
c~ commodore
COMPUTER

USER'S MANUAL STATEMENT

reorient the receiving antenna

relocate the computer with respect to the receiver

"If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: 'How to Identify and Resolve Radio-TV
Interference Problems.' This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4.'•

I

•

First Edition-1983
First Printing- 1983

Copyright © 1983 by Commodore Business
Machines, Inc.
All rights reserved.

CP/M is a registered trademark of Digital Research

This manual is copyrighted and contains proprietary
information. No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise,
without the prior written permission of
COMMODORE BUSINESS MACHINES. Inc.

Printed in the United States of America

TABLE
OF

CONTENTS
1. INTRODUCTION TO

CPIM ON YOUR
COMMODORE 84................. 7

• 1.1 Overview of CP/M on Your
Commodore 64 9

• 1.2 How To Use This Manual 10

• 1.3 Digital Research License Information 12
1.3.1 Digital Research License

Agreement 12

• 1.4 Registration Information 15

• 1.5 Warranty and Service Information 15

• 1.6 Get More out of Your Commodore
Computer 16
1.6.1 Power/Play: The Home Computer

Magazine 16
1.6.2 Commodore: The Microcomputer

Magazine 16
1.6.3 Commodore Information Network:

The Paperless User Magazine 17

2. SETTING UP YOUR
COMMODORE 84................. 19

• 2.1 Unpacking and Connecting the
Z80 Cartridge , 20

• 2.2 Installing the Z80 Cartridge , 22
2.2.1 Using the Z80 Cartridge with

VIC Peripherals 22

TABLE OF CONTENTS 3

2.2.2 Using the Z80 Cartridge with
CBM Series Peripherals. 22

• 2.3 Connecting Disk Drives 24
2.3.1 Connecting VIC 1541

Disk Drives 24
2.3.2 Connecting CBM Series .

Disk Drives 24

3. USING YOUR COMMODORE
84 PERIPHERALS FROM
CP1M 25

• 3.1 Printer Interface 26

• 3.2 The Commodore 64 Serial Interface '" 27
• 3.3 The IEEE Interface Cartridge " 27
• 3.4 Daisy Chaining Peripherals " 28
• 3.5 The Commodore 64 User Port....... . . 29

4. GETTING STARTED 31

• 4.1 Bringing CP/M onto Your Commodore 64. 32
4.1.1 Starting CP/M 33
4.1.2 Making Copies of Your CP/M

System Disk 34
• 4.2 The COpy utility. .. 35

4.2.1 Formatting a Disk with the
COPY utility 35

4.2.2 Creating a Disk Backup with the
COpy utility... . . 37

4.2.3 Copying the System Tracks
with the COpy Utility 38

• 4.3 The CONFIG Utility 39
4.3.1 Using CONFIG to Change the

Number of Disk Drives " 40
4.3.2 Using CONFIG to Change the

Printer 1YPe .. 41
4.3.3 Using CONFIG to Change the

Initial Caps Mode 41
4.3.4 Using CONFIG to Change the

Function Key Assignments 42
4.3.5 Using CONFIG to Change the

Key Codes " 44

4 TABLE OF CONTENTS

4.3.6 Using CONFIG to Save the New
I/O Setup........ . .. 45

• 4.4 Generating a New CP/M System with
SySGEN 45
4.4.1 Relocating CP/M 46
4.4.2 Saving the New System............ 47
4.4.3 Using SySGEN.................... 48

• 4.5 The Commodore 64 Keyboard and Screen
with CP/M. .. 49

5. CP/M OPERATION 51

• 5.1 How to Use This Chapter.. 52
• 5.2 CP/M File Naming Conventions. 52
• 5.3 Input/Output Hardware Conventions. 55

5.3.1 Loading Programs from Disk:
Single Drive. .. 56

5.3.2 Loading Programs from Disk:
Dual Drive , 57

• 5.4 CP/M Command Structure. 57
• 5.5 CP/M Commands..... 61

5.5.1 pgm-name (Load and Run a
CP/M Program)..... 61

5.5.2 x: (Change the Currently
Logged Disk) .. 63

5.5.3 ASM 64
5.5.4 DDT.............................. 66
5.5.5 DIR............................... 71
5.5.6 DUMP............................. 73
5.5.7 ED 73
5.5.8 ERA 82
5.5.9 LOAD............................. 83
5.5.10 MOVCPM 83
5.5.11 PIP 85
5.5.12 REN 91
5.5.13 SAVE 92
5.5.14 STAT............................ 93
5.5.15 SUBMIT 97
5.5.16 SySGEN 100
5.5.17 TypE 102
5.5.18 USER 103
5.5.19 XSUB 104

TABLE OF CONTENTS 5

8. CPIM ON THE
COMMODORE 84 107

• 6.1 The Structure of CP/M 108
6.1.1 How CP/M Works on Your

Commodore 64 109
6.1.2 6510 Memory Use 111
6.1.3 Addresses under CP/M. 113
6.1.4 Z80 Memory Use.... 114

• 6.2 The BOOT Programs 116
• 6.3 The BIOS Programs 117
• 6.4 CP/M Disk Organization , 120
• 6.5 The CP/M BDOS 121

6.5.1 Sample BDOS Function Call 123
• 6.6 Calling a Z80 Program from the 6510 134

6.6.1 Some Examples. 135
• 6.7 Calling a 6510 Program from the Z80 136

6.7.1 Switching on the 6510 137
• 6.8 Program Execution under CP/M 139

7. APPENDiCES....................... 141

• A. Commodore 64 Memory Map 142
• B. Bibliography 144
• C. CP/M Command List 148
• D. ASCII, CHR$, and Hexadecimal

Character Codes. .. 151
• E. BIOS and BOOT Listings (both 6510

and Z80) 155

8. HARDWARE SCHEMATICS.239
• Z80 Schematic
• Commodore 64 Schematic

6 TABLE OF CONTENTS

Your purchase of the Commodore Z80 add-on microproces­
sor cartridge puts you in the elite group of owners of a dual
processor home microcomputer. No one but Commodore­
the originator of the home microcomputer-could design
and manufacture an inexpensive home or personal compu­
ter that accommodates the two most common microproces­
sors in the microcomputer industry:

• the Commodore MOS 6510 (6502 type)
microprocessor

• the Z80A microprocessor

The 6510 microprocessor is the main processor on your
Commodore 64. The 6510 is a specially designed variation
of the widely distributed 6502 microprocessor found in
many popular home and office computers. The 6510 runs
the same instruction set as the 6502 but includes some
special features that make it work more efficiently in your
Commodore 64.

It is the 6510 main processor that is active when your
Commodore 64 is running in native mode. In native mode,
your Commodore 64 is controlled by its Commodore 64
Kernal operating system, Screen Editor, and the BASIC
V2.2 interpreter. Native mode gives you access to a vast li­
brary of Commodore 64 applications packages from Com­
modore or from one of the many independent Commodore
64 software developers around the world.

When you add your Z80 cartridge to the system and start
Digital Research's CP/M@ operating system, you open the
door to more than 15,000 CP/M-based application pro­
grams. CP/M is the most popular 8-bit operating system
and is used for business applications throughout the world.

If you have a special application need, it's very likely that
a CP/M package exists to meet it. CP/M applications are
available in such areas as:

• financial reporting
• financial analysis
• investment planning
• word processing

• law
• real estate

8 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

• farm management
• restaurant management
• data base
• exotic language compilers (PL/I, PASCAL, C)
• and many, many more

1.1 OWRVlEW OF CP/M ON YOUR
CO..ODOIIB 84
CP/M on your Commodore 64 can run in a maximum of
48K (1K = 1024 characters) of memory. The rest of memory
is occupied by the Commodore 64 Kernal routines that
provide input/output support for CP/M.

While you are running CP/M under the Z80 processor,
the 6510 main processor acts as an input/output proc­
essor. When the 6510 is active, your Commodore 64 is
executing in native mode. When it's running in native
mode, your Commodore 64 "knows" how to handle its
keyboard, screen, and peripherals (disks and printer).
Rather than duplicate this facility to run under the Z80
processor, CP/M simply calls on the 6510 main processor to
perform these tasks.

In addition to CP/M, you get a set of custom utilities that
make it easy for you to run CP/M on your Commodore 64.
You get:

• The COpy utility that formats diskettes in the CP/M
format; easily produces backups of CP/M diskettes,
even on single-drive systems; and copies the impor­
tant CP/M system tracks.

• The CONFIG utility that makes it easy for you to in­
form CP/M of changes to your system peripherals,
load the Commodore 64 function keys for use under
CP/M, and re-define keyboard characters to yield
any code you want.

• The MOVCPM utility that allows you to create a dif­
ferent sized version of CP/M without the need to
learn Z80 Assembler language. MOVCPM relocates
all of CP/M, including the BOOT and BIOS pro­
grams.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 9

You can load anything you like into the eight Commo­
dore 64 Function Keys. When CP/M is started, the eight
function keys are loaded with the following CP/M com­
mands «CR> stands for __):

Fl Z DIRXCRZ
F2 Z DIR B:XCRZ
F3 Z STAT *.*XCRZ
F4 Z STAT B:*. *XCRZ
F5 Z COPYXCRZ
F6 Z CONFIGXCRZ
F7 Z DDTXCRZ
F8 Z DDT

CP/M on your Commodore 64 supports upper and lower
case characters. You can toggle between upper case only
and upper/lower case using the Commodore (~) key. For
special applications, you can redefine the codes returned
to your CP/M programs from the keyboard or sent to the
screen from your programs.

1.2 HOW TO USE THIS MANUAL
The very first thing to do is to read the Digital Research
License Agreement in Section 1.3. Next, fill in and mail
the Digital Research CP/M Registration Card at the end of
this manual as soon as possible.

With those tasks accomplished, it's time to start running
CP/M on your Commodore 64. Chapter 2 teUs you how to
use your Z8G cartridge. Read this chapter before you try
to plug it in.

The distribution version of Commodore 64 CP/M as­
sumes that you have a VIC 1515/1525 printer and a single
VIC 1541 disk drive. If your Commodore 64 is equipped
with some other combination, consult Chapter 3 for in­
formation on using your peripherals.

Chapter 4 is where things really get started. Read this
chapter to learn how to bring up CP/M on your system..
This chapter also tells you about the Commodore 64 spe­
ciflc CP/M utilities that you'll need and talks about using
the Commodore 64 keyboard with CP/M.

10 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

IMPORTANTI BE SURE TO MAKE A BACKUP COpy OF YOUR CP/M DIS­

TRIBUTION DISKETTES BEFORE YOU BEGIN PLAYING WITH CP/M. IF

YOU DESTROY THESE DISKETTES, YOU LOSE CP/M. SO BE CAREFULI

ONCE YOU HAVE MADE A COpy OF THE DISTRIBUTION DISKETTES (USE

THE FORMAT AND BACKUP FEATURES OF THE COpy UTILITY), PUT THE

ORIGINALS IN A COOL, DRY PLACE, AWAY FROM MAGNETIC FiElDS.

DON'T USE THEM AGAIN UNLESS YOU ABSOLUTELY HAVE TO (FOR
EXAMPLE, IF YOU ACCIDENTALLY DESTROYED ALL OF YOUR OPERATING

COPIES)I

The distribution version of CP/M (the one that you get on
the distribution diskette) is for a 44K CP/M system. You
should use this version if you have the IEEE interface car­
tridge. If you don't. look in Chapter 4 to learn how to con­
struct a 4SI[version that can take advantage of the addi­
tional 4K of RAM available on your system.

Chapter 5 is a reference section which includes de­
scriptions of all oj the CP/M commands and utility pro­
grams that you need to function in the CP/M environment.
Chapter 5 shows you how to execute programs under CP/M
and talks about CP/M files andflle naming conventions.

Chapter 8 is for those of you who want to get involved in
the technical workings of CP/M on your Commodore 84.
You DO NOT have to know any of this material to use CP/M.
If interested, you can look into the first few sections of
Chapter 6 to get an idea of how CP/M is implemented on
the Commodore 64 and how CP/M itself is structured.

The balance of Chapter 6 is for the technically sophisti­
cated user. You can learn about the BOOT and BIOS pro­
grams written to support CP/M on the Commodore 64 and
you can learn how to cross-call routines between the two
processors. To understand these sections fully, you should
have a strong working knowledge of both 6510 (6502) and
Z80 Assembler language.

Chapter 7 provides you with the engineering detaUs of
your ZSG cartridge and your Commodore 84. If you
understand computer hardware, you can look here to see
how they did it.

This manual is intended to get you started in CP/M. If
you want to explore the depths of the CP/M operating sys­
tem, look in your local bookstore for one (or more) of the

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 11

many CP/M books published in the last few years. We've
listed some of them in the BibHography, Appendix B. Skim
the books to see which one you like best.

Likewise, this manual does not provide a tutorial in the
use of the Z80 microprocessor. If you're interested in pro­
gramming the Z80 in Assembler, you'll need detailed refer­
ences. The Bibliography contains a list of some of the Z80
books you can find in your bookstore.

1.3 DIGITAL RESEARCH
LICENSE INFORMATION

IMPORTANT: Commodore's license with Digital Research
requires that each purchaser of the Commodore 64 CP/M
system register with Commodore so that accurate records
can be maintained of all CP/M users.

Because Digital Research requires this information, we
have provided a post card for you to fill out and send in. The
serial number of your CP/M system disk is stamped on the
labels of the disks you receive with your Z80 cartridge and
CP/M information. Please fill out the card and send it to us.

READ THE LICENSE AGREEMENT CAREFULLY.

1.3.1 Digital Research License Agreement

DIGITAL RESEARCH
Box 579, Pacific Grove, California 93950

SOFTWARE LICENSE AGREEMENT

IMPORTANT:

All Digital Research programs are sold only on the condition that the

purchaser agrees to the following license. READ THIS LICENSE CARE­

FULLY. If you do not agree to the terms contained in this license,
return the packaged diskette UNOPENED to your dealer and your
purchase price will be refunded, If you agree to the terms contained

in this license, fill out the REGISTRATION information and RETURN by

mail to Commodore.
DIGITAL RESEARCH agrees to grant and the Customer agrees TO

accept, on the following terms and conditions, nontransferable and

12 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

nonexclusive licenses to use the software program(s) (Licensed Pro­

grams) herein delivered with this agreement.

TERM:
This agreeme"t is effective from the date of receipt of the above

referenced program(s) and shall remain in force until terminated by

the Customer upon one month's prior written notice, or by Digital Re­

search as provided below.

Any license under this Agreement may be discontinued by the Cus­

tomer at any time upon one month's prior written notice. Digital Re­

search may discontinue any license or terminate this Agreement if the

Customer fails to comply with any of the terms and conditions of this

Agreement.

LICENSE:
Each program license granted under this Agreement authorizes the

Customer to use the Licensed Program(s) in any machine-readable

form on any single computer system (referred to as System). A sepa­

rate license is required for each System on which the Licensed Pro­

gram(s) will be used.

This Agreement and any of the licenses, programs, or materials to

which it applies may not be assigned, sublicensed, or otherwise trans­

ferred by the Customer without prior written consent from Digital Re­

search. No right to print or copy, in whole or in part, the Licensed

Program(s) is granted except as hereil'1after expressly provided.

PERMISSION TO COPY OR MODIFY LICENSED PROGRAMS:

The Customer shall not copy, in whole or in part, any Licensed

Programs which are provided by Digital Research in printed form

under this Agreement. Additional copies of printed materials may be

acquired from Digital Research.

Any Licensed Program which is provided by Digital Research in

machine-readable form may be copied, in whole or in part, in

printed or machine-readable form in sufficient number for use by the

Customer with the designated System, to understand the contents of

such machine-readable material, to modify the Licensed Program as

provided below, for backup purposes, or for archive purposes, pro­

vided, however, that no more than five (5) printed copies will be in

existence under any license at anyone time without prior written con­

sent frol1l Digital Research. The Customer agrees to maintain appro­

priate records of the number and location of all such copies of

Licensed Programs. The original, and any copies of the Licensed Pro­

grams, in whole or in part, which are made by the Customer shall be

the property of Digital Research. This does not imply, of course, that

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 13

Digital Research owns the media on which the Licensed Programs are
recorded. The Customer may modify any machine-readable form of a
Licensed Program for his or her own use and merge it into other pro­
gram material to form an updated work, provided that, UpOl1 discon­
tinuance of the license for such Licensed Program, the Licensed Pro­
gram supplied by Digital Research will be completely removed from
the updated work. Any portion of the Licensed Program included in
an updated work shall be used only if on the designated System and
shall remain subject to all other terrns of this Agreement.

The Customer agrees to reproduce and include the copyright notice
of Digital Research on all copies, in whole or in part, in any form,
including partial copies of modifications, of Licensed Programs made
hereunder.

PROTECTION AND SECURITY:
The Customer agrees not to provide or otherwise make available

any Licensed Program including but not limited to program listings,
object code, and source code, in any form, to any person other than
the Customer or Digital Research employees, without prior written con­
sent from Digital Research, except with the Customer's permission for
purposes specifically related to the Customer's use of the Licensed
Program.

DISCONTINUANCE:
Within one month after the discontinuance of allY license under this

AgreelT'e nt, the Customer will furnish to Digital Research a certificate
certifying that through his or her best effort, and to the best of his or
her knowledge, the original and all copies, in whole or in part, in
any form, including partial copies in modifications, of the Licensed
Program(s) received from Digital Research or made in connection with
such license have been destroyed, except that, upon prior written
authorization from Digital Research, the Customer may retain a copy
for archive purposes.

DISCLAIMER OF WARRANTY:
Digital Research makes no wa rral1ties with respect to the Licensed

Programs. The sole obligation of Digital Research shall be to make
available all published modifications or updates made by Digital Re­
search to Licensed Programs which are published within one (1) year
from date of purchase, provided the Customer has returned the Re­
gistration Card delivered with the Licensed Program.

LIMITATION OF LIABILITY:
THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRAN­

TIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

14 INTRODUCTION TO CP/M 0'" YOUR COMMODORE 64

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. IN NO EVENT WILL DIGITAL RESEARCH BE

LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provisions, or portions thereof, of the Agreement are

invalid under any applicable statute or rule of law, they are to that

extent to be deemed omitted.

1.4 REGISTRATION
INFORMATION

Please fill out the CP/M Registration Card that is enclosed
with your Z80 cartridge and CP/M system. Mail the com­
pleted card to:

DIGITAL RESEARCH
P.O. Box 579
Pacific Grove. CA 93950

We need the information on the card to provide informa­
tion on system updates and to inform you of related new
products. The serial number of your CP/M system is the
number stamped on the label of the CP/M disks.

1.5 WARRANTY

If your unit is defective when you buy it. return it im­
mediately to the original place of purchase. Your dealer will
be able to give you the fastest service if you have problems.
You can also send your unit directly to Commodore for re­
placement. The warranty card enclosed in your unit's pack­
age lists addresses for service. Be sure to enclose your re­
ceipt and a note explaining the problem. See your warranty
card for more information.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 15

1.8 GET MORE OUT OF YOUR
COMMODORE COMPUTER
Commodore wants you to know that our support for users
only starts with your purchase of a Commodore computer.
That's why we've created two publications with Commodore
information from around the world, and a "two-way" com­
puter information network with valuable input for users in
the U.S. and Canada from coast to coast.

In addition. we wholeheartedly encourage and support
the growth of Commodore User's Clubs around the world.
They are an excellent source of information for every Com­
modore computer owner, from the beginner to the most ad­
vanced. The magazines and network, which are more fully
described below. have the most up-to-date information
about how to get involved with the User's Club in your area.

Finally, your local Commodore dealer is a useful source of
Commodore support and information.

1.6.1 POWER/PLAY: The Rome Computer
Magazine
For entertainment, learning at home and practical home
applications, POWER/PLAY is the prime source of infor­
mation for Commodore home users. From it you will learn
where your nearest user clubs are and what they're doing.
You'll also learn about software, games, programming
techniques, telecommunications, and new products.
POWER/PLAY is your personal connection to other Com­
modore users, outside software and hardware developers,
and to Commodore itself. Published quarterly, it sells for
$10.00 a year.
1.8.2 COMMODORE: The Microcomputer
Magazine

Widely read by educators, businessmen, and students as
well as by home computertsts, COMMODORE Magazine is
our main vehicle for sharing information on the more
technical use of Commodore systems. Regular departments
cover business, science and education, programming tips,
and "excerpts from a technical notebook." There are many
other features of interest to anyone who uses or is thinking

16 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

about purchasing Commodore equipment for business, sci­
entsftc, or educational applications. COMMODORE is the
ideal complement to POWER/PLAY. It is published bi­
monthly. and subscriptions are $15.00 a year.

1.8.3 COMMODORE INFORMATION NET­
WORK.: The Paperless User Magazine
This is the magazine of the future. To supplement and
enhance your subscriptions to POWER/PLAY and COM­
MODORE magazines, the COMMODORE INFORMATION
NETWORK-our "paperless magazine"-is available now
over the telephone using your Commodore computer and
modem.

Join our computer club, get help-with a computing prob­
lem, "talk" to other Commodore friends, or get up-to-the­
minute information on new products, software, and educa­
tional resources. Soon you will even be able to save yourself
the trouble of typing in the program listings you find in
POWER/PLAY or COMMODORE by downloading direct
from the Information Network (a new user service planned
for early 1983). The best part is that most of the answers
are there even before you ask the questions.

To call our electronic magazine, you need only a modem
and a subscription to CempirServe", one of the nation's
largest telecommunications networks. (To make it easy for
you, Commodore includes a FREE one year subscription to
ComptrServe" in each VICMODEM package.)

Just dial your local number for the Compu'Serve" data
bank and connect your phone to the modem. When the
CompuServe " video text appears on your screen, type
G CBM on your computer keyboard. When the COMMO­
DORE INFORMATION NETWORK table of contents, or
"menu," appears on your screen, choose from one of our
sixteen departments, make yourself comfortable, and enjoy
the paperless magazine that other magazines are writing
about.

For more information, visit your Commodore dealer or
contact ComptrServe" customer service at 800-848-8990
(in Ohio, 614-457-8600).

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 17

COMMODORE INFORMATION NETWORK
Main Menu Description Commodore Dealers
Direct Access Codes Educational Resources
Special Commands User Groups
User Questions Descriptions
Public Bulletin Board Questions and Answers
Magazines and Newsletters Software Tips
Products Announced Technical Tips
Commodore News Direct Directory Descriptions

18 INTRODUCTION TO CP/M ON YOUR COMMODORE 64

It's very easy to set up your Commodore 64 to run CP/M.
You turn off your computer, plug in the Z80 cartridge, turn
on your disks and computer and get started. Follow the
directions in this chapter carefully.

REMEMBER: YOU MUST TURN OFF YOUR COMMODORE 64 BEFORE YOU

INSERT THE ZSO CARTRIDGE IF YOU INSERT THE CARTRIDGE WITH THE
POWER ON, YOU WILL DESTROY THE CARTRIDGE"

2.1 UNPACKING AND CONNECT­
ING THE Z80 CARTRIDGE

Before using CP/M on your Commodore 64, you must cor­
rectly connect your Commodore 64 to your TV and periph­
erals. For instructions on connecting your Commodore 64
to your TV, disk, and printer, read the manual that comes
with your computer.

When you purchase CP/M for your Commodore 64, you
get these items:

1. Z80 cartridge.
2. CP/M system disk.
3. Other disk.
4. User's manual.

Before you can connect your Z80 cartridge, you must
know where to connect it. Figure 2.1 shows a diagram of
the side and back panel connections for your computer.

Your Commodore 64 has these side panel connections:

1. Power .ocket. The free end of the cable from the
power supply is attached here to supply power to
your Commodore 64.

2. Power .witch. This turns the power to your
Commodore 64 on and off.

3. Game porta. These accept a joystick. one or more
game controllers. or ltghrpen equipment. The
lightpen plugs into port 1 only.

20 SETTING UP YOUR COMMODO~E 64

CONTROL'
PORT I

0)

GAME POWER POWER
PORTS SWITCH SOCKET

<-Ch 3 Ch 4->

\
CARTRIOGE CHANNEL TV AUDIOIVIDEO SERIAL CASSETTE USER

SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

Figure 2.1 Commodore 64 Ponel Connections Diogrom

Your Commodore 64 has these back panel connections:

4. Cartridge slot. The rectangular slot to the left ac­
cepts program or game cartridges. This is the con­
nection fot your Z80 cartridge.

5. Channel selector. Use this switch to select the TV
channel that will display your computer's picture.

6. TV CODDector. This connector supplies the picture
and sound to your TV.

7. Audio a video output. This connector supplies
direct audio (which you connect to your stereo sys­
tem) and "composite" video (which you connect to
a monitor).

8. Serial port. This is the connection for your VIC
peripherals (1541 drives and 1515/1525 printer).
You must connect your VIC disk drive to this port
and your VIC printer to your VIC disk drive.

9. Cassette iaterface. This is the connection for
your DATASSETTE™ recorder.

SETTING UP YOUR COMMODORE 64 21

10. User port. This is a port for various interface car­
tridges such as the VICMODEM or RS-232 com­
munications cartridge.

2.2 INSTALLING THE ZaG
CARTRIDGE

Now that you know where your Commodore 64 connections
are, you're ready to install your Z80 cartridge. You connect
the Z80 cartridge directly to your Commodore 64 if you are
using the VIC 1541 disk drive. You connect the Z80 car­
tridge to an IEEE interface cartridge if you're using the
CBM 4040 disk drives or the CBM 4022 printer.

2.2.1 Using the Z8G Cartridge
with VIC Peripherals

If you're using VIC peripherals like the VIC 1541 disk drives
and the VIC 1525 printer, follow these easy steps:

1. TURN OFF THE POWER TO YOUR COMPUTER!
2. Install the Z80 cartridge in the cartridge slot

marked 4 in the diagram in Figure 2.1.
3. Turn on your computer and you're ready to start

using CP/M on your Commodore 64.

REMEMBERI IF YOU INSERT THE lao CARTRIDGE WITH THE POWER TO

THE COMPUTER TURNED ON, YOU WILL DAMAGE THE CARTRIDGE!

2.2.2 Using the Z8G Cartridge
with CaM Series Peripherals

If you're using CBM series peripherals like a CBM 4040
disk drive or a CBM 4022 printer, you follow a slightly dif­
ferent procedure for connecting the Z80 cartridge. Re­
member, you need to use the IEEE interface cartridge if
you're using a CBM peripheral.

The IEEE interface cartridge has a connector for other

22 SETTING UP YOUR COMMODORE 64

cartridges (like the Z80 cartridge) and also has a connector
for the CBM peripherals. Figure 2.2 shows a diagram of the
IEEE cartridge connections.

Follow these easy steps to connect your Z80 cartridge to
your Commodore 64 when you're using the IEEE Interface
cartridge and CBM series peripherals:

1. TURN OFF THE POWER TO YOUR COMPUTER!
2. Install the IEEE interface cartridge in the cartridge

slot marked 4 in the diagram in Figure 2.1.
3. Install the Z80 cartridge into the IEEE cartridge slot

as shown in the diagram in Figure 2.2.
4. Connect your CBM peripherals to the connector on

the IEEE cartridge.
5. Turn on your computer and you're ready to start

using CP/M on your Commodore 64.

REMEMBER: IF YOU INSERT THE ZSO CARTRIDGE WITH THE POWER TO

THE COMPUTER TURNED ON, YOU WILL DAMAGE THE CARTRIDGEI

u
®

L

1 I". TI-Il~ t:NI"\ "'!TI"\ THE IEEE488 SLOT OF YOUR
••'"." 'I" '.' JTER

2 '. •• '.' E HERE
3". ·\UUI". II:.I:.E CONNECTORS HERE

Figure 2.2 IEEE Interface Cartridge Diagram

SETTING UP YOUR COMMODORE 64 23

o

2.3 CONNECTING DISK DRIVES

The method you use to connect your disk drives depends on
the types of drives you use. You can use either a VIC series
disk drive (like the 1541) or a CBM series single or dual disk
drive (like the 4040) with your Commodore 64.

You don't have to write any special code to use your disk
drives under CP/M. The system accesses your disk drives as
Drive A and Drive B, regardless of which type of drive you're
actually using.

If you use a single disk drive, CP/M uses Drive A and uses
a Virtual drive for Drive B (CP/M will prompt you to change
the physical disk in the drive when you ask for Drive B). If
you're using a CBM series dual drive, CP/M uses Drive A
and Drive B.

2.3.1 Connecting VIC 1541 Disk Drives

You can use one VIC 1541 disk drive. Like all Commodore
peripherals, the VIC 1541 disk drive can be "daisy chained."
That is, you can connect your VIC disk drive to a VIC print­
er.

Connect the single VIC disk drive to the serial port
(marked 8 in the diagram in Figure 2.1). For full details on
connecting a VIC 1541 disk drive to your Commodore 64,
see the manual that comes with the drives.

If you're also using a VIC 1525 printer, connect the
printer to the connector in the back of your VIC 1541 disk
drive.

2.3.2 Connecting CBM Series Disk Drives

When using CBM series peripherals (like the CBM 4040
disk drive or the CBM 4022 printer), you need to connect
your peripherals to the IEEE interface cartridge. Figure 2.2
shows a diagram of the IEEE interface cartridge.

You can daisy chain your CBM printer to your CBM disk
drive. For more details on connecting your CBM disk drive,
see the manual that comes with your IEEE interface car­
tridge.

24 SETTING UP YOUR COMMODORE 64

I
I

[

CP/M. as implemented on your Commodore 64. can access
any standard Commodore 64 peripheral (except the RS-232
port and the modem) using standard CP/M device access
protocols. This involves calls to the appropriate CP/M BDOS
functions. (You can also call the BIOS directly. although
this is not recommended.)

The actual peripheral interface drivers reside in the CP/M
BIOS. This special BIOS. unique to your Commodore 64. is
in two parts. One part executes under the Z80 add-on proc­
essor and the other under the 6510 main processor.

Peripheral device access is set up through a series oj pa­
rameters by the Z80 part of the BIOS. The actual device
access is carried out by the 6510 part of the BIOS operating
in Commodore 64 native mode.

You must configure CP/M-using the CONFIG utility-so
that it knows what kind of printer you have and how many
disk drives you have. If you change the type of printer or the
number of disk drives on the system. you must use the
CONFIG utility to inform CP/M of the change.

3.1 PRINTER INTERFACE
CP/M must know what type of printer you have. Generally
you will have a VIC 1515. VIC 1525. or CBM 4022 printer.
For purposes of the CONFIG utility. the 1515 and 1525 are
the same. and the 4022 represents any CBM series printer.

The VIC 1515 and 1525 printers use the standard Com­
modore 64 serial bus. The 4022 printer (or any other CBM
series printer) requires the optional IEEE interface car­
tridge.

Once you have properly attached the printer to your
Commodore 64 and have run the CONFIG utility under
CP/M. you can print using programs that run under CP/M
or using standard CP/M BDOS calls from Z80 Assembler
language programs.

26 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M

8.2 THE COMMODORE 84­
SERIAL INTERFACE
Your Commodore 64 comes standard with a bit serial inter­
face through which you communicate with the Commodore
64 disk drives and printers. Access to the Commodore 64
serial interface is handled automatically under CP/M.

If you attach a nonstandard device to the Commodore 64
bit serial interface, you must prepare code to handle that
device. The actual device handling code must execute in
Commodore 64 native mode (under the 6510 main proc­
essor). Of course, you also need device handling code to run
under the Z80, controlling execution of the native mode
device-handling routine.

8.8 THE IEEE INTERFACE
CARTRIDGE

If you want to connect your Commodore 64 to IEEE bus
compatible devices. you can do that using the IEEE inter­
face cartridge.

The IEEE interface cartridge plugs into the cartridge slot
on the rear of your Commodore 64. The interface cartridge
includes a slot for plugging in your Z80 cartridge. (See the
instructions that come with your IEEE interface cartrtdge.)

The interface cartridge allows you to attach Commodore's
own IEEE-compatible peripherals. These more capable,
more expensive peripherals are usually available only for
Commodore's business computers. The IEEE interface car­
tridge also provides a link to a multitude of IEEE- bus­
based products. For example, many industrial and scien­
tific instruments and devices are controlled using the IEEE
bus protocols. With the IEEE interface cartridge, your
Commodore 64 can control and collect data from these
devtces,

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 27

NOTE: If you do acquire the IEEE interface cartridge. you w,lI have

44K-NOT 48K-ava,lable for CP/M. Be sure to generate a 44K version

of CP/M before you install the IEEE interface cartridge

If you are also installing IEEE bus peripherals, especially disk drives,

remember to run the CON FIG utility an your 44K CP/M, informing ,t of

YOur new peripherals

3.4 DAISY CHAINING
PERIPHERALS

The advanced architecture of the standard Commodore 64
serial bus and of the Commodore IEEE serial bus permits
peripherals to be linked to one another in a "daisy chain."

Daisy chaining of peripherals means that you need not
buy another interface card or connector every time you add
a peripheral to your Commodore 64. The peripherals simply
connect to each other to be accessed through a single port
on your Commodore 64.

You can daisy chain VIC peripherals on the standard
Commodore 64 serial bus or CBM series peripherals
through the IEEE interface cartridge. as shown in Figure
3. I.

VIC PERIPBBRALS SYSTEM

(Uses Standard Commodore 64 Serial Port)

Computer~ VIC Disk Drive~ VIC Printer

caM PERIPBBRALS SYSTEM

(Requires IEEE Interface Cartridge)

Computer~ CBM Dual Disk Drive~ CBM Printer

or

Computer~ CBM Printer~ CBM Dual Disk Drive

Figure 3.1 Daisy Chaining Peripherals.

28 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M

NOTE: You can also attach the s,ngle drive (2031) version of the C8M

4040 disk drive to the IEEE interface cartridge on your Commodore 64.

3.& THE COMMODORE 64
USER PORT

Your Commodore 64 user port can accommodate some use­
ful optional devices. Most interesting from CP/M are the
VICMODEM and the RS-232 communications cartridge.

If you acquire one of these cartridges and you want to
access it from CP/M, you must write the processing code for
execution in native mode under the 6510 main processor.
This is necessary because these cartridges generate non­
maskable interrupts which must be handled by the 6510
processor.

You can gain access to special code for handling these
cartridges through BIOS65 function codes 7, 8, or 9. (See
the discussion of the CP/M BIOS in Chapter 6 for details on
using these function codes.)

In designing this code, you should consider receiving a
certain number of characters-say 128 or 256-into a
shared buffer. When you have received these characters, in­
form the device you are communicating with that you are
not ready to receive data. You can then safely switch control
from the 6510 main processor to the Z80. which can do
whatever is required with those characters.

For detailed information on programming for the RS-232
port, see the Commodore 64 Programmer's Reference
Manual.

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 29

This chapter tells you how to start using CP/M on your
Commodore 64. Read it carefully. It's very easy to bring
CP/M onto your computer, but you should be sure that you
understand the information in this chapter before you start
CP/M or run any programs under it.

In this chapter you will learn:

• how to load and run your CP/M system
• how to format new disks and make backup copies of

your system
• how to use the special Commodore 64 CP/M utilities
• how to generate a new version of CP/M
• how to use the special Commodore 64 keyboard

under CP/M

The distribution 44K version of CP/M assumes that you
are using the IEEE interface cartridge. If you don't have the
IEEE interface cartridge, you can generate a 48K version of
CP/M by following the instructions in Section 4.4.

4.1 BRINGING CP/M ONTO YOUR
COMMODORE 84

It is easy to bring CP/M onto your Commodore 64. Before
you load CP/M, be sure that you've correctly installed your
Z80 cartridge and your disk drivels) and printer. If you
haven't done this, read Chapter 2 for installation instruc­
tions.

After installing your Z80 cartridge and peripherals, follow
the instructions in Section 4.1.1 to load your CP/M system.
Once you've loaded CP/M and made copies of the system
disks for backup, you're ready to try any of the commands
in Chapter 5.

