;NULL MASK

DW 135 ;DISK SIZE-1

DW 63 ;DIRECTORY MAX

DB 192 LALLOC 0

DB 0 ;ALLOC 1

DW 16 ;CHECK SIZE

bW 2 ;TRACK OFFSET

END OF FIXED TABLES

MEMORY INITIALIZED WHEN BIOS READ IN AT BOOT

TIME

[2]:]
Dg
D8
bw
bw

40H
00H

0000H
OFDOOH

;VECTOR OF LAST KEY PRESSED
;CAPS LOCK HOUSEKEEPING
JCHARACTER AVAILABLE FLAG
;MESSAGE POINTER
;KEYBOARD CODE TABLE

APPENDIX E 217

AAGA 00FC

-n
[
©
[w)
it

AA6C 3E20
AAGE 32CFFO
AA7Y AF
AA72 320300
AA75 320400
AA78 32EFAE
AA7B 32E1AE
AATE 32E3AE
AA81 3EC3
AAB3 320000
AAB6 2103AA
AAB9 220100

AABC 320500
AABF 21069C
AA92 220600

AA95 018000
AA8 CD2BAD

AASB 11A6AA
AA9E OEQ9

AAAQ CDO500
AAA3 C3B9AB

AAAG 0COA

AAAB 2020202043

AACC ODOAOA

AACF 2020436F70

218 APPENDIX E

MSGTBL:

SHFTST

FLASH
CURSOR

BOOT:

i

SIGNON:

bw OFCOOH ;MESSAGE VECTOR TABLE

MISC. CONSOLE EQUATES

EQU OF28DH ;CONTROL, COMMODORE, SHIFT
KEYS

EQU OFOCCH /CURSOR FLASH ENABLE

EQU OFOCFH ;CURSOR CHARACTER

INDIVIDUAL SUBROUTINES TO PERFORM EACH
FUNCTION

MV A,20H =ASCIl SPACE

STA CURSOR ,SET UP CURSOR

XRA A ;ZERO IN THE ACCUM
STA IOBYTE ;CLEAR THE IOBYTE
STA CDISK ;SELECT DISK ZERO

STA CURDSK
STA HSTACT

(CLEAR VIRTUAL DISK POINTER
;HOST BUFFER INACTIVE

STA UNACNT ;CLEAR UNALLOC COUNT
MV A,0C3H ,C315 JUMP OPCODE
STA 0+BASE . FOR JUMP TO WBOOT

X H,WBOOTE ;WBOOT ENTRY POINT

SHLD 1+BASE ;SET ADDRESS FIELD

STA 5+BASE ,JUMP TO BDOS OPCODE
X H,BDOS ,BDOS ENTRY POINT

SHLD 6+BASE ;SET ADDRESS FIELD

LXi B,80H + BASE ,DEFAULT DMA ADDRESS
CALL SETDMA

i D,SIGNON ;DE POINTS TO SIGNON MSG
MVI C9 sPRINT STRING FUNCTION
CALL ENTRY ;GO TO 8DOS

IMP GOCPM1 ;GET READY FOR CCP

DB OCH,0AH ;CLEAR SCREEN

DB ' COMMODORE 64 20K CP/M VERS 2 2
]} ODH,0AH,0AH

DB * COPYRIGHT @ 1979, DIGITAL

RESEARCH',0DH,0AH

AAF7 2020202020 DB ' COPYRIGHT @ 1982, COMMODORE’,0DH,0AH

ABIB 0A24 DB 0AH,'$’ ;END OF STRING MARKER
WBOOT:

ABID 318000 Lxi SP,80H + BASE ;USE SPACE BELOW BUFFER

FOR STACK

AB20 OEQO Mmvi c.0 ;SELECT DISK 0

AB22 CDOCAD CALL SELDSK

AB25 AF XRA A ;FORCE DRIVE A

AB26 3204F9 STA DISKNO ;ABSOLUTELY, POSITIVELY

AB29 CD79AE CALL CHGDSK JF NOT ALREADY SELECTED

AB2C CDO02AD CALL HOME ;GO TO TRACK 00

AB2F 3EQOD MVI A,ODH JCARRIAGE RETURN

AB31 CDAAAC CALL COUTS ;OUTPUTIT

AB34 110094 LXI D,CCP ;START OF tOAD

AB37 0616 MVl B,NSECTS

AB39 2601 MV H,1 ,TRACK NUMBER

AB3B 2EQ6 MVI L,é. ;SECTOR NUMBER

AB3D 7C LOADI: MmOV AH

AB3E 3203F9 STA TRACK

AB41 7D MOV AL

AB42 3202F9 STA SECTOR

AB45 3EQ0 MVI A,VICRD ,DISK READ COMMAND

AB47 CD90AB CALL 106510

AB4A 3A01F9 LDA DATA

AB4D B7 ORA A

AB4E 20ED J1: D8 JRNZ, (LOAD1-J1-2) AND OFFH

AB50 E5 PUSH H

ABS1 C5 PUSH B

AB52 010001 X! B,256

AB55 2100F8 i H,HSTBUF ,DISK BUFFER

AB58 ED DB OEDH ;LDIR INSTRUCTION

AB59 BO D8 0BOH

AB5A OE2A MV c™ ,SHOW IT'S LOADING

AB5C CD76AC CALL CONOUT

AB5F C1 POP B

AB6O ET POP H

AB61 05 DCR B ;:DECREMENT SECTOR COUNT

APPENDIX E 219

AB62 280B
AB64 2C
AB65 7D
AB6S6 FEN
AB68 38D3
ABGA 24
AB6B 2E00
ABG6D 18CE

ABSF 3EC3

AB71 320000
AB74 2103AA
AB77 220100

AB7A 320500
AB7D 21069C
AB80 220600

AB83 018000
AB86 CD2BAD

AB89 3A0400
ABSC 4F
ABSD C30094

AB90 3200F9

AB93 3EQ?
AB95 3200CE
AB98 00
AB99 C9

220 APPENDIX E

J2

J3:

J4.

