
Personal Computing on the

$5.95

a friendly computer guide

Z commodore

COMPUTER

■

■

■

■

1

■ ■

■

>.

.

__..

Published by

COMMODORE INTERNATIONAL, LTD.

Computer Systems Division
950 Rittenhouse Road
Norristown. PA 19403

U.S.A.

Copyright 1981 Commodore International and Avalanche Productions. AH rights re
served. No part of this publication may be reproduced, stored in a retrieval system, 01

transmitted in any form or Dy any means, electronic, mechanical, photocopying, recording

or otherwise without the prior written permission of Commodore International.

■

I
c

c

■

c

c

c

c

c

c

c

c

c

c

c

c

(

c

c

c

c

c

c

c

PERSONAL

COMPUTING

ON THE

A friendly computer guide

COMMODORE INTERNATIONAL

AVALANCHE, INC.

<
PREFACE c

You are about to meet a friendly computer! Friendly in price,
friendly in size, friendly to use and learn on and experience.

Most important — you don't have to be a computer r
programmer, or even a typist, to use it!

If you're a first time computerist, this manual will provide an

excellent introduction to computing. Unlike most instruction (
manuals, you don't have to read through this whole book to get

to the "good stuff." After reading Chapter 1 (GETTING

STARTED), you can go directly to a chapter that interests you
and start reading. If you're interested in animation turn to
Chapter 4. If you like music, try Chapter 5. Q

The first page of each chapter has a sample program to start (

you off. Just type the program exactly as shown ("Try Typing

This Program") and see what happens. The rest of the chapter C
explains what you did, and shows you how to do more. Chapter

7 summarizes some important programming concepts, and
explains the techniques used in the sample programs. (

If you're an experienced programmer, you can use the VIC like

any microcomputer. Familiarity with Commodore computers

will help, since the BASIC and graphics are nearly identical to

those used in the PET/CBM. Advanced reference material and

programming information are included in the Appendix. For
more sophisticated programming, see the VIC PROGRAMMERS r

REFERENCE GUIDE, available from your Commodore dealer.

If you're a noncomputerist and have no interest in
programming, per se, you should check out the VIC's growing £

library of plug-in cartridges and program tapes. VIC cartridges

plug directly into the back of the console and work

automatically. Programs are also provided on cassette tapes for r
use with the Commodore Cassette Tape Recorder.

Cartridges and tapes include exciting "arcade-type" games
such as "VIC INVADERS" as well as educational programs to |

help you develop special skills, and home utility programs to

help you solve problems and perform calculations.

Peripherals and accessories for the VIC include the VIC tape £

cassette recorder, single disk drive, telephone modem and

printer, to name a tew. (See Appendix A) C

Computers are becoming an increasingly important part of our
everyday lives — in our homes, at school and in business.
Those who become familiar with computers now will have an

important advantage in the coming months and years. The VIC r

not only introduces you to the world of computing, but also

gives you the features and flexibility you need to expand that
world.

Enjoy your new world!

II C

! TABLE OF CONTENTS
CHAPTER TITLE PAGE

£ PREFACE I)

UNPACKING AND CONNECTING THE VLC2Q V

One GETTING TO KNOW YOUR VIC 1

• Getting Started 3

• Your First Computer Program 7

Two USING THE SCREEN AND KEYBOARD 11

• Your First Graphic Character 14

(• A Tour of the VIC20 Keyboard 17

/ • Printing on theScreen 21

• The VIC20 Calculator 24
• Introduction to Color 25

Three COLOR AND GRAPHICS 27

• Programming in Color 30

(• The VIC Color Keys 32
s • Cftanging Screen and Border Colors 34

• Screen & Border Color Combinations 37

(• Coloring the Screen 37

* • Screen Locations 39

• Random Colors 40

< • Combining Sound and Color 45

• Keyboard Graphics 47
• Graphics in Headlines and Titles 48

(
Four ANIMATION 51

• Flying Birds 53
• Bouncing Ball 57

• Controlling the Cursor 60

Animating with POKEs and PEEKs 61•

c
Five SOUND AND MUSIC 67

• Making Music 69

•The Four Voices of VIC 71

• The White Noise Generator 74 (

• Using the VIC as a Piano 76

• Playing Songs 78

• A Few Words About Poke 80 (

Six CONVERSING WITH YOUR VIC 61

•What's Your Name? 83

• Introducing Variables 86 {

• Choose a Note 88

•The GET Statement 89

Seven INTRODUCTION TO PROGRAMMING 93

• Your First BASIC Commands 95

• Random Numbers 103

TITLE PAGE
<

APPENDIX 105 (

A. VIC System Accessories 106

B. Working With Tape Cassettes 109

C. VIC BASIC Vocabulary 113 (

D. BASIC Command Abbreviations 133

E. Screenand Border Color Combinations 134
F. Musical Notes 135 (

G. Sample Sound Effects 136

H. Screen DisplayCodes 139

I. Screen Memory Map 143 (

J. Ascii and Character($) Codes 145

K. Deriving Mathematical Functions 148

L. Pinouts for Input/Output Devices 150 (

M. VIC Programs to Try 153

N. Error Messages 160

INDEX 162

(

IV

(

(

c UNPACKING AND CONNECTING

THE VIC 20

Welcome to computing! The following sfep-by-step instructions show you how

to unpack the VIC, connect it to /our television sel and make sure it's working

properly.

Let's begin by taking a quick

look at the VIC 20:

(

(

c

c

{

c

KEYBOARD

(used to type

information

and instructions

into the computer)

POWER LIGHT

(glows when your

VIC is turned on)

POWER CORD

SOCKET

(Attach power

supply here)

GAME PORT

(For joystick

and other

game control

devices)

ON/OFF

SWITCH

EXPANSION

PORT

(VIC Program

cartridges

plug in here)

USER PORT

(For special

accessories)

5 PIN

VIDEO

PORT

(For

connection

to TV set

or monitor)

SERIAL

PORT

(For special

accessories

like printer,

disk drive, etc.)

CASSETTE

PORT

(Tape

cassette

goes here)

1.

2.

3.

4.

5.

8.

Check the contents of your VIC container. You should find the

following items;

— VIC 20 Personal Computer

— Power Supply (large box with 2 cords coming out of it}

— RF Modulator (small metal box) and short cable*

— Video Cable

You will need 2 electrical outlets (sockets) — one for the VfC and

one for your television set.

Position the VfC and Television set so you can use the keyboard

comfortably while viewing the television screen...ideally, a tablelop

or desk.

Find the ON/OFF switch on

the rrght hand side of the VIC.

Make sure ifs in the "OFF"

position.

There are two cords coming

out of the power supply box.

Plug the power supply cord

into an electrical outlet and

plug the other cord into the

power cord socket on the side

of the VIC. NOTE: The power

supply remains "on" while

plugged in so you should

unplug it when not in use.

Connect the video cable to

the back of the VIC and to the

RF Modulator box, as shown.

Make sure to connect it to the

video port and not to the 6-pin

serial port, which is next to it.