NOTE: Remember to make copies of your CP/M dIsks before you do any

other processing. You need a backup copy of the disks that you pur­
chased.

32 GETTING STARTED

4.1.1 Starting CP1M

To bring CP/M onto your Commodore 64 system, you start
the computer and load the CP/M system. Just follow these
easy steps and make a backup copy of your system dtsks
rtght after you get CP/M to start for theftrst ttme:

1. Turn on your equipment (peripherals and compu­
ter). Your Commodore 64 will print its usual "sign
on" message:

****COMMODORE 64 BASIC V2 ****

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

2. Put the disk marked Commodore CP/M®*V.64 into
your disk drive. This disk contains your CP/M sys­
tem.

3. Your Commodore 64 is in native mode. Type the
following:

LOAD "*",8 <CR>

or

LOAD "CPM", 8

4. Your Commodore 64 reads the disk and answers:

SEARCHING FOR * (or CPM instead of *)

LOADING

READY.

5. The Commodore 64 segment of CP/M is now
loaded into your computer. To load the Z80 seg­
ment and begin executing CP/M, type:

RUN <CR>

6. Your Commodore 64 now reads the disk again to
load the CP/M system into your Z80. While it is
loading CP/M, your computer will print a row of 27
asterisks (ok) across the top of the screen. When
CP/M is loaded, your Commodore 64 will print:

GETTING STARTED 33

COMMODORE 64 nnK CP/M vers 2.2

Copyright © 1979, Digital Research

Copyright © 1982, Commodore

A>

7. Your CP/M system is now loaded and ready to run.
Enter the following CP/M command to get a list of
the files on your CP/M disk:

DIR <CR>

CAUTION! BEFORE PROCEEDING, MAKE A BACKUP COPY OF YOUR
CP/M DISKSI

4.1.2 Making Copies of Your CP1M System
Disk

Now that you've started CP/M, you must make backup
copies of your system disks. It is bad practice to use the
disks that you purchased as your standard operating disks.
You could accidentally destroy the disk and then you would
not be able to run your CP/M system.

So, make a backup copy and use the copy as your CP/M
system disk. After you make the backup copy, store your
original disk in a cool, dry place, away from magnetic
fields.

To make your backup copy:

1. Use the COpy utility on your CP/M disk to format a
new disk. The COpy utility is discussed in detail in
Section 4.2.

2. Then use the COpy utility to copy your CP/M disk
to the backup disk. The COpy utility prompts you
along the way. depending on the number of drives
you're using. Just follow its instructions.

3. Store your original disks in a safe place, some­
where cool, dry, and away from magnetic fields.

34 GETTING STARTED

4.2 THE COpy UTILITY
The COpy utility is a special Commodore 64 CP/M utility
that allows you to:

• FORMAT a diskette for use with CP/M.
• Make a BACKUP of a CP/M diskette.
• Copy the CP/M SYSTEM TRACKS from one diskette

to another.

You should use this utility to make a backup copy of your
CP/M system disks as soon as you get CP/M up and run­
ning. Each COPY utility function is described in a separate
section below.

To load the COPY utility, enter:

COPY<CR>

CP/M loads the COPY.COM file and writes:

COMMODORE 64 COPY UTILITY 1.0

1. FORMAT DISK

2. BACKUP DISK

3. COpy SYSTEM TRACKS ONLY

4. EXIT

PLEASE CHOOSE FUNCTION (1-4)

You then choose which COPY utility function you want to
use and answer the questions that COPY asks.

4.2.1 Formatting a Disk with the COPY UtDity

You mustJormat a diskette before you can write any infor­
mation on it. You must format disks that you'll use under
CP/M with the COpy utility.

You format disks when:

• You get new disks and you want to prepare them to
be used with CP/M.

• You want to erase all of the information currently
on a disk.

GETTING STARTED 35

To use the COpy function to format disks, you enter 1 as
follows:

... COpy uti Iity messages ...

PLEASE CHOOSE FUNCTION (l-4)

FORMAT DISK UTILITY

INITIALIZES DISK FOR CP/M

CAUTION! FORMAT ERASES ALL DATA

PLACE DISK TO BE FORMATTED IN

DRIVE 0 AND PRESS ENTER

OR

PRESS SPACEBAR TO RETURN TO MENU

Now. remove your system disk from the drive and place
the new disk (the one that you want to format) into the
drive.

CAUTION! REMEMBER THAT YOU MUST REMOVE YOUR SYSTEM DISK
OR ElSE YOU WILL ERASE YOUR SYSTEM DISK!!

COpy now writes formatting information to your disk.
Any information on the disk will be erased and all of the
tracks are made available for data. No files remain on the
disk after you run COPY's FORMAT. COpy writes these
messages during the formatting:

FORMATTING DISK, PLEASE WAIT. ..

FORMAT COMPLETE

PRESS ANY KEY TO CONTINUE

You can now format another disk. copy information to
your newly formatted disk. or exit back to CP/M. depending
on your answer. If you want to format another disk, you
need to insert the disk to be formatted into the drive. If you
want to copy information. follow the instructions from
COpy. If you're exiting back to CP/M. you should put your
CP/M system disk into the drive.

NOTE: Remember that COpy erases all informallon from the disk when

you use the COPY FORMAT option.

36 GETTING STARTED

4.2.2 Creating a Disk Backup with the COpy
UtUity

You can also use the COpy utility to make backup copies of
an entire diskette. While making a backup copy, COpy uses
a master disk and a slave disk. The master disk is the disk
that you want to make a copy of (the original disk); the
slave disk is a formatted disk that will be written to (the
copy).

If you are using a single-drive system. the COpy utility
will prompt you to insert the master or slave disk into the
drive. Be careful when making copies of a disk. Keep track
of your master disk so that you don't accidentally copy gar­
bage over your information (and erase your master disk in
the process).

To use COPY's BACKUP function, enter a 2 in response to
the "choose function" message and follow the instructions
from COpy:

PLEASE CHOOSE FUNCTION (1-4) 2

DISK BACKUP UTILITY

THE ENTIRE MASTER DISK IS

COPIED TO THE SLAVE DISK

INSERT MASTER DISK IN DRIVE 0

PRESS RETURN (OR SPACEBAR FOR MENU)

Now insert the disk that you want to copy from into the
disk drive. If you decide that vou don't really want to copy
your disk, simply press the _ bar and COPY returns
to its original menu.

Once the master disk is ready, press the _ key.
COpy then reads a number of sectors from the disk into
memory and writes:

INSERT SLAVE DISK IN DRIVE 0

PRESS RETURN

Put the disk you want to copy to into the drive and press
the carriage return. Be careful to keep the master and
slave disks in order.

COPY now writes the information from memory onto the

GETTING STARTED 37.

slave disk and then asks that the master disk be replaced in
the drive. This alternating master/slave disk placement will
continue until the entire master disk is copied onto the
slave disk. At that time, COPY returns to its main menu.

4.2.3 Copying the System Tracks with the
COpy UtDity

You can copy the CP/M system tracks to another disk
through the COpy system track copy function. This func­
tion copies only the system tracks, not any other informa­
tion, from a master disk to a slave disk.

You need the CP/M system tracks on any disk from which
you intend to "warm start" CP/M (start CP/M without hav­
ing to reinsert the system disk). You may want to copy the
system tracks to a disk containing a proaram that you will
run often. That way, when you hit a IIiD!I -C to warm
start CP/M, you don't have to replace the disk with your
system disk.

To copy the system tracks using COPY, enter 3 for your
selection from COPY's main menu. Then follow the instruc­
tions:

PLEASE CHOOSE FUNCTION (1-4) 3

SYSTEM TRACK COPY UTILITY

COPIES SYSTEM TRACKS FROM MASTER DISK

TO SLAVE DISK

INSERT MASTER DISK IN DRIVE 0

PRESS RETURN (OR SPACEBAR FOR MENU)

The disk with the COpy utility contains the CP/M system
tracks (otherwise, you wouldn't have been able to start your
system). Simply press the _ key or. if you really
don't want to make a copy. press the _ bar.

When you press the Ei!ImI key, CUPY reads the sys­
tem tracks into memory and then writes:

INSERT SLAVE DISK IN DRIVE 0

PRESS RETURN

38 GETTING STARTED

Remove the master disk from the drive and insert the
disk on which you want the system tracks copied into the
drive. When you press the _ key, COPY will write
the CP1M system tracks (tracks 0 and 1) to the disk in the
drive. After the system tracks are written, COPY returns to
its main menu.

4.3 THE CONFIG UTILITY

You use the Commodore CP/M CONFIG utility to change
the current I/O configuration for your CP/M system. Com­
modore provides the CONFIG utility so that you can add
peripherals to your CP/M system quickly and easily.

CP/M needs to know what peripherals you're using. For
example, if you're using only a single disk drive, CP/M will
prompt you to change the diskette in the drive when you log
to another disk. If you're using two drives, a properly con­
figured CP/M will simply use the second physical drive.

NOTE: You CA"l"lOT mix VIC (serial) peripllerals and C8M (IEEE inter­

face) peripherals on the same system.

Each of the CONFIG changes is described in a separate
section below. To use the CONFIG utility, you enter:

CONFIG <CR>

CP/M then loads the file called CONFIG.COM and writes:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES:

PRINTER TYPE: 1515

INITIAL CAPS MODE: ON

DO YOU WISH TO:

1. CHANGE NUMBER OF DISK DRIVES

2. CHANGE PRINTER TYPE

3. CHANGE INITIAL CAPS MODE

GETTING STARTED 39

4. CHANGE FUNCTION KEY ASSIGNMENTS

5. CHANGE KEY CODES

6. SAVE CURRENT I/O SETUP ON DISK

7. RETURN TO CP/M

PLEASE ENTER SELECTION (1-7)

You simply select the type of change that you want to
make and answer the questions that CONFIG asks. CONFIG
makes all the necessary changes to your CP/M system. for
both the Commodore 64 native code and the Z80 code. Add­
ing or changing peripherals to your Commodore 64 CP/M
system is as easy as running CONFIG and answering the
questions.

4.3.1 Using CONFIG to Change the Number of
Disk Drives

The CP/M system that you receive assumes that you are
using a single disk drive. You may actually have the CBM
4040 dual disk drives. CONFIG toggles back and forth be­
tween one and two disk drives.

To change the number of drives, you run CONFIG like
this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 1.

CONFIG then processes your answer and changes the
number of drives available to CP/M. If you originally had
one disk drive, CONFIG prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 2

PRINTER TYPE: 1515

INITIAL CAPS MODE: ON

DO YOU WISH TO:

rest of CONFIG messages ...

PLEASE ENTER SELECTION (1-7)

40 GETTING STARTED

If you had two disk drives when you started CONFIG. you
will see this for the number of drives:

NUMBER OF DRIVES: 1

4.3.2 Using CONFIG to Change the Printer
Type

Your original CP/M system assumes that you will be using a
VIC 1515 or (1525) printer. You may want to add a CBM
4022 (or other CBM) printer. CONFIG toggles back and
forth between 1515 and 4022 printer types.

To change the printer type. you run CONFIG like this:

CONFIG<CR>

when the CONFIG Messages are printed. choose selection 2.

CONFIG then processes your answer and changes the
printer type. If you originally had a VIC 1515 printer. CON­
FIG prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 1

PRINTER TYPE: 4022

INITIAL CAPS MODE: ON

DO YOU WISH TO:

rest of CONFIG messages ...

PLEASE ENTER SELECTION (1-7)

If you had a CBM 4022 printer when you started CONFIG.
you get this for the printer type:

PRINTER TYPE: 1515

4.3.3 Using CONFIG to Change the Initial
Caps Mode

Your original CP/M system assumes that you will be using
the all caps mode (all upper case letters when you press the

GETTING STARTED 41

keys). CONFIG toggles back and forth between initial caps
ON and OFF.

With initial caps ON, you get only upper case letters. With
initial caps OFF, you get upper and lower case letters. Re­
member that you can also toggle between caps ON and OFF
at any time by pressing the m key.

To change the initial caps mode, you run CONFIG like
this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 3.

CONFIG then processes your answer and changes the
printer type. If you originally had initial caps ON, CONFIG
prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 1

PRINTER TYPE: 1515

INITIAL CAPS MODE: OFF

DO YOU WISH TO:

rest of CONFIG messages ...

PLEASE ENTER SELECTION (1-7)

If you had initial caps OFF when you started CONFIG, you
will see this:

INITIAL CAPS MODE: OFF

4.3.4 Using CONFIG to Change the Function
Key Assignments

Your CP/M system loads initial values into the eight Com­
modore 64 function keys. You can change any of these
function key values through CONFIG.

If you save the new I/O configuration to disk, the new
values will be loaded into the function keys when you next
start CP/M. If you don't save the new configuration to disk,

42 GETTING STARTED

the function keys are loaded with the new values but are
reset to the original values when you next start CP/M.

To change the function key values, you run CONFIG like
this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 4.

CONFIG then prints:

F1: "DIR"<CR>

F2: "DIR B:"<CR>

F3: "STAT *. *"<CR>

F4: "STAT B:*. *"<CR>

FS: "COPY"<CR>

F6: "CONFIG"<CR>

F7: "DDT"<CR>

F8: "DDT"

ENTER FUNCTION KEY NUMBER (1-8)

TO CHANGE PRESET VALUES.

ENTER 9 TO LEAVE FUNCTION

KEY UTILITY.

To change function key 8 to "PIP<CR>", use CONFIG like
this:

ENTER FUNCTION KEY NUMBER (1-8) 8

TYPE IN TEXT USING "RETURN"

OR "CTRL-I" AS TERMINATOR

F8: "PIP<RETURN KEY>"

ENTER FUNCTION KEY NUMBER (1-8) 9

This changes the value in function key 8 to PIP<CR>
while you are using CP/M.

If you end your new key entry with a Iiii!!I -Z , instead
of a I'JiiDD the function key is loaded without a ter­
minating carriage return.

GETTING STARTED 43

If you want to save this value as the initial value for func­
tion key 8 for the next time you start CP/M, you must also
choose CONFIG selection 6 to save the new I/O configura­
tion to disk. Otherwise, the next time you boot CP/M, your
function keys will contain the same initial values as they
did this time; any changes you made through CONFIG will
be lost.

4.3.5 Using CONFIG to Change the Key Codes

Your CP/M system loads a table containing the hexadecimal
values for each of the Commodore 64 keyboard keys. You
can change any of these function key values through CON­
FIG. Appendix 0 contains a table of ASCII characters.
hexadecimal values. and the Commodore 64 keyboard char-
~ters.

NOTE: Be careful if you change the alphabetic characters. You may not

be able to recover if you change characters that you need to run CP/M
programs or commands If you SAVE the character changes on disk

(through CONFIG selection 6), you may have trouble recovenng at all.

To change the keyboard key values. you run CONFIG like
this:

CONFIG<CR>

when the CONFIG Messages are printed. choose selection 5.

CONFIG then prints:

PRESS KEY TO EXAMINE KEY CODE

TO CHANGE KEY CODE, ENTER DATA IN

HEXADECIMAL AFTER "CHANGE TO"

TO EXIT KEY CODE MODE, TYPE "RETURN"

TWICE AFTER "PRESS KEY"

TO KEEP CURRENT KEY CODE, TYPE

"RETURN" AFTER "CHANGE TO"

44 GETTING STARTED

PRESS KEY (you press the "Q" key)

IS 51 IN CAPS MODE-CHANGE TO 71

You just changed the capital Q (hexadecimal value 51) to
a lower case q (hexadecimal value 71). You won't be able to
enter a capital Q unless you use CONFIG to change it back
again. If you don't want to make any more changes, just
press the _ key twice to return to the CONFIG
main menu.

4.3.8 Using CONFIG to Save the New I/O
Setup

Once you've made changes to your I/O assignments
through CONFIG, you mayor may not want to save the new
assignments. You will probably want to save the new infor­
mation if you've changed the disk drive or printer data. You
may not want to save the I/O information if you've changed
the function key assignments for a special run and don't
want the new values to be used the next time you start
CP/M.

To save your new I/O assignments to disk, select 6 from
the CONFIG menu. CONFIG then writes information to your
CP/M system data and the next time you start CP/M, the
new information will be used.

Remember, you can make changes that only affect the
current CP/M version (the one in memory when you make
the changes) if you want some special-purpose alterations.
If you don't select CONFIG choice 6, the alterations will not
be in effect the next time you load CP/M.

4.4. GENERATING A NEW CP/M
SYSTEM WITH SYSGEN

You can generate CP/M on your Commodore 64 to run in
any memory size from 20K to 48K. If you are using the
standard Commodore 64 serial bus to attach your periph­
erals-disk and printer-you should use a 48K version of
CP/M. If you acquire the IEEE interface cartridge, you must

GETTING STAIlTED 45

use a 44K version of CP/M. You may also want to generate a
smaller version of CP/M if you need space to load a 6510
routine that you are invoking from a CP/M program.

NOTE: If you don't intend to save the "ew CP/M on an existing CP/M
disk. the first step in generating a new version of CP/M is to format a
disk. Disk formatting is discussed in detail in Chapter'" under the COpy

utility
Once you have the disk formatted for CP/M, you must use the COpy

utility to copy the System tracks from one of your existing CP/M disks to
the new disk. This operation places the 6S10 loader into its proper place

Once you have properly initialized your disk, you use a
series of CP/M utility programs to generate the new version
of CP/M and save it on your disk. These utilities are:

• MOVCPM
• SAVE
• SYSGEN

These utilities have a number of options on their use. In
the following discussions, we consider only the most fre­
quently used options. A more detailed exploration of all the
utility options is found in Chapter 5.

In general. you will be generating either a 44K or a 48K
version of CP/M on your Commodore 64. We'll use generat­
ing a 48K version as an example. Other versions are gener­
ated in exactly the same way but with a different memory
size specified.

4.4.1 Relocating CP/M

MovePM is a system ut1l1 ty that relocates the CP/M
operating system to execute in any memory size you specify.

To generate a 48K version of CP/M, you enter:

MOVCP,48 *

where:

48 is the memory size

* instructs MOVCPM to leave the relocated CP/M

image in memory.

46 GETTING STARTED

MOVCPM responds with:

CONSTRUCTING 48K CP/M vers 2.2

READY FOR "SYSGEN" OR

"SAVE 37 CPM48.COM"

This is the end of MOVCPM execution. You follow this by
running either the SYSGEN or the SAVE utility. Normally.
you use the SYSGEN utility. Use the SAVE utility if you
want to "patch" the operating system.

NOTE: Your Commodore 64 version of MOVCPM properly adjusts all of
the CP/M code, including the 800T80 and 810580 programs. You do

NOT have to reassemble these programs and use DDT to patch them into
the new version of the operating system as you do on less capable CP/M
systems.

Execution of MOVCPM as shown above leaves a copy of
the relocated CP/M operating system. including BOOT80.
CCP. BOOS. and BIOS80. in the Transient Program Area
(TPA) ready to be saved as a file on your disk or written
directly to the system tracks. (To learn more about CP/M
structure. read Chapter 6.)

If you choose to save a copy. you can SYSGEN it later.

4.4.2 Saring the New System

The SAVE built-in command writes the content of the TPA
(in this case. a copy of your newly relocated CP/M) to the
specified disk file. The MOVCPM command tells you how
many 256-byte pages to save. MOVCPM on your Commo­
dore 64 always tells you to save 37 pages.

To save your relocated verion of CP/M. enter:

SAVE 37 CPM48.COM

This command will write the relocated CP/M to a file
named "CPM48.COM". This is a full copy of a 48K version of
the CP/M operating system. You can use the saved copy of
CP/M in subsequent SYSGEN commands or for direct alter­
ation under DDT.

GETTING STARTED 47

4.4.3 Using SYSGEN

A version of CP/M that you have saved in a disk file cannot
be directly executed. You must first SYSGEN it to the sys­
tem tracks of a CP/M disk.

SYSGEN writes the specified version of the CP/M operat­
ing system to the proper locations on the system tracks of a
CP/M disk. SYSGEN can read a version of the operating sys­
tem from one of two places:

• The system tracks of diskette.
• A memory image of CP/M loaded into the TPA by the

MOVCPM or DDT programs.

If you are using a file containing a SAVEd version of
CP/M. you must first bring it into memory with the DDT
program. In our example. you enter:

DDT CPM48.COM

then exit from DDT with a GO command.
If your source for the new version of CP/M is the system

tracks of your disk or a memory resident image. you simply
enter:

SYSGEN

and SYSGEN responds With:

SOURCE DRIVE NAME

(OR RETURN TO SKIP)

At this point you can specify the drive (A or B) whose sys­
tem tracks you want read. If you simply hit the _
key. SYSGEN assumes that a copy of CP/M is already loaded
into the TPA.

Whatever way you get the CP/M version loaded into mem­
ory. SYSGEN will ask you:

DESTINATION DRIVE NAME

(OR RETURN TO REBOOT)

If you respond with a destination drive name (A or B).
SYSGEN will write CP/M to the system tracks of that drive.

48 GmlNG STARTED

If you simply hit the IDmmII key, SYSGEN will reboot
from whatever disk is currently in Drive A.

NOTE: IF you SYSGEN a CP/M system that is d,fferent in size from the

one you ran the SYSGEN under, DO NOT try to reboot from a disk con­
taining the new system. Thrs will cause the operating system to crash

Re-insert the disk from which you loaded SYSGEN before you tell it to

reboot

To test a 'newly SYSGENed version of CP/M, you'll have to
start it from native mode on your Commodore 64,

4.5 THE COMMODORE 84
KEYBOARD AND SCREEN WITH
CP/M

The Commodore 64 has a full typewriter-style keyboard that
behaves as such when you are running CP/M. All of the
CP/M .. shifted control codes operate as they are
supposed to. In addition, the ~ key on your
Commodore 64 keyboard acts like a amII-C to produce
a warm boot of the CP/M operating system.

In the Commodore 64 version of CP/M, you have the op­
tion of using only upper case or both upper and lower case.
You toggle between them using the Commodore m key
on the keyboard. You can use the CONFIG utility to tell
CP/M to start with upper only or with upper/lower case en­
abled.

Table 5.3 contains a complete list of the special CP/M
coatrol keys. These are identical to those defined for CP/M,
with a few additional functions taken from your Commo­
dore 64 keyboard.

The Commodore 64 graphics characters and screen color
control are not generally available to CP/M. But there is no
reason that you can't store values into your Commodore 64
6567 Video Interface Chip's control registers just as you do
when running in native mode. To arrive at the proper ad­
dresses for the control registers, examine Section 6.1.3,
which explains the address mapping between the Z80 and
6510 processors.

GETTING STARTED 49

The control values that you insert into the registers are
the same as those you use in native mode. As an example,
suppose you want to use your Commodore 64 graphics
character set. Running in native mode, you simply touch
the graphics key to switch on the graphics character set.
From a CP/M program running under the Z80, you have to
control it directly through a store into the appropriate 6567
control register.

The character set selection control register is at

6510 address 53,272 decimal or $0018 hexadecimal

which converts to the Z80 address base:

Z80 address 49,176 decimal or $C018 hexadecimal

The character set control register normally contains a $17.
To invoke the graphics character set, you must store a $15
in the register:

MVI A,15H

STA OC018H

;LOAD THE CONTROL VALUE IN A

;STORE $15 IN THE 6567 CONTROL REGISTER

Once you've executed this code, the graphics character set
is available to you. This operation does not change the
character codes reaching your CP/M programs from the
keyboard-only the display is changed.

You can use the same technique to alter colors, activate
Sprites. or even play music through your Commodore 64
6581 Sound Interface Device. If you want to store char­
acters directly into the screen matrix, remember to store
Commodore 64 screen codes, not ASCII codes.

To use the dynamic features of your Commodore 64 from
CP/M. all you have to do is remember that the 6510 ad­
dresses for the control registers must be reduced by $1000
(4096) in your CP/M programs.

50 GEmNG STARTED

This chapter tells you how to use CP/M on your Commodore
64. It is not a detailed lesson on CP/M and its internal work­
ings. It is an introduction to CP/M's conventions and nota­
tions, and an introduction to the commands that you can
use under CP/M.

If you want detailed information on the internal workings
of CP/M, get one of the many fine books listed in Appendix
B, the Bibliography. That level of detail is far beyond the
scope of this book.

5.1 HOW TO USE THIS CHAPTER

Section 5.2 describes the CP/M file naming conventions.
You should follow some reasonable conventions for naming
your own files so that you can easily identify their contents.

Section 5.3 discusses the CP/M disk identification con­
ventions. CP/M uses disk A and disk B; your Commodore
64 identifies these disks as disk 0 and disk 1. Section 5.3
also tells you how CP/M differs when you use the VIC 1541
or the CBM 4040 drive.

Section 5.4 describes the CP/M command structure and
gives a table of all the CP/M commands that you get with
your Commodore 64 CP/M system.

Section 5.5 provides brief descriptions of the CP/M com­
mands. If you need more detail, see one or more of the CP/M
books listed in Appendix B. Some books are more technical
than others, so find the one with the amount of detail you
are most comfortable With.

5.2 CPIM FILE NAMING
CONVENTIONS

When you are ustng CP/M on your Commodore 64, you
should follow the CP/M file naming conventions. CP/M files
have the general format:

[DISK-ID:] FILENAME [.TYPE]

52 CP/M OPERATION

where:

DISK-ID is an optional disk drive identifier (such
as A or B) that is needed when you want to use a
file not on the currently logged disk.

FILENAME is a one- to eight-character name used
to identify your file to CP/M.

TYPE is an optional one- to three-character name
used to further identify your file.

Some examples of CP/M filenames are:

A:SAMPLE.BAS

MY. TXT

PROGRAM.COM

10/25/82. DRY

A BASIC sample program stored on

the disk on Drive A.

A text file.

A program that is executable.

A diary entry.

CP/M lets you use any alphabetic or numeric character in
your file names, as well as some special characters. CP/M
reserves a few of the special characters for its own use. You
cannot use the following characters in a CP/M file name:

<>.,::=?*[]

With some software packages, files must be named with
specific types, such as SUB for a SUBMIT file or ASM for an
Assembly Language source file. Read the information with
your software packages to see if you need to follow any nam­
ing conventions for that package's files.

Even if you don't have to follow any specific rules in nam­
ing your files, you should try to use reasonable naming con­
ventions. In this way, when you get a directory listing (a list
of all the files on a disk), you will have some idea of what's
in the files.

A file named MORTGAGE. BAS is easier to recognize as
the set of source statements for a BASIC program that cal­
culates mortgage rates than a file named X127GY9.123. In
other words, it makes sense to name your data files in ways
that represent their contents. For example, a file named

CP/M OPERATION 53

01/15/83.DTA could contain the data you collected on Jan­
uary 15, 1983.

Since there are so many CP/M users (over 500,000 to
date), certain standard filename types have been adopted.
The most commonly used types are shown in Table 5. 1.

Table 5.1 CommoDl,. Used CP/M ..Ue Types

TYPE FUNCTION OR CONTENTS

*.ASM

.BAK

.BAS

*.COM

.DAT

.DOC

*.HEX

.INT

*.LIB

.LST

.PRN

.PRT

54 CP/M OPERATION

Assembly language source file

Backup file

BASIC program source file (for some
BASIC interpreters like CBASIC)

Directly executable transient pro­
gram

Data file

Document or text file (required by
some word processing packages)

File containing data in hexadecimal
format; an Intel HEX format object
code file

Output file from some compilers
(CBASIC, JRT PASCAL) that contains
intermediate code

Library file

Program listing (usually output from
a language processor like a compiler,
interpreter, or assembler)

Print file (usually output from an as­
sembler or compiler)

Print file (usually output from an in­
terpreter or compiler)

Table 5.1 Commonly Used CP/M File Types

TYPE FUNCTION OR CONTENTS

.SRC

*.SUB

.SYM

.TEX

.TXT

*.".

Source me from the CP/M User's
Group

Command me for a SUBMIT run

Symbol table file (generated by some
compllers, assemblers, and inter­
preters)

Text me (required by some word pro­
cessors)

Text me (required by some word pro­
cessors)

Either a temporary me or an improp­
erly saved (and unusable) me

NOTE: Those filename types marked with an asterisk {OJ must be

adopted if you want to use associated software packages or sys­

tem functions. That is, all CP/M directly executable programs must
be named "filename.COM:'

&.3INPUT/OUTPUT BARDWARE
CONVENTIONS

CP/M has certain conventions that must be followed when
you are reading files from a disk or writing files to a disk,

The first disk drive physically attached to the system is
called drive A. The next is drive B. When you are using a
single 1541 disk drive, your Commodore 64 CP/M uses a
slightly different way of telling which disk is in the drive
(this is described in some detail below).

When you begin CP/M, you will be "logged" to drive A and
you will see the prompt "A>" on your screen. This means
that if you specify a filename in a command and you don't

CP/M OPERATION 55

specify a dtsk-Id before the filename, the disk on drive A will
be searched for the file.

You can log to drive B by entering the command:

B:

After entering the B: command, any filename that you
specify without a disk-Id preceding the filename will be read
from or written to drive B.

You can change back and forth between drive A and drive
B by simply entering the above command. You can tell
which drive you're currently accessing by looking at the
prompt: it will be A> when you're using drive A or B> when
you're using drive B.

Your Commodore 64 CP/M can use either the VIC 1541
single disk drive or the CBM 4040 dual disk drive. Read the
sections below that cover the type of disk drive you have
attached to your Commodore 64.

5.3.1 Loading Programs from Disk: Single
Drive

It is easy to load and run a CP/M program. You first place
the program disk into your disk drive and then enter the
filename followed by a carriage return, for example:

MYPROG <CR>

CP/M then goes to the currently logged disk and looks for
the file called MYPROG.COM. If CP/M finds this file, the
data in the file are read into the computer's memory and
CP/M begins executing those instructions.

If the file is not found on the disk, then CP/M prints the
filename followed by a question mark:

MYPROG?

In such cases, check to see if you have the correct disk in
the drive, log to the correct disk, or correct the program
name.

For a single-drive system. if you are logged to drive A and
your program is on drive B, then remove disk A from the
drive, insert disk B, and enter:

56 CP/M OPERATION

B:OTHERPGM <CR>

CP/M will first ask that the appropriate disk be placed in
the drive by writing:

INSERT DISK B INTO DRIVE 0, PRESS RETURN

You should put the appropriate disk into the drive and
press the _ key. CP/M will then search the disk
for the file called uTIIERPGM.COM, load the file, and run it.

5.3.2 Loading Programs from Disk: Dual
Drive

When using the CBM 4040 dual disk drive, you don't have
to physically change the disk in the drive when you want to
log to another disk. Since there are two drives, you can in­
sert two disks into the drive: disk A and disk B.

When you enter the B> command to log to disk B, CP/M
will not ask you to insert a disk into the drive. Instead,
CP/M will use the disk already in drive B.

If you want to change which disk is in a drive, you should
change the disk and then tell r.p1M that a different disk is
in the drive by entering a a:m:I. -C command. This makes
CP/M read the directory from the disk and keeps you from
writing over information that you want to keep.

You must have the Commodore 64 IEEE interface car­
tridge when you use the CBM 4040 dual disk drive. You
cannot plug the dual disk drive into the Commodore 64
Without the interface cartridge.

&.4 CP/M COMMAND
STRUCTURE
Your Commodore 64 CP/M system includes a Console
Command Processor (CCPj through which you interact with
CP/M. The CCP reads and interprets the commands you
enter at the keyboard.

The CP/M commands are listed in Table 5.2 and de­
scribed in some detail later in this chapter.

CP/M OPERATION 57

In general, the CP/M commands are of two types:

• Built-in commands which are a part of the CCP it­
self. Being part of the CP/M operating system,
built-in commands are included whenever you load
CP/M.

• Transient commands which are loaded into the
Transient Program Area (TPA) from a disk and then
executed. Transient commands reside on the disk
as COM files.

Table 5.2 CP/M Commands

COMMAND BUILT-IN (B) COMMAND FUNCTION
N~E or

TRANSIENT (T)

pgm-name T Load and execute the program
stored on the disk as file pgm­
name.COM.

X:

ASM

DDT

DIR

DUMP

ED

ERA

58 CP/M OPERATION

B

T

T

B

T

T

B

Change the currently logged disk
to disk x,

Load the CP/M assembler and as­
semble the specified program from
the disk.

Load the CP/M debugger (DDT)
and begin executing the debugger.

List the filenames in the disk di­
rectory.

Dump the contents of the specified
file to the screen in hexadecimal
format.

Load and execute the CP/M text
editor program.

Erase the specified filers) from the
disk.

COMMAND
NAME

LOAD

MOVCPM

PIP

REN

SAVE

STAT

SUBMIT

SYSGEN

TYPE

USER

XSUB

Table 5.2 (CoDtiDued)

BUILT-IN (B) COMMAND FUNCTION
or

TRANSIENT (T)

T Produce an executable (COM) file
from an assembled (HEX) file.

T Recreate the CP/M system for the
specified memory size.

T Copy specified filets).

B Rename the specified file.

B Save the contents of memory as
the specified file on the disk.

T Provide status information about
specified files. no file. or all files.
and list the number of available
bytes remaining on the disk.

T Read the specified file and execute
the commands in a batch process­
ing mode.

T Create a new CP/M system dis­
kette.

B Type the contents of the specified
file onto the screen.

B Change the currently logged user
number to the specified value.

T Allow the entering of data as well
as CP/M commands in a SUBMIT
file.

In addition to the commands listed in Table 5.2. your
CP/M system includes a number of built-in line editing

CP/M OPERATION 59

commands. The CP/M line editing commands, shown in
Table 5.3, have the general form:

lIB-x
where:

_ means hold down the CONTROL key on your
Cummudore 64.
x is one of the keys on your Commodore 64
keyboard.

Table 5.3 CP1M Built-in Line Editing Commands

COMMAND FUNCTION

DiD -C Perform a CP/M warm-start.
(Jl"

IM:iiliJi
DiD -E

I!iiD -H
or

mI
IEI-J
I£!I-M

or

E!Iim!I
EmI-P

DiD-R
DmI-S

liD -u
or
lEI-x
~

Move to the beginning of the next line.

Delete one character and erase it from the
screen.

Perform a carriage return and line feed.

Perform a carriage return.

Toggle printer/console output. On first use,
send all screen messages to the printer; one
next use. send all screen messages to the
screen.

Repeat the current command line.

Temporarily halt listing of data on the
screen. Press any key to continue listing.

Cancel current command line.

Toggle between all upper case and upper/
lower case letters. ~ Is the Commodore key.

60 CP/M OPERATION

5.5 CPIM COMMANDS

This section gives you a brief description of the Commodore
64 CP/M commands. It is not intended to be a detailed de­
scription of how CP/M commands operate, nor does it at­
tempt to describe every possible way you can use the CP/M
commands.

If you need to learn how CP/M works or if you need more
detail on how the commands work. you should purchase
one or more of the excellent CP/M teaching texts on the
market. Skim these books and pick those that present the
information in a way that you can easily understand.

The following notation is used in describing the CP/M
commands:

• Underlined words show arguments (parameters)
which you replace with your own values.

• BOLDFACE keywords must be entered exactly as
shown.

• A vertical bar (I) separates arguments where you
may select anyone of the list of arguments.

• Square brackets ([]) are used to show optional
arguments. You select any or none of the arguments
listed, depending on your needs.

• Braces ({ }) show that you must choose one of the
arguments.

5.5.1 pgm-name (Load and Run a CP/M
Program)

Format:

where:

[disk-id:]jilename<CR>

disk-id is an optional disk identifier.

filename is the name of the file containing the pro­
gram to be loaded and run. Programs must be
stored in files namedjZlename.COM.

Description:
CP/M programs are stored in files named
fil~name.COM. When you type the name of one of

CP/M OPERATION 61

these program files and hit the carriage return key.
CP/M does the following:

1. Searchs the currently logged disk or the disk
specified by disk-id for the program file
filename.COM.

2. Loads the program file into memory.
3. Begins executing the instructions in the program.

If the file is not found on the disk. CP/M prints a
message like this:

FILENAME?