GOCPM:

bB
INR
MoV
CPI
DB
INR
MvI
DB

JRZ,GOCPM-12-2
L SNEXT SECTOR
AL

17

JRC, {LOAD1-J3-2) AND OFFH
H

L0

JR, (LOADY-J4-2) AND OFFH

END OF LOAD OPERATION, SET PARAMETERS AND GO

TO CP/M

Mvi
STA
X
SHLD

STA
X
SHLD

X

" CcALL

i
i

GOCPMI:

i
'

1

106510:

LDA
MOV
JMP

A,0C3H ,C31S A JMP INSTRUCTION

0+BASE FOR JMP TO WBOOT

H,WBOOTE ,WBOOT ENTRY POINT

1+BASE ;SET ADDRESS FIELD FOR JMP AT
0

5+BASE ;FOR JMP TO BDOS

H,BDOS ;BDOS ENTRY POINT

6+BASE ,ADDRESS FIELD OF JUMP AT 5 TO
BDOS

B,80H -+ BASE .DEFAULT DMA ADDRESS IS 80H
SETDMA

CDiSK ;GET CURRENT DISK NUMBER

C.A :SEND TO THE CCP

cce ;GO TO CP/M FOR FURTHER
PROCESSING

.

MAIN ROUTINE TO TRANSFER EXECUTION TO 6510

STA

MVI
STA
NOP
RET

CMD ;PUT A IN 6510 COMMAND
REGISTER

A,OFF

MODESW ;TURN OFF Z80
;REQUIRED BY HARDWARE

ABPA 2A66AA
AB9D 7C
AB9E B5
AB9F 3EFF
ABA1 CO

ABA2 3A65AA
ABA5 A7
ABA6 CO

ABA7 3E02
ABA9 CD90AB

ABAC 3A8DF2
ABAF E602
ABB1 2810

ABB3 3A64AA
ABB6 A7
ABB7 200A

ABB9 3A33AA
ABBC EEO1
ABBE 3233AA
ABC1 3EO1
ABC3 3264AA

ABC6 3AQ5F9
ABC9 FE3A
ABCB 280A

ABCD FE3D
ABCF 2806

ABD1 2163AA
ABD4 BE
ABD5 2005

’
i

CONST

J5.

J6.

CONSTO:

i

J7:

J8.

J9:

:CONSOLE STATUS, RETURN OFFH IF CHARACTER READY,

00H IF NOT

LHLD MSGPTR ,MESSAGE MODE?

MOV AH

ORA L

MVI A,OFFH ;DATA READY FLAG

RNZ ;RETURN IF MSGPTR<>0

LDA CSTAT JALREADY A CHAR?

ANA A

RNZ ,YES IF NOT O

MV A VICIN ,CHECK KEYBOARD COMMAND

CALL 106510

LDA SHFTST ,GET STATUS OF CONTROL KEYS

ANI 02H ,CHECK FOR COMMODORE KEY

DB JRZ, CONSTO0-J5-2 :JUMPIF NOT PRESSED

LDA TOGGLE ;IS THIS AN UPSTROKE?

ANA A

DB JRNZ,CONST0-J6-2 ,NO WAITING TO
RELEASE

LDA KYBDMD ;GET CAPS MODE FLAG

XRI O1H ;TOGGLE MODE BIT

STA KYBDMD

MVl Al

STA TOGGLE

LDA KYCHAR ,GET SCANNED DATA

(o] 3AH :BAD CONTROL DATA

DB JRZ,CONST1-J7-2

CPl 3DH ;BAD CONTROL DATA

DB JRZ,CONST1-J8-2

LXI H,LASTKY ;COMPARE WITH PREVIOUS

CMP M ; SCAN DATA

DB JRNZ,CONST2-J9-2 ;IF DIFFERENT, NEW KEY

APPENDIX E 221

ABD7 AF CONST1:
ABD8 3265AA

ABDB C9

ABDC F5 CONST2:
ABDD 01F401

ABEO OB CONSTS3:
ABEl 79

ABE2 BO

ABE3 20FB Nno:

ABE5 3E02
ABE7 CD90AB

ABEA F1

ABEB 2105F9

ABEE BE

ABEF 20E6 N

ABF1 3263AA
ABF4 FE40
ABF6 28DF N2

ABF8 3EFF
ABFA 3265AA
ABFD C9

CONIN:

ABFE 3E00
AC00 32CCFO

ACO3 2A66AA

AC06 7C

ACO7 B5

ACO8 2044 N3
ACOA CD9AAB CONIN1.
ACOD B7

ACOE 28FA J14-

222 APPENDIX E

XRA
STA
RET

PUSH
LXi
DCX
MOV
ORA
DB

MVI
CALL

POP
Xt
CMP
DB

STA
CPl
DB

MVI
STA
RET

A ;DATA NOT READY FLAG
CSTAT ;SAVE FOR LATER

PSW

B, 500

B ;DELAY FOR KEYBOUNCE
A,C

B

JRNZ,(CONST3-J10-2) AND OFFH

AVICIN :GET CHARACTER AGAIN
106510

PSW

H,KYCHAR

M

JRNZ,(CONST1-J11-2) AND OFFH ;IF<>0Q,
BOUNCING

LASTKY ;UPDATE LAST KEY
40H iF 40H, NO KEY PRESSED
IRZ, CONST1-J12-2) AND OFFH

A,OFFH ;DATA READY FLAG
CSTAT :SAVE FOR LATER

;CONSOLE CHARACTER INTO REGISTER A

MVI
STA

LHLD
MOV
ORA
DB

CALL
ORA
DB

A0 ,TURN ON CURSOR
FLASH

MSGPTR ;ARE WE IN MESSAGE MODE?
AH

L

JRNZ.CONIN5-J13-2

CONST ;CHECK CONSOLE STATUS
A
JRZ.(CONIN1-J14-2) AND OFFH ;UNTIL NEW

AC10 AF
ACI1 3265AA
AC14 3A33AA
ACI17 47
AC18 3A8DF2
ACIB E601
ACID 2802

ACTF 0602
AC21 3A8DF2
AC24 E604
AC26 2802

AC28 0603
AC2A 3A63AA
AC2D 87
AC2E 87
AC2F 80
AC30 2A68AA
AC33 85
AC34 6F
AC35 3E00
AC37 8C
AC38 67
AC39 7E
AC3A FE8O
AC3C 3820

AC3E 2A6AAA
AC41 E67F
AC43 87
AC44 85
AC45 6F
AC46 3E00
AC48 8C
AC49 67
AC4A 7E
AC4B 23
AC4C 66

CONIN2

15

CONIN3

J16:

i

CONIN4.

N7

XRA
STA
LDA

LDA
ANI
DB

MVI
LDA
AN
DB

MV
LDA
ADD
ADD
ADD
LHLD
ADD
MOV
MV
ADC
MOV
MOV
cpl
DB

LHLD
ANI
ADD
ADD
MOV
MV!
ADC
MOV
MOV
INX
MOV

CHAR

A

CSTAT ,CLEAR CSTAT
KYBDMD JUNSHIFT =0, CAPS=1
B,A

SHFTST ;GET MODIFIER STATUS

01H ;1S A SHIFT KEY DOWN?
JRZ,CONIN3-J15-2 ;JJUMP IF NO

B,2 ;SHFIT=2

SHFTST :GET MODIFIER STATUS

04H AS THE CONTROL KEY DOWN?
JRZ,CONIN4-J16-2 ,JUMP IF NO

B,3 ;CONTROL=3

LASTKY ;GET KEY POSITION

A 1*2

A 4

B ;ADD IN OFFSET

TBLPTR ;GET BEGINNING OF KEYTBL
L ;VECTOR INTO TABLE

LA

A0

H

HA

A M ;GET CHARACTER FROM TABLE

80H ;MESSAGE IF >7FH
JRC,CONIN7-J17-2 ,JUMP IF ASCIl CHAR

MSGTBI ,GET BEGINNING OF MVTBL
7FH ;STRIP OF MESSAGE BIT
A *2

L ;VECTOR INTO TABLE
LA

A0

H

H,A

AM ;LOW ORDER BYTE

H

H,M ;HIGH ORDER BYTE

APPENDIX E 223

AC4D 6F
AC4E 46
AC4F 23
AC50 7E
AC51 A7
AC52 2003

CONINS:

8.

AC54 210000
AC57 2266AA
AC5A 78
AC5B A7
ACSC 28AC

CONINGS

ne:

ACSE F5 CONINT.
ACS5F 3EO1
AC61 32CCFO
AC64 2ADIFO
AC67 3AD3IFO
AC6A 85
AC6B 6F
AC6C 3EFO
AC6E 8C
AC6F 67
AC70 7E
AC71 E67F
AC73 77
AC74 F1
AC75 C9
CONOUT:
AC76 3AFFFC
AC79 E6OV
AC7B 79

AC7C 202C J20

AC7E CDDAAC

AC81 FEOC

AC83 2004 J21

AC85 3E?3

224 APPENDIX E

MOV
INX
MOV
ANA
DB

Lt
SHLD
MOV
ANA
DB

PUSH *
Mv!
STA
LHLD
LDA
ADD
MOV
Mvi
ADC
MOV
MOV
ANI
MOV
POP
RET

LA

B,M ,GET CHARACTER

H JCHECK NEXT CHARACTER
A M

A

JRNZ,CONING-J18-2 IF O, B HAS LAST CHAR

H,0000H JEND OF MESSAGE MODE

MSGPTR ,SAVE MESSAGE POINTER

AB 7CHECK CHARACTER

A ;MAYBE 1STIS O

JRZ,(CONIN1-J19-2) ND OFFH IF<>0, NOT
CHAR

PSW ,SAVE CHARACTER

Al

FLASH ;TURN OFF CURSOR

OFOD1H .

OFOD3H

L

LA

A,OFOH

H

H.A

AM

07FH

MA

PSW ;GET CHARACTER

;DONE

;CONSOLE CHARACTER OUTPUT FROM REGISTER C

LDA
ANI
MOV
DB

CALL

CPl
DB

MV

IOTYPE ;GET CONFIGURATION BYTE
10H ;BT 4 = 1 TO IGNORE FILTER
AC :GET TO ACCUMULATOR

JRNZ,COUT5-J20-2 ,PRINT AS RECEIVED

SWAP ;EXCHANGE UPPER AND LOWER
CASE
O0CH L,ASCHI CLEAR SCREEN?