Connect the RF Modulator to

your television set. For this

you'll need a screwdriver. The

short TV connector cord runs

from the RF Modulator box to

the 2 VHF Antenna leads on

the back of your television.

Simply connect the two wires

to the VHF leads and tighten

the screws firmly."

Turn on the TV set.

VIDEO

PORT RF MODULATOR
c

o

VIDEO
PLUG

CONNECT

WJRE LEADS

TO ANTENNA

LEADS ON

you r tv

SET

VIDEO

CABLE

PEAR VIEW OF

TV SET

RF MODULATOR

C

«

«

C

<

c

c

c

c

c

c

c

Note: Some VICs are provided wilti a "switchbox" which aitachea beiween ihe RF modulator and TV sei

The switcJibox contains a swiicn with skiing* Ipi "computer" end "TV and should be set to "computer"
when usmg Ihe ViC.

VI

TROUBLESHOOTING CHART

SYMPTOM CAUSE REMEDY

NO PICTURE VIC not "o

(POWER LIGHT OFF)

Make sure power switch

is in Mon" position

VIC not plugged in Check power socket

next to power switch

Power supply not

plugged tn

Check connection with

wall outlet

Bad fuse in VIC Take VIC to your

Authorized Commodore

Service Center for

replacement of fuse*

NO PICTURE

(POWER LIGHT ON) (Try turning VIC off far a few secondsh then back on)

TV on wrong channel Check Channel 3 & 4 for

picture

Incorrect hookup VIC hooks up to "VHF"

terminals on TV

Modulator not plugged

in

Check connection at

5-pin Video Port

Modulator on wrong

channel

Flip switch on Modulator

Video cable not

connected

Check connection on

modulator

PICTURE WITHOUT

COLOR |THY TV &

MODULATOR ON

CHANNEL 3 S 4)

Poorly tuned TV RetuneTV

PICTURE WITH Bad color adjustment on Adjust color/hue/

POOR COLOR TV (see "picture without brightness controls on

color") TV

PICTURE WITH TV volume jp too high

EXCESS (see "picture without

BACKGROUND NOJSE color")

Adjust volume of TV

PICTURE OK,

BUT NO SOUND

TV volume too low Adjust volume of TV

'The VIC uses a 3 amp SLO-BLO fuse.

VII

10.

11

12.

Turn on the VIC (the red

power light on the top of the

computer should come on). If

the power light does nol.

consult the accompanying

troubleshooting chart.

There is a switch on the RF

Modulator for selecting either

Channel 3 or 4. Choose the

channel with the weaker

reception in your area+ and set

both the TV and the

Modulator to lhat channel.

The fine tuning on your

television may need some

adjustment.

Here is what you should see

on the screen — sometimes it

takes a second or two lo

activate. If you don't get the

following display on your

screen, turn the computer off,

wait a few seconds and turn it

on again.

Adjusting the color and

tint/hue depends on the color

controls provided on your

television set — naturally,

sets with better controls yield

better color. Some sets show

some colors better than

others.

If you have trouble with any of

these steps, consult the

accompanying

troubleshooting chart.

NOW...you are ready to start using the VIC.

NOTE: You can use a monitor instead of a television set — in which case you

can go directly from the VIC to the monitor cable, without the RF

Modulator.

IF ALL ELSE FAILS-CALL THE TOLL-FREE

COMMODORE TECHNICAL HOTLINE...

1-800-523-5622

<

<

<

c

c

c

c

c

c

c

c

c

c

<

VIII

Try typing this program:

Type this program exactly as shown and see

what happens!

This line tells

the VIC to print

what's between the

quotation marks.

This line tells the VIC

to go back to Line 1

and print it again.

Typing the word RUN

makes the program

run.

To stop the program, press the key.

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

(

c

c

c

c

c

c

'.

c

(

I

c

c

c

c

GETTING STARTED—

EXPERIMENT A LITTLE
You made it! Your VIC is aglow with color and ready for you

to tell it what to do. The dark blue, blinking rectangle, called

the cursor, is a signal from the ViC that it is waiting for you.

VIC TIP:

II you type a character on the screen that you don't want, press the

key.

This key will erase the character immediately to the left of the blink
ing cursor.

Use this key as often as you like to delete unwanted characters.

Now, on with the tour! Begin by pressing the following keys:

See how the cursor moves over one position every time you

press a key? The cursor tells you where the next character is

going to appear on the screen. OK, now find the SHIFT key, it

looks like this:

There are two of them, both the same.

3

Hold the

press;

key down, and while it is being held.

You can release the | 'I key alter you press the

The screen should look like this:

key.

*** CSM BASIC V2"f

3583 BYTES FREE

READY.

PRINT"-)i(-

<

c

(

c

c

(

Pressing the JJ key while holding down the

key caused the quotation mark to appear on the screen.

Let's continue. Now press the following keys:

Finally, hold down the

key once again. The screen

now shows:

key, and press the

CBM BASIC V2

3583 BYTES FREE .

READY,

PRINT "RAtNBOW"

'Note: if the number 2 appeared on the screen instead of the

" sign, you didn't hold down the shift key. Hit the

once to erase the 2 and try again.

<

c

c

(

<

c

c

I

Look for this key:

Press the key and look at the screen.

he cursor was here

when you pressed

the RETURN key.

The VIC typed these.

Pressing the [BL^^^B j key told the VIC you were finished

typing. The VIC then looked at what you typed, recognized

that it was being asked to do something (actually, you told it

to print something). The VIC then PRINTed everything between

the two quotation marks (RAINBOW).

When the VIC finished PRINTing the word RAINBOW, it let

you know by displaying the READY message and blinking the
cursor.

It's your turn. Go ahead and enter some other PRINT

messages for your VIC to display. Try these or make up your

own: ,,

Remember, hold

the SHIFT down

to get this

character.

Experiment by using characters other than letters between the

quote marks: The VIC won't mind. Note: If you misspell the

word PRINT, the VIC will let you know by displaying this

message on the screen:

7SYNTAX

EfWOR C

c

I

c

Don't worry. There is absolutely no way you can hurt your VIC

by typing at the keyboard (unless, of course, you're an

elephant), but. if you make a mistake, the VIC will help you out

by calling attention to the error. These error messages and

what they mean are listed in AppendixN. At this point, don't

worry about the "SYNTAX ERROR" message. Just keep

experimenting.

In no time your screen gets cluttered with all the stuff you've

been typing. The VIC has a handy way to CLeaR up this clut

ter. To tell the VIC to "clear" the screen, do the following:

key and pressHold down the

the

The screen clears rnstantly; everything you and the VIC have

typed disappears. You are left with a clean white display area

and a blue cursor blinking away in the upper left hand corner.

Remember how you told the VIC to do this feat. Clearing up

the screen is one of the more frequent commands you'll be

using as you get to know your VIC.

c

I

(

I

<

I

(

c

i

c

c

<

c

c

YOUR FIRST

COMPUTER "PROGRAM"

If your VIC performed well in displaying your messages, no

matter how bizarre they might have been, then your computer

is probably ready to do just about anything. Let's begin by

"entering" your first computer program.