When you get this message. make sure you have the

correct disk in the disk drive. that you've spelled the

program filename correctly. and that the program is

stored in a COM file.

Example 1:

To load and execute your program which is stored in

the file MYPROG.COM. enter:

MYPROG <CR>

CP/M searches the currently logged disk for the file

MYPROG.COM, loads the file. and begins executing the

instructions. If the file is not on the disk. you will see

the error message:

MYPROG?

Example 2:
You have a single drive system and are currently logged
to disk A. You want to load and run the program XYZ
from disk B. Enter the CP/M command:

B:XYZ <CR>

CP/M then responds with:

PLACE DISK B INTO THE DISK DRIVE AND HIT RETURN

62 CP/M OPERATION

Put the appropriate disk into the disk drive and press theemil key. Then. CP/M searches for the file named
XYl..CU~I, loads the file, and begins executing its instruc­
tions.

5.5.2 x: (Change the Currently Logged Disk)

Format: disk-id:

where:
disk-ui is the disk identifier

Description:
Under CP/M, you are always "logged" to a disk. You
can tell which disk CP/M is using by looking at the
prompt message. If it's "A>", you're logged to disk A; if
it's "B>", you're logged to disk B.

You can change the logged disk by entering:

DISK-ID:

CP/M then asks you to insert the appropriate disk into
the disk drive and hit the carriage return. CP/M re­
members which disk you're currently logged to and will
request another disk if you ask for a file or program
and use the disk-id. qualtfter.

Example:
You have a single drive system and are currently logged
to disk A. You want to log to disk B. To do this. you
would enter:

B: <CR>

CP/M then writes;

INSERT DISK B INTO DRIVE O. PRESS RETURN

When you insert the disk into the drive and hit the
carriage return. CP/M is logged to that disk. The CP/M
prompt will now be:

B>

CP/M OPERATION 63

5.5.3 ASM

Format: ASMfllename [.parms]
where:

filename Is the name of the file containing the pro-
gram to be assembled. The file must be named
filename .ASM.
parms contains up to three characters specifying
the drivels) for the source file. HEX file. and PRN
file.

Description:
The ASM command loads and executes the CP/M As­
sembler which processes 8080 instructions. The CP/M
Assembler:

1. Assembles the assembly language statements con­
tained i-':1 the filefilename.ASM.

2. Generates an object file in hexadecimal format and
places the object file infilename .HEX.

3. Produces a print file infilename.PRN.

The parms string is an optional character string which tells
the assembler where to read and write its files. You can
specify up to three characters in parms. Each character
position has a special meaning:

• Position 1: The source drive for the file containing
the assembly language statements.

• Position 2: The destination drive for the object
(HEX) file.

• Position 3: The destination drive for the print (PRN)
file.

If you specify a "Z" for positions 2 and/or 3. the assembler
will not generate a HEX (position 2) or PRN (position 3) file.
If you specify an "X" for position 3. the listing will appear on
your screen instead of in a file. Table 5.4 lists the ASM error
messages.

64 CP/M OPERATION

E

NOTE: CP/M was written for the Intel 8080 microprocessor. The Z80 pro­

cessor on your Commodore 64 is compatible wah the 8080 processor but

offers a much larger instruction set, more internal registers, and other

advantages.

If you want to use tl,e full Z80 instruction set, you'll hove to get an

assembler that recognizes the Z80 instruchons.

Table 5.4 ASM Error Messages
ERROR CODE MEANING

D Data error. The data element cannot be
placed into the specified data area. For
example. you cannot put the value 500 in
a one-byte area.

Expression error. The assembler could not
evaluate the expression.

L

N

o

p

R

S

u

V

Label error. The label is used out of con­
text. This could be a duplicate label.

Not implemented. You tried to use a fea­
ture that is not implemented. such as
using macros.

Overflow. The expression is too compli­
cated to evaluate.

Phase error. A label's value changed be­
tween passes of the assembler.

Register error. The value specified as a
register does not match the value needed
by the op code.

Syntax error. The statement contains a
syntax error and could not be evaluated.

Undefined lable. You used a label which
does not exist in the program.

Value error. There is an improperly
formed operand in the expression.

CP/M OPERATION 65

Examples:
ASM APROG.BBB

ASM PGM2.BZZ

ASM PGMFORAAX

5.5.4 DDT

Assemble the assembly language
program contained in the file
B:APROG.ASM and put the object
file in B:APROG.HEX and the print
file in B:APROG.PRN.

Assemble the assembly language
program contained in the file
B:PGM2.ASM. Do not generate
either the object (HEX) file or the
print (PRN) file.

Assemble the assembly language
program contained in the file
A:PGMFORASM. Put the object
file (PGMFORHEX) onto Disk A.
Print the listing on the screen.

Format: DDT [[diSk-id:]Jilename[.type]]
where:

disk-td. is an optional disk identifier.

filename. type is a valid CP/M filename for the file
containing the information to be loaded and proc­
essed by DDT.

Description:
DDT is the CP/M Dynamic Debugging Tool which you
can use to interactively test and debug programs. You
can load any file into memory using DDT. If you load
an executable file. you can directly control its execu­
tion from your console.

NOTE: You can also use DDT to look at a file in both ASCII and
hexadecimal format.

66 CP/M OPERATION

DDT loads the file into the TPA (Transient Program
Area) in memory. You can then use the commands
shown in Table 5.5 to operate on the information in
the TPA.

You must know 8080 assembly language instruc­
tions to use DDT. If you don't know the assembly lan­
guage instructions, don't try to use DDT. Appendix B
gives a list of some of the currently available Z80 as­
sembly language books.

NOTE: DDT recognizes only the subset of Z80 instructions that is identi­
cal to the Intel 8080 microprocessor instruction set.

Table 5.5 DDT Commands

COMMAND MEANING

As

D[s [,J]]

FsJ,c

G[s] [.bl [.b2]]

Assemble. Begin entering assem­
bly language instructions at ad­
dress s.

Display. Display the contents of
memory in both hexadecimal and
ASCII formats. Begin at address s
and end at address]. If you don't
specify J. 16 display lines are
shown. If you don't specify s, the
starting address is the current
display address.

Fill memory. Fill memory with the
hexadecimal byte c. Begin storing
the byte c at location s and end at
location]. You lise the F command
to fill a block of memory with one
value, for example, all zeros or
blanks.

Go. Begin executing the instruc­
tions at location s with optional
breakpoints at locations b l and

CP/M OPERATION 67

Table 5.5 (Continued)

COMMAND MEANING

b2. If you don't specify location s.
execution begins at the current
address.

Hcl.c2 Hexadecimal sum/difference. Add
(or subtract, depending on the
signs) the hexadecimal constants
cl and c2.

IJilename[.type] Input. Insert the filename
Jilename.type into the default file
control block for the TPA. You
must use an R command to actu­
ally read the file.

L[s [J]] List. List the assembly language
mnemonics beginning at address s
and ending at address J. If you
don't specify a value for s. the list­
ing begins at the current address.
If you don't specify a value forJ. 12
lines are listed.

MsJ, d Move a block of information. Move
the contents of a block of memory.
Begin moving data from address s
and end at addressJ. Move the in­
formation to address d.

R[o] Read a disk file. Read the file
whose filename and type are in the
file control block into the program
area beginning at offset o. You use
an I command to set the file in­
formation in the file control block.
If you don't specify an offset value.
the file is read into memory be­
ginning at address 1DOH.

68 CP/M OPERATION

Table 5.5 (Continued)

COMMAND MEANING

Ss Examine and modify memory
values. DDT begins processing at
location s. All addresses and their
contents are listed. If you hit a
carriage return, the contents are
not changed. If you want to change
the value, enter a new value before
you hit the carriage return. To
stop the listing, hit a period (.).

T[n] Trace program execution. DDT
traces execution and displays reg­
isters and flags for n steps. n may
be 1 through 65535. If you don't
specify a value for n, DDT executes
and traces one statement.

U[n] Untrace. This performs the same
processing as the T command ex­
cept that the registers and flags
are not displayed for each step.

X[r] Examine and modify CPU regis­
ters. The examine command lets
you examine and optionally modify
the contents of the CPU registers
shown in Table 5.6. If you don't
specify a value for r, all of the CPU
registers are displayed in the for­
mat shown in Table 5.7.

Table 5.8 DDT CPU Registers/Status Flags

NAME MEANING VALUE

STATUS FLAGS:
C
Z
M

Carry flag
Zero flag
Minus flag

0/1
0/1
0/1

CP/M OPERATION 69

Table 5.8 (Continued)

NAME

STATUS FLAGS:
E
I

REGISTERS:
A
B
o
H
S
P

,
MEANING

Even parity flag
Interdtgtt carry

Accumulator
BC register pair
DE register pair
HL register pair
Stack pointer
Program counter

VALUE

0/1
0/1

O-FF
O-FFFF
O-FFFF
O-FFFF
O-FFFF
O-FFFF

Examples:
DDT

DDT PROG.COM

Loads DDT and waits for you to
enter commands.

Loads DDT and reads the file
PROG.COM into the TPA (address
100H). DDT then waits for you to
enter commands.

Table 5.7 DDT CPU Register/Jl1ag Display Format

CfZfMfEfif A=bb B=dddd D=dddd H=dddd S=dddd
P=dddd inst

where:
C. Z. M. E. and I are processor status flags
shown in Table 5.6

A. B. D. H. S. and P are the registers shown
in Table 5.6

J is a 0 or 1 flag value

bb is a byte value (0 through 255)

dddd is a double byte value

inst is the disassembled 8080 instruction at
the location addressed by program counter
(P)

70 CP/M OPERATION

5.5.5DIR

Format: DIR [disk-id:] [filename.type]

where:
disk-id is an optional disk identifier.

filename is an optional valid one- to eight-character
CP/M filename.

type is a valid one- to three-character CP/M file type.
You need to specify a type if you use the filename
parameter.

Description:
You use a DIR command to display the directory of files
on a certain disk disk-id. If you don't supply a disk-ui
parameter. DIR lists the directory of the disk in the
drive currently logged to the system.

You can use the CP/M wildcard (* and ?) characters
in your filename and type parameters. These char­
acters are acted upon as follows:

• question mark (1)

Use a question mark (?) to represent a single char­
acter in a filename or type. DlR will use the ? to
match on any character that occupies that position
in the filename or type. For example,

orR PGM?COM

will display all files that have the first three char­
acters PGM, any fourth character and the type COM.
This format will match only files with names
PGMx.COM. It will not match PGMxxx.COM.

• asterisk (*)

Use an asterisk (*) to represent an entire filename or
type or the remainder of a filename or type. DIR will
match on any characters in the poslttons indicated
by the ". For example,

OIR PGM* .COM

CP/M OPERATION 71

will display all files that have the first three char­
acters PGM, regardless oj the length oj the file­
name, and the type COM.

If you use a disk-id value, DIR will display only those files
on the indicated disk. If you omit the disk-id value. DIR
displays the files on the currently logged disk.

Examples:

DrR Display the directory of the currently
logged disk. The names of all files on
the disk are shown.

DIR B: Display the directory of Disk B.

DIR B:TEST.COM Display the directory information for
file TEST.COM on Disk B. You can
use this form of the DIR command to
check whether the file you want is on
that disk.

DIR *.BAK Display the information from the
currently logged disk for all files
which are of the type BAK.

DIR TEST*.BAK Display the information from the
currently logged disk for all files that
are of the type BAK and whose
filenames contain the first four char­
acters TEST. ThiS will display the
files TEST. BAK. TEST 1. BAK,
TESTXXX.BAK. TEST1234.BAK. or
any other file wi th the firs t four
characters TEST and type BAK.

DIR TEST??BAK Display the information from the
currently logged disk for all files that
are of type BAK and have a four- to
six-character filename beginning
with the letters TEST. ThiS will dis­
play the files TEST.BAK. TESTl.
BAK. or TESTXX.BAK but will not
display the file TEST1234.BAK.

72 CP/M OPERATION

5.5.8 DUMP

Format: DUMP [disk-id:]fllename.type

where:
disk-id. is an optional disk identifier.

filename is valid CP/M filename of the file whose
contents are to be displayed.

type is a valid one- to three-character CP/M file type.

Description:
You use a DUMP command to display the contents of a
file in hexadecimal format. The file information is
shown on the screen.

Examples:

DUMP A:DATA.TST Dump the contents of the DATA.TST
file on Drive A to the screen. The file
information is shown in hexadecimal
format.

DUMP MY.DTA Dump the contents of the MY.DTA
file. which is on the currently logged
disk. to the screen.

5.5.7 ED

Format: ED [disk-id:]fUename[.type] [[disk-id2:] [filena­
me2[.type2]J]

where:
diek-ui IS an optional disk identifier.

filename is the name of the file containing the data
to be edited.

type is a valid CP/M file type for the file containing
the data to be edited.

CP/M OPERATION 73

disk-id2 is an optional disk identifier needed when
you want the edited file to be written to a disk other
than the disk being edited.

jilename2 is the name of the output file when you
want the edited filename to differ from the original
filename.

type2 is the type for the output file when you want
the edited file to have a different type than the orig­
inal file.

Description:
You use the ED command to run the CP/M context
editor to create or change CP/M source language, data.
and text files. ED works on the data in its buffer, using
a character pointer to keep track of its current posi­
tion. Be sure that you understand how to use ED; you
could lose your edited file if you're not careful!

If the file exists when you enter the ED command,
CP/M opens it and prepares to operate on it. If the file
does not exist, CP/M creates a new file with the
specified name. CP/M names its temporary file
jilename. $ $ $ while you are editing the information.

When you are finished editing the file. CP/M changes
the name of the original me to jilename.BAK and
writes the edited information to the file named
jilename.type when you tell ED to write the data. If
you don't tell ED to write the edited information to the
file, you wUllose the edited data. You must tell ED ev­
erything!

If you want to write the edited file to a disk other
than the one contatning the original file, specify a
disk-id2 parameter.

If the file that you are editing is too large to fit in
memory. you must tell CP/M's ED processor when to
swap information to its work files. The amount of data
that can be processed without swapping depends on
the size of your CP/M system. The standard Commo­
dore 64 CP/M system is a 44K version.

You use the control characters shown in table 5.8
and the commands shown in table 5.9 when you are
editing a file using ED.

74 CP/M OPERATION

Remember that the CP/M ED editor is not a very
complex editor. It works in its buffers. and you must
tell it everything. After you enter the command that
tells ED what file to edit. you must tell ED to read in a
specified number of lines from the file. In the same
way. after you have finished editing. you must be sure
to close the processing with an E command to save
your edited data.

NOTE: Some ED commands (F, I, N, and SI when entered in upper case,

automatically translate all subsequent lower case entries to upper case.

If you enter these commands in lower case (f, i, n, s), the automatic

translation to upper case is not done, and dere can be enTered in both

upper a nd lower case

Table 5.8 CP/M ED Control Characters

CHARACTER MEANING

111m -L Used as a logical carriage
returnlline feed within a
string.

lImI-x_-z... Line delete.

String terminator/separator.

Delete the previous character.

COMMAND

n:

[+/-]n

nA

Table 5.9 CP/M ED Commaad.*

FUNCTION

Move the character pointer to the
beginning of line n.

Move the character pointer up (-)
or down (+) n lines and type the
line.

Append n lines from the original
filejIlename to the buffer in mem­
ory.

CP/M OPERATION 75

Table 5.9 (Continued)

COMMAND FUNCTION

OA Append enough lines from the file
to half fill the buffer.

#A Append enough lines from the file
to fill the buffer or reach the end of
file.

[+/ -]B Move to the top (B) or bottom (-) of
the buffer.

[+/-]nC Move the buffer character pointer
forward (+) or backward (-) n
characters in the buffer.

[+/-]nD Delete n characters from the buf­
fer. Delete the characters before
(-1) or after (+) the character
pointer.

E End the ED session. Rename the
original file to jilename.
BAK. Close the files and save the
new file.

nFstring ["Z] Find the character string string n
times. If you don't supply a value
for n, the strtnn is found only once.
You use the" -2 ("2) to end
the string when you want to enter
another ED command on the same
line as the F command. This com­
mand performs an automatic
translation to upper case. To find a
character string that includes
lower case letters. use the f form of
this command.

H Save the new (edited) file. Rename
the original file to jilename.BAK.

76 CP/M OPERATION

COMMAND

I<CR>

Istring (A Z)

i<CR>

Table 5.9 (Continued)

FUNCTION

Re-edit the file ustng the new file as
the original file. This is the same
as entering an E (end edit) com­
mand and then running the ED
editor again on the newly saved
file.

Entr-r Insr-rt mode. You must enter
a .. -Z (" Z) to end insert
mode. When you use an I com­
mand. you can enter only upper­
case characters. The character
pointer is moved to the end of the
inserted text when you enter the
IIiii!!I -Z. To enter both upper­
case and lower-case information,
use the I command described be­
low.

Insert the character string string at
the position in the buffer pointed
to bv the character pointer. The
IIiii!!I -Z marks the end of the
strmg lu be inserted. The character
pointer is moved to the end of the
inserted string. You can enter only
upper-case characters with the I
command. To insert both upper­
case and lower-case information,
use the istrtng command described
below.

Enter insert mode. You must enter
a IIiii!!I -2 ("2) to end insert
mode. When you use an i com­
mand, you can enter both upper­
case and lower-case characters.
The character pointer is moved to

CP/M OPERATION 77

COMMAND

istring [" z]

Table 5.9 (Continued)

FUNCTION

the end of the inserted text when
you enter the~ -z.

Insert the character string string at
the position in the buffer pointed
to bv the character pointer. The
lID -Z marks the end of the
strtng lu be inserted. The character
pointer is moved to the end of the
inserted string. You can enter both
upper- and lower-case characters
with the i command.

nJstring"Zstring2"Zstring3 ["Z]
Juxtapose strings. Find stringl.
Add string2 to the end of stringl
and delete all characters from the
end of string2 up to but not includ­
ing the first character of strina3.
You use the optional final II!I:B
-Z ("Z) when you want to enter an­
other ED command on the same
line.

[+/-]nK

l+/-]nL

Delete the following (+) or previous
(-) n lines.

Move the character pointer up (-)
or down (+) n lines. If n is zero (0),
move the character pointer to the
beginning of the current line.

nMcommands["Z] Execute the ED commands n
times. If n is zero (0) or one (1), re­
peat the ED commands until an
error occurs. You use the terminat­
ing III:B -Z ("Z) to enter an-

78 CP/M OPERATION

COMMAND

nNstring ["Z]

o

[+/-]nP

Q

Rffilename]

Table 5.9 (Continued)

FUNCTION

other ED command on the same
line. Any ED commands after the
"z are executed only once and are
not treated as part of the M com­
mand.

Find the nth occurrence of the
character string string. Yon use the
optional terminating Em -z
("Z) when you want to enter an­
other ED command on the same
line. The N command performs an
automatic translation from lower
case to upper case. If you want to
find a string containing lower-case
letters. use the n form of this
command.

End the ED session and keep the
original file. Do not apply any of
the changes made during the ses­
sion.

Display n pages. Each page is 24
lines. Display the n pages before
(-) or after (+) the current position
of the character pointer. If you
supply a zero (0) for n, the current
line and the next 23 l1nes are
listed.

Abandon the editing session. Do
not save the new (edited) file. Re­
turn to CP1M.

Read the file and insert the text
into the buffer. Move the character
pointer to the end of the inserted

CP/M OPERATION 79

COMMAND

Table 5.9 (Continued)

FUNCTION

text. If you supply e ftletiame, ED
reads the file filename. LIB. If you
don't supply a value for filename,
ED reads the file X$$$$$$$.LIB.

nSstringl "Zstring2 ["Z]
Fmd string 1 and replace it with
string2. Repeat this substitution n
times. If you do not supply a value
for n, the substitution is performed
o n ce . You use the terminating
.. -Z ("2) when you want to
enter another ED command on the
same line. The S command per­
forms an automatic translation
from lower case to upper case. If
you want to use lower-case letters
in your strings. use the s form of
this command.

[+/-]nT

[+/-]U

[+/-/ON

[n]W

80 CP/M OPERATION

Display the previous (-) or follow­
ing (+) n lines. If n is zero (0), or if
n is not supplied, display the cur­
rent line. B#T displays the entire
buffer.

Translate all characters in the buf­
fer to upper case. Plus (+) turns on
the translation. Minus (-) turns off
the translation.

Turn on (+) or off (-) the line
number display. The 0 displays the
amount of free buffer space in
bytes and the total buffer size.

Write the following n lines to the
temporary output file

COMMAND

[nlX

nZ

Table 5.9 (Continued)

FUNCTION

filename. $$ $. If you do not specify
a value for n, only the current line
is written to the file.

Write the following n lines to the
temporary file X$$$$$$$.LIB. You
can retrieve these lines with an R
command (this is an easy way to
move a block of lines). If n is zero
(0), ED will DELETE the
X $$ $$$ $$.LIB file.

Wait n seconds before resuming
ED processing.

"NOTES: You can use the operand nl::n2 for any nor n operand," the

ED commands shown in this table. If you use the n 1::n2 form, the ED

processor will operate on the lines n 1 through n2. If you use this form

a"d o~;t e;ther n I or n2, ED assumes the current line for the missing

operand.

You can use a # for n rn the ED commands. # means to use the largest

possible value (65535) for n

Many of the ED commands show a +/- form. You do not need to specify

the plus (+) sign. You do need to specify the minus (-) sign if you want

to move backward in the file

The F, I, N, and S commands perform an automatic translation to upper

case. If yOu want to enter both upper and lower case data, use the

commands f, i, n, and s.

Example:

ED PGMTST.ASM Edit the file PGMTST.ASM. If the file
exists, you must remember to read in
the data with an A command before
attempting to edit it.

CP/M OPERATION 81

5.5.8 ERA

Format: ERA [disk-id:]filename.type

where:
disk-id is an optional disk identifier.

filename is a valid CP/M filename.

type is a valid CP/M file type.

Description:

You use an ERA command to erase one or more files
from your disk. If you don't specify a disk-id parame­
ter, the file is erased from the currently logged disk.

ERA accepts the wildcard (") notation for the
filename and type parameters. This allows you to
erase a group of files with a single command. Be care­
ful that you don't erase files that you want to keep
when you use the wildcard notation.

Examples:

ERA TEST.OTA

ERA B:MY.PGM

ERA *.BAK

ERA A:*.*

ERA TEST. *

82 CP/M OPERATION

Erase the file TEST.DTA from the
currently logged disk.

Erase the file MY.PGM from disk B.

Erase all files with a type BAK from
the currently logged disk.

CAUTION. Erase all files from disk A.
(CP/M asks you whether you really
want to erase all fimes from the disk.)

Erase all files with the filename TEST
from the currently logged disk. This
would erase, for example, TEST.DTA,
TEST.PGM, TEST.ASM, TEST.BAK,
TEST.xxx.

5.5.9 LOAD

Format: LOAD [disk-id:)fllename

where:
disk-id is an optional disk identifier.

filename is the name of the file containing output
from the assembler.

Description:
You use a LOAD command to process the output from
the assembler (see the description of the ASM com­
mand) and produce an executable program file. The
input file must be named filename. HEX. The output
file is namedftlename.COM.

You run the output from the LOAD processor by
entering the filename and hitting a carriage return
(see the description on loading and executing a CP/M
program in Section 5.5.1).

Example:

LOAD ASMPGM2 Process the file ASMPGM2.HEX
(which was created by the assembler)
and produce an executable program
in the file ASMPGM2.COM.

5.5.10 MOVCPM

Format: MOVCPM [{ ok I size }] [ok]

where:
the first * tells CP/M to calculate the amount of
memory available for its use.

size is a two-digit number from 20 through 48
which is the maximum amount of memory available
for CP/M in your Commodore 64. You use 44 for a
44K version of CP/M.

CP/M OPERATION 83

the second * tells CP/M to leave the new version in
memory for later SYSGEN or SAVE command proc­
essing.

Description:
You use a MOVCPM command to configure (prepare) a
new copy of your CP/M system. Changing CP/M to ex­
pect a different memory size is called "moving" the sys­
tem. The MOVCPM command operates in either of
these ways, depending on which parameters you use:

1. "Move" CP/M and immediately execute the new,
different sized system. Do not save it on disk.

2. "Move" CP/M and prepare the new system to be
saved to disk by a later SYSGEN or SAVE com­
mand. The new CP/M system is NOT written to
the disk. You must use a SYSGEN or SAVE com­
mand to actually write out the new version oj the
system.

If you do not specify any parameters and use a
MOVCPM command like this:

MOVCPM <CR>

CP/M will determine how much memory is available,
create a new system. and immediately use the new sys­
tem.

If you specify the first parameter, you can tell CP/M
how much memory it can use by:

• Using the * which tells CP/M to use all available
memory.

• Using the size parameter which tells CP/M to use
sizeK bytes of memory.

You can use any decimal integer between 20 and 48 for
the size value.

If you want to save the new version of CP/M on a
disk, you must use the second * parameter and you
must supply a first parameter (either size or *). You
can use this type of command:

MOVCPM * * <CR>

84 CP/M OPERATlO"l

CAUTION: MOVCPM WILL ONLY CREATE A NEW VERSION OF CP/M.

THE NEW VERSION IS NOT SAVED TO A DISK UNTIL YOU USE A SAVE

OR SYSGEN COMMAND!

Examples:

MOVCPM

MOVCPM 40 ok

MOVCPM 28

5.5.11 PIP

Create a new version of CP/M, use all
available memory, and immediately
execute the new version. Do not save
this version.

Create a new version of CP/M using
40K of memory. Do not execute the
version but prepare it to be saved to
disk through a SAVE or SYSGEN
command.

Create a 28K version of CP/M and
execute it. Do not save this version.

Format: PIP
or
PIP destination=source[parameter]

where:
destination tells where you want to copy the file to.
destination is in the form:

[dtsk-td:]filena me. type

source tells which file to copy. source has the same
format as destination.

parameter is one or more valid PIP parameters sepa­
rated by zero or more blanks and enclosed in square
brackets [].

Description:
You use PIP, CP/M's Peripheral Interchange Program,
to copy files. It doesn't matter what's in the file. PIP

CP/M OPERATION 85

simply copies from the destination file to the source
file. The source and destination files can be on the
same disk or can be on different disks.

You can specify only the disk-id for the destination
when the file is to be copied to a file with the same
filename.type on another disk. You can use the
wildcard ("') notation for any part of the source
filename and/or type.

You use the parameters, or PIP commands, shown
in Table 5.10 to have PIP perform some operations on
the file during the copy process.

You can use PIP in two different ways:

1. Invoking PIP as a program by entering:

PIP <CR>

In this use. PIP is loaded and returns an * on the next
line. You can then enter PIP commands. one per line.
until you have finished copying all the files you want to
copy. You end the PIP session by hitting a carriage re­
turn when PIP prints its * prompt message.
2. Invoking PIP with a command string. by entering:

PIP A:NEW.DTA=B:OLD.DTA <CR>

In this use, PIP is loaded and copies the file
B:OLD.DTA to the new file A:NEW.DTA. After the copy­
ing is complete. PIP reboots CP/M and returns control
to CP/M.

PIP can also copy from device to device. For this type of op­
eration. you can use any of the devices shown in Table 5.11.
PIP also uses some "devices" to perform special operations.
These are shown in Table 5.12.

You can use PIP to copy the contents of several files to one
file (concatenate several files). You do this by specifying the
source filenames. separated by commas. For example. to
copy files FILEI.DTA. FILE2.DTA. and FILE3.DTA to the
single file ALLDATA.BAK. you use the command:

PIP ALLDATA.BAK=FILE1.DTA,FILE2.DTA,FILE3.DTA

In the above example, the entire contents of FILEl.DTA are
copied to ALLDATA.BAK. Next. PIP copies the entire con-

86 CP/M OPERATION

tents of FILE2.DTA to ALLDATA.BAK, beginning the copy at
the end of the current contents of ALLDATA.BAK (the end
of the copied FILEl.DTA). FILE3.DTA is then copied at the
end of the FILE2.DTA data in ALLDATA.BAK.

NOTE: Be careful when concatenating ASCII files. ASCII files end with a

A Z (IiI3I-Z) that PIP copies, along with the data, into your output

file. This produces a file wIth multiple end-of-file markers embedded in

it. Many programs will stop reading the file at the first A Z.

Table 5.10 PIP Command Parameters

COMMAND

On

E

F

Gn

H

I

FUNCTION

Delete all characters after the nth
column. Use this when you want to
send data to your printer and the
data are longer than your printer's
carriage. You get only the first n
characters.

Echo the characters to the console
during the copy operation.

Remove form feed characters dur­
ing the copy operation. For feed
characters are ASCII value OCH or
&DI-L ("L).

Get the file from a different user
area. The n can be any decimal in­
teger between 0 and 15.

Check the files for correct Intel
Hexadecimal format records.

Ignore any null records when
transferring Intel Hexadecimal rec­
ords. Null records are those that
contain only OOH.

CP/M OPERATION 87

COMMAND

L

N

o

Pn

Qs " Z

88 Cp/M OPERATION

Table S.10 (Continued)

FUNCTION

Convert all upper-case letters to
lower-case letters during the copy
operation. Only the letters A-Z are
converted to a-z. All other char­
acters are unchanged.

Append a line number to the be­
ginning of each copied line. A line
is a record that ends in an ASCII
CR/LF (carriage return/ line feed),
which you usually insert when you
press the Wia key. The line
numbers beglIl alone (1) and are
incremented by one (1).

Copy object files a nd non-ASCII
files. Treat the am!I -Z (" Z;
end-of-file marker as any other
character.

Add a page feed (form feed) every n
lines copied. The ASCII form feed
character is~ ·L (" L) or
OCH. You use this when you are
copying from a file to your printer.

Copy only a section of the file. Stop
the copy operation wlu-n PIP finds
the string s. The"-Z ("Z)
marks the end of the string to be
found. The characters in string s
are converted to upper case only
when you specify the destination
and source parameters when you
invoke PIP. The conversion to
upper case is not done when you
load PIP into memory and enter
several commands to PIP's prompt
of *.

COMMAND

R

Ss"Z

Tn

v

w

Z

Examples:

Table 5.10 (Continued)

FUNCTION

Copy system files. System files have
the SYS attribute.

Copy only a section of the file be­
ginning with the first occurrence of
the string s. The I',;i' -Z (" Z)
marks the end of the string s. See
the description of lower- to upper­
case conversion for the s string in
the Q command description.

Set tab stops at every n column.
This is useful when you are send­
ing output to your printer from a
file. The ASCII tab character is 09H
or liD -I (" I)

Verify the copy operation by com­
paring the source and destination
files after the copy is complete.

Override the read only attribute
and copy into a read only (RIO) file.

Zero the parity bit (8th bit) on
ASCII characters.

PIP A:FIRST.DTA=B:TEST.DTA

Copy the file from disk B called

TEST.DTA to the file on disk A called

FIRST.DTA.

PIP B:=A:*.* Copy all files from disk A to disk B.

CP/M OPERATION 89

PIP CHAPTl.BAK=CHAPT.ONE

Copy the file CHAPT.ONE to the file

CHAPT1. BAK. Both files are on the

same disk.

PIP CON:=TEST.DTA

Print the file TEST.DTA on the con­

sole.

PIP B:BACKUP.PGM=A:PROG234.COM[R]

Copy the system file PROG234.COM

on disk A to BACKUP.PGM on disk B.

PIP X.Y=A.B,C.D Copy the two files A.B and C.D to the

fileX.Y.

Copy several files. First, copy the sys­

tem file SYSFILE.XXX from disk A to

disk B. Then copy the program

WORDPROG.COM to disk A. Finally.

copy all files that have the type BAK

from disk A to disk B.

PIP

*B:=A:SYSFILE .XXX[R]

*A:=B:WORDPROG.COM

B:=A: .BAK

*<CR>

Table 5.11 PIP Logical Devices

NAME
CON:

LST:

PRN:

DEVICE
Console display as PIP output.
Keyboard as PIP input.
The CP/M list device (printer) for PIP
output.
A special form of the CP/M LST
device. PRN handles tabs. determines
page breaks, and number lines.

90 CP/M OPERATION

NAME
NUL:

EOF:

Table 5.12 Special PIP Devices

DEVICE
Send 40 null characters (ASCII value
is zero) to the file or device.
Send an end-of-file mark (ASCII
value is lAH) or "Z IlliijiM. Z) to the
ASCII (not binary) file or device.

5.5.12 HEN

Format: REN

Format; REN[disk-id:]new:file =old:file

where:
disk-id is an optional disk identifier.

new:file is the new filename. This must be a valid
CP/M filename of the formfilename[.type].

old:file is the current filename. This must be a valid
CP/M filename of the form filename[.type].

Desertption:
You use a REN command to change the name of an
existing file. The current filename old:file is changed
to the new filename neui-ftle, You cannot use the
wildcard form of a CP/M filename when you use the
REN command. You must specify a valid CP/M file­
name, but you can specify a blank type.

If you are renaming a file that is on the currently
logged disk, you don't need to specify the disk-id pa­
rameter. You cannot specify two disk-id parameters.
REN changes the name of the file on the same disk on
which the file resides; it does not copy the file to an­
other disk. If you want to change the filename and also
move the file to another disk, use the PIP command.

Examples:

REN A: PRODPGM. COM=TESTPGM. COM

Change the name of the file

CP/M OPERATION 91

TESTPGM. COM on disk A to

PRODPGM.COM.

REN DATA.ARC=DATA.182

Change the name of the file DA­

TA182 on the currently logged disk

to DATAARC.

REN B:DATAFILE=TEST.DTA

Change the name of the file

TEST.DTA on disk B to DATAFILE.

5.5.13 SAVE

Format: SAVE paqe-nutn [disk-id:]filename[.type]
where:

page-num is the number of 256-byte pages from the
TPA to save to the specified file.

disk-id is an optional disk identifier.

filename.type is the name of the file to which CP/M
will write the page-num *256 bytes.

Description:
You use a SAVE command to save page-num pages
(where 1 page = 256K bytes) to the specified file. CP/M
copies the information from the TPA which begins at
location IOOH. You also use the SAVE command when
you use the MOVCPM command to create a new ver­
sion of CP/M.

You must calculate the number of pages to be saved
by dividing the amount of data by 256. You can use
DDT to determine the size of your program. When you
load a program into the TPA using DDT. DDT will tell
you the size of the loaded data. Then. calculate the
number of 256-byte pages that this represents.

For example. if you want to save the information
from location lOOH through 4FFH into the file
NEWPGM.CM. you would use the command:

92 CP/M OPEllATiON

SAVE 4 NEWPGM.COM

You use the disk-id parameter when you want to save
the information to a disk that is not the currently
logged disk.

Examples:

SAVE 1 A.B Save the contents of memory loca­

tions IOOH through 1FFH to the file

A.B.

SAVE 10 B:PGM.TST

Save the contents of memory loca­

tions lOOH through AFFH to the file

PGM.TST on disk B.

SAVE 5X

5.5.14 STAT

Save the contents of memory loca­

tions lOOH trough 5FFH to the file X

on teh currently logged disk.

Format: STAT
or
STAT command

where:
command is a valid STAT command as described
below.

Description:
You use a STAT command to display or change status
information for a CP/M disk, me, group of files, device,
or user number.

To display status information, you use one of these
forms of the STAT command:

• STAT [disk-id:]

This shows the number of bytes remaining on disk
disk-id. If you omit disk-id, STAT provides the in-

CP/M OPERATION 93

formation on the currently logged disk. The STAT
message is (see Table 5.13 for the valid options):

disk-id: Option, Space: nnK

• STAT [disk-id:]DSK:

This shows the drive characteristics for disk disk­
id. If you omit disk-id, STAT provides information
related to the currently logged disk. The STAT in­
formation is:

disk-id:
1088:
136:
64:
64:
128:
8:
34:
2:

Drive Characteristics
128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records / Extent
Records / Block
Sectors / Track
Reserved Tracks

• STAT [disk-id:]fllename[.rype]

This shows the characteristics of the filets)
spectfted. You can use the wildcard (*) notation for
the ftlename and/or type parameters. If you don't
specify a disk-id parameter, STAT uses the cur­
rently logged disk.