JRNZ,COUT1-J21-2 JUMP IF NO

A,93H ;COMMODORE CLEAR SCREEN

CMD

AC87 1821

AC89 FEO8
AC8B 2004

AC8D 3E14
ACSF 1819

AC91 FEOA
AC93 2004

AC95 3E11
AC97 1811

AC99 FEOD
AC9B 2007

AC9D CDAAAC
ACAO 3E91
ACA2 1806

ACA4 FE20
ACAéS D8

ACA7 FE8O
ACA9 DO

ACAA 3201F9

ACAD 3E03
ACAF 181D

ACB1 3AFFFC
ACB4 E604
ACB6 79
ACB7 2010

ACB9 3AFFFC
ACBC E608

J22:

J23:

J24.

COUT2:

J25:

J26:

COUT3:

127:

J28:

COUT4:

COUTS

J29.

LIST:

J30:

couT:

DB

CPI
DB

MV
DB

CPI
DB

Mwv
DB

CPl
DB

CALL
MVI

DBB

CPl
RC

Cpt

RNC

STA

MVI
DB

JR,COUTS-J22-2

08H ;ASCIl BACKSPACE?
JRNZ,COUT2-J23-2 ;JUMP IF NO

A, 14H ;COMMODORE BACKSPACE CMD
JR,COUTS-J24-2

OAH ,UNE FEED?
JRNZ,COUT3-J25-2

A7 ;COMMODORE LINE FEED
JR,COUT5-J26-2

ODH ;CARRIAGE RETURN?
JRNZ,COUT4-J27-2

COUTS
A, 145 ;UP 1 LINE TO NEGATE AUTO LF
JR,COUT5-J28-2

20H
;RETURN IF UNDECODED
CONTROL CHAR

80H
;RETURN {F NOT ASCli
CHARACTER

DATA ,PUT DATA IN CHARACTER
REGISTER

A,VICOUT ;SCREEN OUTPUT COMMAND

JR.LIST3-J29-2

AIST CHARACTER FROM REGISTER C

LDA
ANI
MOV
DB

LDA
ANI

IOTYPE ;WHAT KIND OF PRINTER?
04H {0 1F 1515, 1 IF 4022
A,C (CHARACTER TO REGISTER A

JRNZ,LIST2-J30-2 ,JUMP IF NO SWAP

IOTYPE
08H ,WHICH TYPE OF SWAP?

APPENDIX E 225

ACBE 79
ACBF 2005

ACC1 CDDAC
ACC4 1803

ACCé CDEDAC
ACC9 3201F9
ACCC 3E05
ACCE C390AB

ACD1 3E04
ACD3 CD90AB
ACD6 3A01F9
ACD? C9

ACDA FE41
ACDC D8

ACDD FE5B
ACDF 3809

ACE1 FE61
ACE3 D8

ACE4 FE7B
ACEé6 DO

ACE7 E65F
ACE9 C9

ACEA F620
ACEC C9

ACED FE41
ACEF D8

ACFQ FE6O
ACF2 3003

226 APPENDIX E

131

J32:
LISTY:
LiST2:

LIST3-

¢

LISTST:

SWAP.

J33-

SWAP1.

SWAP2:

J34:

MOV AC ;GET CHARACTER

[3]:] JRNZ,LIST?-J31-2

CALL SWAP :SWAP UPPER AND LOWER CASE
DB JR,LIST2-)J32-2

CALL SWAP2 4022 SWAP ROUTINE

STA DATA ,PUT DATA IN REGISTER

MVI AVICPRT ,ASSUME 1540

JMP 106510

,RETURN LIST STATUS (O IF NOT READY, 1 [F READY)

MV AMVCPST ;PRINTER STATUS COMMAND
CALL 106510

LDA DATA ;DATA IS STATUS

RET

;SWAP UPPER AND LOWER CASE FOR COMMODORE-64

CPI 41H ;LESS THAN UC ‘A"?
RC ;RETURN IF SO

CPl 5BH ;UC LETTER?

DB JRC,SWAP1-J33-2 ;JUMP IF SO
CPl 61H ;LESS THAT LC A’

RC ,RETURN IF SO

CPI 78H AC LETTER?

RNC ;RETURN IF NO

ANI 5FH ,TURN OFF BIT 5

RET

ORI 20H ;TURN ON BIT 5

RET

CPl 41H ;CY IF LESS THAN UC 'A’
RC

CPt 60H ;CY IF 40H < A < 60H
DB JRNC,SWAP3-)34-2

ACF4 F680
ACF6 C9

ACF7 E65F
ACF? C9

ACFA 79
ACFB 00
ACFC C9

ACFD 3E1A

ACFF E67F
ADOY C9

0400 =
0100 =
oo =

0022 =

0001
0001 =

0001 =

SWAP3:

PUNCH:

i
H

READER;:

BLKSIZ
HSTSIZ
HSTSPT
HSTBLK
CPMSPT
SECMSK
SECSHF

ORI 80H
RET

ANI 5FH
RET

;PUNCH CHARACTER FROM REGISTER C

MOV A,C ,CHARACTER TO REGISTER A
NOP
RET ;NULL SUBROUTINE

;READ CHARACTER INTO REGISTER A FROM READER
DEVICE

MVl AJAH ENTER END OF FILE FOR NOW
(REPLACE LATER)
ANl 7FH ;REMEMBER TO STRIP PARITY BIT
RET
* * * *x * * * * * * * * * * * *
*
CP/M TO HOST DISK CONSTANTS *