STEP 1: Clear the screen by holding

down the I ; ■ key and

then pressing the

STEP 2: Type: [N

STEP 3: Type: [7] [o]

imi!l2][o]0E

and press ^ Use the

Wj and press the

STEP 4: Type: \2\ [O

Gl fol fTl |O

not type out-the letters of this word

—press the space bar (long key on the bottom of the VIC

When you finish, the screen looks like this:

You typed

this and

then

pressed

blink,

blink, blink.

The VIC

is waiting

VIC TIP: EDITING MISTAKES IN A PROGRAM

[f you make a mistake on a line, you have these editing options:

1, You can retype a line anytime and the VIC will automatically

substitute the new line for the old one. For example, it your pro

gram looks like this:

a lew limes and type:

10PRINN "VIC201

20 GOTO 10

You can skip down by hitting

10 PRINT "VIC20"

Now, the new line has replaced the old line and the program will

"run". To make sure, type jjjJQJEB ■ Replacing lines in a pro
gram is also a quick and easy way to experiment.

2. You can erase an unwanted line by typing the number of that line

and hitting I ■. ~.f- -, I. The entire line will be erased from
m s r~ o r -■ ■^■^■^■■S

3. you can edit a line by using the cursor keys to move to the

character(s) in the line of a program you want to change, typing in

a program over them and hitting Note that quota

tion marks sometimes confuse the VIC—it you get unwanted

characters after quote marks, go back to the beginning ot the line

and type it over.

A. The INST key (get it by typing lets you

insert characters by opening up spaces in a word or line you've

already typed.

5. The DELETE key (just type

diately to the left of the cursor.

) erases characters imme-

If everything looks all right to you, type the following word,

and press I i.-uj , t \ :

LHi El HH I ''"fi ' i nere

The screen should fill with VIC20. At times, it looks like small

animated letters traveling up the screen.

(

c

<

(

VIC20VIC20VIC20VIC20VIC20VK

IC20VIC20VIC20VIC20VIC20VIC2CP

:20VIC20VIC20VJC20VIC20VIC20V
20VIC20VIC20VIC20VIC20VIC20V

3VIC20VIC20VIC20VIC20VIC20VI
MC20V!C20VIC20VIC20VIC20VIC20h
C20VIC20VIC20VIC20VIC20V1C20V

20VIC20VIC20VIC20VIC20VIC20V

OVIC20VIC20VfC20VIC20VIC20VI

'IC20VIC20VIC20VIC20VIG20VIC20*
' IC20VIC20VIC20VIC2GVIC20VIC20^

'[C20VIC20VIC20VIC2QVIC20VIC201

Want to slow down the program? Press the key on the left

side of the keyboard marked:

If you hold down the JUMH key, the program slows down.

Amazing! Your VIC is full of wonderful features. Here, with

just a single key, you are telling the VIC to reduce how fast it

is displaying stuff on the screen.

Yes, but how do you STOP the program? Good question. Look

around the keyboard until you find this key:

Press the jjyjjg key. The program should stop, and the
message:

BREAK IN 10

READY

should appear on the screen. (Don't worry, you didn't break

the VIC—"break" means "stop" in VIC language). Also, the

cursor should reappear. Did you notice that it was gone whife

it was printing?

Now, let's take a look at your program and see if it's still

there. Try typing this:

Your program (lines 10 and 20) will be displayed on the screen.

Now type RUN and the program will hlrun" again.

c
You have just been introduced to several aspects of the VIC

that you will use in many of the later chapters. You have:

(
• PRINTed messages on the screen.

• CLeaRed the screen {SHIFT CLR keys).

• Written your first program (VIC20) and created a moving

display.

• Slowed down (ConTRoLed) the program (the CTRL key).

• STOPed the program with the STOP key {RUN/STOP key).

• LISTed the program.

• Learned some easy ways to edit what you type.

As you explore the chapters of this guide, you will find many

uses for what you have seen here. Don't worry if you have

unanswered questions at this point. Just go ahead and experi

ment and most of your questions will be answered as you go

along.

This guide is designed so that you can go directly to any

chapter that looks interesting to you. You do not have to read

each chapter in order to get to know your VIC. Just be sure to

start from the beginning of each chapter. You will find that our

gradual introduction to each topic makes it easier for you to

learn how to create adventures of your own. Enjoy!

<

(

I

(

(

c

I

'

10

Using the

Screen and

Keyboard

Your First Graphic

Character

A Tour of the

VIC 20 Keyboard

Printing on the

Screen

The VIC 20

Calculator

Introduction to Color

Try typing this program:

Type this program exactly as shown and see

what happens!

10 PRINT

I

20 FOR T= 1 TO 300: NEXT

30 PRINT "your name"

40FORT = 1TO300:NEXT

50 GOTO 10

Type: [r] Qj] [n] and hit

To stop the program, press the key

12

(

C

C

C

c

c

(

(

(

I

<

I

I

I

<

<

<

<

(

USING THE SCREEN AND

KEYBOARD
This chapter assumes that you've read and understood Chapter

1: Getting to Know Your VIC. If you have not, go back and read

at least the last two sections which show you how to use the

keyboard to control what the VIC prints on the screen.

To start, poise yourself before the VIC keyboard and type as

follows, including the program line numbers and punctuation

marks;

Hold down the ' | key and press the

IN] IEI |W| and press the | :" ■ | key.

and press

\R\ \u\ [n] and press

When you type RUN, the screen should fill with the word:

HELLO

The words appear to be moving up and sideways! Press the

CTRL key to slow things a bit. The VIC is PRiNTing the

message several times near the bottom of the screen. When

the screen fills, the contents of the screen are moved up to

make room for more PRiNTing. So. the upward movement is

really happening. The "barber pole effect" is an ■'illusion"
caused by the number of characters the VIC is putting in each

line.

To stop this program, press this key:

13

Now, it's your turn. Type these two lines:

LUl ■-■'■:- IEEE® SHE UB\l\[o][yourname]

The semicolon

means print

everything next

to each other.

and press

[r] QJ] [nJ and press

Wow! Now that you're a TV star, what does your name do on

the screen? The "illusion" of movement depends on the

number of characters in the message.

Again, when you want to stop the action, press the ^~A key.

YOUR FIRST

GRAPHIC CHARACTER

Ciear the screen (hold down HH and l*LJ). Now

type VPfiB AND S You should get a blue heart on the

screen. Try it again. You have just typed your first graphic

character.

Try typing other graphics. Now hold down the LI key and
type some graphics — this is the left side graphics set. Left

side graphics are very good for designing business forms,

charts and graphs Typing the I ' ■■■'■"t I and Pj keys al

the same time lets you use upper and lower case letters. See

Chapter 3 for an explanation.

SIZE OF THE SCREEN
How big is the screen on the VIC? Let's find out. Do this: Clear
the screen and type the following:

NJ IEJ W\ and press

EH EWE m HEED LI

To type a blue heart, hold down

(

(

c

c

c

c

14

c

c

The screen will fill with blue hearts! Count the number of

hearts being printed across the screen. There are 22 of them in

each row. The VIC has 22 PRINT positions across the screen,

The positions across the screen are sometimes called columns.