The STAT information for the specified filets) is
shown as:

Recs Bytes Ext Ace
nnn nK e Options disk-tdiftlename.tupe

'" for each me specified ...
Bytes Remaining on disk-id: nnK

where:
nnn is the number of 128-byte records for the file.

nK shows the me size in 1024-byte blocks.

e shows the number of extents used for the file.

94 CP/M OPERATION

Options shows a valid STAT option from Table 5.13.

disk-idifilename.type shows the filename.

If you specify a file which is not on the disk, STAT re­
turns an error message:

FILE NOT FOUND

• STAT {DEV: I VAL: I USR:}

This shows the information for the CP/M devices
(DEV:), STAT commands and external peripheral
options (VAL:), or user numbers (USR:). This func­
tion refers to the I/O byte, which is not implemented
and always returns the default device assignments.

Table 5.13 STAT Command Options

OPTION MEANING

DSK: Show the characteristics of the
specified drive.

DEV: Show the characteristics of the
CP/M system devices.

USR: Show the files related to each
USER number on the specified
disk.

VAL: Show the possible STAT com­
mands and devices.

NOTE: The DEY' and YAL· opllons refer to the 1/0 byte, which is not
Implemented ;n the Com....odore 64 BIOS.

To change status information, you use one of these forms
of the STAT command (valid STAT attributes are shown in
Table 5.14):

• STAT disk-id: = RIO

This changes the disk disk-td to a temporary read
only mode (RIO).

CPIM OPERATION 9S

SYS

RID
RJW
S

• STAT [disk-id:]filename[.type]=$x
where x is {RIO, RlW I SYS I DIR}

This changes the specified filets) to read only (RIO),
read/write (RlW), system (SYS), or nonsystem (DIR).
You can use the wildcard (*) notation for the
filename and/or type parameters. To change all
your program files on disk A to read only, you enter
the command:

STAT A:*.COM $R/O

Table 5.4 STAT Command Attributes

ATTRIBUTE MEANING

DIR Set the non-SYSTEM attribute for
the file(s).
Set the file or disk to read only.
Set the file to read/write.
Show the size(s) of the filets) based
on the file last record number(s).
Set the SYSTEM attribute for the
filets).

Examples:

STAT *.* Show the statistical information for

all files on the currently logged disk.

STAT A.B Show the statistical information for

the file A.B on the currently logged

disk.

STAT OSK: Show the statistical information for

the currently logged disk.

STAT *.COM $R!O Set all files on the currently logged

disk which have a type COM (CP/M

program files) to read only.

STAT NEW.OTA $R!w

Set the file NEW.DTA to read/write.

96 CP/M OPERATION

5.5.15 SUBMIT

Format: SUBMIT [disk-id:]fllename [parameters]

where:
disk-id is an optional disk identifier.

filename is the name of the file containing the
CP/M commands. This file must be named

filename. SUB.

parameters are optional parameters passed to the
SUBMIT commands.

Description:
You use a SUBMIT command to send a group of com­
mands to CP/M for execution. SUBMIT makes your
Commodore 64 operate in batch mode where. with a
single command. you can execute any number of pro­
grams or ut1l1t1es.

The file containing the commands must have a type
SUB. This file can contain any CP/M commands.
CP/M creates a file called $$$.SUB as a temporary
work file when you execute a SUBMIT command.

NOTE: All commonds in a SUBMIT file must be in upper case.

For example. you could have these commands in file DISK
DTASUB:

DIR

STAT*.*

ERA *.BAK

STAT DSK:

To execute all four of these CP/M commands. you simply
enter:

SUBMIT DISKDTA <CR>

CP/M OPERATION 97

Remember, CP/M then executes the commands in the file in
the order in which the commands appear in the file.
SUBMIT processing only executes commands. It does not
pass any information to the programs it executes. If you
want to pass data to the programs, use the XSUB com­
mand.

You can chain from one .SUB file to another. Whenever a
SUB file finds another SUBMIT command, the first file is
stored and the second file becomes active. When the second
file's commands are finished, the first .SUB file becomes
active at the command following the SUBMIT command.
For example, you could have these two files:

File ASUB contains:

STAT DSK:

SUBMIT B

STAT DSK:

File B.SUB contains:

ERA *.BAK

DIR

.
When you enter the command:

SUBMIT A

the following commands are executed:

STAT DSK:

ERA * .BAK

DIR

STAT DSK:

You can also pass parameters to the .SUB file. The parame­
ters are sequentially numbered in the file and have the
form:

$n

98 CP/M OPERATION

where:
n starts at 1 and is incremented by 1.

The parameters can be any information required by the
commands in your .SUB file. They can be filenames. disk
Id's, file types. or anything that you need. SUBMIT does a
straight substitution of the parameter values for the pa­
rameter indicators ($n) in the .SUB file before passing the
commands to CP/M. The first parameter goes to all Occur­
rences of $1; the second to $2. etc.

Suppose you want to check the status of your disk and
then edit a file. You could have a file called DSKEDIT.SUB
that contains this information:

STA $1:0SK:

ED $2.$3

STAT $1:$2.$3

Then, to check the status of Disk A and edit the me
MY.DTA. you would use this submit command:

SUBMIT OSKEOIT A MY OTA

SUBMIT processing replaces the parameter indicators with
the values in your SUBMIT command and the data in file.
When passed to CP/M for processing. DSKEDIT.SUB looks
like this:

STAT A:OSK:

ED MY.OTA

STAT A:MY.OTA

When you are using SUBMIT parameters. you can enter
these special characters through the parameter string:

• To enter a $ as data. you must enter two consecutive
$$. This is transferred to the command line as a $.
Thus, to enter the value" $XY" as a parameter. you
must use $$xy.

• To enter a control character. use the up-arrow sym­
bol I "1 followed by the control character. To enter

IIIi%!!IX. you would enter the character string" X.

CP/M OPERATION 99

You can have a SUBMIT command as the last command in
a .SUB file. This lets you chain from one .SUB command
file to another.

Examples:
SUBMIT STARTUP

SUBMIT NEW A B

5.5.18 SYSGEN

This executes the CP/M commands
in the file called STARTUP. SUB.
This executes the CP/M commands
in the file called NEW.SUB. The value
"A" is passed to any $1 indicators in
the file. The value "B" is passed to
any $2 indicators.

Format: SYSGEN [[disk-id:]fllename.type]

where:
disk-id is an optional disk identifier.

filename. type is the name of the file that will con­
tain the new copy of the system.

Description:
You use a SYSGEN command to create a new copy of
your CP/M operating system. The CP/M system is
stored on special tracks called the system tracks
(tracks 0 and 1). These tracks never appear in the file
directory listing and you cannot read or write to these
tracks as part of processing any normal program.

You need the system tracks on any disk from which
you may do a warm or cold start. It's a good idea to
have a copy of the system on most disks that contain
programs. Whenever you enter a amI·C ("'C), CP/M
reloads part of its system tracks uhe BOOS and CCP)
in a warm start.

You use the SYSGEN command to copy these tracks
from one disk to another or to create a new copy of the
system after you have used a MOVCPM command.

You use a SYSGEN command in one of these three
ways:

100 CP/M OPERATION

1. To copy your CP/M system from one disk to an­
other. You do not make any changes to the system;
you simply copy it.

2. You use MOVCPM to create a different sized ver­
sion of CP/M and you use SYSGEN to copy it to a
disk.

3. You use DDT to make special changes to your copy
of CP/M and you use SYSGEN to write the system
to a disk.

SYSGEN does not destroy any information currently
on the user area of a disk. SYSGEN simply writes a
new copy of the CP/M system on the disk.

If you specify a disk-id parameter, SYSGEN does not
ask for the source drive but uses the value you selected
for disk-id.

If you want to create a new copy of CP/M after using
MOVCPM to create a new version, you follow this pro­
cedure. The text that you enter is shown in boldface.
The messages from CP/M are shown in italics.

SYSGEN <CR>
COMMODORE 64 SYSGEN VERSION 2.0
SOURCE DRIVE NAME
(OR RETURN TO SKIP) <CR>
DESTINATION DRIVE NAME
(OR RETURN TO SKIP) B<CR>
DESTINATION ON B, THEN TYPE RETURN <CR>
FUNCTION COMPLETE

To copy a version of CP/M -frorn one disk to another,
follow the above procedure but supply the appropriate
answers for the source and destination drives.

NOTE: If you SYSGEN onto your current system disk a version of CP/M

,ha, is a different size from the one you're running, you CANNOT warm

start the system. The location of operating system components will not
match and the CP/M will crash.

CP/M OPERATION 101

Example:
To copy the system tracks from your current disk to an­
other disk, enter:

SYSGEN <CR>

and answer the questions that CP/M asks.

5.5.17 TYPE

Format: TYPE [disk-id:]filename.type

where:
disk-id is an optional disk identifier.

filename.type is the name of the file to be listed on
your screen.

Description:
You use a TYPE command to list an ASCII format file
on your screen. If you don't specify a disk-id value,
CP/M uses the currently logged disk. You must specify
a valid CP/M filename. TYPE does not accept the
wildcard (*) notation.

You can use a UiOI -P (" P) before you enter your
TYPE command and the listing will appear on your
screen and on your printer. All commands and data
continue to appear on both the screen and the printer
until you enter another" P.

You can stop the TYPE listing by pressing any key.
You can temporarily stop the listing by pressing a
BiII-s (" S); you restart the listing by pressing any
key.

Remember that TYPE displays the contents of the
specified file, assuming that the file contains ASCII
characters. If you TYPE a program file (.COM), you will
see garbage on your screen. Be sure that you are list­
ing a text file when you use TYPE.

Examples:
TYPE A:BILLS.LST

102 CP/M OPERATION

List the contents of the file on disk A
called BILLS.LST.

TYPE X

5.5.18 USER

List the contents of the file called X
on the currently logged disk.

Format: USER [user-num]
where:

user-num is a decimal integer between 0 and 15.

Description:
You use a USER command to display and change the
current user number. CP/M assumes a default user
number of zero (0).

Once you change the user number, you can access
only those files associated with the new user number.
You can always enter a user number 0 to return to the
default setup.
To display the current user number enter:

USER <CR>

To change the current user number to 5 enter:

USER 5

You should not change the user number unless you
want to protect certain files from use by those who do
not know the associated user number. In a single-user
CP/M system, it's generally unnecessary to change the
user number.

Examples:

USER 2

USER

Change the user number to 2.

Display the current user number.

CP/M OPERATION 103

5.5.19 XSUB

Format: XSUB

Description:
You use an XSUB command when you want to enter
more than commands in a .SUB file. XSUB is a subset
of SUBMIT processing and CANNOT be entered as a
response to the CP/M prompt. XSUB may appear only
in a SUBMIT (.SUB) file. Read the description of the
SUBMIT command for full details on how .SUB files are
processed.

XSUB must be theftrst command in your .SUB file.
You can enter parameters on an XSUB command in
the same way as for a SUBMIT command.

XSUB allows you to enter data that would normally
be entered through the keyboard for some programs. If
you are using a program that accepts buffered console
input (uses BDOS function 10), then the program will
accept the answers from the XSUB file instead of wait­
ing for you to enter data from the keyboard. Not all
programs do this. but all the CP/M utilities and com­
mands do accept data in this manner.

Example:
You want to submit a file that will run DDT and load
the file you specify. Your file called DDTRUN.SUB con­
tains:

XSUB

DDT

1$1.$2

R

You can submit this file and specify that the file
WORDPROC.DTA be read into memory through DDT
by entering:

SUBMIT DDTRUN WORDPROC OTA

104 CP/M OPERATION

This SUBMIT command accepts the DDT commands to
read the file WORDPROC.DTA into memory by process­
ing the information after the XSUB command.

CP/M OPERATION 105

In this chapter, you will find technical information about
implementing CP/M on your Commodore 64. You will need
this information only if you intend to make changes or ad­
ditions to CP/M as supplied with your Commodore 64 and
its Z80 cartridge.

CP/M was one of the first microcomputer operating sys­
tems designed to run on machines of more than one manu­
facturer. It is written in Intel 8080 Assembler language. The
Z80 add-on processor on your Commodore 64 executes a
superset of the 8080 machine language. Any program writ­
ten for the 8080 processor will run on the Z80, but the re­
verse may not be true.

When CP/M is running on your Commodore 64, the 6510
main processor and the Z80 add-on processor are alter­
nately active. The two processors trade control of the com­
puter according to what operations are required. Because
device drivers already reside in your Commodore 64 operat­
ing system, all input and output is performed by the 6510.
The Z80 runs only the CP/M operating system, its utilities,
and applications.

In addition to the standard functions required by the
CP/M operating system, you can access your own special
purpose routines running in 6510 native mode. This is use­
ful, for example, if you want to attach an instrument to the
optional IEEE interface cartridge on your Commodore 64.
You could then easily code a driver for the instrument and
gain access to it through a well defined, and protected,
interface.

8.1 THE STRUCTURE OF CPIM

The principal component of CP/M is the Basic Disk Operat­
ing System (BDOS). All requests for operating system ser­
vices - disk input/output, printer output, screen output ­
are carried out through a set of standard calls to the BDOS.

NOTE: It is pOSSIble to call entry poinTS in the CP/M BIOS directly. This
technique ;s NOT recommended unless you are very sure of what you are

doing. WARNING. Direct BIOS calls may be incompahble with future
CP/M releoses.

108 CP/M ON THE COMMODORE 64

A second major component of CP/M is the Console
Command Processor (CCP). The CCP analyzes and inter­
prets the commands that you enter from the keyboard. ini­
tiating whatever action you request. Of the resident CP/M
system. the CCP occupies the lowest memory areas (see
Figure 6.3).

Transient programs (those not a permanent part of the
BOOS) are loaded into the Transient Program Area (TPA)
and may. if t,hey need the space. overlay the CCP when
executing.

If a program executing in the TPA does overlay the CCP.
the CCP must be reloaded when the transient program
terminates. You will see this CCP reload operation (a "warm
boot") as a line of asterisks appearing on your screen after a
program has finished.

The final major component of CP/M is the Basic Input/
Output System (BIOS). This has nothing to do with the
BASIC language. The BIOS is the component of CP/M that
allows CP/M to be run on a variety of machines. The BIOS
forms a bridge between the BOOS and the individual char­
acteristics of the machine that it runs on. Each machine
has a specially tailored BIOS that supports the hardware
and peripherals attached to it.

The CP/M BIOS is much like the CBM Kernal in your
Commodore 64. Like the Kernal, the BIOS contains a set of
standard routines that give you access to hardware func­
tions.

Your Commodore 64 has a unique BIOS that provides
easy access to the standard Commodore 64 peripherals.
either serial or IEEE.

6.1.1 How CP/M Works on Your Commodore
64

Four specially tailored assembly language programs and the
CP/M operating system are required to run CP/M on your
Commodore 64. Two of the assembly language programs
run under the 6510 microprocessor and two under the Z80
microprocessor:

• 6510 CP/M BOOT program (BOOT65)
• Z80 CP/M BOOT program (BOOT80)

CP/M ON THE COMMODORE 64 109

• 6510 BIOS (BIOS65)
• Z80 BIOS (BIOS80)

The BOOT programs "bootstrap" CP/M. That is, they load
it into memory, initialize some areas, and begin its execu­
tion. Once the BOOT programs have completed their tasks,
they are no longer needed and the memory they occupied is
used for other purposes.

CP/M comes from Digital Research as a core operating
system. It needs an add-on software component called a
BIOS (Basic Input/Output System). The BIOS contains a
set of entry points that perform specific "primitive" tasks
for CP/M, such as:

• Set the track number for the next read or write op­
eration.

• Write a character to the printer.
• Read a character from the keyboard.

CP/M is not concerned with how these tasks are per­
formed. All this work is taken care of in the custom BIOS
written specifically to support a certain hardware environ­
ment. It is this BIOS that allows CP/M to run many differ­
ent machines equipped with many different peripherals.

On your Commodore 64, the CP/M BIOS is in two parts.
One part runs under the Z80 add-on processor (BIOS80)
and the other under the 6510 Commodore 64 main proc­
essor (BI0S65). This arrangement allows the 6510 to serve
as an input/output processor for the Z80, handling all disk,
printer, keyboard, and screen input or output.

The 6510 part of the BIOS initiates execution of CP/M
under the Z80 processor by transferring control to the Z80
BOOT program, which loads CP/M and BIOS80. Whenever a
processor is switched on, it resumes execution at the in­
struction immediately follOWing the instruction that
switched it off. This means that when the Z80 returns con­
trol to the 6510, execution will resume within BI0S65.

When a CP/M program, running on the Z80, requests an
input/output operation, the Z80 BIOS places afunction
code and any required parameter values at predetermined
locations in memory. Remember, memory is shared be­
tween the two processors, which makes it very easy for
them to pass data back and forth.

110 CP/M ON THE COMMODORE 64

Once these parameter values are in place. BIOS80
switches the Z80 out and the 6510 in. The 6510 resumes
execution in the 6510 portion of the BIOS. BIOS65 exam­
ines the function code passed to it by BlOS80 and initiates
the indicated action.

Once the 6510 has completed the action, BIOS65 places
return values and/or flag values into predetermined loca­
tions and switches control back to the Z80 processor.

Under the Z80 processor, execution resumes where it left
off in BlOS80. BlOS80 examines the shared memory areas
to determine the success or failure of the requested func­
tion and carries out any other action necessary to complete
the function.

8.1.2 8510 Memory Use

Figure 6.1 shows the memory allocation as seen from the
6510 running in native mode. Figure 6.2 shows details on
the BIOS65 memory area.

8510 CPIM Memory Map

6510
ADDRESS

$FFFF

*FOOO
6510 KERNAL ROM

$EOOO
6510 I/O SYSTEM

$DOOO
48K RAM AVAILABLE FOR Z80

RUNNING CP/M
$1000

BIOS65 AND SHARED DATA AREAS
*0800

0400 TO 07FF SCREEN RAM
0000 TO 03FF ZERO PAGE AND 6510 STACK

$0000

CP/M ON THE COMMODOqE 64 111

The addresses shown are for the 6510 microprocessor. For
Z80 addresses. subtract $1000 hexadecimal from the ad­
dresses shown (see Section 6.1.3 for an explanation of Z80/
6510 address conversion).

NOTE: If you add the IEEE interface cartridge to your Commodore 64

system, you can run only a 44K version of CP/M The top 4K ($COoo­

$0000) of the CP/M 48K area is used to handle the IEEE interface car­

trodge

BIOS88 Memory Map

6510
ADDRESS

$1000

$OFOO

$OEOO

*0000
BIOS65

$OeOO

$OBOO

.OAOO
SHARED DATA

$0900

DISK I/O BUFFER
$0800

The addresses shown are for the 6510 microprocessor. For
280 addresses. add $FOOO hexadecimal to the addresses
shown (see Section 6. 1.3 for an explanation of Z80/6510
address conversion).

112 CP/M ON THE COMMODORE 64

8.1.3 Addresses under CPIM

You can see from the memory map in Figure 6.3 that the
Z80 processor uses the memory between $1000 and
$BFFF-a 48K byte area. CP/M. however. makes use of fixed
areas in the zero page ($0000-$0100) of memory. This area
is also required by the Commodore 64 operating system.

To avoid a conflict in the use of the zero page and to pro­
vide space for BIOS65. all Z80 addresses have $1000 added
to them. Thus. the Z80 address $0000 becomes actual ad­
dress $1000. Table 6.1 shows the mapping between Z80
addresses and actual memory addresses.

NOTE: If you are using the optional IEEE interface cartridge, you have

only 44K bytes available for CP/M. The IEEE bus access routines require

an additional 4K at the high end of the CP/M memory ($8000- $8FFF).

Table 8.1 Z80 to 8510 Actual Address Mapping

zso ADDRESS
OOOO->OFFF
1000->lFFF
2000->2FFF
3000->3FFF
4000->4FFF
5000->5FFF
6000->6FFF
7000->7FFF
8000->8FFF
9000->9FFF
AOOO->AFFF
BOOO->BFFF
COOO->CFFF
DOOO->DFFF
EOOO->EFFF
FOOO->FFFF

ACTUAL (6510) ADDRESS
1000->lFFF
2000->2FFF
3000->3FFF
4000->4FFF
5000->5FFF
6000->6FFF
7000->7FFF
8000->8FFF
9000->9FFF
AOOO->AFFF
BOOO->BFFF
COOO->CFFF
DOOO->DFFF
EOOO->EFFF
FOOO->FFFF
OOOO->OFFF

NOTE: Notice that to access the 6510 low addresses, you refere'lce the

ZSO high addresses.

CP/M ON THE COMMODORE 64 • 113

6.1.4 Z80 Memory Use

The amount of memory available to CP/M on your Commo­
dore 64 depends on your hardware configuration. If you are
using the standard Commodore 64 serial disk drives and
printer. CP/M can occupy a maximum of 48K bytes. If you
have acquired the IEEE interface cartridge. CP/M can oc­
cupy a maximum of 44K bytes. The IEEE interface car­
tridge consumes 4K at the high end of the CP/M address
space (see Figure 6.1).

You can, of course, generate a CP/M system that is
smaller than the maximum available space. You can do that
if you need space for a routine that must run in Commo­
dore 64 native mode (under the 6510 processor). You can,
for example. generate a 40K CP/M version and have 8K (or
4K if you have the IEEE cartridge) available for your Com­
modore 64 native mode routine. Figure 6.3 shows a dia­
gram of the Z80 address space.

Z8G Memory Map

ADDRESS
44K 48K

$AFFF $BFFF
BIOS80

$AAOO

$9C06

$9400

$0100

$0000

$BBOO

$AC06

$A400

$0100

$0000

BOOS

CCP

TPA
(44K-33,792 bytes)
(48K-37,888 bytes)

ZERO PAGE

Many microcomputer operating systems use the zero page
of memory (addresses between $0000 and $OlDO) to hold
important values. Both CP/M and your Commodore 64

114 CP/M ON THE COMMODORE 64

operating system do this. Table 6.4 shows the contents of
the CP/M Zero Page.

Table 8.2 CP/M Zero Page

ADDRESS CONTENT

$0000- $0003

Contains a jump instruction to the
warm start entry point in the BIOS.

$0004

Contains the current default disk
drive number (O=A and 1=B) in the
low order 4 bits and the I/O byte in
the high order 4 bits.

$0005 - $0007

Contains a jump instruction to the
BOOS main entry point. The value
stored in locations *0006 - *0007 is
the lowest address required by CP/M.

You also use this jump instruction
(or the address) when you make di­
rect BOOS calls.

$0038- $003A

This is Restart Location 7 and is
used by DDT for programmed break­
points (an RST 7 instruction causes
a call to this location).

$005C - $006C

This is the first default file control
block for use by transient programs.

$006C - $007C

This is the second default file control
block for use by transient programs.

CP/M ON THE COMMODORE 64 115

Table 8.2 (Continued)

ADDRESS CONTENT

$0070 - $007F

This location contains the random
record position for random file access
via the first default file control block.

$0080- $OOFF

This is the default 128-byte disk
input/output buffer.

This area also receives the command
line that you enter when your pro­
gram is loaded by the CCP.

NOTE: The areas of rhe zero page not shown in this table are reserved

for future use. You should not use any of these areas in programs you

wrote unless you are sure of their use

6.2 THE BOOT PROGRAMS

The BOOT programs - BOOT65 and BOOT80 - are used
to load CP/M from disk. Once they have completed this
task, the memory they occupy is used for other purposes.

The BOOT65 program is in the file called "CP/M" that you
LOAD and RUN to start execution of the CP/M operating
system on your Commodore 64. You can find a listing of
this program in Appendix E. The actual assembly language
program source is available on one of your CP/M system
diskettes.

You LOAD and RUN BOOT65 as you would any BASIC
program on your Commodore 64. If you LIST it, you will see
that it contains a Single BASIC statement:

10 SYS (2036)

This statement transfers control to the actual BOOT65 code
located at decimal address 2036.

The program then reads in the BIOS65 and BOOT80 pro-

116 CP/M ON THE COMMODORE 64

grams and places them at the correct locations in memory.
Finally, BOOT65 transfers control to the startup code in
BIOS65.

The BOOT80 program is a Z80 assembly language pro­
gram that is the first program to execute when the Z80
processor is switched on. You can find a listing of this prog­
ram in Appendix E. The actual assembly language program
source is available on one of your CP/M system diskettes.

BOOT80 is loaded by the BOOT65 program at the Z80
reset address $0000 (6510 address $1000). When the Z80 is
first turned on, it always begins execution at address
$0000.

BOOT80 loads:

• Z80 BIOS (BIOS80)
• CP/M CCP (CP/M Command Processor)
• CP/M BOOS (Basic Disk Operating System)

When these programs are loaded, BOOT80 transfers control
to the cold start entry point in BIOS80, thus beginning ac­
tual CP/M operating system execution.

8.3 THE BIOS PROGRAMS

The BIOS (Basic Input/Output System) is the specially tai­
lored link between the CP/M operating system and the in­
diVidual peripherals - printer, disk drives, screen­
attached to your Commodore 64.

Each computer that runs CP/M has its own unique BIOS.
On your Commodore 64 the BIOS is in two parts:

• BIOS65 executes under the 6510 main processor.
• BIOS80 executes under the Z80 add-on processor.

These two portions of the BIOS operate together to make
your Commodore 64 peripherals available to CP/M.

Why are there two programs for the BIOS? Your Commo­
dore 64 already has code in place to handle its peripherals.
Thus more memory is made available for CP/M and your
CP/M-based applications by simply provtdtng a link to that
existing code, rather than trying to re-implement the
peripheral-handling code on the Z80.

In operation, BIOS80 is called from CP/M with a request

CP/M ON THE COMMODORE 64 117

for an input/output operation. BIOS80 places required pa­
rameter values and a function flag in certain memory loca­
tions. then switches control from the Z80 back to the 6510
Commodore 64 main processor.

The 6510 resumes execution where it left off in BIOS65.
810565 examines the function code stored in memory to
find out what it should do. carries out the task (usually an
input/output request). places the result in a predetermined
memory location. and switches the Z80 back on.

The Z80 resumes execution where it left off in 810S80.
810S80 retrieves the results passed to it from BIOS65 and
returns the proper information to CP1M.

810S80 is called from the CP/M BOOS to perform the fol-
lowing functions:

• cold start boot
• warm start boot
• console (keyboard) status check
• get keyboard character (console input)
• write character to screen (console output)
• print a character (lister output)
• move disk head to the home position
• select disk
• set track to read/write
• set sector to read/write
• read disk sector
• write disk sector
• check printer status (lister status)
• sector translation

The punch and reader functions of the BIOS are meaning­
less on your Commodore 64. These are null routines in
810580.

Some of the functions listed above simply cause values to
be placed in predefined memory locations. Others result in
a transfer to the 6510 portion of the BIOS where the actual
work is performed.

Before 810580 switches control back to the 6510. it
places afunctton code at location $F900 ($0900 relative to
the 6510). This code. which currently ranges from 0 to 9
and 255. tells BIOS65 what action is required. These func­
tion codes and their meanings are shown in Table 6.3.

118 CP/M ON THE COMMODORE 64

Table 8.3 BIOS80/BIOS85 Function Codes

NUMBER
o
1
2
3
4
5
6
7
8
9

10->254
255

FUNCTION
Read the specified sector
Write the specified sector
Get a character from the keyboard
Write a character to the screen
Check the printer status
Write a character to the printer
Disk format command
Jump to 6510 address $OEOO
Jump to 6510 address $OFOO
Jump indirect via a 6510 address stored

at $F906
Reserved for future use
Execute a cold start reset on your

Commodore 64

Command register: contains
one of the function codes as
shown in Table 6.2.
Data register: used to pass data
and error indicators between
the two BIOS.
Sector register: contains the
current sector number for disk
read and write requests.
Track register: contains the cur­
rent track number for disk read
and write requests.
Drive register: contains the disk
drive number for disk read and
write requests.
Keyboard register: contains the
last character read from the
keyboard.

$0901

$0902

$0903

$0904

$0905

$F902

$F905

$F903

$F904

$F901

Table 8.4 BIOS80/BIOS85 Communication Addresses

ADDRESS CONTENT
zso 6510
$F900 $0900

CP/M ON THE COMMODORE 64 119

BIOS65 and BIOS80 communicate with each other
through a series of contiguous memory locations as shown
in Table 6.4.

6.4 CP/M DISK ORGANIZATION
Your Commodore 64 CP/M BIOS programs provide a com­
pletely compatible interface between your disks and the
CP/M BOOS. AU disk-related functions expected by the
CP/M BOOS are available through your BIOS programs.

The organization of a CP/M disk is different from the
organization of a standard Commodore 64 disk. The CP/M
disk has somewhat less capacity than a Commodore 64
format disk.

A Commodore 64 CP/M disk is formatted as 35 tracks
containing 17 256-byte sectors (0 - 16) where track 1 is
the outermost track and track 35 is the innermost track. A
Commodore 64 CP/M disk can hold a maximum of 136.000
characters of user data.

Notice that the full disk capacity (152.320 characters) is
not available for user data storage.

Table 6.5 shows the allocation of tracks on your Commo­
dore 64 CP/M format disk.

Table 8.5 CP/M Disk Track/Sector AUocations

TRACK SECTOR
1 0

1 1- >4
1 5
1 6- >13

1& 14- >16
2 0- >10
2 11->16
3 0->7
3 8- >16
4- >17 0- >16
18 0- >16
19- 35 0- >16

CONTENT
BOOT65 (Commodore 64 ftle
"CPM")
BIOS65
BOOT80
CP/M CCP (Command Proc­
essor)
CP/M BOOS

BIOS80
CP/M Disk Directory
CP/M Disk Space
CP/M Disk Space
Commodore 64 Directory
CP/M Disk Space

120 CP/M ON THE COMMODORE 64

NOTE: The Commodore 64 Directory Written on track 18 allows you to
start CP/M from Commodore 64 runnIng in native mode Th,s directory

shows that only a single file-CPM-exists on the disk. The standard

Commodore 64 Block Availability Map (BAM) indicates that the disk is

completely full.

8.5 THE CP1M BDOS

The CP/M Basic Disk Operating System (BOOS) provides a
standard interface between CP/M application programs and
the hardware on which they run. All input/output and
operating system service requests are routed through the
BOOS. Because of this, you don't have to write device­
specific code into your application program for every system
that it might run on. The device-specific code for a particu­
lar system is written only once - in the CP/M BIOS.

The standard BOOS interface means that software can be
written and run on any system able to support CP/M, as
long as the software developer stays within the BOOS stan­
dard.

The 39 BOOS functions (numbered 0- 37 and 40 dec­
imal) perform tasks valuable in almost any application. For
example, they

• Read a character from the keyboard.
• Write a character to the keyboard.
• Open a disk file.
• Print a string.
• Write to the printer.
• Delete a file.
• Create a file.

For a list of the BOOS functions, see Table 6.6.
You call the BDOS from Z80 Assembler or other lan­

guages through the BDOS jump vector at zao address
$0005. This jump vector contains a single jump instruc­
tion:

JMP BOOS-ADDRESS

CP/M ON THE COMMODORE 64 121

The bdos-address varies with the size of the CP/M system
you have generated. The JMP instruction itself is placed at
location $0005 when CP/M is loaded.

To use the BOOS functions. you code:

CALL 5

When the BOOS has completed the function. it returns con­
trol to the statement following the CALL statement.

NOTE: Bytes 6 and 7 of the BOOS jump vector contain the lowes, address

required by CP/M (stored as low byte/high byte). This means that your

appl.cation program can use memory up to, but not includIng, this ad­

dress.

BOOS functions are numbered. Some require that you
pass to them the parameter values or the address of a pa­
rameter in certain registers. Some return an indicator or
error code in a register.

When calling a BOOS function. you always load the
BOOS function code in register C. If the function requires
that you pass it parameters. you place:

• Single-byte parameters in register E.
• Double-byte parameters in register pair OE.

If the function returns a value to you. you find:

• Single-byte returns in register A.
• Double-byte returns in register pair HL.

NOTE: The BOOS does NOT preserve values stored in the ZSO registers.
If you want to protect values stored in registers, you should push t"em
onto the stack before you call the BOOS. You can then pop them off the
stack on return from the BOOS call.

122 CP/M ON THE COMMODORE 64

8.5.1 Sample BOOS Function CaD

As an example of a BDOS function call. we will use Function
1, the Console (keyboard) Input function. Function I re­
turns in register A the last character entered from the
keyboard. To use Function 1. you can write code like the
following:

MVI c.t ;LOAO FUNCTION 1 INTO REGISTER C

CALL 0005H ;CALL THE BOOS JUMP VECTOR

WHEN THE BOOS HAS A CHARACTER, IT RETURNS HERE

REGISTER A CONTAINS THE INPUT CHARACTER

STA KEYCHAR ;STORE REGISTER A IN KEYCHAR

VARIABLE

Table 8.8 BOOS F1mctioa8

FUNCTION DESCRIPTION
(Register C)

o SYSTEM RESET

INPUT: NONE
RETURN: NONE

Returns control to the CCP and resets CP/M
as though you rebooted.

1 CONSOLE INPUT

INPUT: NONE
RETURN: A +- character input

Reads a character from the keyboard. Exam­
ines the character to see if it is a CP/M con­
trol character.

CP/M ON THE COMMODORE 64 123

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

2 CONSOLE OUTPUT

INPUT: E +- character to display
RETURN: NONE

Writes a character to the screen.

3 READER INPUT

INPUT: NONE
RETURN: A +- character read

This function is not supported on your
Commodore 64.

... PUNCH OUTPUT

INPUT: E +- character to punch
RETURN: NONE

This function is not supported on your
Commodore 64.

5 LIST OUTPUT

INPUT: E +- character to print
RETURN: NONE

Writes a character to your printer.

124 CP/M ON THE COMMODORE 64

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

8 DIRECT CONSOLE I/O

INPUT: E +- character to display (output)
E +- OFFH (input)

RETURN: A +- character (input)
A +- status (output)

Performs raw console input (read from
keyboard) and output (write to screen).
Characters are transferred through the
BDOS without being examined or changed.

7 GET I/O BYTE

INPUT: NONE
RETURN: A +- I/O byte

The I/O byte function is not supported on
your Commodore 64.

S SET I/O BYTE

INPUT: E +- new I/O byte
RETURN: NONE

The I/O byte function is not supported on
your Commodore 64.

9 PRINT STRING

INPUT: DE +- string address
RETURN: NONE

Writes the character string to the screen.
The string must terminate with a ...".

CP/M ON THE COMMODORE 64 125

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

10 READ CONSOLE BUFFER

INPUT: DE +- buffer address
RETURN: characters in buffer

Reads from the keyboard until a carriage re­
turn or CTL-M is entered or until the
keyboard buffer overflows.

11 GET CONSOLE STATUS

INPUT: NONE
RETURN: A +- console status

Checks the keyboard status. A contains
OFFH if a character is ready; OOH if not.

12 RETURN VERSION NUMBER

INPUT: NONE
RETURN: HL +- version number

Returns the CP/M version number.

13 RESET DISK SYSTEM

INPUT: NONE
RETURN: NONE

Resets the entire disk system to its initial
state.

126 CP/M ON THE COMMODORE 64

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

14 SELECT DISK

INPUT: E +- disk number to select
RETURN: NONE

Selects a disk (A=O and B= 1).

15 OPEN FILE

INPUT: DE +- address of FCB
RETURN: A +- directory code

Opens a disk file for processing. Returns a
255 in A if the file could not be found.

18 CLOSE FILE

INPUT: DE +- address of FCB
RETURN: A +- directory code

Closes a disk file. Returns a 255 in A if the
file could not be found.

17 SEARCH FOR FIRST

INPUT: DE +- address of FCB
RETURN: A +- directory code

Searches for the first file matching the name
given in the FCB. Returns a 255 in A if no
match was found.