EQU 1024 ;CP/M ALLOCATION SIZE
EQU 256 ,HOST DISK SECTOR SIZE
EQU 17 ;HOST DISK SECTORS/TRK

EQU HSTSIZ/128 ;CP/M SECTS/HOST BUFF
EQU HSTBLK * HSTSPT ;CP/M SECTORS/TRACK
EQU HSTBLK-1 ;SECTOR MASK

EQU 1 ;LOG2(HSTBLK)

EQU 0 sWRITE TO ALLOCATED
EQU 1 ;WRITE TO DIRECTORY
EQU 2 ,WRITE TO UNALLOCATED

APPENDIX E 227

ADO2 3AE2AE
ADO5 B7
ADO6 2003
ADOB 32E1AE

ADOB C9

ADOC 210000
ADOF 79
AD10 32D8AE
AD13 FEO2
AD15 DO
AD16 6F
AD17 29
AD18 29
AD19 29
AD1A 29
AD1B 1134AA
ADIE 19
ADIF C9

AD20 60
AD21Y 49
AD22 22D9AE
AD25 C9

AD26 79
AD27 32DBAE
AD2A C9

22B APPENDIX E

HOME:

J35.

HOMED:

H

SELDSK:

SETTRK;

’

SETSEC:

SETDMA:

HOME THE SELECTED DISK

LDA HSTWRT .CHECK FOR PENDING WRITE
ORA A

DB JRNZ,HOMED-J35-2

STA HSTACT ,CLEAR HOST ACTIVE FLAG

RET

;SELECT DISK

LX) H,0000H ,ERROR RETURN CODE
MOV A,C sSELECTED DISK NUMBER
STA SEKDSK ;SEEK DISK NUMBER
CPI 2 ;MUST BE 0-1

RNC 7NO CARRY F 2,3,
MOV LA ;DISK NUMBER TO HL
DAD H /MULTIPLY BY 16

DAD H

DAD H

DAD H

X D,DPBASE ;BASE OF PARM BLOCK
DAD D ;HL=.DPB(CURDSK)
RET

,SET TRACK GIVEN BY REGISTERS BC
MOV H,8

MOV 1,C

SHLD SEKTRK ;TRACK TO SEEK
RET

;SET SECTOR GIVEN BY REGISTER C
MOV AC

STA SEKSEC ,SECTOR TO SEEK
RET

;SET DMA ADDRESS GIVEN BY BC

AD2B 60
AD2C 69
AD2D 22ECAE
AD30 C9

AD31 60
AD32 69
AD33 C9

AD34 AF
AD35 32E3AE
AD38 3E01
AD3A 32EAAE
AD3D 32E9AE
AD40 3EQ2
AD42 32EBAE
AD45 1864

ADA7 AF
AD48 32EAAE
AD48B 79
AD4C 32EBAE
AD4F FFO2

;

SECTRAN.

J36:

MOV
MOV
SHLD
RET

H,B
LC
DMAADR

;TRANSLATE SECTOR NUMBER BC

MOV H,B

MOV LC

RET

* * * Ok x X Kk x %k Kk ok ok * %
*

THE READ ENTRY POINT TAKES THE PLACE OF *

THE PREVIOUS BIOS DEFINITION FOR READ. *

,READ THE SELECTED CP/M SECTOR

XRA A

STA UNACNT

mvI Al

STA READOP ;READ OPERATION

STA RSFLAG ~ ;MUST READ DATA

MVI A, WRUAL

STA WRTYPE ;TREAT AS UNALLOC

DB JR,RWOPER-J36 -2 ,TO PERFORM THE READ

* * * * * * * * * * * * * * *
.

THE WRITE ENTRY POINT TAKES THE PLACE OF *

THE PREVIOUS BIOS DEFINITION FOR WRITE. .
.

* * * * * * * * * * * * * * *

;WRITE THE SELECTED CP/M SECTOR

XRA
STA
MOV
STA
CPl

A ,0 TO ACCUMULATOR
READOP ,NOT A READ OPERATION
A,C SWRITE TYPE IN C
WRTYPE

WRUAL ;WRITE UNALLOCATED?

APPENDIX E 229

AD51 2017 J37:

AD53 3E08

AD55 32E3AE
AD58 3ADSAE
AD5B 32E4AE
ADSE 2AD9AE
AD61 22E5AE
AD64 3ADBAE
AD67 32E7AE

i

CHKUNA.

AD6A 3AE3AE
AD6D B7

ADGE 2833 J38:

AD70 3D
AD71 32E3AE
AD74 3ADSAE
AD77 21E4AE
AD7A BE

AD7B 2026 339:

AD7D 21E5AE
AD80 CD40AE

AD83 201E J40.

AD85 3ADBAE
AD88 21E7AE
AD8B BE

AD8C 2015 J41:

ADSE 34
ADSF 7E

230 APPENDIX E

DB JRNZ,CHKUNA-J37-2 ;CHECK FOR UNALLOC

WRITE TO UNALLOCATED, SET PARAMETERS
MV A,BLKSIZ/128; NEXT UNALLOC RECS
STA UNACNT
LDA SEKDSK
STA UNADSK
LHLD SEKTRK
SHLD UNATRK
LDA SEKSEC
STA UNASEC

;DISK TO SEEK
JUNADSK = SEKDSK

;UNATRK = SECTRK

JUNASEC = SEKSEC

;CHECK FOR WRITE TO UNALLOCATED SECTOR
LDA UNACNT :ANY UNALLOC REMAIN?