The VIC has 22 columns.

How many positions are there down She screen? Press the

key to slow down the PRINTing. Holding the |-i J key
causes the last four raws to "flash". The VIC has 23 rows

down the screen.

COLUMN

R
O

0

1

2

3

A

5

G

7

8

D

10

W"
S12

13

14

15

16

17

18

19

20

21

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21

\f 23 rows\
Hmm.

23 x 22 =

506
screen locations

The VIC has 506 places on the screen for characters, letters,
symbols, and so forth. You might say that The VIC can juggle

506 characters at the same time. Amazing 1

VPC TIP

If the VIC has 22 columns across the screen, then any message whose

length is an even divisor of 22 (messages 2 characters. 11 and 22

characters in length) causes the VIC to PRINT in nice neat columns.

Messages of other lengths spill over to the next line. Test this assump

tion for yourself.

Stop the VIC's PRINTing of the neat columns of hearts by

pressing the I jjmj key. Then enter these two lines into the VIC.

<

(

c

(

c

<

<

<

<

c

c

c

You can change the way information is printed on the screen

by putting spaces between the quotation marks. Another way is

to use periods (or dots} instead of spaces. Try typing your name

and 3 periods in the program at the beginning of this chapter.

c

(

1

1(5

c

c

c

c

c

c

c

A TOUR OF THE

VIC20 KEYBOARD

You have now used the keyboard to create and PRINT

messages, put graphics characters on the screen, control the

flow of what the VIC is doing (i> Sand

possibly edit what you have typed (

}. and

Time now for an extended tour of the keyboard and what it can

do for you. Consult the diagram above for the powerful and

versatile set of VIC20 keys.

RESTOREThis is a "reset" key.

f you type the RUN/SI OP key and the HM^M key

together, you completely reset the computer as if you just

turned it on...with the benefit that any programs you had in the

memory are retained and can be listed or run from the start.

17

'

c

c
SHIFT keys — The VIC keyboard is just like a

typewriter and has two shift keys and a

SHIFT LOCK key. The SHIFT key is used with

other keys to type graphics characters and perform operations

like clearing the screen. C

CLR-HOME key — Press this key and the

cursor moves to the top left-hand corner of

the screen (the "home" position). If you hold

down the SHIFT key and press this key, the cursor still moves

to the home position, but you also clear the screen.

CRSR keys — With the VIC, you can easily (

move the cursor up, down and sideways. The

CRSR keys have a repeat feature that keeps

the cursor moving until you release the key. Each key has a set

of arrows that tell you the directions the key controls —up and
down or sideways. To move the cursor down or to the right, you

simply press the appropriate key. To move up or to the left, you

must hold down the SHIFT key while pressing the appropriate

CRSR key. It is significant to keep in mind that you can move the (

cursor over the tops of characters on the screen without affect

ing those characters. (

RETURN key — You press RETURN at the

end of each line of instruction. Pressing this r

key tells the VIC to enter the line, or to

execute the instruction(s). Sometimes it helps to think of

RETURN as an ENTER key because this key actually enters the

information or instruction into the computer.

CTRL key — This key is used with the

COLOR keys to select the colors that you

create on the VIC screen. The key also

provides you with the ability to define your own control

commands that can be incorporated into any applications you

might develop for the VIC. Some plug-in cartridges will make

use of the Control key to perform special functions. The CTRL

key works like the SHIFT key. You must hold it down while
pressing the color key.

18 i

C

RETURN

BLKWWHTU REDWnVNU PURUGRNW BLUW YEL

COLOR keys — You can change the colors of the characters

displayed by simultaneously pressing the CTRL key and one of

the 8 color/number keys on the top row of the keyboard. A

shorthand notation for each color is shown on the face of the

keys. The colors are black, white, red, cyan (light blue), purple,

green, blue, and yellow. With these keys, you can set or change

the color of letters, numbers and graphics displayed inside or

outside a computer program- Once you "set" a color, everything

you type will be in that color until you change colors again.

RVS ON and RVS OFF keys — You can

reverse the images that the VIC puts on the

screen by typing CTRL and RVS ON. Every

thing you type will then be reversed...for example, you can

make the VIC display white characters on a blue background

(the opposite of what it normally prints) by pressing CTRL and

RVS ON. To get back to normal type CTRL and RVS OFF. Try it!

RUN-STOP key — Press this key to tell the

VIC to stop what it is doing and return control

back to you. When the VIC is running a

program, you can stop the program with this key. Holding down

the SHIFT and pressing this key, tells the VIC to begin loading

information into memory from the optional tape cassette unit.

INST-DEL key — You can insert and delete

characters from the line you are typing by

pressing this key. When you press the key by

itself (delete), the character that was immediately to the left of

the cursor disappears. If you're in the middle of a line, the

character to the left is deleted and the characters to the right

automatically move in to close up the space. Holding down

SHIFT and pressing this key, opens up a space in the line so

you can insert a new character. This is very powerful for editing

and correcting mistakes!

GRAPHICS & THE COMMODORE KEY —

When you turn on the VIC, you're

automatically in "graphics" mode which

means you can type UPPER CASE letters and the more than 60

graphics you see on the keys. There are two graphics on each

key. To get the graphic on the right side, simply hold down the

SHIFT key and type the key with the graphic you want. To get

the graphics on the left side, hold down the ■'COMMODORE"

key (the little Hag). In this way you can type UPPER CASE

letters and the full graphics set at the same time! You can

create pictures, charts, and designs by placing characters side

by side or on top of each other (like building blocks).

19

UPPER/LOWER CASE and GRAPHICS keys — If you press the

SHIFT and COMMODORE keys at the same time, you put the

VIC into a text mode. You can then use the VIC like an ordinary

typewriter, with full upper and lower case letters, plus all the

graphics on the left side of the keys. The left side graphics are

ideal for creating charts, graphs, and business forms. To get

back into "Upper Case/Full Graphics" mode, press the SHIFT

and COMMODORE keys together.

C

c

c

PROGRAMMABLE FUNCTION KEYS — The

four tan keys on the right side of the console

are not defined when you turn on the VIC.

They can be assigned tasks or functions from

within the applications that you create. By

using these keys with and without SHIFT, you

get a total of eight assignable function keys.

Function keys will be mostly used with plug-

in cartridges containing special programs,

but computer programmers can assign these

keys as well

c

'

c

c

c

<

SPECIAL KEYS — The VIC keyboard also contains special

symbois not found on many typewriters, or even most

computers. Examples are the English "pound" sign (£), pi

{ n), back arrow {■<—), up arrow (f), greater/lesser than

(> <), and brackets ([])

This concludes your tour of the VIC keyboard. Using only

words, it's difficult to convey just how flexible and powerful the

VIC keyboard is. The best way to discover everything the VIC

can do is to begin your own "touring". Experiment with the

keyboard. Try out the various upper/lower case features

mentioned above. See whal you can create with the rich VIC

graphics set. The keyboard is your direct link to the VIC.