CP/M ON THE COMMODORE 64 127

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

18 SEARCH FOR NEXT

INPUT: NONE
RETURN: A oE- directory code

Similar to Function 17. but begins search
where 17 left off. Also returns a 255 in A if
no match was found.

19 DELETE FILE

INPUT; DE oE- address of FCB
RETURN: A oE- directory code

Deletes a disk file. Returns a 255 in A if the
file could not be found.

20 READ SEQUENTIAL

INPUT: DE oE- address of FCB
RETURN: A oE- directory code

Reads the next 128-byte record into the
memory pointed to by the current DMA ad­
dress. Returns a OOH in A if the read suc­
ceeded; non-zero if end-of-file was
encountered.

21 WRITE SEQUENTIAL

INPUT; DE oE- address of FCB
RETURN; A oE- directory code

128 CP/M ON THE COMMODORE 64

FUNCTION
(Register C)

Table &.& (Continued)

DESCRIPTION

Writes the I28-byte record pointed to by the
current DMA address. Returns a OOH in A if
the write succeeded; a non-zero for a full
disk.

22 MAKE FILE

INPUT: DE +- address of FCB
RETURN: A +- directory code

Creates the disk file named in the FCB. Re­
turns a 255 in A if the create failed.

23 RENAME FILE

INPUT: DE +- address of FCB
RETURN: A +- directory code

Renames a disk file. The name of the file is
in the first 16 bytes of the FCB. the new
name is in the next 16 bytes. Returns a 255
in A if the rename fails.

24 RETURN LOGIN VECTOR

INPUT: NONE
RETURN: HL +- login vector

Returns the disk login vector. The least sig­
nificant bit of L represents Disk A and the
next Drive B. When set to I, the drive is on­
line.

CP/M ON THE COMMODORE 64 129

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

25 RETURN CURRENT DISK

INPUT: NONE
RETURN: A +- current disk number

Returns the number of the currently logged
disk (O=A and 1 =B).

28 SET DMA ADDRESS

INPUT: DE +- DMA address
RETURN: NONE

Sets the address of the 128-byte disk sector
buffer.

27 GET ADDR (ALLOC)

INPUT: NONE
RETURN: HL +- ALLOe address

Returns the address of the allocation vector
of the current disk.

28 WRITE PROTECT DISK

INPUT: NONE
RETURN: NONE

Protects the current disk from being written
to.

130 CP/M ON THE COMMODORE 64

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

29 GET READ ONLY VECTOR

INPUT: NONE
RETURN: HL ~ read only vector

Returns a vector indicating which drives are
temporarily write-protected. The least signif­
icant bit of L represents Disk A and the next
Drive B. When set to 1. the drive is write­
protected.

30 SET FILE ATTRIBUTES

INPUT: DE ~ address of FCB
RETURN: A ~ directory code

Sets read only and system file attributes.

31 GET ADDR (DISK PARMS)

INPUT: NONE
RETURN: HL ~ address of DPB

Returns the address of the Disk Parameter
Block.

32 SET/GET USER CODE

INPUT: E ~ user code (SET)
E ~ OFFH (GET)

RETURN: A ~ user code (GET)

CP/M ON THE COMMODORE 64 131

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

Returns or sets the current user code (user
number).

33 READ RANDOM

INPUT: DE ~ address of FCB
RETURN: A ~ return code

Performs a random record read on a disk
file. Return codes are:

01 reading unwritten data
03 cannot close current extent
04 seek to unwritten extent
06 seek past end of disk

34 WRITE RANDOM

INPUT: DE ~ address of FCB
RETURN: A ~ return code

Performs a random record write to a disk
file. Return codes are:

01 reading unwritten data
03 cannot close current extent
04 seek to unwritten extent
05 out of directory space
06 seek past end of disk

132 CP/M ON THE COMMODORE 64

FUNCTION
(Register C) .

Table 8.8 (Continued)

DESCRIPTION

35 COMPUTE FILE SIZE

INPUT: DE ~ address of FCB
RETURN: file size

Returns the size of the file, in records, to the
random record field of the FCB.

38 SET RANDOM RECQRD

INPUT: DE ~ address of FCB
RETURN: NONE

Sets the random record number of a record
that was read sequentially. The random rec­
ord number is placed into the random record
field of the FCB.

37 RESET DRIVE

INPUT: DE ~ drive vector
RETURN: NONE

Resets the disk drives indicated in the drive
vector. The least significant bit of L repre­
sents Disk A and the next Drive B. When set
to 1. the drive is reset.

38 NOT USED

39 NOT USED

CP/M ON THE COMMODORE 64 133-

FUNCTION
(Register C)

Table 8.8 (Continued)

DESCRIPTION

40 WRITE RANDOM WITH ZERO FILL

INPUT: DE ~ address of FCB
RETURN: A ~ return code

Identical to WRITE RANDOM (Function 34),
except that new blocks are zero-filled before
data is moved into them.

8.8 CALLING A Z80 PROGRAM
FROM THE 8510

You sometimes may want to call a zao routine from your
Commodore 64 while it is running in native mode. You
may, for example, want to take advantage of the Z80 regis­
ter structure or its extended instruction set. which make
some routines easier to write or more efficient to execute.

When you first switch on your Z80 processor, it will al­
ways begin execution at its reset address:

6S lOADDRESS $1000- ZSO ADDRESS $0000

To call a Z80 routine from the 6510, you must either:

• Load the routine at 6510 address $1000.
• Place a Z80 jump instruction at 6510 address $1001

that transfers control to the actual code location.

In BOTH cases. 6510 address $1000 (Z80 $0000) must con­
tain a NOP instruction ($00), This is a requirement of the
processor switching hardware. Of course, If you place a
jump instruction at 6510 address $100 I, you must load the
actual Z80 routine elsewhere in memory.

On SUbsequent calls to the Z80, routine execution will re­
sume at the instruction following the last instruction exe­
cuted before the Z80 switched itself off. It does NOT resume
execution at the reset address.

134 CP/M ON THE COMMODORE 64

8.8.1 Some Examples

Suppose you load some Z80 code at 6510 address $1000.
You can transfer control to that code by switching on the
Z80 processor:

LOA

STA

NOP

#0

$DEOO

;LOAD ZERO INTO A

;STORE ZERO IN THE MODE SWITCH

LOCATION

;REQUIRED BY THE SWITCH

HARDWARE

The first time this code is executed, the Z80 will start
executing instructions at $0000 (6510 address $1000); that
address must contain a NOP instruction. Subsequent
executions of the code (without turning off your Commo­
dore 64) will cause the Z80 to resume execution where it left
off when it switched the 6510 back on.

Assume now that you have loaded your Z80 code at 6510
address lllBOOO. This corresponds to a Z80 address of
$AOOO. You can get to this routine by using code similar to
the following:

LOA

STA

LOA

STA

LOA

STA

LOA

STA

LOA

STA

NOP

#$00

$1000

#$C3

$1001

#$00

$1002

#$AO

$1003

#0

$DEOO

;OPCODE FOR A NOP INSTRUCTION

;MEET THE SWITCHING

REQUIREMENT

iZSO JUMP INSTRUCTION OPCODE

;FIRST BYTE OF JUMP INSTRUCTION

;LOW BYTE OF ZSO JUMP ADDRESS

;NEXT BYTE OF JUMP INSTRUCTION

;HIGH BYTE OF ZSO ADDRESS

;LAST BYTE OF JUMP INSTRUCTION

;LOAD ZERO INTO A

;STORE ZERO IN THE MODE

SWITCH LOCATION

;REQUIRED BY THE SWITCH

HARDWARE

CP/M ON THE COMMODORE 64 135

SUbsequent executions of this code (without turning off
your Commodore 64) will cause the Z80 to resume execu­
tion where it left off when it switched the 6510 back on. You
could thus use address $1000 for other purposes after
calling the Z80 routine the first time.

You can return from your Z80 routine by using the code
below:

MVI A,l ;LOAD ONE INTO A

STA OCEOOH ;STORE ONE IN MODE SWITCH

LOCATION

;TO TURN ON THE 6510

NOP ;REQUIRED BY THE HARDWARE

AFTER A MODESW

;THE NEXT TIME IT IS SWITCHED ON, THE ZSO RESUMES

EXECUTION HERE

NOTE: You MUST fOllow Ihe mode swaching store i~struction with a NOP
instruction.

6.7 CALLING A 6510 PROGRAM
FROMTBE Z80

There may be times when you want the 6510. running in
Commodore 64 native mode. to perform some special tasks
for you.

For example. suppose you add the IEEE expansion car­
tridge to your Commodore 64 in order to attach an IEEE
standard instrument. Instruments require special control
commands that can be issued only by the 6510 main proc­
essor.

The 6510 portion of the BIOS (BIOS65) includes a facility
for calling your own code. This facility is implemented
through the BIOS function codes 7. 8. and 9.

136 CP/M ON THE COMMODORE 64

• BIOS function code 7 instructs BIOS65 to transfer
control to:

6510 ADDRESS $OEOO-Z80 ADDRESS $FEOO

• BIOS function code 8 instructs BIOS65 to transfer
control to:

6510 ADDRESS $OFOO-Z80 ADDRESS $FFOO

• BIOS function code 9 instructs BIOS65 to transfer
control indirectly to the instruction whose address
Is stored at:

6510 ADDRESS $0907-Z80 ADDRESS $F907

The code that you load at these locations MUST end with a
6510 RTS instruction. This instruction returns control to
BIOS65. which can then switch the Z80 processor back on.

As you see. function codes 7 and 8 always transfer control
to the same location. If you use both functions 7 and 8.
your programs cannot be larger than $100 bytes (256 dec­
imal). If you use only function code 7. you can expand your
program into the function code 8 space. This gives you a
maximum program size of $200 bytes (512 decimal).

If you need more space than you can get under function
codes 7 and 8. you can use function code 9. When you pass
function code 9 to BIOS65. it transfers control to the ad­
dress stored at 6510 location $OF07. This address can be
anywhere in the 6510 address space.

NOTE: When you use BIOS functiol' 9, the ;nd;rect address you store at

laO address $FF07 (6510 address $OF07) MUST be a 6510 base address.

8.7.1 Switching on the 8510

If you are going to use a 6510 routine. you have to know
how to switch on the 6510 processor. The two processors

CP/M ON THE COMMODORE 64 137

cannot operate at the same time. When you switch one of
them on, the other is automatically switched off.

Processor switching is controlled by storing a mode
switch value in:

6510 ADDRESS $DEOO-ZSO ADDRESS $CEOO

The mode switch values are:

o - activates the ZSO processor
1 _ activates the 6510 processor

Suppose you load some 6510 code at 6510 address $OEOO
that you wish to execute from a Z80 program. You can do
that using code like the following:

MVI A,7 ;lOAD THE FUNCTION CODE INTO A

STA OF900H ;STORE THE FUNCTION CODE IN

COMMAND REGISTER

PREPARE ANY OTHER PARAMETERS

REQUIRED

BY THE CODE YOU HAVE

PLACED AT 6510 ADDRESS $OEOO-ZSO
ADDRESS $FEOO

MVI A,I

STA OCEOOH

NOP

;lOAD ONE INTO A

;STORE ONE IN MODE SWITCH
lOCATION

;TO TURN ON THE 6510

;REQUIRED BY THE HARDWARE

AFTER A MODESW

AFTER COMPLETION OF THE 6510

ROUTIN E, ZSO RESUMES
EXECUTION HERE

From the example above, you can see that it's easy to call
a 6510 routine from the Z80. The 6510 routine that you
write does not have to switch control back to the Z80. The
BIOS65 program takes care of the return to the Z80.

138 CP/M ON THE COMMODORE 64

NOTE: You MUST follow the mode-switching store instruction with a NOP

instruction.

You must. of course. load your 6510 routine into the cor­
rect memory location before you transfer control to it. If you
use BIOS function 9. you must also load the 6510 address
of the code to be executed in indirect address location
$F907 (Z80).

8.8 PROGRAM EXECUTION
UNDER CP/M

Programs destined to execute under CP/M must be stored
in a disk file and have a file name extension of .COM (see
Chapter 5 for an explanation of CP/M file-naming con­
ventions and details on executing programs). User pro­
grams running under CP/M are loaded into the Transient
Program Area (TPA) for execution.

You execute a program under CP/M simply by entering its
name (without the extension). The general form is:

[DI SKID:]PROGRAM-FILENAME

where diskid is an optional disk identifier (A or B) and
program:fllename is the name of the file that contains your
program. The program file MUST have the extension .COM.

Suppose. for example. that you have a program stored in
a file named STARTREK.COM. To execute that program.
you respond to the CP/M prompt (usually A» with:

STARTREK

CP/M will then load the file STARTREK.COM into the TPA
(Transient Program Area) and transfer control to it (at loca­
tion $100). When STARTREK completes its execution. it re­
turns to CP/M via a Z80 RET instruction or via a jump to
location $0000. The return via a jump to location $0000
causes a warm start reboot of CP/M.

CP/M ON THE COMMODORE 64 139

APPENDIX A

COMMODORE 84­
MEMORYMAP

The following charts list which memory locations control placing char­

acters on the screen, and the locations used to change individual char­

acter colors, as well as showing character color codes.

SCREEN MEMORY MAP

10
COLUMN

20 30 39

1063
~

1024 -H--H+t-+--H-+t-+--H-+++-H-+++-H-++-+-+f-++-+-+-l-+--H-++--H
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

t
2023

142 APPENDIX A

10 ~

20

24

The actual values to POKE into a color memory location to change a

character's color are:

¢ BLACK

1 WHITE

2 RED
3 CYAN
4 PURPLE
5 GREEN

6 BLUE
7 YELLOW

8 ORANGE
9 BROWN
1¢ light RED
11 GRAY 1
12 GRAY 2
13 Light GREEN

14 Light BLUE

15 GRAY 3

For example, to change the color of a character located at the upper

left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

JJJ/O

55416
55456
55496
55536
'1\71;

JJtI::m

55736
55776

ibUlb
56056
Il;nql;

auz ro
56256

10
COLUMN

20 30 39

55335
t

10 i

20

24
t

56295

APPENOIX A 143

APPENDIX B

BIBLIOGRAPHY

This bibliography lists a variety of currently available CP/M
and Z80 books. Look at several books covering the topics
that interest you before you make your selection.

Each author covers the topics from a different viewpoint.
Find the book that you feel most comfortable with. Some
people prefer a more technical discussion and should select
a book with in-depth technical detail. Others like a less
technical approach and should seek a book that is easy to
understand.

You also can subscribe to a new magazine devoted exclu­
sively to CP/M:

The User's Guide to CP/M Systems and Software
Box 3050
Stanford, CA 94305

You may be interested in joining the CP/M User's Group,
which provides software written by members for their CP/M
systems. Software is often available for only a copying
charge. You can contact the CP/M User's Group through:

CP/M User's Group
c/o Lifeboat Associates
1651 Third Avenue
New York, NY 10028

B.1 CPIM Books

This list gives some of the most recent CP/M books in
alphabetical order by title. It is by no means a list of all the
CP/M books available today. The prices shown are subject
to change.

CP/M Handbook With MP/M by Rodnay Zaks, SYBEX. pa­
per, $14.95

144 APPENOIX B

This is a reference guide to CP/M, written in a readable
style for beginners.

CP/M Primer by Stephen Murtha. Howard W. Sarns, paper.
$14.95

This book helps both the first-time microcomputer
user and the experienced user who is just beginning to
use CP/M.

CP/M Word Processing by Chris DeVoney, gue Corporation.
paper, $16.50

This book covers the use of word processing packages
developed to run under the CP/M operating system. It
contains detailed evaluations of 17 popular CP/M word
processing packages and tells how to decide which
word processor best meets your needs.

How to Get Started with CP/M by Carl Townsend. Dilithium
Press, paper. $13.95

This book describes the CP/M operating system in an
easy. comfortable style. It eases the reader into under­
standing the details of this widely used microcomputer
operating system.

Osborne CP/M User Guide by Thorn Hogan. Osborne, pa­
per, $12.99

One of the most complete and up-to-date CP/M books
available. This book contains easy-to-understand de­
scriptions of the CP/M operating system and com­
mands. It also contains detailed technical information
for more experienced users.

Using CP/M by Judi Fernandez and Ruth Ashley, John
Wiley, paper, $12.95

This is a complete. detailed introduction to the use of
CP/M, written in an easy-to-understand style.

APPENOIX B 145

Vanloves CP/M Software Directory edited by Rolland Love
and Gerald Van Diver, Vital Information, paper, $24.95.

This up-to-date computer resource for CP/M describes
peripherals, software, and accessories for CP/M sys­
tems. It includes a bibliography and lists of user
groups, magazines. supplies, and computer acces­
sories.

B.2 ZaG Book.

8080/Z80 Assembly Language by Alan Miller, John Wiley,
paper, $10.95

A step-by-step gUide to programming the 8080 and
Z80 microprocessors. This book helps intermediate
and advanced programmers to get even more out of
their 8080/Z80.

Programming the Z80 by Rodnay Zaks, SYBEX, paper,
$15.95

This book covers the Z80 from basic concepts
through advanced programming techniques. Exercises
are offered to measure reader comprehension along the
way. The book's topics range from hardware organ­
izations to data structures.

Z80 and 8080 Assembly Language Programming by Kathe
Spracklen, Hayden Book Co., paper, $9.70

This book covers programming techniques and gives
complete instruction sets for the 8080 and Z80 mic­
roprocessors. Each chapter includes exercises and an­
swers to help readers learn to use the Z80 and 8080
more efficiently.

Z80 Microcomputer Design Projects by William Barden,
Howard W. Sams, paper, $13.95

146 APPENDIX B

This book gives a solid, in-depth look at the popular
Z80 microprocessor. It provides a complete look at the
internal architecture of the Z80.

Z80 Microcomputer Handbook by William Barden, Howard
W. Sams, paper. $11.95

This book is designed to teach you about the Z80.
There is extensive coverage of Z80 machine language
and the Z80 assembler language.

Z80 Microcomputer Programming and Interfacing, Books 1
and 2 by Elizabeth Nichols, Howard W. Sams, paper. Book
1-$12.95. Book 2-$12.95. Book 1 & 2-$24.95

Book 1 introduces computers to readers who have
no background in computer science. Book 2 assumes a
familiarity with Book 1 and continues an in-depth dis­
cussion of the design and use of the popular Z80 mi­
croprocessor. Both volumes are written in a self­
teaching format with exercises and answers.

Z80 User's Manual by Joseph Carr, Prentice-Hall, paper,
$15.95

An all-in-one gUide to the Z80. This book is useful
for both beginning and advanced Z80 users. It in­
cludes in-depth technical details for the Z80.

APPENOIX B 147

APPENDIX C

CP/M COMMAND
LIST

This appendix is a simple listing of CP/M commands. For
details on these commands. see Chapter 5.

Load and execute a program:
[disk-id :]filename <CR>

Change the currently logged disk:
disk-id:

Assemble a Z80 assembler program:
ASMfilename[.parms]

ASM error codes are given in Table 5.4.

Run the CP/M debugger:
DDT [[disk-id :]filename[.type]]

DDT commands are given in Table 5.5.

Get a directory listing:
DIR [disk-id :][filename.type]

Dump a file in ASCII and hexadecimal format:
DUMP [disk-id :]ftlename .type

148 APPENOIX C

Edit a file:
ED [disk-id :]filename[.type] [[disk-id2:]
[filename2[.type2]]]

ED control characters are given in Table 5.8.
ED commands are given in Table 5.9.

Erase a file:
ERA [disk-id :]filename .type

Create an executable module from ASM output:
LOAD [disk-id :]filename

Copy a new version of CP/M:
MOVCP [{* I size }] [*]

Copy a file or disk:
PIP destination =source [command-parameters]

Table 5.10 gives PIP logical devices.
Table 5. 11 gives special PIP devices.
Table 5. 12 gives PIP command parameters.

Rename a file:
REN [disk-id:]new:file= old:file

Save page-num 256-byte pages of memory beginning at the
start of the TPA (loa hexadecimal):

SAVE paqe-nurn [disk-id:]filename[. type]

APPENOIX C 149

Get disk and I/O device status information:
STAT command

Table 5.13 shows STAT command options.
Table 5.14 shows STAT command attributes.

Submit a file for batch execution:
SUBMIT [disk-id:]fllename [parameters]

Generate a new CP/M system:
SYSGEN [[disk-ld:]jUename.type]

Print a file to the screen:
TYPE [disk-id:)filename.type

Change the user number:
USER [user-num]

Include keyboard data in your SUBMIT file:
XSUB

150 APPENOIX C

SPACE

LEFT/RIGHT

APPENDIXD

ASCII, CHR.,
AND HEXADECIMAL
CHARACTER CODES

When running in native mode your Commodore 64 uses
two sets of character codes:

• CHR $ Codes (see Appendix F of your Commodore 64
User's Guide).

• Screen Display Codes (see Appendix E of your
Commodore 64 User's Guide).

CP1M employs another character code set called the ASCn
Character Codes (shown in Table 0.1 below).

NOTE: The CTRL-Shifted column of Table 0.1 shows the values generated

when you hold the" key down and press the character key.

When you use the CONFIG utility to alter character code
values, you must supply the ASCII hexadecimal value of
the new character. Therefore, the character code values
shown in Table 0.1 are expressed in hexadecimal.

If you're not sure what a hexadecimal value is. don't
worry. Look up the character in Table D. 1 and use the value
shown (including the letters).

Table 0.1 ASCII Character Codee (Ba:adecilDai Valuee)

CHARACTER HEX VALUE CTRL SHIFTED
03 03
08 18
00 00
IB 7F

lC/1D 10
M'lin.:.iM- 1E /1 F 1F

20 20

APPENDIX 0 151

Table 0.1 (Coatiaued)

CHARACTER HEX VALUE CTRL SHIFTED

I..•a­•­..•-II
I•­....­••..-•­••..•II•

152 APPENDIX D

21
22
23
24
25
26
27
28
29
2A
2B
2C
20
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
40
41
42
43
44
45
46
47
48
49
4A

21
22
23
24
25
26
27
28
29
2A
2B
7B
20
70
5C
00
31
32
33
34
35
36
37
7B
70
7B
70
60
01
02
03
04
05
06
07
08
09
OA

Table 0.1 (Continued)

CHARACTER HEX VALUE CTRL SHIFTED..•••­..•....••••......•­•..
III•Ell..•..........•Ell••..
EJI­..

4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5C
5E
5F
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73

OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
7C
7E
5F
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13

APPENDIX D 153

Table 0.1 (Continued)

CHARACTER HEX VALUE CTRL SHIFTED......•..•mm
III
III
mm
iiim

154 APPENDIX D

74
75
76
77
78
79
7A
80
81
82
83
84
85
86
87

14
15
16
17
18
19
lA
81
81
83
83
85
85
87
87

APPENDIX E

BIOS AND BOOT
LISTINGS

This appendix gives the source listings for the BIOS and
BOOT programs on the 6510 and the Z80.

Xerox to Commodore 84 Receive Utility

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

0100 TPA EQU 100H

005C FCB EQU 005CH

0080 DMADDR EQU OO8OH

oooD CR EQU ODH

0006 ACK EQU O6H

0015 NAK EQU ISH

ooסס BOOT EQU OOOOH

0005 BOOS EQU ooo5H

CEOO SIO EQU OEOOH

FFOO MEM EQU OFFOOH

0300 PGM65 EQU 0300H

0080 S1ZE65 EQU 128

;START ADDRESS OF PROGRAM

;FILE CONTROL BLOCK

;DMA ADDRESS

;CARRIAGE RETURN

;BUFFER MEMORY

SYNTAX FOR COMMAND IS

RECEIVE FILENAME. EXT

0100

0100 31D802

ORG TPA

LXI SP,STACK ;SET UP LOCAL STACK

CHECK FORVALID FILENAME

0103 113802

0106 3A5DOO

LXI

LOA

D,NONAME ;NONAME MESSAGE

FCB+ 1

APPENDIX E 155

0109 FE20 CPI

0108 CAE201 JZ DONE ;IF SPACE, NO NAME GivEN

010E 115802 LXI D,BADNAM ;CHECK FOR AMBIGUOUS NAME

0111 215COO LXI H,FCB

0114 3E3F Myl A''>', .
0116 0610 MYI B,16 ;COUNTER

0118 BE QLOOP: CMP M ,IS IT'?'

0119 CAE201 JZ DONE ;IF SO, BAD NAME

one 23 INX H

0110 05 DCR B

011E C21801 JNZ QlOOP ;DO 16 TIMES

0121 118000 LXI D,DMADOR

0124 C01702 CAll SETDMA

TRANSFER 6510 CODE TO ssoo (OFEooH)

0127 0680 Myl B,SIZE65

0129 210003 LXI H,PGM65

012C noose LXI D,OFEooH

012F 78 MOy A,B

0130 A7 ANA A

0131 CA3COI JZ SKIP

0134 7E lOADLP MOy A,M

0135 12 STAX 0

0136 23 INX H

0137 13 INX 0

0138 05 DCR B

0139 C23401 JNZ lOADLP

GETREADY BYOPENING FilES

013C 115COO SKIP: LXI D,FCB

013F COl 002 CALL DelETE

0142 115Coo LXI O,FCB

0145 C02302 CAll MAKE

156 APPENDIX E

0148 117602 LXI D,NODIR

0148 3C INR A ;WAS 255 IF NO FILE SPACE

014C CAE201 JZ DONE

0I4F 118000 LXI D,DMADDR

0152 CD1702 CALL SETDMA

0155 AF READS: XRA A

0156 328702 STA POINT

0159 3E06 GNEXT: MVI A,ACK ;SENDINITIAL ACK

0158 32FFFE G8lK. STA OFEFFH ,1/0 LOCATION

0I5E 3E07 MVI - A,7

0160 32ooF9 STA OF9OOH

0163 3EOI MVI A,I

0165 3200cE STA OCEooH

0168 00 NOP

NEEDTEST FOR ERROR

0169 3AFFFE LOA OFEFFH

016C A7 ANA A

0160 C2C401 JNZ AGAIN

0170 118000 LXI D,DMADDR

0173 3A8702 LOA POINT

0176 83 ORA E

0177 5F MOV E,A

0178 2100FF LXI H,MEM

0178 7E MOV A,M

017C FE3A CPI

017E C2C401 JNZ AGAIN

0181 AF XRA A

0182 328602 STA 8ADDAT

0185 CDE801 CALL GY8TE

0188 A7 ANA A

0189 CAD901 JZ FINISH

APPENDIX E 157

018C FE20 CPI 32

018E C2C401 JNZ AGAIN

0191 OEOO GETQ: MVI C,O ;CHECKSUM

0193 47 MOV 8,Z ;COUNTER

0194 C5 OOLP: PUSH 8

0195 CDE801 CALL G8YTE

0198 12 STAX 0

0199 IC INR E

Ol9A CI POP 8

0198 81 ADD C

Ol9C 4F MOV C,A

0190 05 OCR 8

Ol9E C29401 JNZ OOLP

OIAI C5 PUSH 8

OlA2 CDEOI CALL C8YTE

OIAS C1 POP 8

01M 81 ADD C

01A7 C2C401 JNZ AGAIN

01M 3AB602 LDA BADDAT

01AD 87 ORA A

OIAE C2C401 JNZ AGAIN

0181 3A8702 LDA POINT

0184 C620 ADI 32

0186 328702 STA POINT

01B9 FE80 CPI 128

0188 C25901 JNZ GNEXT

OIBE CDC901 CALL SWRITE

01C1 C35501 JMP READS

01C4 3EI5 AGAIN: MVI A,NAK

01C6 C35801 JMP G8LK

158 APPENDIX E

01C9 115COO SWRITE: LXI D,FCB

OlCC C02902 CALL WRITE

OlCF 119502 LXI D,DFULL

OlD2 87 ORA A

0103 C2E201 JNZ DONE

OlD6 C9 RET

OlD7 00 NOP

OID8 00 "lOP

O1D9 115COO FINISH: LXI D,FCB

OIDC CD2F02 CALL CLOSE

OlDF 11AI02 LXI D,EOTRAN

OlE2 CD3502 DONE. CALL PRINT

O1E5 C30000 JMP BOOT

OlE8 CDF501 GBYTE: CALL GNIB

OIEB 87 ADD A

OIEC 87 ADD A

OlEO 87 ADD A

OlEE 87 ADD A

OIEF 47 MOV B,A

O1FO CDF501 CALL GNIB

01F3 80 ADD B

OlF4 C9 RET

OIF5 23 GNIB: INX H

O1F6 7E MOV A,M

OlF7 FE30 CPI '0'

OIF9 DA1102 JC NOTHEX

01FC FE3A CPI '9'+1

01FE OAOE02 JC NUMBER

0201 FE41 CPI 'A'

0203 DA1102 JC NOTHEX

0206 FE47 CPI 'F'+ 1

0208 021102 JNC NOTHEX

020B 0637 ALPHA: SUI 'A'· I 0

APPENDIX E 159

0200 C9 RET

020E D630 NUMBER: SUI O'

0210 C9 RET

0211 3EFF NOTHEX: MVI A,OFFH

0213 321!602 STA BADDAT

0216 C9 RET

0217 OE1A SETDMA: MYI C,26

0219 C00500 CALL BDOS

021C C9 RET

021D OE13 DELETE: MVI C,19

021F C00500 CALL BOOS

0222 C9 RET

0223 OE16 MAKE. MVI C,22

0225 C00500 CALL BOOS

0228 C9 RET

0229 OE15 WRITE: MYI C,21

0228 C00500 CALL BOOS

022E C9 RET

022F OE10 CLOSE· MVI C,16

0231 C00500 CALL BOOS

023.4 C9 RET

0235 0E09 PRINT· MVI C,9

0237 C00500 CALL BDOS

023A C9 RET

023B 46494C454E NONAME: DB 'FILENAME MUST BE SPECIFIED',ODH,ODH,'$'

0258 414D424947 BADNAM: DB 'AMBIGUOUS FILES NOT

ALLOWED',ODH, ODH, '$'

160 APPENDIX E

0276 4E4F204449 NODIR: DB 'NO DIRECTORY SPACE AVAILABLE'

0292 000024 DB ODH,ODH:$'

0295 4449534B20 DFULL: DB 'DISK FULL'

029E 000024 DB ODH,ODH:$'

O2A1 5452414E53 EOTRAN· DB 'TRANSFERCOMPLETE:,ODH,ODH:$'

0286 BADDAT: OS

02B7 POINT· OS

02B8 OS 32

02DB STACK EQU $

Commodore 84 Copy utWty 1.0

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

0100

F800

F900

F901

F902

F903

F904

0001

CEoo

0000

0001

0006

0005

0000

0000

oooA

ORG

EQUATES

BUFFER EQU

CMD EQU

DATA EQU

SECTOR EQU

TRACK EQU

DISKNO EQU

OFF EQU

MODESW EQU

VICRD EQU

VICWR EQU

VICFMT EQU

BOOS EQU

BOOT EQU

CR EQU

LF EQU

100H

OF8ooH

OF900H

OF901H

OF902H

OF903H

OF904H

1

OCEooH

o
1

6

0005H

OOOOH

ODH

OAH

;CARRIAGE RETURN

;L1NE FEED

APPENDIX E 161

oooc = CLS EQU OCH ;CLEAR SCREEN

0100 316B06 START: LXI SP,STACK

0103 111403 LXI D,COPMSG

0106 C00503 CALL PRINT ;PROGRAM NAME, ETC.

0109 CD0003 INlT04: CALL _ CONIN

010C FE31 CPI '1'

OlOE CA2301 JZ FORMAT

0111 FE32 CPI '2'

0113 CAD701 JZ BACKUP

0116 FE33 CPI '3'

0118 CA7BOl JZ SYSTEM

011B FE34 CPI '4'

0110 CAOOOO JZ BOOT

0120 C30901 JMP INlT04

0123 llA603 FORMAT LXI D,FMTMSG ;FORMAT A DISK

0126 C00503 CALL PRINT

0129 CDDB02 CALL CRORRS ;GET KEyBOARD INPUT

012C cxooo: JZ START ;IF RUN/STOP, GO TO MENU

012F 116104 LXI D,FMTING ;FO~TIING MESSAGE

0132 COO503 CALL PRINT

0135 3E06 MVI A,VICFMT

0137 CooA03 CALL 106510 ;SENDFORMAT COMMAND TO

6510

013A 3A01F9 LOA DATA ;CHECK FOR ERROR

0130 A7 ANA A

013E C27501 JNZ FMTERR

0141 21ooF8 LXI H.BUFFER ;FILL DISK BUFFER WITHE5's

0144 3EE MVI A,OE5H ; FOR DIRECTORY SECTORS

0146 77 FMTO: MOV M,A

162 APPENDIX E

0147 2C INR L

0148 C24601 JNZ FMTO ;00 THIS 256 TIMES

0148 3E03 MVI A,3

0140 3203F9 STA TRACK ;DIRECTORY TRACK

0150 3EOO MVI A,O

0152 3204F9 STA DISKNO ;FORCE DRIVE 0

0155 3EOO MVI A,O ;INITIAL SECTOR

0157 3202F9 FMTl: STA SECTOR ;SET SECTOR

015A 3EOI MVI A,VICWR ;GETREADY FOR WRITE

015C CooA03 CALL 106510 ;GODOIT

015F 3A01F9 LOA DATA ;A=OIFOK

0162 A7 ANA A

0163 C27501 JNZ FMTERR

0166 3A02F9 LOA SECTOR

0169 3C INR A

016A FE08 CPI 8 ;00 ONLY SECTORS 0-7

016C C25701 JNZ FMTl .ioos UNTIL DONE

016F 118704 LXI D,FMTDON

0172 C37502 JMP DONE

0175 119A04 FMTERR: LXI D,FMTERM

0178 C37502 JMP DONE

017B 110304 SYSTEM: LXI D,SYSMSG ,SYSTEM TRACKS ONLY

017E C00503 CALL PRINT

0181 112905 LXI D,SRCMSG

0184 COO503 CALL PRINT

0187 116905 LXI D,PRSMSG

018A CD0503 CAll PRINT

0180 CDDB02 CAll CRORRS

$190 cxoooi JZ START ,IFSPACEBAR, GO TO MENU

0193 CDEA02 CALL CRLF

APPENDIX E 163

0196 216B06 LXI H,MEM ;BEGINNING OF MEMORY SPACE

0199 3EOI MVI A,I

019B CD8402 CAll RDTRK ;READ TRACK I

019E 3E02 MVI A,2

OIAO CD8402 CAll RDTRK ;READ TRACK 2

0lA3 3EI2 MVI A,18

01A5 CD8402 CAll RDTRK ,READ TRACK 18

0lA8 114905 LXI D,DSTMSG ,PRINT DESTINATION MESSAGE

OIAB C00503 CAll PRINT

OIAE 110F06 LXI D,RTNMSG

OIBI CD0503 CAll PRINT

0184 CDOOO3 SYSI· CAll CONIN

O1B7 FEOD CPI CR ,WAIT FOR CARRIAGE RETURN

O1B9 C28401 JNZ SYSI

O1BC CDEA02 CAll CRLF

OIBF 216B06 LXI H,MEM ,SETUP FOR WRITE ***

O1C2 3EOI MVI A,I

O1C4 CDAE02 CALL WRTRK

O1C7 3E02 MVI A,2

0lC9 CDAE02 CAll WRTRK

OICC 3EI2 MVI A,18

OICE CDAE02 CAll WRTRK

0101 118E05 LXI D,SYSDQN

0104 C37502 JMP DONE

0107 IIAC05 BACKUP: LXI D.8AKMSG ,BACKUP DISK

OIDA C00503 CAll PRINT

164 APPENDIX E

0100 116905 LXI O,PRSMSG

OlEO COO503 CALL PRINT

01E3 COOB02 CALL CRORRS

01E6 CAOOQl JZ START

01E9 COEA02 CALL CRLF

01EC 3EOI MVI A,l ;START WITHTRACK 1

01EE 3203F9 STA TRACK

01Fl 3E05 MVI A,5 ;00 OUTER LOOP 5 TIMES

01F3 324A06 STA OUTE~

01F6 3A03F9 BKLP: LOA TRACK

OlF9 324B06 STA WTRACK ;SAVE FOR WRITE TRACK

01FC 3E07 MVI A.7

01FE 324906 STA INNER ;INNERLOOPCOUNTER

0201 112905 LXI O,SRCMSG

0204 C00503 CALL PRINT

0207 110F06 LXI O,RTNMSG

020A C00503 CALL PRINT

0200 COOOO3 BKROI. CALL CONIN

0210 FEOO CPI CR

0212 C20002 JNZ BKROI

0215 216B06 LXI H,MEM ;START OF AVAILABLE MEMORY

021B 3A03F9 BKRO: LOA TRACK

021B COB402 CALL ROTRK

021E 3A03F9 LOA TRACK

0221 3C INR A

0222 3203F9 STA TRACI(

0225 3A4906 LOA INNER

022B 3D OCR A

0229 324906 STA INNER

022C C21B02 JNZ BKRO

022F 3A4B06 LOA WTRACK

APPENDIX E 165

0232 3203F9 STA TRACJ< ;RESTORE TRACK POINTER

0235 3E07 MVI A,7

0237 324906 STA INNER ;INNERCOUNTER

023A 114905 LXI D,DSTMSG

023D CD0503 CALL PRINT

0240 110F06 LXI D,RTNMSG

0243 C00503 CALL PRINT

0246 CDOOO3 BKWR1: CALL CONIN

0249 FEOD CPI ODH

024B C24602 JNZ BKWRI

024E 216B06 LXI H,MEM ;START OF MEMORY AGAIN

0251 3A03F9 BKWR: LDA TRACK

0254 CDAE02 CALL WRTRK

0257 3A03F9 LOA TRACK

025A 3C INR A

025B 3203F9 STA TRACK

025E 3A4906 LDA INNER

0261 3D DCR A

0262 324906 STA INNER

0265 C25102 JNZ BKWR

026B 214A06 LXI H,OUTER

0268 35 DCR M

026C C2F601 JNZ BI<LP

026F 11FC05 LXI D,BAKDON

0272 C37502 JMP DONE

0275 C00503 DONE. CALL PRINT ,PRINT DONE MESSAGE

0278 l1B804 LXI D,ANYKEY

027B COO503 CALL PRINT

027E CD0003 CALL CONIN ,WAIT FOR ANY J<EY

0281 C3000l JMP START

0284 3203F9 RDTRK: STA TACK ,A=TRACK ON ENTRY

166 APPENDIX E

0287 3EOO MYI A,O ;START WITHSECTOR 0

0289 3202F9 RD1: STA SECTOR

028C 3EOO MVI A,YICRD ;READ SECTOR COMMAND

028E CDOA03 CALL 106510 ;00 DO IT

0291 3A01F9 LDA DATA

0294 A7 ANA A

0295 C2FA02 JNZ RDERR ,READ ERROR IF< >0

0298 ll00F8 LXI D,BUFFER

029B lA RD2: LDAX D ;GETCHARACTER FROM BUFFER

029C 77 MOY M,A ; AND PUT IN MEMORY

029D 13 INX D

029E 23 INX H ,BUMP POINTERS

029F 7B MOY A,E ;DONE 256 YET?