ORA A
DB JRZ,ALLOC-J38-2 ;SKIP IF NOT

MORE UNALLOCATED RECORDS REMAIN
DCR A ;UNACNT = UNACNT-1
STA UNACNT

LDA SEKDSK ;SAME DISK?

X H,UNADSK

CMmP M ;SEKDSK = UNADSK?
DB JRNZ,ALLOC-J39-2 ;SKIP IF NOT

DISKS ARE THE SAME
Lt H, UNATRK
CALL TRKCMP :SEKTRK = UNATRK?
DB JRNZ ALLOC-)40-2 ;SKIP IF NOT

TRACKS ARE THE SAME
LDA SEKSEC ;SAME SECTOR?

X H,UNASEC
CMmP M ;SEKSEC = UNASEC?
DB JRNZ, ALLOC-J41-2 ;SKIP IF NOT

MATCH, MOVE TO NEXT SECTOR FOR FUTURE REF
INR M ;UNASEC = UNASEC+1
MOV AM ;END OF TRACK?

AD90 FE22
AD92 3809

AD94 3600
AD96 2AESAE
AD99 23
AD9A 22ESAE

AD9D AF
ADSE 32E9AE
ADA1 1808

ADA3 AF
ADA4 32E3AE
ADA7 3C
ADAB 32E9AE

ADAB AF
ADAC 32EBAE
ADAF 3ADBAE
ADB2 B7
ADB3 1F
ADB4 32EQAE

ADB7 21E1AE
ADBA 7E
ADBB 3601
ADBD B7

J42:

NOOQVF;

J43:

ALLOC:

RWOPER:

CPI CPMSPT ;COUNT CP/m SECTORS
DB JRC,NOOVF-J42-2 ;SKIP IF NO OVERFLOW

OVERFLOW TO NEXT TRACK

MVl M0 ;UNASEC = 0
LHLD UNATRK
INX H

SHLD UNATRK ;UNATRK = UNATRK+1

;MATCH FOUND, MARK AS UNNECESSARY READ

XRA A ;0 TO ACCUMULATOR
STA RSFLAG ;RSFLAG = 0
DB JR,RWOPER-J43-2 ;TO PERFORM THE WRITE

;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ

XRA A ;0 TO ACCUM
STA UNACNT ;UNACNT = 0
INR A ;1 TO ACCUM

STA RSFLAG ;RSFLAG = 1

;ENTER HERE TO PERFORM THE READ/WRITE
XRA A ;ZERO TO ACCUM

STA ERFLAG ;NOERRORS (YET)

LDA SEKSEC ;COMPUTE HOST SECTOR
ORA A ;CARRY = 0

RAR ;SHIFT RIGHT

STA SEKHST ;HOST SECTOR TO SEEK

ACTIVE HOST SECTOR?

XI H,HSTACT ;HOST ACTIVE FLAG
MOV AM

M| M1 ;ALWAYS BECOMES 1
ORA A ;WAS IT ALREADY?

APPENDIX E 231

ADBE 2821 J44: DB JRZ,FILHST-J44-2 FiLL HOST IF NOT

HOST BUFFER ACTIVE, SAME AS SEEK BUFFER?

ADCOQ 3ADBAE LDA SEKDSK

ADC3 21DCAE X H.HSTDSK ;SAME Disk?

ADC6 BE CMP M ;SEKDSK = HSTDSK?
ADC7 2011 J45: DB JRNZ, NOMTCH-145-2

; SAME DISK, SAME TRACK?

ADC9 21DDAE X H,HSTTRK
ADCC CD40AE CALL TRKCMP ;SEKTRK = HSTYRK?
ADCF 2009 J46. DB JRNZ,NOMTCH-46-2

; SAME DISK, SAME TRACK, SAME BUFFER?

ADD1 3AEQAE LDA SEKHST
ADD4 21DFAE X1 H,HSTSEC ;SEKHST = HSTSEC?
ADD7 BE CMP M
ADDS 2824 J47. DB JRZ,MATCH-J47-2 SKIP IF MATCH
NOMTCH.
;PROPER DISK, BUT NOT CORRECT SECTOR
ADDA 3AE2AE LDA HSTWRT ;HOST WRITTEN?
ADDD B7 ORA A
ADDE C44CAE CNZ WRHST ;CLEAR HOST BUFF
FILHST:
;MAY HAVE TO FILL THE HOST BUFFER
ADE1 3ADBAE LDA SEKDSK
ADE4 32DCAE STA HSTDSK
ADE7 2AD9AE LHLD SEKTRK
ADEA 22DDAE SHLD HSTTRK
ADED 3AEQAE LDA SEKHST
ADFQ 32DFAE STA HSTSEC
ADF3 3AEPAE LDA RSFLAG ;NEED TO READ?
ADF6 B7 ORA A
ADF7 C49DAE CNZ RDHST ;YES, IN Y
ADFA AF XRA A ;0 TO ACCUM
ADFB 32E2AE STA HSTWRT ;NO PENDING WRITE
MATCH:

;COPY DATA TO OR FROM BUFFER

232 APPENDIX E

ADFE 3ADBAE LDA SEKSEC ;MASK BUFFER NUMBER

AEO1 E601 ANI SECMSK ,LEAST SIGNIF BITS
AEQ3 6F MOV LA ;READY TO SHIFT
AEO4 2600 mvi H,0 ;DOUBLE COUNT
AE06 29 DAD H ;SHIFT LEFT 7
AEQ7 29 DAD H
AE0B 29 DAD H
AEQ9 29 DAD H
AEQA 29 DAD H
AEOB 29 DAD H
AEOC 29 DAD H