Knowing the Keyboard will help you know your VIC 20.

c

c

!

<

20 t

Clear the screen and enter the following lines:

NEW!

Now, enter this line and press

The screen now shows:

: PRINT "A"; "B"

21

c

When the comma was used in the first PRINT statement, the
VIC placed the letters on the screen, but separated them by

several spaces. When the semicolon was used, the VIC

displayed the two letters close together.

In the first case, the letters are exactly 11 spaces apart. That

fact gives a clue to what's happening. The VIC divides the
screen area into two equal parts.

Whenthe VIC is PRINTing two messages or numbers separated

by a comma, it puts the first item on the left side of the screen

and the second on the right...

The first item is longer than 11 characters.

tf the first item is less than (or equal to) 11 characters, the VIC

PRINTs it and then moves to the center of the screen to display

the second item. If the first item is longer than 11 characters,

the second item appears on the next line. Clear the screen, and
try this example:

PRINT "ABCDEFGHIJKL", "X"

The screen will show:

The first part of the message is 12 characters long, so the "X"

ends up on the next line. Repeat this example with a semicolon

(;) between the two items.

22

PRINT "ABCDEFGHIJKL"; "X"

Does your screen show this result?

Get the idea? The VIC acts like a typewriter with an automatic

tab set near the screen's center. When it sees the comma, it

either "tabs" to the center of the screen or the beginning of the

next line, whichever is next available.

Clear the screen and type the following line into the VIC:

PRINT 1,2

The screen shows:
Aha! With numbers you can

leave off quotation marks.

Do you see the space in front of the first number? When the

VIC displays numbers, it leaves a space at the beginning for the

sign of the number. If the number is positive, you see a blank

space. If the number is negative, a minus sign (-) would appear

on the screen.

23

Try it and see. Enter this line into the VIC:

PRINT-1, -2

Look at the screen and see what is displayed.

numbers in the

same place

The numbers appear in the same places as in the previous

example; they are preceded by the minus signs {-).

These few examples give you some idea of how the VIC can

help you get your messages and information on the screen. The

VfC has many other ways to assist you with this task, and you

will learn what they are as you continue to use your new

computer.

The VIC Calculator
The VIC can also be used as a 9 digit calculator. The -f and

- sign are used just like in mathematics. The VIC multiplica

tion sign is the asterisk (*) and the division sign is the slash

(/}. Type these calculations and check the results. See Appen

dices C and K for more information.

PRINT 1 + 1

PRINT3-2

PRINT 5*2

PRINT 6/3

If you PRINT a calculatfon you

should put it outside the quota

tion marks. Try these examples

1 PRINT"2*(4/2)"

1 PRINTTHE ANSWER IS"2*(4/2}

C

(

C

C

c

c

c

I

I

I

PRINT 2"(4/2)

PRINT 5000/5

PRINT 2/3

PRINT 3+3

The+ sign

is used for

exponents.

This means

3J or 3x3x3

VIC automatically

performs the

calculation outsiJ ■

the quotes and

prints the result

VIC prints

everything

inside the quotes

(

(

(

(

(

(

(

{

(

(

(

(

(

(

(

(

(

(

(

(

(

c

(

(

(

(

(

(

<

(

(

(

<

INTRODUCTION

TO COLOR
The VIC can print letters, numbers and graphic symbols in 8
different colors, it can also print characters in reverse.

With the screen clear, hold down the CTRL key and press this
key:

Now let go of the CTRL key and put your finger on the SPACE

bar at the bottom on the keyboard. Hold the SPACE bar down.

What happens? Is there a blue line being drawn across the

screen?

Hold the SPACE bar down as long as you want. As the cursor

disappears off the right edge of the screen, it reappears on the

left and the blue line starts forming a larger blue color bar.

Release the SPACE bar and do this:

Hold down the CTRL key and press the RED key.

The cursor should now be red. Press and hold the SPACE bar

once again. Does a new red color bar start to form? Yes! Well,

keep painting!

25

Change to other colors as you feel like it. Make the color bars

as thick or thin as you like. Enjoy this newly discovered ability

of the VIC that puts a little color into your life.

Now, type | ■■•■■ | j$£&T and hit the space bar.

Nothing happens except blank spaces. Type

and the color bar reappears. Try typing some letters

in "reverse". Reverse letters make excellent headlines and are

often used to highlight special words and numbers. You can

also use reverse characters inside a program. For example, try

this:

NEW
hold this while

I0PRIN1 |<:i IixqI# VIC20";

20 GOTO 10

RUN

To get ready for the next chapter, type

and type the word NEW and

From now on, use

\^ this method to ^
"" erase unwanted
programs and

start "NEW"

2G

Try typing this program:

Type this program exactly as shown and see

what happens!

This means

print 505

hearts on

the screen.

This changes

the value of

C (color) 17

steps at a time.

This is a time

delay loop that

tells VIC to

count to 500

before changing

colors again.

To stop the program, press the key.

28

C

(

i

<

<

(

i

(

(

(

<

(

(

i

(

(

i

(

<

<

(

(

(

t

<

(

C

c

I

(

COLOR & GRAPHICS

The VIC and your color TV set give you the ability to put

colors everywhere on the screen. When you first turn on the

VIC, the border, the cursor, and any characters on the

screen are already in color. But that's only the beginning.

The VIC can display 8 cursor colors, 8 border colors and 16

screen colorsJ

Let's start by using the keys on the VIC's keyboard to make

colors on the screen. Type any letter. The letter should

appear in dark blue on a white screen. Now look at the top

row of keys (the numbered keys from 1 to 8). Do you see

the color names written on the front of each key? Now find

the key marked b?":j on the left side of the keyboard.

Hold down the R-u-J key and hit the key marked

Release the F"?.vl and*iilkeys and type any letter

on the keyboard. This letter should appear in yellow. Now

hold down the I■ '■■ I key and hit another color, then 1ype

some letters. See how easy it is to change letter colors on

the screen?

Now find the key marked 1LM. Hold down the ■■■ key

and hit the JEul. Try typing some letters. All the letters

you type (until you hit the I ; -.<.■: I key) appear in

reverse on the screen, like a photographic negative. If you

hold down r I and hit ESA, the letters you type will be

displayed normally.

PROGRAMMING IN COLOR

Now let's combine color control with a simple program

command. Note that when you type =1,1 and a color key

inside quotation marks, a reverse graphic symbol appears.

This is okay. Do this:

Hold down the key and press the flfjflfl key.

Type the letters:

0 [D [w| and press the ■'■■■■■■■< ■■■■ key.

Then type: Q] [p] [E CD OH 0 0

This symbol appears

when you press

s

and press

Type: [2]

and press

c

<

c

<

c

c

c

(

(

(

(

c

4

i

i

<

c

c

c

c

30

If you have trouble typing this example, flip back to the

section called "Getting Siarted" in Chapter One. You can't

hurt the VIC with anything you type, but you can get

confused by certain key combinations. If you accidentally

leave the $${ key engaged, for example, the resulting

display is difficult to decipher. If you make a mistake, hit

a few times and retype the entire line. The

new line will aulomaticaliy replace the old one. When you

have the two lines shown above on the screen, iype:

~U\ \H\ and press

As soon as you press that final , you should

see hundreds of red and blue balls float by on your screen.