02AO A7 ANA A

02Al C29B02 JNZ RD2 ;JUMP IF NO

02A4 3A02F9 LDA • SECTOR

02A7 3C INR A

02A8 FEll CPI 17 ,17= LAST SECTOR + 1

02AA C28902 JNZ RDI

02AD C9 RET

02AE 3203F9 WRTRK: STA TRACK ;A = TRACK ON ENTRY

02Bl 3EOO MYI A,O

02B3 3202F9 WR1: STA SECTOR

0286 llOOF8 LXI D,BUFFER

02B9 7E WR2: MOY A,M

02BA 12 STAX D ,PUTCHAR IN BUFFER

028B 23 INX H

028C 13 INX D ,INCREMENT POINTERS

028D 7B MOY A,E ;DONE 256 YET?

02BE A7 ANA A

028F C2B902 JNZ WR2 ;JUMP IF NO

02C2 3EOI MVI A,YICWR ;SECTOR WRITE COMMAND

02C4 CDOA03 CAll 106510 ;00 DO IT

APPEtoolDIX E 167

C12C7 3AOlF9 LOA DATA

C12CA A7 ANA A

02CB C2F402 JNZ WRERR ;JUMP IFWRITE ERROR

C12CE 3A02F9 LOA SECTOR

C12D1 3C INR A

C12D2 FEll CPI 17 ;17= LAST SECTOR + 1

0204 C2B302 JNZ WRI ;KEEP READING

C12D7 C9 RET

0208 FE20 CRI. CPI 20H ;SPACEBAR?

02DA C8 RZ

02DB CDOOO3 CRORRS· CALL CONIN

C12DE FEOD CPI CR ;CARRIAGE RETURN

02EO C2DB02 JNZ CRl

02E3 A7 ANA A ;KILL ZERO FLAG

02E4 C9 RET

02E5 OEC12 CONOUT: MYI C,2

02E7 C30500 JMP BOOS

C12EA lEOD CRLF: MYI E.CR

02EC CDE502 CALL CONOUT

02EF lEOA MYI E,lF

02F1 C3E502 JMP CONOUT

C12F4 111006 WRERR: LXI D,WRMSG

02F7 C37502 JMP DONE

02FA 113306 RDERR: LXI D,RDMSG

02FD C37502 JMP DONE

0300 OEOI CONIN: MYI c.i
0302 C30500 JMP BOOS

0305 OE09 PRINT: MYI C,9

0307 C30500 JMP 8005

030A 3200F9 106510: STA CMD ,PUT A IN 6510 COMMAND

REGISTER

16B APPENDIX E

0300 3EOI

030F 3200cE

0312 00

0313 C9

MVI

STA

NOP

RET

A,OFF

MODESW ;TURN OFF zso

TEXT AND MESSAGES:

0314 OC0A434F4D COPMSG· 08

0333 ODOAOA 08

0336 2020312E20 08

0349 2020322E20 08

035C 2020332E20 08

0378 2020342E20 DB

0388 504C454153 DB

03A6 OCOA464F52 FMTMSG: DB

038E 494E495449 DB

0309 OA43415554 DB

03FD 504C414345 DB

04IC 4452495645 DB

0436 202020204F DB

043F 5052455353 DB

ClS,lF:COMMODO~E 04 UTILITY 1 0'

CR,lF,lF

1. FORMAT DISK',CR,lF

'2. BACKUP DISK',CR,lF

'3. COpy SYSTEM TRACKSONlY',CR,lF

'4. EXIT',CR,lF,lF

'PLEASECHOOSE FUNCTION (1-4) $'

ClS,lF:FORMAT DISK UTllITY',CR,lF,lF

'INITIALIZES DISK FOR CP/M',CR,lF

IF:CAUTIONI FORMAT ERASES All

DATA',CR,lF,lF

'PLACE DISK TO BE FORMAITED IN',CR,lF

'DRIVE 0 AND PRESS ENTER',CR,lF,lF

, OR',C~,lF,lF

'PRESS SPACEBAR TO RETURN TO MENU $'

0461 ODOAOA464F FMTING: DB

04B3 ODOAOA24 DB

04B7 464F524D41 FMTDON: DB

049A 492043414E FMTERM: DB

04BB 5052455353 ANYKEY: DB

0403 OC0A535953 SYSMSG· DB

04Fl 434F504945 DB

051B 544F20534C DB

CR,lF,lF:FORMAITING DISK, PLEASE WAIT..:

CR,lF,lF:$'

'FORMAT COMPLETE',CR,lF,lF:$'

'I CANNOT FORMAT THIS DISK!',CR,lF,lF:$'

'PRESS ANY KEYTO CONTII\lUE $'

ClS,lF:SYSTEM TRACKCOPY UTllITY',CR,lF,lF

'COPIES SYSTEM TRACKS FROM MASTER

DISK',CR,LF

'TO SLAVE DISK',CR,lF,lF:$'

0529 494E534552 SRCMSG: DB

0549 494E534552 DSTMSG: DB

'INSERT MASTERDISK IN DRIVE O',CR,lF:$'

'INSERT SLAVE DISK IN DRIVE O',CR,lF:$'

APPENDIX E 169

0569 5052455353 PRSMSG· DB 'PRESS RETURN (OR SPACEBAR FOR MENU) $'

058E 5359535445 SYSDON: DB 'SYSTEM TRACK COpy COMPLETE',CR,LF,LF;$

05AC OC0A444953 BAKMSG; DB ClS,lF:DISK BACKUP UTIUTY',CR,lF,lF

OSC.4 5.4.48452045 DB 'THE ENTIRE MASTER DISK IS',CR,LF

05EO 434F504945 DB 'COPIED TO THE SLAVE DISK',CR,LF,LF

05FB 24 DB '$'

05FC 4241434B55 BAKDON: DB 'BACKUP COMPLETE',CR,lF,lF:$'

O6OF 5052455353 RTNMSG: DB 'PRESS RETURN $'

0610 OOOAOA4449 WRMSG: DB CR,lF,lF:DISJ<WRITE ERROR',CR,LF:$'

0633 ODOA0A4449 RDMSG: DB CR,LF,LF:DISK READ ERROR',CR,lF:$'

0648 WTRACI< OS 1

0649 INNER OS 1

064A OUTER OS 1

064B OS 32

O66B STACK QU s
O66B MEM EQU $;***

Z8G Bootstrap Routine
for the Commodore 84

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

This routine is loaded from Track I, Sector 5 of the
Commodore 64 CP/M disk by a routine in BIOS65.

The load address is OOOOH (with respect to the Z80 CPU).
When the Z80 is enabled this program loads the Z80 BIOS
and CCP and BOOS into RAM and jumps to it.

3400 =

OOIC =

170 APPENDIX E

CCP EQU

;CCP EQU

:CCP EQU

NSECTS EQU

3400H

00001-1

OIOOH

lCH

;FORMAKING BOOTO.HEX

;FOR MAKING Boon. HEX

F903

F902

F904

FCFF

4A33

0000

F900

0001

CEOO

F901

F800

4AOO

TRACK EQU

SECTOR EQU

DISKNO EQU

10TYPE EQU

KYBDMD EQU

VICRD EQU

CMD EQU

OFF EQU

MODESW EQU

DATA EQU

BUFFER EQU

BOOT EQU

OF903H

OF902H

OF904tl

OFCFFH ;10 SETUP BYTE IN aIOS65

CCP + 1633H ;CAPS LOCK FLAG

o
OF900H

01H

OCEOOH

OF901H

OFBOOH

CCP+ 1600H

0000

0000 00

0001 110034

0004 3EOO

0006 3204F9

0009 2601

0008 2E06

OOOD 7C

OOOE 3203F9

0011 7D

0012 3202F9

0015 3EOO

0017 3200F9

00IA 3EOI

00IC 3200CE

OOlF 00

0020 3A01F9

0023 B7

0024 C20DOO

ORG OOOOH .zeo RESET LOCATION

NOP ;NOP REQUIRED FOR HARDWARE

LXI D,CCP ;STARTOF LOAD ADDRESS

MVI A,O

STA DISKNO ;LOAD IN FROM DRIVEA

MVI H,I ;READ BEGINNING TRK I, SEC 6

MVI L,6

LOADI MOV A,H

STA TRACK

MOV A.L

STA SECTOR

MVI A,VICRD :SECTOR READ COMMAND

STA CMD

MVI A,OFF

STA MODESW ;TURN OFF SELF

NOP

LDA DATA ;WAS TRANSFER OK?

ORA A

JNZ LOADI ;JUMP IF NO

OUTPUT '*' TO SHOW LOADING

0027 3E2A

0029 3201F9

002C 3E03

OO2E 3200F9

0031 3EOI

MVI

STA

MVI

STA

MVI

DATA

A,3

CMD

A,OFF

APPENDIX E 171

0033 3200cE

0036 00

STA MODESW

NOP

MOVE SECTOR TO MEMORY

0037 0l00F8

oo3A OA

ooas 12

OO3C OC

ooso lC

ooss C23Aoo

LXI

lOAD2: lDAX

STAX

INR

INR

JNZ

B,BUFFER

B

D

C

E

lOAD2

UPDATE POINTERS

CP/M Version 2.2 System
Relocator - 2/80

CP1M Relocator Program. IDcluded with the Module To
Perform the Move from 900B to the DestiDatioD
Address

COPYRIGHT © 1980
DIGITAL RESEARCH

Modified for Use OD the Commodore 84

MODIFICATIONS COPYRIGHT © 1982
COMMODORE INTERNATIONAL

QO.41

QO.42 2C

QO.43 7D

INR D

INR l

MOV A,l

CHECK FOR END" OF TRACK

0044 FEll

0046 DA4Coo

QO.49 24

QO.4A 2EOO

172 APPENDIX E

CPI

JC

INR

MVI

17

lOAD3

H

L,O

OllE C21801 JNZ QLOOP ;DO 16 TIMES

0121 118000 LXI D,DMADDR

0124 CDOD02 CALL SETDMA

0127 3E07 MVI A,07H ;1200 BAUDDATA

0129 D300 OUT 0

012B 3E18 MVI A,18H

012D D306 OUT 6

012F 210001 LXI H,OIOOH

0132 CD0602 CALL SETUP

0135 21Cl03 LXI H,03CLH

0138 CD0602 CALL SETUP

013B 214404 LXI H,0444H

013E CD0602 CALL SETUP

0141 216805 LXI H,0568H

0144 CD0602 CALL SETUP

0147 115COO LXI D,FCB

014A CD1302 CALL OPEN

014D 116002 LXI D,NOFILE

0150 3C INR A ;WAS 255 IF NO FILE

0151 CAA201 JZ DONE

0154 CDFCOI WTACK: CALL SIN ;WAIT FOR INITIAL ACK

0157 FE06 CPI ACK

0159 C25401 JNZ WTACK

015C aeoo RDNEXT: MVl A,O

015E 328F02 STA POINT ;QUARTER SECTOR POINTER

0161 115COO LXI D,FCB

0164 CD1902 CALL READ

0167 B7 ORA A

0168 C28801 JNZ EOF

0168 CDA801 AGAIN, CALL SEND ,SEND32 8YTES

016E CDFCOI WTANS: CALL SIN

0171 FE15 CPI NAK

APPENDIX E 185

0173 CA6801 JZ AGAIN ;BAD CHECKSUM, SEND AGAIN

0176 FE06 CPI ACK

0178 C26EOI JNZ WTANS ;IF NOT ACK, KEEP WAITING

0178 3A8F02 LDA POINT ;POINT TO QUARTER

017E C620 ADI 32

0180 328F02 STA POINT

0183 FE80 CPI 128

0185 CASCOI JZ RDNEXT ;IF 0, READ ANOTHER SECTOR

0188 C36801 JMP AGAIN ;SEND NEXT QuARTER

0188 3E3A EOF, MV' A'·' ;OUTPUT START OF STRING,.
018D CDFOOI CALL SOUT

0190 3E30 MVI A,'O'

0192 CDFOOI CALL SOUT

0195 3E30 MVI A,'O'

0197 CDFOOI CALL SOUT

019A 3EDD MVI A.CR

019C CDFOOI CALL SOUT

DI9F 117AD2 LXI D,EOTRAN

01A2 CDIF02 DONE· CALL PRINT

OIAS C30000 JMP BOOT

0lA8 3E3A SEND: MVI A"

DIM CDFOOI CALL SOUT

OIAD 3E20 MVI A,32

OlAF CDD901 CALL SHOUT ;NUMBER OF DATA 8YTES

0lB2 OEOO MVl C,O iCLEAR CHECKSUM

0184 218000 LXI H,DMADDR

0lB7 3A8F02 LDA POINT ;POINT TO SECTOR QUARTER

OIBA B5 ORA L

OIBB 6F MOV L,A ,OR DATA INTO LSB

186 APPENDIX E

OIBC 79 SENDI: MOV A,C ;FORM CHECKSUM

OIBD 86 ADD M

OIBE 4F MOV C,A

OIBF 7E MOV A,M ;GETCHARACTER

OICO E5 PUSH H ;SAVE ADDRESS

01CI CDD901 CALL SHOUT ,OUTPuT HEXDIGITS

01C1 EI POP 101

0lC5 2C INR L ;NEXT BYTE

0lC6 7D MOV A,L

0lC7 E61F ANI 1FH ;CHECK FOR MOD 32

0lC9 C2BCOI JNZ SENDI ;00 32 TIMES

OICC 79 MOV A,C ;FIXCHECKSUM

01CD EEFF XRI OFFH

OICF 3C INR A

0100 CDD901 CALL SHOUT

0lD3 3EOD MVl A,ODH

01D5 CDFOO1 CALL SOUT

0108 C9 RET

0109 F5 SHOUT: PUSH PSW

OIOA OF RRC

010B OF RRC

OIDC OF RRC

OIOD OF RRC

OIDE CDE201 CALL SNOUT ,OUTPUT HIGH NIBBLE

OIEI FI POP PSW

01E2 E60F SNOUT: ANI OFH ,MASKOFFBITS

0lE4 FEOA CPI 10

01E6 DAEE01 JC SNUM

01E9 C637 ADI 'A'-IO

01EB C3FOOI JMP SOUT

01EE C630 SNUM: ADI '0'

01FO F5 SOUT: PUSH PSW

OlFl DB06 SOUTI:IN O6H ,XEROX CHANNELA CONTROL

APPENDIX E 187

OlF3 E604 ANI 04H

OlF5 CAF101 JZ SOUll

01F8 F1 POP PSW

0lF9 D304 OUT O4H ;XEROX CHANNELA DATA

OlFB C9 RET

OIFC DB06 SIN: IN 6

OIFE E601 ANI OIH

0200 CAFC01 JZ SIN

0203 DB04 IN 4

0205 C9 RET

0206 7C SETUP, MOV A,H

0207 D306 OUT 6

0209 7D MOV A,I

020A D306 OUT 6

020C C9 RET

020D OE1A SETDMA: MVI C,26

O2OF CD0500 CALL BOOS

0212 C9 RET

0213 OEOF OPEN: MVI C,15

0215 COOSOO CALL BOOS

0218 C9 RET

0219 OE14 READ: MVI C,20

0218 C00500 CALL BOOS

021E C9 RET

021F OE09 PRINT· MVI C,9

0221 CD0500 CALL BDOS

0224 C9 RET

0225 46494C454E NONAME: DB 'FILENAME MUST BE SPECIFIED',ODH,ODH:$'

0242 414D424947 BADNAM: D8 'AMBIGUOUS FILES NOT

ALLOWED',ODH,ODH:$'

0260 492043414E NOFlLE: DB 'I CANNOT FINDTHAT FILE',ODH,ODH:$'

188 APPENDIX E

027A 5452414E53 EOTRAN: DB 'TRANSFER COMPLETE.',ODH,ODH:$'

028F

0290

0280

POINT: DS

DS

STACK EQU

32

$

1/0 Configuration UWity for Commodore 84

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

FCOO

FBOO

FCFF

FC10

FOOO

0001

F900

F901

F902

F903

F904

F905

0033

0001

F28D

0063

0066

0009

0001

CEOO

10MEM EQU

BUFFER EQU

IOTYPE EQU

FNBASE EQU

KYBASE EQu

VICWR EQU

CMD EQU

DATA EQU

SECTOR EQU

TRACK EQU

DISKNO EQU

KYCHAR EQU

KYBDMD EQU

CRPOS EQu

SHFTST EQU

LASTKY EQU

MSGPTR EQU

CONINV EQU

OFF EQU

MODESW EQU

OFCOOH

OF800H

OFCFFH

OFC10H

OFDOOH

1

OF900H

OF90IH

F902H

OF903H

OF904H

OF905H

33H

1

OF28DH

63H

66H

09H

OIH

OCEOOH

0000
0005

oooc
oooD

OOOA

0100

BOOT

BDOS

CLS

CR

LF

EQU

EQu

EQU

EQU

EQU

ORG

OOOOH

ooo5H

OCH

ODH

OAH

100H

APPENDIX E 189

0100 318308 START, LXI SP,STACK ;INITIALIZE STACK PTR

0103 115E04 LXI O.IOMSG

0106 C07101 CALL PRINT

0109 3AfFFC LOA IOTYPE

O1OC E601 ANI 01H :# OF OISKS

010E C631 ADI '1' ,FORM ASCII

0110 5F MOV E,A

0111 C07601 CALL CONOUT

0114 llC204 LXI O.PRTMSG

0117 C07101 CALL PRINT

011A 110604 LXI 0,P1515

0110 3AFFFC LOA IOTYPE

0120 E602 ANI 02H ;CHECK PRINTER TYPE

0122 CA2801 JZ STl ;1515IF=0

0125 110D04 LXI 0.P4022 ;4022IF= 1

0128 C07101 STI: CALL PRINT

0128 llE404 LXI O.CAPMSG

012E C07101 CALL PRINT

0131 11FB04 LXI O,ONMSG ,ASSUME ON

0134 3AFFFC LOA lOTYPE

0137 E620 ANI 20H ;81T 5

0139 CA3FOI JZ ST2

013C 110005 LXI O,OFFMSG

013F C07101 ST2: CALL PRINT

0142 110605 LXI O,MENU

0145 C07101 CALL PRINT

01.48 C07801 ST3: CALL KEYIN

0148 FE31 CPI T

0140 CA9201 JZ CHGORV

190 APPENOIX E

0150 FE32 CPI '2'

0152 CA9DOI JZ CHRPRT

0155 FE33 CPI '3'

0157 CAB601 JZ CHGCAP

015A FE34 CPI '4'

015C cxcooi JZ CHGFNC

015F FE35 CPI '5'

0161 CACD02 JZ CHGKEY

0164 FE36 CPI '6'

0166 CA1A04 JZ SAVOSK

0169 FE37 CPI '7'

016B CAOOOO JZ BOOT

016E C34801 JMP ST3 ;NOT A VALID RESPONSE

0171 OE09 P~INT: MVI C,9

0173 C30500 JMP BOOS

0176 OE02 CONOUT· MVI C,2

0178 C30500 JMP BOOS

017B lEFF KEYIN: MVI E,OFFH

0170 OE06 MVI C,6

017F C30500 JMP BOOS

0182 2AOloo CONIN, LHLO BOOT+1

0185 2E09 MVI L,CONINV

0187 E9 PCHL

0188 32ooF9 106510: STA CMD

01BB 3EOI MVI A,OFF

0180 3200cE STA MOOESW

0190 00 NOP

0191 C9 RET

0192 3AFFFC CHGORV, LOA IOTYPE

APPENDIX E 191

0195 EE01 XRI 01H

0197 32FFFC STA IOTYPE

019A C30001 JMP START

0190 21FFFC CHGPRT: LXI H,IOTYPE

OIAD 7E MOV A,M

0lA1 E602 ANI 02H

0lA3 CAAD01 JZ CHGPI

O1A6 7E MOV A,M ;GET IOTYPE

0lA7 E6FI ANI OF1H ;CLEAR BITSFOR 1515 PRINTER

01.0\9 77 MOV M.A

01AA C30001 JMP START

O1AO 7E CHGPI: MOV A,M ;GET IOTYPE

OIAE E6FB ANI OFBH ;CLEAR BIT2

OIBO F60A ORI OAH ,SET BITS FOR 4022 PRINTER

0lB2 77 MOV M,A

01B3 C30001 JMP START

0186 21FFFC CHGCAP: LXI H,IOTYPE

0lB9 7E MOV A,M

01BA EE20 XRI 20H ;INVERT BIT

01BC 77 MOV M,A

OIBO C30001 JMP START

OlCO 11707 CHGFNC: LXI O,FNKMSG

01C3 C07101 CAll PRINT

0lC6 3EOQ MVI A,O

OICB 32SFOB STA KYMOOE

01CB llA0Q7 FNNEXT: LXI 0,FM1

01CE CD7101 CALL PRINT

0101 3A5FQ8 LOA KYMOOE

0104 C631 AOI 'I'

0106 SF MOV E,A

0107 CD7601 CALL CONOUT

010A l1A407 LXI D,FM2

0100 CD7101 CAll PRINT

OlEO CDA802 CAll CAlCAO

192 APPENDIX E

01E3 7E FN2 MOV A,M

01E4 23 INX H

01E5 FE20 CPI 20H

01E7 OAF301 JC CONTRL

OlEA SF MOY E,A

0lE8 E5 PUSH H

OIEC C07601 CALL CONOUT

01EF El POP H

01FO C3E301 JMP FN2

01F3 F5 CONTRL. PUSH PSW

OlF4 lE22 MVI E,'iff

OlF6 C07601 CALL CONOUT

OlF9 Fl POP PSW

01FA FEOO CPI 0

01FC CAOS02 JZ CRLF

OlFF llA907 lXJ O,CRM

0202 C07101 CALL P~INT

0205 II1\E07 CRLF: LXI CO,CRLFM

0208 C07101 CALL PRINT

0208 215F08 LXI H,KYMOOE

020E 34 INR M

020F 7E MOV A,M

0210 FEOB--' CPI 8

0212 C2C801 JNZ FNNEXT

0215 118107 LXI O,FNINST

0218 C07101 CALL PRINT

0218 C07801 ASKAGN. CALL KEYIN

021E 0631 SUI '1'

0220 OA1802 JC ASKAGN

0223 FE08 CPI 8

025 CAOOOI JZ START

0228 021802 JNC ASKAGN

0228 325F08 STA KYMOOE

APPENDIX E 193

022E ll1C08 LXI O,FM3

0231 C071 01 CALL PRINT

0234 llAOO7 LXI O,FMl

0237 C07101 CAll PRINT

023A 3A5F08 LOA KYMOOE ;GET CURRENT FN #

0230 C631 AOI 'I' :FORMASCII

023F 5F MOV E,A

0240 C07601 CAll CONOUr

0243 llA407 LXI 0,FM2

0246 C07101 CALL PRINT

0249 COA802 CAll CAlCAO

024C 225008 SHlO KYADOR

024F 3EOO MYI A,O

0251 326208 STA NUMCHR

0254 C07B01 INlOOP, CAll KEYIN

0257 FEOO CPI OOH

0259 CA8502 JZ ITSCR

025C FE08 CPI 08H

025E CA8902 JZ ITS8S

0261 FEIA CPI lAH

0263 CA9102 JZ ITSCZ

0266 FE20 CPI 20H

0268 0A5402 JC INlOOP

0268 FEBO CPI 80H

0260 025402 JNC INlOOP

0270 47 MOV 8,A ,SAVE CHAR

0271 3A6208 lOA NUMCHR

0274 FEOF CPI 15 ;IF ALREADY 15 CHAR,

0276 025402 JNC INlOOP ; NO ROOM FOROOH

0279 C5 PUSH B

027A 58 MOV E,B

194 APPENDIX E

0278 CD7601 CALL CONOUT

027E Cl POP 8

027F C09902 CALL OUTPUT

0282 C35402 JMP INLooP ,GO FOR MORE

0285 47 ITSCR: MOV 8,A ;SAVE CHAR

0286 3A6208 LDA NUMCHR

0289 FEOF CPI 15 ;NO ROOM IF 15 CHAR

0288 D25402 JNC INLooP

028E CD9902 CALL OUTPUT

0291 0600 ITSCZ: MVI 8,0

0293 CD9902 CALL OUTPUT

0296 cacooi JMP CHGFNC

0299 2A5D08 OUTPUT. LHLO KYADDR

029C 3A6208 LOA NUMCHR

029F 3C INR A

02AO 326208 STA NUMCHR

02A3 3D DCR A

02A~ 85 ADD L ;ADD IN OFFSET

02A5 6F MOV L,A

02A6 70 MOV M,8

02A7 C9 RET

02A8 2110FC CALCAD: LXI H.FN8ASE

02A8 1600 MVI D,O

02AD 3A5F08 LDA KYMODE

0280 17 RAL

0281 17 RAL

0282 17 RAL

0283 17 RAL

0284 E6FO ANI OFOH

0286 5F MOV E,A

0287 19 DAD D

0288 C9 RET

0289 3A6208 ITS8S: LDA NUMCHR

028C FEoo CPI 0

APPENDIX E 195

02BE CA5402 JZ INLOOP ;IF0 JUST GO TO LOOP

02C1 30 OCR A

02C2 326208 STA NUMCHR

02C5 326208 STA NUMCHR

02C5 lE08 MVI E,08H ,BACKSPACE

02C7 C07601 CALL CONOUT

02CA C35402 JMP INLOOP

02CO 114306 CHGKEY· LXI 0, KYINST

0200 CD7101 CALL PRINT

0203 112F07 CKO. LXI O,PRSMSG

0206 CD7101 CALL PRINT

0209 C08201 CALL CONIN

02DC 2AOloo LHLO BOOT+1

02DF 2E33 MVI L,KYBDMD ,UNSHIFT = 0, CAPS = 1

02El 46 MOV B,M

02E2 3A80F2 LOA SHFTST ,GETMODIFIER STATUS

02E5 E601 ANI 01H ;15 SHIFT KEY DOWN?

02E7 CAEC02 JZ CK1 ;JUMP IF NO

02EA 0602 Mvi B.2 ;SHIFT=2

02EC 3A80F2 CK1· LOA SHFTST

02EF E604 ANI 04H ;IS THE CONTROL KEY DOWN?

02Fl CAF602 JZ CK2 ,JUMP IF NO

02F4 0603 MVI B,3 ;CONTROl=3

02F6 2A01oo CK2. LHLD BOOT+1

02F9 2E63 MVl L,LASTKY

02FB 7E MOV A,M

02FC 326008 STA KYCHK ;SAVE FOR EXIT TEST

02FF 87 ADD A ;*2

0300 87 AOD A ;*4

0301 80 ADD B ;ADD IN OFFSET

0302 2100FD LXI H.KY8ASE

0305 85 ADD L

0306 6F MOV l,A ;HLNOW HAS ADDRESS OF I<EY

196 APPENDIX E

0307 225008 SHLD KYADDR ;ADDRESS OF KEY

030A 78 MOV A,8 ,8 ISTHE MODE

0308 325F08 STA KYMODE

030E 2AOlOO LHLD eoorr 1

0311 2E66 MVI L,MSGPTR

0313 3600 MVI M,O

0315 23 INX H

0316 3600 MVI M,O ,DISA8LE MESSAGE MODE IF ANY

0318 113C07 LXI D,ISMSG

0318 CD7101 CALL PRINT

031E 2A5OO8 LHLD KYADDR

0321 7E MOV A,M ;GET KEY CODE

0322 CD6A03 CALL PHEX , AND PRINT IN HEX

0325 114107 LXI D,INMSG

0328 CD7101 CALL PRINT

0328 3A5F08 LOA KYMODE

032E 115E07 LXI D,UNSH ;UNSHIFT MODE IF 0

0331 FEOO CPI 0

0333 CA4903 JZ PMODE

0336 114607 LXI D,c.<\pS

0339 FEOI CPI 1

0338 CA4903 JZ PMODE ;CAPSMODE IF 1

033E 114E07 LXI D,SHIFT

0341 FE02 CPI 2

0343 CA4903 JZ PMODE ;SHIFT MODE IF 2

0346 115607 LXI D,CONT ,MUST8E CONTROL MODE

0349 CD7101 PMODE: CALL PRINT

034C 116607 LXI D,MODE

034F CD7101 CALL PRINT

0352 CD8603 CALL GHEX

APPENDIX E 197

0355 C26303 JNZ ASGKEY

0358 3A6OQ8 LOA KYCHK ,NO CHARACTERS, 2 CR'S?

035B FEOI CPI CRPOS ,IS IT CR KEY POSITION?