; HL HAS RELATIVE HOST BUFFER ADDRESS
AEQD 1100F8 X D,HSTBUF
AE10 19 DAD D ;HL = HOST ADDRESS
AE11 EB XCHG ;NOW IN DE
AE12 2AECAE LHLD DMAADR ;GET/PUT CP/M DATA
AE15 0EBO MV C.128 [LENGTH OF MOVE
AE17 3AEAAE LDA READOP ;WHICH WAY?
AE1A B7 ORA A
AE1B 2006 J48: DB JRNZ,RWMOVE-J48-2 ;SKIP IF READ

WRITE OPERATION, MARK AND SWITCH DIRECTION

AE1D 3EO01 Myl Al
AETF 32E2AE STA HSTWRT sHSTWRT = 1
AE22 EB XCHG ,SOURCE/DEST SWAP

RWMOVE-

,C INITIALLY 128, DE 1S SOURCE, HL 1S DEST

AE23 1A LDAX D ;SOURCE CHARACTER
AE24 13 INX D
AE25 77 MOV M,A ;TO DEST
AE26 23 INX H
AE27 OD DCR C ;LOOP 128 TIMES
AE28 20F9 149 DB JRNZ,(RWMOVE-J49-2) AND OFFH

DATA HAS BEEN MOVED TO/FROM HOST BUFFER

AE2A 3AEBAE LDA WRTYPE JWRITE TYPE

AE2D FEQ1 Cpi WRDIR ;TO DIRECTORY?

AE2F 3AEBAE LDA ERFLAG ;IN CASE OF ERRORS

AE32 CO RNZ ;NO FURTHER PROCESSING

CLEAR HOST BUFFER FOR DIRECTORY WRITE

APPENDIX E 233

AE33 B7 ORA A ;ERRORS?

AE34 CO RNZ ;SKiP IF SO

AE35 AF XRA A ,0TO ACCUM
AE36 32E2AE STA HSTWRT ;BUFFER WRITTEN
AE39 CD4CAE CALL WRHST

AE3C 3AEBAE LDA ERFLAG

AE3F C9 RET

TRKCMP:
HL = _UNATRK OR .HSTTRK, COMPARE WITH SEKTRK
AE40 EB XCHG
AE41 21D9PAE X H,SEKTRK
AE44 1A LDAX D :LOW BYTE COMPARE
AE45 BE CMmP M ;SAME?
AE46 CO RNZ /RETURN IF NOT
LOW BYTES EQUAL, TEST HIGH 1§
AE47 13 INX D
AE48 23 INX H
AE49 1A LDAX D
AE4A BE CMP M ;SETS FLAGS
AE4B C9 RET

i* WRHST PERFORMS THE PHYSICAL WRITE TO
* THE HOST DISK, RDHST READS THE PHYSICAL
i* DISK.

;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
;HSTSEC = HOST SECT #. WRITE “HSTSIZ” BYTES
;FROM HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
,RETURN ERFLAG NON-ZERO IF ERROR
AE4C 3EQ1 MVI AVICWR ;LOAD DISK WRITE COMMAND
AE4E 32EEAE WRHSTO: STA RW ,PUT COMMAND IN REGISTER

234 APPENDIX E

AE51 3ADCAE
AE54 3204F9

AES7 CD79AE

AESA 3ADDAE WRHST2:
AESD 3C

AESE FE12

AE60 3801 150:
AE62 3C

AE63 3203F9 WRHST3:
AE66 3ADFAE

AE69 3202F9

AE6C JAEEAE

AEG6F CD90AB

AE72 3AQIF9

AE75 32EBAE

AE78 C9

’

AE79 67 CHGDSK:
AE7A 3AFFFC

AE7D E601

AE7F CO

AEB0 3204F9

AE83 7C

AE84 21EFAE
AEB7 BE
AE88 C8

AEB9 77
AEBA C641
AEBC 32AFAE

AESF 21AI1AE

AE92 CDCCAE

AE95 CDFEAB CHGD1:
AE98 FEQD

AE9A 20F9 J51:
AE9C C9

RDHST-

LDA
STA
CALL
LDA
INR
CPi
DB
INR
STA
LDA
STA
LDA
CALL
LDA
STA
RET

MOV
LDA
ANI
RNZ
STA
MOV

LXi
CMmP
RZ

MoV
ADI
STA

X
CALL
CALL
CPi
DB
RET

HSTSDK ;GET HOST DISK NUMBER
DISKNO ; AND PUT IN COMMON AREA
CHGDSK ;CORRECT VIRTUAL DisK?
HSTTRK ;GET HOST TRACK NUMBER

A ;ADD 1 FOR VIC OFFSET

18 ;WE WANT TO SKIP TRACK 18
JRC,WRHST3-J50-2 ;CARRY IF TRACK<18
A

TRACK :PUT IN COMMON AREA
HSTSEC ;GET HOST SECTOR NUMBER
SECTOR ;PUT IN COMMON AREA

RW ;GET DiSK COMMAND
106510
DATA ;GET DISK STATUS

ERFLAG ; AND STORE IN ERFLAG

H,A ;SAVE DISK NUMBER
IOTYPE ;BIT 0=0 FOR VIRTUAL
01

,NOT ZERO If 2 DRIVES
DISKNO ;FORCE DRIVE A
AH /RESTORE DISK NUMBER

H,CURDSK ;1S THIS OUR CURRENT DiSK?
M

;RETURN IF OK
MA ;SET UP NEW DISK
‘A ;FORM ASCii DRIVE LETTER

DSKMNT ;PUT IN MESSAGE

H,MNTMSG ,INSERT DiSK MESSAGE

PMSG ;GO PRINT (T
CONIN .WAIT FOR RETURN
ODH

JRNZ,(CHGD1-J51-2) AND OFFH

;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
;HSTSEC = HOST SECT #. READ "HSHSIZ” BYTES