How? It's easy with the VIC. Look back at the example

above. See the two strange characters in the line that begins

with "1"? They were created when you held the f;r I key

and pressed the i£& and ^Sk. keys. The symbols that

appear are VIC's shorthand to tell it to make the first ball red

and the second one blue.

and press

31

Nothing to it. When you are tired of red and blue, press

STOP. If you like free form exploring, try retyping line 1.

Throw in some and color keys along with graphics

characters and letters or numbers. The VIC can handle it all

and will give you an enlightening color display.

THE VIC COLOR KEYS

In the last example, you discovered that you can insert color

controls into a PRINT message by using the [;<i !J and the

keys whose faces are labeled:

«

(

c

c

c

c

c

These keys are the number keys 1 through 8. When you

press these keys in the middle of a PRINT statement, a set

of "strange" characters appear. To see what these

characters look like, press |fljjj (if the program is still

running), clear the screen, and enter:

PRINT

c

<

c

c

c

<

Don't forget to put in the quotation marks or to use the

key with the color keys. Your screen should show:

c

c

32

c

PRINT

Last

quoiaiion mark

is on this line.

Where is the letter "A"? Ohi \ ne second color Key is S33a

and the background is . . . you guessed it ... white.

PRINTing a white letter "A" on a white background gives

you a space in your RAINBOWS.

The other seven letters in the word RAINBOWS are each a

different color. The last letter, St is yellow. Note that the

READY message is also in yellow, along with the cursor.

When color controls are put in PRINT messages, the VIC

remembers the last color used and stays in that color.

To change the cursor back to the regular blue color, hold

down ' .].:.-" and press ££^ ■ (f you wish, try PPlNTing

some color messages on your own. You will get a chance to

see more uses for the color control keys in just a bit. Right

now, there is an important announcement . . .

EXTRA!! EXTRA!!
The VIC CoEor Show is on The Way!J

33

CHANGING SCREEN & BORDER COLORS

Now that you know how to change the colors of letters and

graphics, we're going to show you how to change the screen

and border colors. You can display 255 different screen and

border color combinations. To make sure the VIC is ready for

what comes next, press and then to

erase the screen. Next, type these lines into the VIC:

ill L§] L

(Press

following lines.)

and press

at the end of each oi the

The left-mosi

character on

each line

1FOR X = 1 TO 255

2POKE 36879, X

3PRINT " [*! POKE 36879," X

4FOR T = 1 TO 1000: NEXTT

5NEXT X

This is a "time delay".

VIC counts Irom 1 to 1000

(whew!) between changes

Add one to

"X" — in other words —

change ilX11 to the next

number and do it

over again.

34

i

<

<

<

c

<

<

c

c

<

<

i

c

<

<

c

c

c

<

c

c

c

c

c

c

c

c

When you have typed these lines, look them over and see if

they match what is shown on this page. If there are some that

don't match, retype those lines from the beginning. Use

the to move back to any lines you want to retype.

Once you are satisfied that the lines are all right, get a piece

of paper and a pen or pencil and place it nearby. Then type:

[R] [U] HI and Press

Your screen should begin to blush and flash. The border

changes colors. The background changes colors. Even the

small message at the top of the screen is changing colors.

The VIC Is displaying 255 different color combinations.

(Syntax error in one of the lines? Retype that line and

then type:

and again.)

While the VIC is running, if you notice a particular set of

colors that look interesting; write down the number of that

combination. Only the number at the end of the printed

message is changing. The "POKE 36879," stays the same.

(Occasionally, you will not be able to read the message

because it is the same color as the background. C'est la vie.

The letters and numbers will reappear after a few additional

flashes,) The VIC has eight border colors, sixteen

background colors, and eight character colors. You can put

characters in all eight colors over any background. That

gives you a lot of combinations to explore.

If you want to restore the screen to its original colors, simply

hold down the M3 key and hit

Line two in the example above is responsible for making the

VIC change colors. The line contains a POKE command.

Every POKE command has two numeric values that the

VIC uses:

35

The first number (in this case, 36879) is the location in

memory (think of it as a Ifttle box labeled 36879} into which

you are going to POKE (ie, place) the second number, X. The

memory location 36879 happens to be where the VIC stores

its Information on what the screen's border and background

colors should be. Each value of "X" corresponds to a

different color combination the VIC can display. For this

example, "X" starts with the value 1, then changes to 2T 3,

and so forth, up to a final value of 255.

/
//
Memory

Location #

36877

/

/
//

/

Memory

Location #

36878

/ /

/
Memory

Location #

36379

/
//

/

Memory

Location #

36380

/

c

c

<

c

c

(

<

<

<

<

<

AN EXAMPLE OF POKE 36879, 8

To assist you in your quest for the perfect color

combinations, here is a table of POKE values ("X" values)

and the background and border colors they produce. The

table gives you the POKE values to produce all combinations

of these colors. The POKE values are in sequence with skips

of eight (8) numbers. The missing numbers are the POKE

values that cause the reversal of displayed characters.

36

c

c

c

c

c

<

c

c

c

c

c

c

c

f

SCREEN & BORDER COLOR COMBINATIONS

Screen

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

LT. ORANGE

PINK

LT. CYAN

LT. PURPLE

LT. GREEN

LT. BLUE

LT. YELLOW

BLK

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

WHT

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

RED

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

Border

CYAN

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

PUR

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

GRN

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

BLU

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

YEL

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

COLORING THE SCREEN

Time to combine the VIC'S color and graphics features in a

delightful color display. Again, you only have to enter a few

lines into the VIC, and spectacular events begin to happen.

If any examples are still flapping or bouncing across the

screen, ^3 them. Clear the screen. Then, type these

mysterious lines:

[n! [~El fwl (not too mysterious, yet)

37

1 L = INT(RND(1)*500)

2 C = INT{RND(1)*8) + 1

Read about

these in

Chapter 7.

3 POKE 7680 + U 160

Generates a

random number from 1

through 500.

Random number

from 1 through 8

c

c

<

<

c

c

c

(

Where is

this location?

4 POKE 38400 +Lt C

5 GOTO 1

Check Ihe example to see if all ttie lines were typed as

shown. If they are all right, clear the screen and type

|_Rj (JJJ |_

of color.

. Your screen should explode in tiny bursts

The VIC has done it again! With only a few keystrokes, it is

now dabbling color everywhere. How is this being done?

In simple terms, lines 1 and 2 are randomly selecting where

on the screen the coJor will go (L for Location maybe) and

what color (C for, of course. Color). Line 1 generates a

number from 1 through 500. Line 2 generates a number from

1 through 8.

c

c

c

<

<

c

<

(

I

c

c

c

c

38

Line 3 POKEs a character onto the screen.

The value 7608 represents the home position

on the screen; the top lefthand corner.