0350 CAOOOI JZ START ;RESTART IF 2 CR'S

0360 C30302 JMP CKO ;NEXT KEY

0363 2A5D08 ASGKEY. LHLO KYAOOR

0366 77 MOV M,A ;PUT NEW CHARACTER IN

MEMORY

0367 C30302 JMP CKO

036A F5 PHEX, PUSH PSw ;SAVE CHARACTER

036B OF RRC

036C OF RRC

0360 OF RRC

036E OF RRC

036F C07303 CALL HEX ;PRINT TOP NIBBLE

0372 Fl POP PSW :PRINT LOWER NIBBLE

0373 E60F HEX, ANI QFH ;4 BITS

0375 FEOA CPI 10 ;LETTER OR NUMBER?

0377 DA8003 JC NUM8ER

037A C637 ADI 'A'·IO :MAKEHEX LETTER

037C fF MOV E,A

0370 C37601 JMP CONOur

0380 C630 NUMBER. ADI '0' ,MAKEASCIINUMBER

0382 5F MOV E,A

0383 C37601 JMP CONOUr

0386 JEOO GHEX, MVI A.O

0388 326208 STA NUMCHR

038B COB201 GHO: CALL CONIN

038E FEOD CPI OOH

0390 C2A503 JNZ GHI

0393 3A620B LOA NUMCHR

198 APPENDIX E

0396 FEOO CPI 0

0398 C8 RZ

0399 FE02 CPI 2

0398 C28803 JNZ GHO

039E 3EFF MVI A,OFFH

03AO A7 ANA A

03AI 3A6108 LOA HEXIN

03A.4 C9 ~ET

03A5 FE08 GHI: CPI 08H

03A7 C2CA03 JNZ GH4 ,JUMP NOT BACKSPACE

03AA 3A6208 LOA NUMCHR

03AO FEOO CPI 0

03AF CA8803 JZ GHO

0382 3D OCR A

0383 326208 STA NUMCHR

0386 3A6108 LOA HEXIN

0389 OF RRC

038A OF RRC

0388 OF RRC

038C OF RRC

03BO E60F ANI OFH

038F 326108 STA HEXIN

03C2 IE08 MVI E 08H

03C4 C07601 CALL CONOUT

03C7 C38803 JMP GHO

03CA 47 GH4: MOV B,A

03CB 3A6208 LOA NUMCHR

03CE FE02 CPI 2

0300 CA8803 JZ GHO

0303 78 MOV A,B

0304 FE30 CPI '0'

0306 OA8803 JC GHO

0309 FE3A CPI '9' + I

030B OAFF03 JC GOTNUM

APPENDIX E 199

03DE FE41 CPI 'A'

03EO DA8803 JC GHO

03E3 FE47 CPI 'F'+ 1

03E5 DAF203 JC GOTLET

03E8 FE61 CPI 'A'

03EA DA8803 JC GHO

03ED FE67 CPI 'F'+ 1

03EF D28803 JNC GHO

03F2 F5 GOiLET PUSH PSW

03F3 5F MOV E,A

03F4 CD7601 CALL CONOUT

03F7 Fl POP PSW

03F8 E60F ANI OFH

03FA C609 ADI 9

03FC C30504 JMP MAKNUM

03FF F5 GOTNUM. PUSH PSW

0400 5F MOV E,A

0401 CD7601 CALL CONOUT

0404 Fl POP PSW

0405 E60F MAKNUM: ANI OFH

0407 47 MaV a,A

0408 3A6108 LOA HEXIN

0408 87 ADD A

O4OC 87 ADD A

040D 87 ADD A

040E 87 ADD A

O4OF 80 ADD a

0410 326108 STA HEXIN

0413 216208 LXI H,NUMCHR

0416 34 INR M

0417 C38803 JMP GHO

200 APPENDIX E

041A 2100FC SAVOSK LXI H,IOMEM

0410 3E03 MVI A,3

041F 3202F9 STA SECTOR

0422 ll00F8 SAV2: LXI 0,8UFFER

0425 7E SAV1: MOV A,M

0426 12 STAX 0

0427 23 INX H

0428 13 INX 0

0429 70 MOV A,L

042A A7 ANA A

0428 C22504 JNZ SAVI ;256 TIMES

042E 3EOO MVI A,O

0430 3204F9 STA OISKNO

0433 3C INR A

0434 3203F9 STA TRACK

0437 3EOI MVI A,VICWR

0439 C08801 CALL 106510

043C 3A01F9 LOA DATA

043F A7 ANA A

0440 C25204 JNZ WRERR

0443 3A02F9 LOA SECTOR

0446 3C INR A

0447 3202F9 STA SECTOR

O44A FE05 CPI 5

O44C C22204 JNZ SAV2 ;WRITE SECTORS 3 ANO 4

O44F C3000l JMP START

0452 111306 WRERR: LXI O,WERMSG

0455 C07101 CALL PRINT

0458 C08201 CALL CONIN

0458 C3OOO1 JMP START

MESSAGES

APPENDIX E 201

045E OCOA434F4D 10MSG: DB

0489 5448452043 DB

O4AC 20204E554D DB

04C2 ODOA PRTMSG: DB

O4C4 2020505249 DB

0406 3135313500 P1515: DB

O4DD 343032320D P4022 DB

O4E4 2020494E49 CAPMSG: DB

O4FB 4F4EOD0A24 ONMSG DB

0500 4F46460DOA OFFMSG: DB

0506 OAOA MENU. DB

0508 444F2059AF DB

051A 2020312E20 DB

053E 2020322E20 DB

0559 2020332E20 DB

0579 2020342E20 DB

05AO 2020352E20 DB

05BB 2020362E20 DB

05DE 2020372E20 DB

05F5 504C454153 DB

ClS,lF,'COMMODORE641/0 CONFIGURATION

UTILITY' CR,LF,LF

'THE CURRENT 1/0 ASSIGNMENTS

ARE:',CR,LF,LF

, NUMBER OF DRIVES. $'

ClUF

, PRINTER TYPE: $'

'1515',CR,LF:$'

'4022',CR,LF,'$'

, INITIAL CAPS MODE. $'

'ON', CR,LF, '$'

'OFF',CR,LF,'$'

LF,lF

'DO YOUWISH TO·',CR,LF,LF

, 1. CHANGE NUMBER OF DISK DRIVES',CR,LF

, 2. CHANGE PRINTER TYPE',CR,LF

'3. CHANGEINITIAL CAPS MODE',CR,LF

, 4. CHANGE FUNCTION KEY

ASSIGNMENTS', CR,LF

, 5. CHANGE KEY CODES',CR,lF

'6 SAVE CURRENT 1/0 SETUP ON DISK',CR,lF

'7. RETURN TO cP/M',CR,LF,LF

'PLEASE ENTER SELECTION (1-7) $'

0613 ODOA0A4449 WERMSG: DB

0628 5052455353 DB

0643 OCOA KYINST: DB

0645 5052455353 DB

0665 544F204348 DB

O6B8 2020204845

06AB 544F204558

O6Dl 2020205457

O6EE 544F204845

202 APPENDIX E

DB

DB

DB

DB

CR,LF,LF,'DISK WRITE ERROR',CR,LF

'PRESS ANY KEY TO CONTINUE $'

CLS,LF

'PRESS KEY TO EXAMINE KEY CODE',CR,LF,LF

'TO CHANGE KEY CODE, ENTER DATA

IN',CR,LF

, HEXADECIMAL AFTER "CHANGE

TO" ',CR,LF,LF

'TO EXIT KEY CODE MODE, TYPE

"RETURN" ',CR,LF

'TWICE AFTER "PRESS KEY" ',CR,LF,LF

'TO KEEP CURRENT KEY CODE, TYPE',CR,LF

070E 2020202252 DB '''RETURN'' AFTER "CHANGE TO" ',CR,lF,lF

072E 24 DB '$'

072F OOOASOS24S PRSMSG: DB CR,lF,'PRESS KEY $'

ozsc 0049532024 ISMSG: DB CR,'IS$'

0741 20494E2024 INMSG: DB 'IN $'

0746 4341505320 CAPS DB 'CAPS$'

074E 534849465 SHIFT: DB 'SHIFT $'

0756 434F4E54S2 CONT. DB 'CONTROl$'

07SE SS4ES34849 UNSH: DB 'UNSHIFT$'

0766 204D4F444S MODE. DB ' MODE- CHANGETO $'

0779 OC0A54484S FNKMSG: DB ClS,lF,'THE FUNCTION KEY ASSIGNMENTS

ARE ',CR,LF,LF

079F 24 DB '$'

07AO 20204624 FMl DB ' F$'

07M 3A20202224 FM2 DB -, "$'

07A9 3C43S23E24 CRM DB '<CR>$'

07AE ODOA24 CRlFM DB CR,lF,'$'

07B1 OMS4E5445 FNINST DB LF,'ENTER FUNCTION KEY NUMBER

(1-8) ',CR,lF

0703 2020544F20 DB 'TO CHANGE PRESET VAlUES:,CR,lF,lF

07FO 454ES44SS2 DB 'ENTER 9 TO lEAVE FUNCTION',CR,lF

O8OB 2020484S59 DB ' KEY UTILITY. $'

081C ODOA0A54S9 FM3 DB CR,lF.lF,'TYPE IN TEXT. USING

"RETURN" ',CR,lF

083D 20204F5220 DB 'OR "CTRl-Z" AS TERMINATOR:,CR,LF,LF,'$'

0850 KYADDR OS 2 ;KEYBOARD lOOKUP ADDRESS

OBSF KYMODE OS 1 ;KEYBOARD MODE

0860 KYCHK DS 1

0861 HEXIN OS 1

0862 NUMCHR DS 1

0863 DS 32

0883 STACK EQU $

APPENDIX E 203

SYSGEN - System Generation Program 8/79

System Generation Program. Version for MDS

COPYRIGHT © DIGITAL RESEARCH
1976, 1977, 1978, 1979

MODIFICATIONS COPYRIGHT © 1982
COMMODORE INTERNATIONAL

Modified for use on Commodore 64. The system sectors
run linearly from Track 1 Sector to Track 2 Sector 16.

0022 NSECTS EQU 34 ,NO. OF SECTORS PER TRACK

0002 NTRKS EQU 2 ;LAST OS TRACK + 1

0003 NDISKS EQU 3 ;NUMBER OF DISK DRIVES

0080 SECSIZ EQU 128 ,SIZE OF EACHSECTOR

0007 LOG2SEC EQU 7 ,lOG 2 SECSIZ

0001 SKEW EQU 1 ,SECTOR SKEWFACTOR

005C FCB EQU 005CH ,DEFAULT FCB LOCATION

007C FCBCR EQU FCB+32 ;CURRENT RECORD LOCATION

0100 TPA EQU 0100H ,TRANSIENT PROGRAM AREA

0900 LOADP EQU 900H ;LOAD POINTFOR SYSTEM

DURINGLOAD/STORE

0005 BDOS EQU 5H ;DeS ENTRY POINT

0000 BOOT EQU 0 ,JMPTO 'BOOT' TO REBOOT

SYSTEM

0001 CONI EQU 1 ;CONSOlE INPUTFUNCTION

0002 CONO EQU 2 ;CONSOLE OUTPUT FUNCTION

ooos SElF EQU 14 ;SElECT DISK

ooos OPENF EQU 15 ,DISKOPEN FUNCTION

0014 DREADF EQU 20 ;DISKREAD FUNCTION

oooa MAXTRY EQU 10 ;MAXIMUMNUMBER OF RETRIES

ON EACHREAD/WRITE

oooD CR EQU ODH ,CARRIAGE RETURN

oooA LF EQU OAH ,LINE FEED

0010 STACKSIZE EQU 16 ,SIZE OF LOCAL STACK

0001 WBOOT EQU

204 APPENDIX E

,ADDRESS OF WARM BOOT

(OTHER PATCH ENTRY

POINTS ARE COMPUTED RELATIVE

TOWBCOT)

0018 saosx EQU 24 ;WBCOT +24 FOR DISK SElECT

00lB sETIRK EQU 27 ,WBOOT+ 27 FOR SET TRAC K

FUNCTION

00lE sETsEC EQU .. 130 ,WBCOT+30 FOR SET SECTOR

FUNCTION

0021 sETDMA EQU 33 ,WBCOT+33 FOR SET DMA

ADDRESS

0024 READF EQU 36 ;WBOOT+ 36 FOR READ

FUNCTION

0027 WRITF EQU 39 ,WBCOT+39 FOR WRITE

FUNCTION

0100 ORG TPA ;TRANsIENT PROGRAM AREA

0100 C32302 JMP START

0103 434F505952 DB 'COPYRIGHT @ 1978, DIGITAL RESEARCH'

0128 02 OsT DB NTRKs ,OPERATING SYSTEM TRACKS

0129 22 sPT: DB NsECTs ,SECTORS PER TRACK (CAN BE

PATCHED)

GETCHAR:

READ CONSOlE CHARACTER TO REGISTER A

012A OE01CD0500

012F FE61D8

0132 FE78

0134 DO

0135 E65FC9

013B 5FOE02CD05

MVI C,CONIT I CAll BOOS'

CONVERT TO UPPER CASE BEFORE RETURN

CPI 'A' OR 20H ! RC ;RETURN IFBELOW lOWER CASE A

CPI ('Z' OR 20H) + 1
RNC ;RETURN IFABOVE lOWER CASE Z

ANI 5FH! RET

PUTCHAR.

WRITE CHARACTER FROM A TO CONSOLE

MOV E,A! MVI C,CONO! CAll BOOS! RET

013F 3EOD

0141 CD3801

0144 3EOA

CRlF· ;sEND CARRIAGE RETURN, LINE FEED

MVI A,CR

CAll PUTCHAR

MVI A,lF

APPENDIX E 205

0146 CD3801

0149 C9

CALL

RET

PUTCHAR

CRMSG: IPRINT MESSAGE ADDRESSED BY H,L TIL ZERO

;WITH LEADING CRLF

014A E5CD3F01El PUSH H! CALL C~LFI POP H

IDROP THRU TO OUTMSGO

OUTMSG:

SELECT DISK GIVEN BY REGISTER A

MOV C,AI LHlD wscon LXI D,SElDSK! DAD D! PCtiL

MOV A,M! ORA A) RZ

MESSAGE NOT YET COMPLETED

PUSH HI CAll PUTCHARI POP HI INX H

JMP OUTMSG

ISET DMA ADDRESS TOVALUE OF 8,C

LHlD W800T

LXI D,SETDMA

DAD D

PCHL

;SH UP SECTORNUMBER

lHlD WBooT

LXI D,SETSEC

DAD D

PCHl

IGONE TO SETTRK

IADDRESSOF BOOT ENTRY

10FFSETFOR SETIRK ENTRY

ISH UP TRACK

lHlD WBOOT

LXI D,SETIRK

DAD D

PCHl

014F 7EB7C8

0152 E5CD3801El

015B C34FOl

SEL:

0158 4F2AOloo11

TRK:

0164 2AOloo

0167 111800

016A 19

016B E9

SEC:

016C 2AOloo

016F rueoo
0172 19

0173 E9

DMA:

0174 2AOloo

0177 112100

017A 19

0178 E9

017C 2AOloo

017F 112400

0182 19

0183 E9

READ: ;PERFORM READ OPERATION

lHlD WBOOT

LXI D,READF

DAD D

PCHL

WRITE· ,PERFORM WRITE OPERATION

206 APPENDIX E

0184 2A0100

0187 112700

018A 19

0188 OEOO

0180 E9

LHLD

LXI

DAD

MYI

PCHL

wBCOT

D,WRITF

o
C,O ,SET UP NORMAL SECTOR WRITE

018E OE14

0190 C30500

0193 OEOFC305OO

DREAD:

OPEN:

GETPUT

:DlsK READ FUNCTION

MYI C,DREADF

JMP BDOs

,FILEOPEN FUNCTION

MYI C,OPENF ! JMP BOOS

GET OR PuT CP/M (RW = 0 FOR READ, 1 FOR WRITE)

DISK IS ALREADYSELECTED

0198 218008

0198 225204

LXI

sHLD

H,LOADP-80H ;SET UP INITIAL DMADDR

019E 3EOO

01AO 324F04

01A3 4F

01M C06401

01A7 3E09

01A9 325004

01AC C3C301

CLEARTRACK TO 00

MYI A,O

STA TRACK

MOY C,A

CALL TRK

MYI A.9

STA SECTOR

JMP RWsEC

;sTART WITH TRACK0 + 1

,TRACK NUMBER TO BIOS

.sECTOR 10 (-1)

OlAF 214F04

0182 34

0183 3A2801

0186 8E

01B7 CA2202

01BA 4E

01BB CD6401

01BE 3EFF

RWTRK: ;READ OR WRITE NEXT TRACK

LXI H.TRACK

INR M ,TRACK = TRACK + 1

LOA OST ;NUMBER OF OPERATING SYSTEM

TRACKS

CMP M ; = TRACK NUMBER?

JZ ENDRW ;END OF READ OR WRITE

OTHERWISE NOTDONE, GO TO NEXT TRACK

MOY C,M ,TRACK NUMBER

CALL TRK ;TO SETTRACK

MYI A,OFFH ,COUNTS 0, I, .. 33

APPENDIX E 207

01CO 325004 STA SECTOR ,SECTOR INCREMENTED BEFORE

READ OR WRITE

RWSEC· ;READ OR WRITE SECTOR

01C3 3A2901 LOA SPT ;SECTORS PER TRACK

01C6 215004 LXI H,SECTOR

01C9 34 INR M ;TO NEXT SECTOR

01CA BE CMP M ;A= 34 AND M=O 1 2 . 33

(USUALLY)

01C8 CMF01 JZ RWTRK

01CE 2A5204 LrlLD DMADDR ;SET UP DMA FOR NEXT ADDR

01D1 118000 LX! D,80H ,SECTOR SIZE

01D4 19 DAD D ,DMADDR = DMADDR +80H

0105 225204 SHLD DMADDR

READ OR WRITE SECTOR TO OR FROM CURRENT DMA

ADDR

0108 215004 LXI H,SECTOR

01DB 4E MOY C,M ;VALUE TO C READY FOR SELECT

OlDC CD6C01 CALL SEC ,SET UP SECTOR NUMBER

01DF 2A5204 LHLD DMADDR :BASE DMA ADDRESS FOR THIS

TRACK

OlE2 44 MOV 8,H

01E3 4D MOV C,L ;TO 8C FOR SEC CALL

01E4 CD7401 CALL DMA ,DMA ADDRESS SET FROM B,C

DMA ADDRESS SET, CLEAR RETRY COUNT

01E7 AF XRA A

01EB 325404 STA RETRY ;SET TO ZERO RETRIES

TRYSEC: ;TRY TO READ OR WRITE CURRENT SECTOR

OlEB 3A5404 LDA RETRY

OlEE FEOA CPI MAXTRY ;TOO MANY RETRIES?

01FO DA0702 JC TRYOK

PAST MAXTRIES, MESSAGE AND IGNORE

01F3 21C303 LXI H ERRMSG

01F6 CD4FOI CALL OUTMSG

01F9 CD2A01 CALL GETCHAR

01FC FEOD CPI CR

01FE C20E03 JNZ RE800T

20B APPENDIX E

0201 CD3F01

0204 C3C301

TYPED A CR, OK TO IGNORE

CALL CRLF

JMP RWSEC

TRYOK,

OK TO TRY READ OR WRITE

0207 3C

0208 32S404

020B 3A5104

020E 87

020F CA1802

INR

STA

LOA

ORA

JZ

A

RETRY

RW

A

TRYREAD

,REDAY= RETRY + 1

;READ OR WRITE?

0212 C08401

0215 C31B02

TRYREAD·

MUST BEWRITE

CALL WRITE

JMP CHKRW ;CHECKFORERROR RETURNS

0218 CD7to1

021B 87

021C CAC301

CHKRW,

CALL

ORA

JZ

READ

A

RWSEC ;ZERO FLAGIF RlW OK

021F C3EB01

0222 C9

ERROR, RETRY OPERATION

JMP TRYSEC

ENDRW. ;END OF READ OR WRITE, RETuRN TO CAllER

RET

START.

0223 317504

0226 212003

0229 CD4F01

LXI

LXI

CALL

SP,STACK ;5ETLOCAL STACK POINTER

H,SIGNON

OUTM5G

CHECK FORDEFAULT FILE LOAD INSTEAD OF GET

022C 3A5DOO

022F FE20

0231 CA8102

LDA

CPI

JZ

FCB+ 1

GETSYS

;BLANKIF NO FILE

;SKIP TO GETSYSTEM MESSAGE

IF BLANK

APPENDIX E 209

0234 115COO

0237 CD9301

023A 3C

023B C24702

LXI

CALL

INR

JNZ

D,FCB

OPEN

A

RDOK

;TRY TO OPEN IT

,255 BECOMES 00

;OK TO READ IF NOT 255

FILE NOT PRESENT, ERROR AND REBOOT

023E 212004

0241 CD4AOI

0244 C30E03

LXI

CAll

JMP

H,NOFILE

CRMSG

REBOOT

RDOK:

FILE PRESENT

READ TO LOADPOINT

0247 AF

0248 327COO

XRA

STA

A

FCBCR ,CURRENT RECORD = 0

0248 OE10

PRERD

PRE-READ AREA FROM TPATO LOADP

MVI C,(LOADP-TPA)/SECSIZ

PRE-READ FILE

0240 C5

024E 115COO

0251 CD8EOI

0254 Cl

0255 B7

0256 C27802

0259 00

025A C24OO2

PUSH

LXI

CALL

POP

ORA

JNZ

DCR

JNZ

B

D,FCB

DREAD

8

A

BADRD

C

PRERD

,SAVE COUNT

;INPUTFILE CONTROL COUNT

;ASSUME SET TO DEFAULT BUFFER

;RESTORE COUNT

,CANNOT ENCOUNTER END-OF

FILE

;COUNTDOWN

,FOR ANOTHER SECTOR

SECTORS SKIPPED ATBEGINNING OF FILE

025D 210009 LXI H,LOADP

RDlNP:

0260 E5 PUSH H

0261 44 MOV 8,H

0262 4D MOV C,L ;READY FOR DMA

0263 CD7401 CALL DMA ;DMA ADDRESS SET

210 APPENDIX E

0266 115COO

0269 CD8EOI

026C El

026D B7

026E C2C702

0271 118000

0274 19

0275 C36OO2

0278 213704

027B CD4AOI

027E C30EOJ

LXI D,FCB ;READY FOR READ

CALL DREAD

POP H ;RECALL DMA ADDRESS

ORA A ;00 IF READ OK

JNZ PUTSYS ,ASSUME EOF IF NOT.

MORE TO READ, CONTINUE

LXI D,SECSIZ

DAD D ;HL IS NEW LOAD ADDRESS

JMP RDINP

BADRD, ,EOF ENCOUNTERED IN INPUT FILE

LXI H,BADFILE

CALL CRMSG

JMP REBOOT

GETSYS·

0281 212F03

0284 CD4AOI

0287 CD2AOI

028A FEOD

028C CAC702

028F D641

0291 FE03

0293 DA9C02

LXI

CALL

CALL

CPI

JZ

SUI

CPI

JC

H,ASKGET

CRMSG

GETCHAR

CR

PUTSYS

'A'

NDISKS

GETC

;GET SYSTEM?

;SKIP IF CR ONLY

;NORMALIZE DRIVE NUMBER

;VALID DRiVE?

;SKIP TO GETC IF SO

INVALID DRIVENUMBER

0296 -CD1903

0299 C38102

GETC

CALL

JMP

BADDISK

GETSYS ;TO TRYAGAIN

029C C641

029E 325F03

02Al D641

02A3 CD5BOI

SELECT DISK GIVEN BY REGISTER A

ADI 'A'

STA GDISK ;TO SETMESSAGE

SUI 'A'

CALL SEL ;TO SELECT THE DRIVE

GETSYS, SETRW TO READ AND GET THE SYSTEM

02A6 CD3FOI

02A9 215503

02AC CD4FOI

CALL

LXI

CALL

CRLF

H,GETMSG

OUTMSG

APPENDIX E 211

02AF C02AOl

0282 FEOO

0284 C20E03

0287 C03FOl

028A AF

0288 325104

028E C09BOl

02C1 21EA03

02C4 C04F01

02C7 217303

02CA C04A01

02CO C02AOI

0200 FEOO

0202 CAOE03

0205 0641

0207 FE03

0209 OAE202

020C C01903

020F C3C702

02E2 C641

02E4 32AF03

02E7 0641

02E9 C05801

02EC 21AOO3

02EF COAOA01

02F2 C02A01

02F5 FEOO

02F7 C20E03

02FA C03FOI

CALL GETCHAR

CPI CR

JNZ RE800T

CALL CRlF

XRA A

STA RW

CAll GETPUT

LXI H,OONE

CALL OUTMSG

PUT SYSTEM

PUTSYS:

LXI H,ASKPUT

CAll CRMSG

CAll GETCHAR

CPI CR

JZ RE800T

SUI 'A'

CPI NOISKS

JC PUTC

INVALID DRIVE NAME

CALL BAOOISK

JMP PUTSYS ,TO TRY AGAIN

PUTC.

SETDISK FROM REGISTER C

AOI 'A'

STA POISK ;MESSAGE SET

SUI 'A'

CAll SEl ;SElECT OEST DRIVE

PUT SYSTEM, SETRW TO WRITE

LXI H,PUTMSG

CAll CRMSG

CAll GETCHAR

CPI CR

JNZ REBOOT

CAll CRlF

02FO 215104

212 APPENDIX E

LXI H,RW

0300 3601 MVI M,1

0302 CD9BOI CALL GETPUT ;TO PUT SYSTEM BACK ON

DISKETIE

0305 21EA03 LXI H,DONE

0308 CD4FOI CALL OUTMSG

030B C3C702 JMP PUTSYS ;FORANOTHER PUT OPERATION

REBOOT:

030E 3Eoo MVI A,O

0310 CD5BOI CALL SEL

0313 CD3FOI CALL CRLF

0316 C30000 JMP BOOT

BADDISK·

,BAD DISK NAME

0319 21FC03 LXI H,QDISK

031C CD4AOI CALL CRMSG

031F C9 RET

DATAAREAS

MESSAGES

0320 5359534745 SIGNON· DB 'SYSGEN VER'

032B 322E30 DB VERS/O+ 'O'::,VERS MOD 10+'0'

032E 00 DB 0

032F 534F555243 ASKGET DB 'SOURCE DRIVE NAME'

0340 OD284F5220 DB ODH, '(OR RETURN TO SKIP) ',0

0355 534F555243 GETMSG· DB 'SOURCE ON'

035F GDISK: OS 1 ;FILLED IN AT GETFUNCTION

0360 2C20544845 DB " THENTYPE RETURN',O

0373 4445535449 ASKPUT DB 'DESTINATION DRIVE NAME'

0389 OD284F5220 DB ODH, '(OR RETURN TO REBOOT) ',0

03AO 4445535449 PUTMSG. DB 'DESTINATION ON '

03AF PDISK: OS 1 ,FILLED IN AT PUT FUNCTION

03BO 2C20544845 DB " THENTYPE RETURN',O

03C3 5045524041 ERRMSG: DB 'PERMANENT ERROR, TYPE RETURN TO

IGNORE',O

03EA 46554E4354 DONE: DB 'FUNCTION COMPLETE',O

03FC 494E56414C QDISK: DB 'INVALID DRIVE NAME (USE A, B, OR C) ',0

0420 4E4F20534F NOFILE DB 'NO SOURCE FILE ON DISK',O

BADFILE:

APPENDIX E 213

0437 534F555243 DB 'SOURCE FILE INCOMPLETE',O

VARIABLES

044E SDISK· OS 1 ,SELECTED DISK FOR CURRENT

OPERATION

044F TRACK: OS ,CURRENT TRACK

0450 SECTOR: OS ,CURRENT SECTOR

0451 RW, OS :READ IF0, WRITE IF 1

0452 DMADDR· OS 2 ;CURRENT DMA ADDRESS

0454 RETRY, OS 1 ;NUMBER OF TRIES ON THIS

SECTOR

0455 OS STACKSIZE*2

STACK,

0475 END

Custom BIOS for CP1M 2.2 On Commodore 84

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

This version has the following attributes:

1. Memory map set up for 52K RAM system with I/O
and drivers by BOOT65

2. Disk tables and vectors included for 2 drives
3. The Intel I/O byte is not implemented
4. Punch and reader are null routines
5. Keyboard and message tables are part of BIOS65
6. A 20K to 48K byte CP/M environment can be sup­

ported on the Commodore 64 (44K with IEEE)
7. Virtual Drive B is supported for 1540
8. Drive B is not virtual on IEEE disk

0000

002C

BASE

MSIZE

EQU

EQU

oooos ;BEGINNING OF ADDRESSABLE

RAM

;CP/MVERSION MEMORY SIZE IN

KILOBYTES

214 APPENDIX E

"BIAS" ISADDRESS OFFSET FROM 3400H FOR MEMORY

SYSTEMS

THAN 20K (REFERRED TO AS "B" THROUGHOUT THE

TEXT)

6000 BIAS EQU (MSIZE-20) *1024

NOTE: TO CREATE MOVCPM, THE FOlLOWING CCP

EQUATES ARE USED·

;CCP EQU ooooa ;FORBIOSO.HEX

;CCP EQU 0100H ;FOR BIOS1.HEX

9400 = CCP EQU 3400H+ BIAS ,BASE OF CCP

9C06 = BOOS EQU CCP+S06H BASE OF BOOS

AAOO = BIOS EQU CCP+l600H BASE OF BIOS

0004 CDISK EQU BASE+OOO4H CURRENT DISK NUMBER 0 = A,

... , 15=P

0003 10BYTE EQU BASE + 0003H INTEL 1/0 BYTE

0000 TRANS EQU ooooa ;0 IMPLIES NO TRANSLATION

0005 ENTRY EQU 0005H ;8005 ENTRY VECTOR

ZSO INSTRUCTIONS

00lS JR EQU ISH

OO3S JRC EQU 3SH

0030 JRNC EQU 30H

002S JRZ EQU 2SH

0020 JRNZ EQU 20H

THE FOLLOWING EQUATES DEFINE THE COMMON

MEMORY FOR PASSING DATATO AND FROM THE 6510

1/0 ROUTINES

FSOO HST8UF EQU OFSOOH ;256 8YTE DISKBUFFER

F900 CMD EQU OF900H ;COMMAND REGISTER

F901 DATA EQU OF901H ;DATAREGISTER

F902 SECTOR EQU OF902H ;SECTOR REGISTER

F903 TRACK EQU OF903H ;TRACK REGISTER

F904 DISKNO EQU OF904H ;DRIVE NUMBER REGISTER

F905 KYCHAR EQU OF905H ;KEYBOARD CHARACTER

REGISTER

APPENDIX E 215

FCFF 10TYPE EQU OFCFFH ,10 CONFIGURATION BYTE

THE ZSO SHUTS ITSELF OFF BYWRITING "OFF" TO THE

LOCATION "MODESW'

0001 OFF EQU 1

CEOO MODESW EQU OCEOOH

THE FOLLOWING ARE THE COMMANDSTO THE 6510 I/O

ROUTINES

0000 VICRD EQU 0 ;READ SPECIFIED SECTOR

0001 VICWR EQU 1 ;WRITE SPECIFIED SECTQR

0002 VICIN EQU 2 ;DO A KEYBOARD SCAN

0003 VICOUT EQU 3 ,oUTPUT DATATO SCREEG

0004 VICPST EQU 4 ;GETPRINTER STATUS

0005 VICPRT EQU 5 ;SENDCHARACTER TO PRINTER

0006 VICFMT EQU 6 ,FORMAT DISK COMMAND

0007 AUXI EQU 7 ,JUMP TO $OEOO IN 6510 SPACE

0008 AUX2 EQU 8 ;JUMP TO $OFOO IN 6510 SPACE

0009 INDIR EQU 9 ;JUMP INDIRECT VIA OF906

AAOO

0016

ORG

NSECTS EQU

BIOS ,ORIGIN OF THIS PROGRAM

($-CCP)/256 ;WARM START SECTOR COUNT

JUMP VECTOR FOR INDIVIDUAL SUBROUTINES

AAOO C36CAA

AA03 C31DAB

AA06 C39AAB

AA09 C3FEAB

AAOC C376AC

AAOF C3B1AC

AA12 C3FAAC

AA15 C3FDAC

AA18 C302AD

AA1B C30CAD

AAIE C320AD

AA21 C326AD

AA24 C32BAD

AA27 C334AD

216 APPENDIX E

JMP

WBOOTE: JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

BOOT

WBOOT

CONST

CONIN

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

SETSEC

SETDMA

READ

,COLDSTART

,WARM START

:CONSOLE STATUS

,CONSOlE CHARACTER IN

;CONSOLE CHARACTER OUT

;lIST CHARACTER OUT

;PUNCHCHARACTER OUT

;RE~DER CHARACTER OUT

;MOVEHEADTO HOME POSITION

;SELECT DISK

,SET TRACK NUMBER

;SET SECTOR NUMBER

;SET DMA ADDRESS

;READ RISK

AA2A C347AD JMP WRITE ;WRITE DISK

AA2D C3D1AC JMP lISTST ,RETURN LIST STATUS

AA30 C331AD JMP SECTRAN ;SECTOR TRANSLATE

AA3300 KYBDMD· DB ooH ;CAPS LOCK FLAG

FIXED DATATABLES FOR TWO DRIVES

DISK PARAMETER HEADER FOR DISK 00

AA34 OOOOOOOO DPBASE OW TRANS,ooooH

AA38 OOOOOOOO OW ooooa.ooooa
AA3C FOAE54AA OW DIRBF,DPBLK

AA40 AEAF70AF OW CHKoo,ALLoo

DISK PARAMETER HEADER FOR DISK 01

AA44 OOOOOOOO OW TRANS,ooooH

AA48 OOOOOOOO OW ooooa.ooooa
MAC FOAE54AA Ow DIRBF,DPBlI(

AASO BEAF8FAF OW CHK01,ALLOl

DPBLK ;DISKPARAMETER BLOCK, COMMON TO ALL DISKS

AA54 2200 OW 34 .SECTORS PER TRACK

AA56 03 DB 3 ;BLOCK SHIFT FACTOR

AAS707 DB 7 ;BLOCKMASK

AAS800 DB 0 ;NULLMASK

AAS98700 OW 135 ;DISK SIZE-1

AASB aroo OW 63 ;DIRECTORY MAX

AASD CO DB 192 ,ALLOC 0

AASE 00 DB 0 ;ALLOC 1

AASF 1000 OW 16 ;CHECK SIZE

AA61 0200 OW 2 ;TRACK OFFSET

END OF FIXED TABLES

MEMORY INITIALIZED WHEN BIOS READ IN AT BOOT

TIME

AA6340 LASTKY: DB 40H ;VECTOR OF LAST KEY PRESSED

AA64 00 TOGGLE· DB ooH ;CAPS LOCK HOUSEKEEPING

AA65 00 CSTAT: DB ooH ;CHARACTER AVAILABLE FLAG

AA66 0000 MSGPTR: OW ooooa ;MESSAGE POINTER

AA6800FD TBLPTR. OW OFDOOH ;KEYBOARD CODETABLE

APPENDIX E 217

AA6A OOFC MSGTBL: OW OFCooH ;MESSAGE VECTOR TABLE

MISC. CONSOLE EQUATES

F28D SHFTST EQU OF28DH ;CONTROL,COMMOOORE,SHIFT

KEYS

FOCC FLASH EQU OFOCCH ,CURSOR FLASH ENABLE

FOCF CURSOR EQU OFOCFH ;CURSOR CHARACTER

INDIVIDUAL SU8ROUTINES 10 PERFORM EACH

FUNCTION

800T:

AA6C 3E20 MVI A,20H ':ASCII SPACE

AA6E 32CFFO STA CURSOR ,SET UPCURSOR

AA71 AF XRA A ;ZERO IN THE ACCUM

AA72 320300 STA IOBYTE ;CLEAR THE IOBYTE

AA75 320400 STA CDISK ;SELECT DISK ZERO

AA7832EFAE STA CURDSK ,CLEAR VIRTUAL DISK POINTER

AA7B 32E1AE STA HSTACT ;HOSTBUFFER INACTIVE

AA7E 32E3AE STA UNACNT ;CLEAR UNALLOC COUNT

AA81 3EC3 MVI A,OC3H ,C3IS JUMP OPCODE

AA83320000 STA 0+ BASE . FOR JUMP TO WBOOT

AA86 2103AA LXI H,WBOOTE ;WBOOTENTRY POINT

AA89220100 SHLD 1+ BASE ;SET ADDRESS FIELD

AA8C 320500 STA 5+ BASE ,JUMP TO BOOS OPCODE

AABF 21069C LXI H,BDOS ,BOOS ENTRY POINT

AA92220600 SHLD 6+BASE ;SET ADDRESS FIELD

AA950\8OOO LXI B,80H+8ASE ,DEFAULT DMA ADDRESS

AA98 CD2BAD CALL SETDMA

AA98 llA6AA LXI D,SIGNON ;DE POINTS TO SIGNON MSG

AA9E OE09 MVI C,9 ;PRINT STRING FUNCTION

AAAOCD0500 CALL ENTRY :GOTO BOOS

AAA3 C3B9AB JMP GOCPMl ;GETREADY FOR CCP

AAA6 OCOA SIGNON: DB OCH,OAH ;CLEAR SCREEN

AAA8 2020202043 DB ' COMMODORE 64 20K CP/M VERS 2 2'

AACCODOAOA DB ODH,OAH,OAH

AACF 2020436F70 DB 'COPYRIGHT @ 1979, DIGITAL

RESEARCH' ,ODH,OAH

2\8 APPENDIX E

~F7 2020202020 DB 'COPYRIGHT @ 1982, COMMODORE',ODH,OAH

AB1B OA24 DB OAH:$' ;END OF STRING MARKER

WBOOT:

ABIO 318000 LXI SP,BOH + 8ASE ;USE SPACE BelOW 8UFFER

FOR STACK

AB20 OEoo MVI C,O ;SElECT DISK 0

AB22 CDOCAD CALL SElDSK

A825 AF XRA A ;FORCE DRIVE A

A826 3204F9 STA DISKNO ;ABSOlUTELY, POSITIVELY

A829 CD79AE CALL CHGDSK ,IFNOT ALREADY SelECTED

A82C CD02AD CALL HOME ;GO TO TRACK 00

A82F 3EOD MVl A,ODH ;CARRIAGE RETURN

AB31 CD~C CALL COUT5 ;OUTPUT IT

AB34 110094 LXI D,CCP ;START OF LOAD

AB37 0616 MVI B,NSECTS

AB39 2601 MVI H,1 ,TRACK NUMBER

AB38 2E06 MVI L,6 ;SECTOR NUMBER

A83D 7C LOAD1: MOV A,H

AB3E 3203F9 STA TRACK

A841 70 MOV A,L

A842 3202F9 STA SECTOR

A845 aeoo MVI A,VICRD ,DISK READ COMMAND

A847 CD90AB CALL 106510

A84A 3A01F9 LOA DATA

A84D B7 ORA A

A84E 20ED J1: 08 JRNZ, (LOAD1-Jl-2) AND OFFH

A850 E5 PUSH H

AB51 C5 PUSH B

A852 010001 LXI 8,256

A855 21ooF8 LXI H,HST8UF ,DISK 8UFFER

A858 ED DB OEDH ;LDIR INSTRUCTION

A859 80 DB OBOH

AB5A OE2A MVI C:*' ,SHOW IT'S LOADING

AB5C CD76AC CALL CONOUT

A85F Cl POP 8

AB60 El POP Ii

AB61 05 OCR B ;DECREMENT SECTOR COUNT

ApPENDIX E 219

AB62 2808

AB64 2C

AB65 70

AB66 FEll

AB6S 3803

AB6A 24

AB6B zsoo

AB6D ISCE

J2

J3:

J4:

GOCPM:

DB JRZ,GOCPM-J2-2

INR L)NEXT SECTOR

MOV A,L

CPI 17

DB JRC, (LOAD1-J3-2)AND OFFH

INR H

MYI L,O

DB JR, (LOAD1-JA..2) AND OFFH

END OF LOAD OPERATION, SET PARAMETERS AND GO

TO CP/M

AB6F 3EC3

AB71 320000

AB74 2103AA

ABn 220100

AB7A 320500

AB7D 21069C

AB80 220600

MYI

STA

LXI

SHLD

STA

LXI

SHLD

A,OC3H

O+BASE

H,WBOOTE

1+ BASE

5+ BASE

H,BDOS

6+ BASE

,C3 IS A JMPINSTRUCTION

,FOR JMPTO WBOOT

,WBOOT ENTRY POINT

;SET ADDRESS FIELD FOR JMPAT

o

;FOR JMP TO BOOS

;BDOS ENTRY POINT

,ADDRESS FIELD OF JUMP AT 5 TO

BOOS

AB83 018000

AB86 CD2BAD

LXI

CALL

B,801'1 + BASE ,DEFAULT DMA ADDRESS IS 80H

SETDMA

AB89 3A04oo

AB8C 4F

ABSD C30094

GOCPM1: LOA

MOY

JMP

CDISK

C.A

CCP

;GETCURRENT DISK NUMBER

,SENDTO THE CCP

;GO TO CP/M FOR FURTHER

PROCESSING

MAIN ROUTINE TO TRANSFER EXECUTION TO 6510

AB90 32ooF9 106510: STA CMD ;PUT A IN 6510 COMMAND

REGISTER

AB93 3EOI MYI A,OFF

AB95 3200cE STA MODESW ;TURN OFFZSO

AB'18 00 NOP ;REQUIRED BYHARDWARE

AB99 C9 RET

220 APPENDIX E

CONST :CONSOLE STATUS, RETURN OFFH IFCHARACTER READY.

ooH IF NOT

AB9A 2A66AA LHLO MSGPTR ,MESSAGE MODE?