APPENDIX E 235

AE9D 3E00
AE9F 18AD

AEA1 ODOA496E73
AEAF 41
AEBQ 20696E746F
AECB 00

AECC 7E
AECD A7
AECE C8
AECF E5
AEDO 4F

AED1 CD76AC
AED4 EIl
AED5 23
AED6 18F4

AED8
AED?
AEDB

AEDC
AEDD
AEDF

AEEQ
AEE!
AEE2

AEE3

AEE4
AEE5

236 APPENDIX E

)52

’

MNTMSG:
DSKMNT:

PMSG:

SEKDSK:
SEKTRK:
SEKSEC-
HSTDSK:
HSTTRK.
HSTSEC:
SEKHST:
HSTACT:
HSTWRT:
UNACNT.
UNADSK:
UNATRK:

;INTO HSTBUF AND RETURN ERROR FLAG IN ERFLAG.

Myl A,VICRD ;DISK READ COMMAND

] JR,(WRHST0-J52-2) AND OFFH ,REST LIKE
WRITE

DB ODH,0AH, INSERT DISK’

DB ‘A

DB * INTO DRIVE O, PRESS RETURN'

DB O0H

MOV AM

ANA A

RZ

PUSH H

MOV C.A

CALL CONOUT

POP H

INX H

DB JR,(PMSG-)53-2) AND OFFH

k K Kk kK k x Kk * Kk k *x w % K %

Ds 1 ,SEEK DISK NUMBER
DS 2 ;SEEK TRACK NUMBER
DS 1 ;SEEK SECTOR NUMBER
Ds 1 ;HOST DISK NUMBER
Ds 2 ;HOST TRACK NUMBER
Ds 1 ;HOST SECTOR NUMBER
Ds 1 ,SEEK SHR SECSHF

DS 1 HOST ACTIVE FLAG

DS 1 ,HOST WRITTEN FLAG
Ds 1 {UNALLOC REC CNT

DS 1 ;LAST UNALLOC DISK
DS 2 [LAST UNALLOC TRACK

AEE7 UNASEC: DS 1 ,LAST UNALLOC SECTOR

i

AEE8 ERFLAG. DS 1 JERROR REPORTING
AEE9 RSFLAG: DS 1 ,READ SECTOR FLAG
AEEA READOP DS 1 ;1 IF READ OPERATION
AEEB WRTYPE: DS 1 ;WRITE OPERATION TYPE
AEEC DMAADR: DS 2 ;LAST DMA ADDRESS
AEEE RW: Ds 1 ,TEMPORARY COMMAND
REGISTER
AEEF CURDSK: DS 1 ;VIRTUAL DISK POINTER

H

, SCRATCH RAM AREA FOR BDOS USE

AEF0 = BEGDAT EQU $ ‘BEGINNING OF DATA AREA
AEFO DIRBF: Ds 128 ;SCRATCH DIRECTORY AREA
AF70 ALLOO: Ds 31 ;ALLOCATION VECTOR O
AF8F ALLO1: Ds 31 ;ALLOCATION VECTOR 1
AFAE CHKOO- DS 16 ,CHECK VECTOR O

AFBE CHKQl: Ds 16 ;CHECK VECTOR 1

AFCE = ENDDAT EQU $;END OF DATA AREA

OODE = DATSIZ EQU $-BEGDAT ;SIZE OF DATA AREA

AFCE END

APPENDIX E 237

ABOUT THE COMMODORE 64 CP/M’
OPERATING SYSTEM USER’S GUIDE...

The Commodaore Z80 microprocessor and CP/M*® operating
system let you turn your Commodore 64 into a dual
processor Nome microcomputer

CP/M® lets you use more than 15,000 CP/M* application
programs, CP/M*™ software includes widely used business
applications such as financial reporting and analysis
investment planning, word processing, farm and restaurant
management, data base, exotic language compilers, and
much, much more.

The Commodore 64 CP/M® Operating System User's Guide
tells you how to use the Z80 cartridge and the CP/M*®
operating system. This manual gives you detailed information
on how to bring up CP/M® on your system. We also give you
a detailed reference section with descriptions of all the
CP/M® commands and utility programs

For the beginner, this manual offers simple, step-by-step
instructions with all the information you need to use CP/M*
on your Commodore 64.

For the advanced user, this manual provides detailed
information on the technical workings of CP/M® on your
Commodore 64 and the engineering details of your Z80
cartridge.

This manual is written in an easy-to—read style and is
designed to help you get the most out of the Z80
microprocessor and the CP/M® operating system.

rcommodore

COMPUTER

Commodore Business Machines, Inc.— Computer Systems Division,

950 Airport Rd, West Chester, PA 19380
DISTRIBUTED BY

Howard W. Sams & Co., Inc.

4300 W. 62nd Street, Indianapolis, Indiana 46268 USA
$12.95/22098 ISBN: 0-672-22098-9