The POKE value 160 is a solid block

(essentially a reversed space).

Line 4 POKEs the color onto the character. The value 38400

represents the location in memory of the color component of

the character in the home position.

SCREEN LOCATIONS

VIC TIP:
To POKE characters on the screen, you must POKE the screen

location and the color at that location (or each character. The screen

locations start at 7680. The color locations begin at 38400. See

Appendix for the screen memory map.

You should try POKEing other values onto the screen.

Change the 160 in line 3 to any number from 0 to 255.

EXPERIMENT — and enjoy your VIC's colorful personality.

There are 506 possible screen locations (chart). You can

place any word, letter, sentence, graphic, or whatever —

whenever you want on the screen. Just imagine the screen

consists of 506 boxes like this — each box has a number.

Enough POKEing around! Time to get back to the color

control keys.

39

VIC TIP:
To restore your VIC to its normal border and background colors
type this POKE statement:

POKE 36879, 27

or hold down the RUN/STOP key and hit

I

(

I

<

RANDOM COLORS

You are now going to find out how you can iet the VIC

choose colors to put on the screen. First clear the screen,

after each line):and type these lines (press

1 PRINT "

To get "birds":

Hold: Press:
2 GOTO 1

RUN

c

c

c

c

Your screen should fill with red and blue birds. Wonder

where they are flying (o? They are really moving.

40

Let the birds tly for a while. When you want to stop their

flight, press

Now that you know how to create birds, clear the screen and

type these lines: (Remember the

1 A$

This line gives random whole

numbers from one through eight

2 N = INT(RND(1)'8) + 1 <■

3 B$ = MID$(A$,N,1)

,—, \- Picks one color)
\f~** r~\L control out of AS. <
f Random "S
y value J

4 PRINT B$ "

5 GOTO 2

Look the lines over once they are entered. Check to see if
they match what is shown above. When you are ready, clear

41

the screen and type [r] [Q] [n] .If you have any errors,

retype this problem line and [r] |jj] [^] it again, Sam

(excuse us, VIC!!). Birds! Birds! Everywhere!! In every color

of the rainbow! Your screen should be humming (oops!) with

flocks of "rainbow" birds. Notice thai there are gaps in your

flock. Actually, the VIC is PRINTing white birds in those

places. If you want these "invisible" birds to appear, you

mus1 change the background color. (Remember how? You

POKE a number into location 36879.)

Of course, if you change the background to another colon

say blue, then all the blue birds will disappear. Try it and see

tor yourself. Press EE1 when you want to keep the birds
from Hying. *■■*

The last example used some interesting VIC features to get

the birds on the screen and change their colors. Let's look

at the example line-by-line. The first line is:

1 A$ = " I

The color controls form a long string of characters

are put into the VIC'S memory in a place called AS

(pronounced "A string" or "A dollar sign"). You can think of

AS as being like a box where strings of characters can be

stored. The first position in the box A$ contains

control character. The last position contains the

control character.

42

(

c

c

(

<

c

c

c

c

c

c

c

c

c

c

<

(

c

c

c

c

c

I

c

c

c

(

<

c

c

c

c

c

I

The next line is:

2 N = INT(RND(1)'8)+ 1

This line generates a random positive whole number from

one through eight and puts the number into "N". "N" is the

place in the VIC's memory that can be used to store

numbers. The VIC knows that "N" is a place to store

numbers since there is no dollar sign {$) at the end of

the name.

In line one, the location used to store the color controls was

called AS, and it has a dollar sign on the end. The VIC knows
that locations whose names end with a dollar sign are to be

used to store messages or strings of characters.

For more information on how G] [HI E and II § [H work

together to generate random numbers, look at Chapter

Seven in this book. For now, just be aware that this line is

producing numbers from one through eight. See the number

eight on the right side of the equal sign? That number

controls how many random numbers are being generated. If

you were to change the eight to a six, then any number from

one through six would be produced.

Hmmm . . . moving right along now:

3 B$ = MID$(A$,N,1)

This line creates a new box called B$, and puts one color

control character into it. AS contains all eight color control

characters. "N" is a random number from one through

eight. What does MIDS do? It picks out one color control

character from A$ at the "N"th position in the string. This

character is put into B$. Yes, "Virginia", now we have three

little boxes inside the VIC, one called AS, one called "N"

and one called B$. Each time the VIC gets to line two, it is

given a new value for "N". This determines which color MID$

picks and puts into B$.

E J

43

The fourth line is:

4 PRINT B$ 1

This line tells the VIC to use the color it finds in the B$ box
and to draw the birdlike creatures with it. The command,
PRINT B$, creates the same effect as typing a specific color
control character. By using BS, however, we can have the

VIC change the color character automatically. As "N" (line 2)
changes, B$ changes (line 3), and the birds change color

wish

B$

would

make

up its

mind!

The VIC's ability to generate random numbers can be
combined with its color, sound, and graphics features in
many interesting ways. For example, let's revisit the VIC
Color Show, but randomly, and make some noise while we
are at it.

44

<

c

c

c

'.

c

(

(

In this last example, the VIC's color and sound are

both randomly produced. Enter the following lines into

the computer:

NEW

1POKE 36878, 3

2C = INT(RND(1)'255) + 1

Random number 1 through 255

3S = INT(RND(1)*50) + 175

Random number 175 through 224

4POKE 36879, C ^

5POKE 36875, S

6FOR T = 1 TO 100: NEXT T

7GOTO 2

The bubble captions tell most of the story on this example.

Chapter Five tells you more about music. If you are ready lo

run the example, clear the screen and type [r] [TJj [n] , then

press

45

My, my!! What a wild bunch of sound and color

combinations. Oh, well! You get what you play. You can't

expect random music to be to everyone's taste.

When you want to halt this color and sound machine, press

. Then you need to type these two lines to shut olf the

note that is still playing and restore the VIC screen to its

normal colors:

POKE 36875, 0

POKE 36879, 27

Time for you to explore on your own. Experiment with the

VIC'S colors. Enjoy your colorful, musical VIC computer.

I

(

I

c

I

c

<

c

(

c

c

c

c

46

KEYBOARD GRAPHICS

One of the special features of your VIC 20 is the graphics
keyset. Most of the keys have two graphic characters printed

on the front. You can display these graphics on the screen,

or, if you have a Commodore dot matrix printer, print them

on paper along with all the other keyboard symbols.

To display the graphic on the left side of trie key, hold down

the Commodore key while pressing the graphic key, to

display the right side graphic, hold down the | ■■.-;!<:■< I key and

type the graphic you want.

VIC TIP:
Caution...if you push both the SHIFT and Commodore keys at the

same time, you will switch to upperdower case mode. In upper/lower

case, only the left side graphics are available. To get back to upper

case/graphics mode, push | ■ | and Q together.

The easiest way to use VIC graphics is to type the

COMMODORE p? or I ,:, „ I key, and the graphic symbol

you want to display from the keyboard. For example, type

the following:

You should see a blue heart printed on your screen. Try

typing some other graphic keys. Here are some other keys

you might want to try:

47

Left Side Graphics Right Side Graphics

Note: Lines

and bars come

in different sizes

& increments

so you can

make exactly

the graphics

you want.