AB9D 7C MOV A,H

AB9E B5 ORA L

AB9F 3EFF MVI A,OFFH ;DATAREADY FLAG

ABAI CO RNZ ;RETURN IFMSGPTR<>O

ABA2 3A65AA LOA CSTAT ,ALREADY A CHAR?

ABAS A7 ANA A

ABA6 CO RNZ ,YES IF NOT 0

ABA73E02 MVI A,VICIN ,CHECK KEYBOARD COMMAND

ABA9 CD90AB CALL 106510

ABAC 3A8DF2 LOA SHFTST ,GETSTATUS OF CONTROL KEYS

ABAF E602 ANI 02H ,CHECK FOR COMMODORE KEY

ABBI 2810 J5. DB JRZ. CONSTO-J5-2 :JUMPIF NOT PRESSED

ABB3 3A64AA LOA TOGGLE ;15 THIS AN UPSTROKE?

ABB6 A7 ANA A

ABB7 200A J6. DB JRNZ,CONSTO-J6-2 ,NO WAITING TO

RELEASE

ABB9 3A33AA LOA KYBDMD ;GETCAPS MODE FLAG

ABBC EEOI XRI OlH ;TOGGLE MODE BIT

ABBE 3233AA STA KYBDMD

ABCl 3EOI MVI A.l

ABC33264AA CONSTO: STA TOGGLE

ABC63A05F9 LOA KYCHAR ,GETSCANNEDDATA

ABC9 FE3A Cflr 3AH ;BAD CONTROL DATA

ABCB 280A J7: DB JRZ,CONSTl-J7-2

ABCD FE3D CPI 3DH ;BAD CONTROL DATA

ABCF 2806 J8. DB JRZ,CONSTl-J8-2

ABDI 2163AA LXI H,LASTKY ;COMPARE WITH PREVIOUS

ABD4 BE CMP M ; SCAN DATA

ABD52oo5 J9: DB JRNZ,CONST2-J9-2 ;IF DIFFERENT, NEW KEY

APPENDIX E 221

ABD7 AF CONSTl: XRA A ;DATA NOT READY FLAG

ABD83265AA STA CSTAT ;SAVE FOR LATER

ABDB C9 -RET

ABDC F5 CONST2: PUSH PSW

ABDD 01F401 LXI B,5OO

ABEO OB CONST3: DCX B ;DELAY FOR KEYBOUNCE

ABEl 79 MOV A,C

ABE2 BO ORA B

ABE3 20FB J10: DB JRNZ.(CONST3-J10-2) AND OFFH

ABE5 3E02 MVI A,VICIN :GETCHARACTER AGAIN

ABE7 CD90AB CALL 106510

ABEA Fl POP PSW

ABEB 2105F9 LXI H,KYCHAR

ABEE BE CMP M

ABEF 20E6 Jll: DB JRNZ,(CONSTl-Jll-2) AND OFFH ;IF<>O,

BOUNCING

ABFl 3263AA STA LASTKY ;UPDATE LAST KEY

ABF4 FE40 CPI 40H ;IF40H, NO KEY PRESSED

ABF6 28DF J12: DB IRZ,CONSTl-Jl2-2) AND OFFH

ABF8 3EFF MVI A,OFFH ;DATAREADY FLAG

ABFA 3265AA STA CSTAT :SAVE FOR LATER

ABFD C9 RET

CONIN: ;CONSOLE CHARACTER INTO REGISTER A

ABFE 3EOO MVI A,O ,TURN ON CURSOR

ACOO 32CCFO STA FLASH

AC032A66AA LHLD MSGPTR ;ARE WE IN MESSAGE MODE?

AC06 7C MOV A,H

AC07 B5 ORA L

AC08 2044 J13: DB JRNZ.CONIN5-J13-2

ACOA CD9AAB

ACOD B7

ACOE 28FA

222 APPENDIX E

CONINI. CALL

ORA

J14· DB

CONST ;CHECK CONSOLE STATuS

A

JRZ.(CONIN1-J14-2) AND OFFH ;UNTIL NEW

CHAR

ACIO AF XRA A

ACII 3265AA STA CSTAT ,CLEAR CSTAT

ACl43A33AA CONIN2 LOA KYBDMD ,UNSHIFT = 0, CAPS = I

ACl747 MOV B,A

AC183A8DF2 LOA SHFTST ;GETMODIFIER STATUS

ACIB E601 ANI OIH ;15 A SHIFT KEY DOWN?

ACID 2802 Jl5 DB JRZ,CONIN3-JI5-2 ,JUMP IF NO

ACIF 0602 MVI B,2 ,SHFIT=2

AC21 3A8DF2 CONIN3 LOA SHFTST :GETMODIFIER STATUS

AC24 E604 ANI 04H ,IS THE CONTROL KEY DOWN?

AC262802 J16: DB JRZ,CONIN4-JI6-2 ,JUMP IF NO

AC28 0603 MVI B,3 ,CONTROL=3

AC2A 3A63AA CONIN4. LOA LASTKY ,GETKEY POSITION

AC2D 87 ADD A ;*2

AC2E 87 ADD A ,*4

AC2F 80 ADD B ,ADD IN OFFSET

AC302A68AA LHLO TBLPTR ;GETBEGINNING OF I(EYTBL

AC33 B5 ADD L ,VECTOR INTO TABLE

AC346F MOV L,A

AC353EOO MVI A,O

AC378C ADC H

AC3867 MOV H.I<

AC397E MOV A,M ;GETCHARACTER FROM TABLE

AC3A FE80 CPI 80H ;MESSAGE IF >7FH

AC3C 3820 J17: DB JRC,CONIN7-JI7-2 ,JUMP IF ASCII CHAR

AC3E 2A6AAA LHLO MSGTBI .GETBEGINNINGOF MVTBL

AC41 E67F ANI 7FH ;STRIP OF MESSAGE BIT

AC43 87 ADD A ,*2

AC44 85 ADD L ;VECTOR INTO TABLE

AC45 6F MOV L,A

AC46 3EOO MVI A,O

AC488C ADC H

AC4967 MOV H,A

AC4A 7E MOV A,M ,LOW ORDER BYTE

AC4B 23 INX H

AC4C 66 MOV H,M ;HIGH ORDER BYTE

APPENDIX E 223

AC4D 6F WOV L,A

AC4E 46 COI\IIN5: MOV B,M ,GETCHARACTER

AC4F 23 INX H .CHECK NEXT CHARACTER

AC507E MOV A,M

AC51 A7 ANA A

AC522003 J18: DB JRNZ,CONIN6-JI8-2 ,IF0, B HAS LAST CHAR

AC54 210000 LXI H,OOOOH ,END OF MESSAGE MODE

AC572266AA CONIN6 SHLD MSGPTR ,S,4VE MESSAGE POINTER

AC5A 78 MOV A.B ;CHECK CHARACTER

AC5B A7 ANA A ;MAYBE 1ST IS 0

AC5C 2BAC J19: DB JRZ,(CONIN1-JI9-2) NO OFFH ,IF<>O, NOT
CHAR

AC5E F5 CONIN7. PUSH' PSW ,SAVE CHARACTER

AC5F 3EOI MVI A,1

AC61 32CCFO STA FLASH ;TURN OFFCURSOR

AC64 2ADIFO LHLD OFODIH

AC673AD3FO LOA OFOD3H

AC6A 85 ADD L

AC6B 6F MOV LA

AC6C 3EFO MVI A,OFOH

AC6E 8C ADC H

AC6F 67 MOV H,A

AGO 7E MOV A,M

AC71 E67F ANI 07FH

AC73 n MOV M,A

AC74 F1 POP PSW ;GETCHARACTER

AC75 C9 RET ;DOI\IE

CONOUT: ;CONSOlE CHARACTER OUTPUT FROM REGISTER C

AC763AFFFC LOA IOTYPE ;GETCONFIGURATION BYTE

AC79 E601 ANI 10H ;BIT4 = 1 TO IGNORE FILTER

AC7B 79 MOV A,C ,GETTO ACCUMULATOR

AC7C 202C no DB JRNZ,COUT5-J20-2 ,PRINT AS RECEiVED

AGE CDDAAC CALL SWAP ;EXCHANGE UPPER AND LOWER

CASE

AC81 FEOC CPI OCH ,ASCII CLEAR SCREEN?

AC83 2004 J21· DB JRNZ,COUTl-J21-2 ;JUMP IF NO

AC853E93 MVI A,93H ;COMMODORE CLEAR SCREEN

CMD

224 APPENDIX E

AC87 1821 J22: DB JR,COUT5-J22-2

AC89 FE08 COUTl, CPI 08H ;A.SCII BACKSPACE?

AC8B 2004 J23: DB JRNZ,COUT2-J23-2 ;JUMP IF NO

AC8D 3E14 MVI A,14H ;COMMODORE BACKSPACE CMD

AC8F 1819 J24: DB JR,COUT5-J24-2

AC91 FEOA COUT2: CPI OAH ,LINE FEED?

AC93 2004 J25: DB JRNZ,COUT3-J25-2

AC953Ell MVl A, 17 ;COMMODORE LINE FEED

AC97 1811 J26: DB JR,COUT5-J26-2

AC99 FEOD COUT3: CPI ODH ;CARRIAGE RETURN?

AC9B 2007 J27, DB JRNZ,COUT4-J27-2

AC9D CDAAAC CALL COUT5

ACAO 3E91 MVI A,145 ;UP 1 LINE TO NEGATE AUTO LF

ACA2 1806 J28, DBB JR,COUT5-J28-2

ACM FE20 COUT4: CPI 20H

ACA6D8 RC ;RETURN IF UNDECODED

CONTROL CHAR

ACA7 FE80 CPt 80H

ACA9 DO RNC ;RETURN IF NOT ASCII

CHARACTER

ACAA3201F9 COUT5 STA DATA ,PUT DATAIN CHARACTER

REGISTER

ACA,P3E03 MVI A,VleOUT ;SCREEN OUTPUT COMMAND

ACAF 1810 J29· DB JR.L1ST3-J29-2

LIST: ;l..IST CHARACTER FROM REGISTER C

ACBl 3AFFFC LOA 10TYPE ;WHAT KIND OF PRINTER?

ACB4 E604 ANI 04H ;0 IF 1515, 1 IF4022

ACB679 MOV A,C ,CHARACTER TO REGISTER A

ACB72010 J30: DB JRNZ,lIST2.J30-2 ,JUMP IF NO SWAP

ACB93AFFFC LOA 10TYPE

ACBC E608 ANI 08H ,WHICH TYPE OF SWAp?

APPENDIX E 225

ACBE 79 MOV A.C ,GETCHARACTER

ACBF 2005 J31: DB JRNZ,L1STI-J31-2

ACC1 CDDAC CALL SWAP :SWAPUPPER AND LOWER CASE

ACC41803 J32: DB JR,lIST2-J32-2

ACC6 CDEDAC L1STI: CAll SWAP2 ;4022 SWAP ROUTINE

ACC93201F9 lIST2: STA DATA ,PUT DATAIN REGISTER

ACCC3E05 MVI AVICPRT ,ASSUME 1540

ACCE C390AB lIsn JMP 106510

lISTST: ,RETURN LIST STATuS (0 IF NOT READY, 1 IFREADY)
ACD13E04 MVI A.VICPST ;PRINTER STATUS COMMAND

ACD3 CD90AB CALL 106510

ACD63AOIF9 LOA DATA ;DATAIS STATUS

ACD9 C9 RET

SWAp· ,SWAP UPPER AND LOWER CASE FOR COMMODORE-64

ACDAFE41 CPI 41H ;LESS THAN UC'A'?

ACDC08 RC ;RETURN IFSO

ACDDFE5B CPI 58H ,UC LETIER?

ACDF 3809 J33· DB JRC,SWAP1.J33·2 ;JUMP IFSO

ACE1 FE61 CPI 61H ;LESS THAT LC'A'

ACE3 08 RC ,RETURN IF SO

ACE4 FE7B CPI 7BH ;LC LETIER?

ACE6 DO RNC ;RETURN IF NO

ACE7 E65F ANI 5FH ,TURN OFF 81T 5

ACE9 C9 RET

ACEA F620 SWAPl. ORI 20H ,TURN ON BIT 5

ACEC C9 RET

ACED FE41 SWAP2: CPI 41H ,CYIF LESS THAN UC 'A'

ACEF 08 RC

ACFO FE60 CPt 60H ,CYIF40H < A < 60H

ACF2 3003 J34: DB JRNC,SWAP3-J34-2

226 APPENDIX E

ACF4 F680

ACF6 C9

ORI

RET

BOH

ACF7 E65F

ACF9 C9

SWAP3: ANI

RET

5FH

ACFA 79

ACFB 00

ACFC C9

PUNCH: ;PUNCH CHARACTERFROM REGISTER C

MOV A,C ,CHARACTERTO REGISTER A

NOP

RET ,NULL SUBROUTINE

;ENTER END OF FilE FOR NOW

(REPLACE LATER)

;REMEMBER TO STRIP PARITY BIT

A,IAH

7FHANI

RET

READER, ;READ CHARACTERINTO REGISTER A FROM READER

DEVICE

MVI

ACFF E67F

ADOI C9

ACFD 3E1A

;* * * * * ." ." * * * ." ." * ."

;*

;* CP/M TO HOST DISK CONSTANTS

;* *

0400

0100

0011

0002

0022

0001

0001

BlKSIZ EQU

HSTSIZ EQU

HSTSPT EQU

HSTBlK EQU

CPMSPT EQU

SECMSK EQU

SECSHF EQU

1024 ;CP/M ALLOCATION SIZE

256 ,HOST DISK SECTOR SIZE

17 ;HOST DISK SECTORS/TRK

HSTSIZl128 ;CP/M SECTS/HOST BUFF

HSTBlK * HSTSPT ;CP/M SECTORS/TRACK

HSTBlK-l ;SECTORMASK

;lOG2(HSTBll()

;* * * * * * * * * * * * ." * ." * ." * *

;*

" BOOS CONSTANTS ON ENTRYTO WRITE

;* *

* * * * * * * * * ." * * * * *

0000

0001

0002

WRAll EQU

WRDIR EQU

WRUAl EQU

o
1

2

,WRITETO ALLOCATED

;WRITE TO DIRECTORY

,WRITE TO UNAllOCATED

APPENDIX E 227

HOMETHE SELECTED DISK

HOME:

AD023AE2AE LOA rlSTWRT ,CHECK FO~ PENDINGWRITE

ADOS B7 ORA A

AD06 2003 J35. DB JRNZ,HOMED-J35-2

ADOB 32E1AE STA HSTACT ,CLEAR HOST ACTIVE FLAG

HOMED:

ADOB C9 RET

SElDSK:

;SElECT DISK

ADOC 210000 LXI H,ooooH ,ERROR RETURN CODE

ADOF 79 MOV A,C ,SELECTED DISK NUMBER

AD10 32D8AE STA SEKDSK ;SEEK DISK NUMBER

AD13 FE02 CPI 2 ;MUST BE 0-1

AD15 DO RNC iNO CARRY IF2,3,

AD166F MOV l,A ;DISK NUMBER TO Hl

AD1729 DAD H ,MULTIPLY BY 16

ADI829 DAD H

ADI929 DAD H

AD1A29 DAD H

ADIB 1134AA LXI D,DPBASE ;BASE OF PARM BLOCK

ADIE 19 DAD 0 iHl= .DPB(CURDSK)

AD1F C9 RET

SETIRK;

,SET TRACI(GIVEN BY REGISTERS BC

AD2060 MOV H,B

AD21 69 MOV i.c
AD2222D9AE SHlD SEKTRK ;TRACK TO SEEK

AD25 C9 RET

SETSEC:

;SET SECTOR GIVEN BYREGISTER C

AD2679 MaV A,C

AD2732DBAE STA SEKSEC ,SECTOR TO SEEK

AD2A C9 RET

SETDMA:

;SET DMA ADDRESS GIVEN BYBC

22B APPENDIX E

AD2B 60

AD2C 69

AD2D 22ECAE

AD30 C9

MOV

MOV

SHLD

RET

H,B

L,C

DMAADR

AD31 60

AD3269

AD33 C9

SECTRAN.

;T~NSLATE SECTO~ NUMBER BC

MOV H,B

MOV L,C

RET

;* * ."

;'

* * ." * ." * * ." ." ." * * ." * * *

THE READ ENTRY POINT TAKES THE PLACE OF

;' THE PREVIOUS BIOS DEFINITION FOR READ.

;'

i* ."

READ:

* * * ." * * * * * * * ." ." * * * *

,READ THE SELECTED CP/MSECTOR

AD34 AF XRA A

AD3532E3AE STA UNACNT

AD383E01 MVI A,1

AD3A 32EAAE STA READOP ;READ OPERATION

AD3D 32E9AE STA RSFLAG ;MUST READ DATA

AD403E02 MVI A,WRUAL

AD4232EBAE STA WRTYPE ;TREAT AS UNALLOC

AD45 1864 J36: DB JR,RWOPER-J36 -2 ,TO PERFORM THE READ

;* * ." * ." * * ." * * * * * * ." * * * *

;'

;' THE WRITE ENTRY POINTTAKES THE PLACE OF

" THE PREVIOUS BIOS DEFINITION FOR WRITE.

"
;* ." * * * * * * ." * * * * * * * * * *

WRITE:

ADA7 AF

AD4832EAAE

AD4B 79

AD4C 32EBAE

AD4F FF02

;wRITE THE SELECTED CP/M SECTOR

X~ A ,0 TO ACCUMULATOR

STA READOP ,NOT A READ OPERATION

MOV A,C ;WRITE TYPE IN C

STA WRTYPE

CPI WRUAL ,WRITE UNALLOCATED?

APPENDIX E 229

AD51 2017 J37: DB JRNZ,CHKUNA-J37-2 ;CHECK FOR UNALLOC

wRITETO UNALLOCATED, SET PARAMETERS

AD53 3E08 MVI A,BLKSIZ/128;NEXT UNALLOC RECS

AD5532E3AE STA UNACNT

AD58 3AD8AE LOA SEKDSK ;DISI(TO SEEK

AD5B 32E4AE STA UNADSK ,UNADSK = SEKDSK

AD5E 2AD9AE LHLO SEKTRK

AD61 22E5AE SHLD UNATRK ;UNATRK = SECTRK

AD64 3ADBAE LOA SEKSEC

AD6732E7AE STA UNASEC ;UNASEC = SEKSEC

CHKUNA.

;CHECK FOR WRITE TO UNALLOCATED SECTOR

AD6A 3AE3AE LOA UNACNT :ANY UNALLOC REMAIN?

AD6D B7 ORA A

AD6E 2833 J38: DB JRZ,ALLOC-J38-2 ;SKIP IF NOT

MORE UNALLOCATED RECORDS REMAIN

AD703D OCR A ;UNACNT = UNACNT-l

AD71 32E3AE STA UNACNT

AD743ADBAE LOA SEKDSK ;SAME DISK?

AD77 21E4AE LXI H,UNADSK

AD7A BE CMP M ;SEKDSK = UNADSK?

AD7B 2026 J39: DB JRNZ,ALLOC-J39-2 ;SKIP IFNOT

AD7D 21E5AE

AD80 CD40AE

AD83201E J40·

DISKS ARE THE SAME

LXI H,UNATRK

CALL TRKCMP :SEKTRK = UNATRK?

DB JRNZ,ALLOC-J40-2 ;SKIP IF NOT

TRACKS ARE THE SAME

AD853ADBAE

AD8821E7AE

AD8B BE

AD8C 2015 J41:

LOA

LXI

CMP

DB

SEKSEC ;SAME SECTOR?

H,UNASEC

M ;SEKSEC = UNASEC?

JRNZ,ALLOC-J41-2 ;SKIP IFNOT

AD8E 34

AD8F 7E

230 APPENDIX E

MATCH, MOVETO NEXT SECTOR FOR FUTURE REF

INR M ;UNASEC = UNASEC + 1

MOV A,M ,END OF TRACK?

AD90 FE22

AD923809 J42:

CPI

D8

CPMSPT ;COUNT CPIM SECTORS

JRC,NOOVF-J42·2 ;SI(IP IF NO OVERFLOW

AD943600

AD962AE5AE

AD99 23

AD9A 22E5AE

AD9D AF

AD9E 32E9AE

ADAI 1808

ADA3 AF

ADA432E3AE

ADA73C

ADA832E9AE

NOOVF;

J43:

ALLOC:

OVERFLOW TO NEXT TRACK

MVI M,O ;UNASEC = 0

LHLD UNATRK

INX H

SHLD UNATRK ;UNATRK = UNATRK+ 1

;MATCH FOUND, MARK AS UNNECESSARYREAD

XRA A ;0 TO ACCUMULATOR

STA RSFLAG ;RSFLAG = 0

D8 JR,RWOPER-J43-2 ;TO PERFORM THE WRITE

;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ

XRA A ;0 TO ACCUM

STA UNACNT ;UNACNT = 0

INR A ;1 TO ACCUM

STA RSFLAG ;RSFLAG = 1

;* * *
;*

* * * * * * * * * * * * * * * *

;* COMMON CODE FOR READAND WRITE FOLLOWS

*,

;ALW",YS 8ECOMES 1

;WAS IT ALREADY?

ADA8 AF

ADAC32E8AE

ADAF 3AD8AE

AD8287

AD83 IF

AD84 32EOAE

AD87 21E1AE

AD8A 7E

AD883601

AD8D 87

;* * *

RWOPER:

* * * * * * * * * * * * * * * *

;ENTER HERE TO PERFORM THE REAl:lIWRITE

XRA A ;ZERO TO ACCUM

STA ERFLAG ;NOERRORS(YET)

LDA SEKSEC ;COMPUTE HOST SECTOR

ORA A ;CARRY = 0

RAR ;SHIFTRIGHT

STA SEKHST ;HOST SECTOR TO SEEK

ACTIVE HOST SECTOR?

LXI H,HSTACT ;HOST ACTIVE FLAG

MOV A,M

MVI M,1

ORA A

APPENDIX E 231

ADBE 2B21 J44: DB JRZ,FILHST-J44-2 ;FILL HOST IF NOT

HOST BuFFER ACTIVE, SAME AS SEEK BUFFER?

ADCO 3ADBAE LDA SEKDSK

ADC321DCAE LXI H,HSTDSK ;SAME DISK?

ADC6 BE CMP M ;SEKDSK = HSTDSK?

ADC72011 J45: DB JRNZ,NOMTCH-J45-2

SAMEDISK, SAME TRACK?

ADC921DDAE LXI H,HSTIRK

ADCCCD40AE CALL TRKCMP ;SEKTRK = HSTIRK?

ADCF 2009 J46. DB JRNZ,NOMTCH-J46-2

SAME DISK, SAME TRACK, SAME BUFFER?

ADD13AEOAE LDA SEKHST

ADD4 21DFAE LXI H,HSTSEC ;SEKHST = HSTSEC?

ADD7 BE CMP M

ADDB 2B24 J47. DB JRZ,MATCH-J.d.7-2 ,SKIP IFMATCH

;NEEDTO READ?

;YES, IN 1

;0 TO .ACCUM

;NO PENDINGWRITE

ADDA3AE2AE

ADDDB7

ADDE C44CAE

ADEI 3ADBAE

ADE432DCAE

ADE72AD9AE

ADEA22DDAE

ADED 3AEOAE

ADFO 32DFAE

ADF3 3A.E9AE

ADF6 B7

ADF7 C49DAE

\DFA AF

ADFB 32E2AE

232 APPENDIX E

NOMTCH.

;PROPER DISK, BUT NOT CORRECT SECTOR

LDA HSTWRT ;HOST WRITIEN?

ORA A

CNZ WRHST ;CLEAR HOST BUFF

FILHST:

;MAY HAVETO FILL THE HOST BUFFER

LDA SEKDSK

STA HSTDSK

LHLD SEKTRK

SHLD HSTIRK

LDA SEKHST

STA HSTSEC

LDA RSFLAG

ORA A

CNZ RDHST

XRA A

ST.A HSTWRT

MATCH:

;COPYDATA TO OR FROM BUFFER

ADFE 3ADBAE LDA SEKSEC ;MASK BUFFER NUMBER

AEOI E601 ANI SECMSK ,LEAST SIGNIF BITS

AE03 6F MOV L,A ,READY TO SHIFT

AE04 2600 MVI H,O ;DOUBLE COUNT

AE06 29 DAD H ;SHIFT LEFT 7

AE07 29 DAD H

AEOB 29 DAD H

AE09 29 DAD H

AEOA 29 DAD H

AEOB 29 DAD H

AEOC 29 DAD H
HLHAS RELATIVE HOST BUFFER ADDRESS

AEOD ll00FB LXI D,HSTBUF

AE10 19 DAD D ;HL = HOST ADDRESS

AEll EB XCHG ;NOWIN DE

AE12 2AECAE LHLD DMAADR ;GET/PUT CP/MDATA

AEIS OEBO MVI C,12B ,LENGTH OF MOVE

AE17 3AEAAE LDA READOP ;WHICHWAY?

AEIA B7 ORA A

AEIB 2006 J4B: DB JRNZ,RWMOVE-J4B-2 ;SKIP IF READ

WRITE OPERATION, MARKAND SWITCH DIRECTION

AEID 3EOI MVI A,l

AEIF 32E2AE STA HSTWRT ;HSTWRT = 1

AE22 EB XCHG ,SOURCE/DEST SWAP

AE23 lA

AE24 13

AE25 77

AE26 23

AE270D

AE2B 20F9

AE2A 3AEBAE

AE2D FEOI

AE2F 3AEBAE

AE32 CO

RWMOVE·

,C INITIALLY 12B, DEIS SOURCE, HLIS DEST

LDAX D ;SOURCE CHARACTER

INX D

MOV M,A ;TO DEST

INX H

DCR C ;LOOP 12BTIMES

J49· DB JRNZ,(RWMOVE-J49-2l AND OFFH

DATAHAS BEEN MOVEDTO/FROM HOST BUFFER

LDA WRTYPE ;WRITE TYPE

CPI WRDIR ;TO DIRECTORY?

LDA ERFLAG ;IN CASE OF ERRORS

RNZ ;NO FURTHER PROCESSING

CLEAR HOSTBUFFER FOR DIRECTORY WRITE

APPENDIX E 233

AE33 B7

AE34 CO

AE35 AF

AE36 32E2AE

AE39 CD4C.AE

AE3C 3AE8AE

AE3F C9

ORA

RNZ

XRA

STA

CALL

LDA

RET

A

A

HSTWRT

WRHST

ERFLAG

;ERRORS?

;SKIP IFSO

,OTOACCUM

;BUFFER WRITIEN

AE40 EB

AE41 21D9AE

AE44 1A

AE45 BE

AE46 CO

AE47 13

AE48 23

AE49 1A

AE4A BE

AE4B C9

;* * * * ... * ... * * ... * "" "" * ."
~ ... -

;" UTILITY SUBROUTINE FOR 16-BIT COMPARE

;*

i"" "" * * * * * * * * *

TRI<CMP,

,HL = .UNATRK OR .HSTIRK, COMPARE WITH SEI<TRK

XCHG

LXI H,SEKTRK

LDAX D :LOW BYTE COMPARE

CMP M ;SAME?

RNZ ;RETURN IF NOT

LOW BYTES EQUAL, TEST HIGH 1S

INX D

INX H

LDAX D

CMP M ;SETS FLAGS

RET

;* .. *

:"
" * **************

;"

;*

;*

r*

WRHST PERFORMS THE PHYSICAL WRITE TO

THE HOST DISK, RDHST READS THE PHYSICAL

DISK.

*

AE4C 3E01

AE4E 32EEAE

234 APPENDIX E

;*" * * ... * * ." ." ." * .. * *' * * * *

WRHST:

;HSTDSK = HOST DISI< #, HSTIRK = HOST TRACK #.

;HSTSEC = HOST SECT #. WRITE "HSTSIZ" BYTES

;FROM HSTBUF AND RETURN ERROR FLAGIN ERFLAG.

,RETURN ERFLAG NON-ZEROIF ERROR

MVI A, VICWR ;LOAD DISI< WRITE COMMAND

WRHSTO: STA RW ,PUT COMMAND IN REGISTER

AE51 3ADCAE LOA HSTSDK ;GETHOST DISK NUMBER

AE54 3204F9 STA DISKNO ; AND PUT IN COMMON AREA

AE57 CD79AE CALL CHGDSK ;CORRECT VIRTUAL DISK?

AE5A 3ADDAE WRHST2. LOA HSITRK ;GETHOST TRACK NUMBER

AE5D 3C INR A ;ADD 1 FOR VICOFFSET

AE5E FE12 CPI 18 ;WE WANT TO SKIP TRACK 18

AE60 3801 J50. DB JRC,WRHST3-J50-2 ;CARRY IFTRACK<18

AE62 3C INR A

AE63 3203F9 WRHST3· STA TRACK ;PUT IN COMMON AREA

AE66 3ADFAE LOA HSTSEC ;GETHOST SECTOR NUMBER

AE69 3202F9 STA SECTOR ;PUT IN COMMON AREA

AE6C 3AEEAE LOA RW ;GET DISK COMMAND

AE6F CD90AB CALL 106510

AE72 3AOlF9 LOA DATA ;GETDISK STATUS

AE75 32E8AE STA ERFLAG ; AND STORE IN ERFLAG

AE78 C9 RET

AE79 67 CHGDSK. MOV H,A ;SAVE DISK NUMBER

AE7A 3AFFFC LOA 10TYPE ;BIT 0 =0 FOR VIRTUAL

AE7D E601 ANI 01

AE7F CO RNZ ,NOT ZERO IF2 DRIVES

AE80 3204F9 STA DISKNO ;FORCE DRIVE A

AE83 7C MOV A,H ,RESTORE DISK NUMBER

AE84 21EFAE LXI H,CURDSI< ;IS THIS OuR CuRRENT DISI<?

AE87 BE CMP M

AE88 C8 RZ ;RETURN IFOK

AE89 77 MOV M,A ;SET UP NEW DiSK

AE8A C641 ADI 'A' ;FORM ASCII DRIVE LEITER

AE8C 32AFAE STA DSKMNT ;PUT IN MESSAGE

AE8F 21A1AE LXI H,MNTMSG ,INSERT DISK MESSAGE

AE92 CDCCAE CALL PMSG ;00 PRINT IT

AE95 CDFEAB CHGDI. CALL CONIN .wAIT FOR RETURN

AE98 FEOD CPI ODH

AE9A 20F9 J51. DB JRNZ,(CHGD1-J51-2) AND OFFH

AE9C C9 RET

RDHST·

;HSTDSK = HOST DISK #, HSITRK = HOST TRACK #,

;HSTSEC = HOST SECT #. READ "HSHSIZ"BYTES

APPENDIX E 235

AE9D 3EOO

AE9F 18AD J52

;INTO HSTBUF AND RETURN ERROR FLAGIN ERFLAG.

MVI A,VICRD ;DISKREAD COMMAND

DB JR,(WRHSTO.J52.2) AND OFFH ,REST LIKE

WRITE

AEA1 ODOA496E73 MNTMSG: DB

AEAF 41 DSKMNT: DB

AEBO 20696E746F DB

AECB 00 DB

ODH,OAH:INSERT DISK'

'A'

, INTO DRIVE 0, PRESS RETURN'

OOH

AECC 7E

AECD A7

AECE C8

AECF E5

AEDO 4F

AEDI CD76AC

AED4 El

AED523

AED618F4

PMSG:

J53·

;'* ." ."

;*

MOV

ANA

RZ

PUSH

MOV

CALL

POP

INX

DB

* *

A,M

A

H

C,A

CONOUT

H

H

JR,(PMSG-J53-2) AND OFFH

*",,,,****** * * ." '* "It

;* uNINITIALIZED RAMDATA AREAS

*,
;*

;* * ." ." * * * * * ." ." ." * '* "It ." * * +

AED8 SEKDSK: DS

AED9 SEKTRK: DS

AEDB SEKSEC· DS

AEDC HSTDSK: DS

AEDD HSTIRK. DS

AEDF HSTSEC: DS

AEEO SEKHST: DS

AEEI HSTACT: DS

AEE2 HSTWRT: DS

AEE3 UNACNT. DS

AEE4 UNADSK: DS

AEE5 UNATRK: DS

'136 APPENDIX E

1 ,SEEK DISK NUMBER

2 ;SEEK TRACK NUMBER

1 ;SEEK SECTOR NUMBER

1 ;HOST DISK NUMBER

2 ;HOST TRACK NUMBER

1 ;HOSTSECTOR NUMBER

,SEEK SHR SECSHF

,HOSTACTIVE FLAG

,tiOST WRITIEN FLAG

1 ;UNALLOC REC CNT

1 ;LAST UNALLOC DISK

2 ,LAST UNALLOC TRACK

AEE7 UNASEC: DS ,LAST UNALLOC SECTOR

AEE8 ERFLAG. DS 1 ,ERROR REPORTING

AEE9 RSFLAG: DS 1 ,READ SECTOR FLAG

AEEA READOP DS 1 ;1 IF READ OPERATION

AEE8 WRTYPE: DS 1 ;WRITE OPERATION TYPE

AEEC DMAADR: DS 2 ;LAST DMA ADDRESS

AEEE RW: DS ,TEMPORARY COMMAND

REGISTER

AEEF CURDSK: DS ;VlRTUAL DISK POINTER

SCRATCH RAMAREA FOR 8DOS USE

AEFO BEGDAT EQU $ 'BEGINNING OF DATAAREA

AEFO DIRBF, DS 128 ;SCRATCH DIRECTORY AREA

AF70 ALLOO: DS 31 ;ALLOCATION VECTOR 0

AF8F ALL01: DS 31 ;ALLOCATION VECTOR 1

AFAE CHKOO· DS 16 ,CHECK VECTOR 0

AFBE CHK01: DS 16 ;CHECK VECTOR 1

AFCE ENDDAT EQU $;END OF DATAAREA

OODE DATSIZ EQU $-BEGDAT ;SIZE OF DATAAREA

AFCE END

APPENDIX E 237

(:commodore
COMPUTER

Commodore Business Machines . Inc.- Computer Systems Division,

950 Airport Ad. Wesl Chesler. PA 19380

DISTRIBUTED BY

Howard W. Sams & Co., Inc.
4300 W. 6200 Street. Indianapolis , Indiana 46268 USA

$12.95/22098 ISBN: 0-672-22098-9