Notice that the left side graphics are good for creating

charts, graphs and business forms. Right side graphics

are good for drawing illustrations, animations . . . even

playing cards!

c

(

(

c

c

<:

c

c

I

GRAPHICS IN HEADLINES & TITLES

Graphics aren't limited to cartoons and games. You can use

a variety of special effects to enhance titles in charts and

graphs, or highlight special words in programs that use a lot

of text. The easiest way to highlight a word or phrase is to

type it in REVERSE. Simply type

word you want.

For example:

the

10 P R : ' N T "

Type a

headline using

the keyboard.

I

c

c

I

c

c

I

c

c

c

c

c

c

c

c

c

Now try some spaces to create a title bar...

Another way to highlight a word is to draw a graphic box

around it. The technique is like drawing. Be sure to type

exactly as shown. Lei's do it step by step.

Type the same

combination five

times.

The screen will show a straight line. The next line includes

your headline and a vertical line at each end to complete the

sides of your "box".

This can be a

longer title, but then

you need to make

the box longer

by adding

more to

lines 10 & 30.

See how we are building the headline box? Now to finish

R U N

VIC TIP:
To edit your program, type LIST and press RETURN. Now you can

go back and change a line that isn't exactly right, by using the CRSR

and INST/DEL keys lo move the error and retype it. After you make

a correction or change, press RETURN to enter the change lor that

line ... or... you can also retype any line any time and press

RETURN to change it.

Here's another way to highlight a word or headline, by

animating it so it appears to blink several times when it

comes on the television screen . . .

H E A D L ! i N E

FOR H =

20PRINT "

25FORT = 1 TO 50: NEXT

30PRINT "

H [¥] [A] [DJ LJJ LU LNj 1§T

35FOR T - 1 TO 50: NEXT

40NEXT H

0 El GH

If the headline doesn't overlap evenly, try adjusting the

spacing inside the quote marks. To speed up or slow down

the blinking change the number in lines 25 and 35.

50

c

c

c

c

(

<

I

(

'

c

c

c

c

c

c

c

c

c

c

(

s

Try typing this program:

Type this program exactly as shown and see

what happens!

10 PRINT"

20 PRINT " K~| iQl r-7| "

30 PRINT "O Elj PI"

40 PRINT " [/I |~~| f\] -

50 FOR T = 1 TO 300: NEXT

60 PRINT"

70 PRINT "[]p[]

80 PRINT"

90 print ■■ r~i n n"

100 FORT=1TO300:NEXT

110 GOTO 10

To stop the program,

press the EB| key.

52

c

<

I

(

c

c

c

c

I

I

c

(

(

I

c

c

c

<

c

c

c

c

(

c

c

c

c

(

c

c

c

c

c

FLYING BIRDS

This chapter shows you how to use the ViC's graphic abilities

to create illusions of characters moving about the screen.

The illusion of movement you can create with the VIC is often

referred to as animation. Animation can make any program —

from games to business programs — fun and exciting.

Let's begin by entering the following lines:

Hold down the i . *.] key and press the

To get birds

HOLD

For more on "BIRDS" see

Chapter 3, "Graohics"

and press

PRESS

and press

and press

T Q|p I_FJ loj LRJ B :' LXJ 1=
3 HE EH EHEn] \e} [x] |t][t

<

53

WHAT YOU HAVE JUST TYPED

SHOULD LOOK LIKE THIS!

1

2

3

4

PRINT" |* *»•-"

FORT = 1TO150:

PRINT " @ r#<% "
FORT=1TO150:

5 GOTO 1

r

NEXTT

NEXTT

Look over what you have typed. Does it match what is shown?

If it does not, re-enter the lines that are different. When

everything matches, type:

[r] Qj] IM] and press

HINT: You can re-enter or change any line by typing it over. The

second typing will automatically erase and replace the

first. You can erase a line by typing the line no. only

followed by

Behold your first VIC illusion or animation. The "bird" creature

is huffing and puffing up in the top left-hand corner of the

screen. It seems to be using a lot of wing power, but there must

be a strong headwind. The bird is getting nowhere.

C

c

i

c

(

You, however, are getting places. Can you see how the bird

appears to be actually moving its wings? Study the example for

a moment. The secret to almost all animation on the VIC is

given in this one example. How you can create this illusion of

movement is easily described in a few simple steps. Here is a

brief summary of how to make just about any character wink,

blink, wave, nod, seem to move, and so forth.

54

C

c

c

c

<

c

<

<

(

(

(

(

(

(

{

(

(

(

(

c

(

(

(

(

(

(

(

(

(

(

(

<

<

(

<

(

(

<

First, display the character or combination of characters in one

position on the screen.

Second, wait for a short period of time. A FOR-NEXT "time

delay loop' makes this happen. Examples of "time delay"

instructions are shown in lines 2 and 4 of the flying bird

program. These lines tell the VIC to count from 1 to 150. The

VIC can count to 150 quickly. Try changing 150 to 500 (or some

other number) and see what happens.

Third, display the character again but with some part of it

altered. Because of the previous delay, your eye is fooled and

you think you have seen

"movement".

Fourth, wait again. Based on what effect you are trying to

achieve, this wait may be longer or shorter than the first delay

loop, in the example, the delays between PRINTings were the

same.

Fifth (the easy part), repeat the first four steps just mentioned.

This is accomplished by the GOTO command which tells the

VIC to go back to the first line and start over again. Thus, the

program prints the bird with his wings "up", counts to 150, then

prints the bird with his wings "down" and goes back to the

beginning again.

In the first and third steps, where the character is being

displayed, it is often necessary to make sure that no old

character parts are left on the screen. In our bird example, this

problem is taken care of by putting the screen clear character

and jjfjyj in each message. That character

clears the screen and homes the cursor so each version of the

bird (wings up, wings down) appears in the upper left-hand

corner.

55

I
You may want to experiment with this example some.

Press W/M to stop the wing flappings and change the upper

counting limit (150) in lines 2 and 4. Try changing just one

value, leaving the other at 150. Does your bird begin to soar?
Try a value like 50 in both places. Does your bird fly faster?

What about an upper limit of 500? 1000?

Hmmm...the bird gets rather s-l-o-w.

CLeaROut for HOME

You already know that you can clear the screen by holding

down IP^B and pressing the E3 key. From within

a program, you can tell the VIC to clear the screen. You do so

by typing:

print ■' This character appears

when you hold

and press

<

c

c

c

c

<

c

When you are entering a PRINT message, if you press the two

keys (^^fl| and j^) that you use to clear the

screen, the reverse heart image appears on in the message

field. That symbol is a signal to the VIC that when the message

is PRINTed, the screen fs to be cleared at that place in the

message, and the cursor sent home. Home is the upper left-

hand corner of the screen.

56

Try the PRINT statement directly. Type it into the VIC. Does the
screen clear?

Yes1

" Works in the

immediate mode

Now, mess up the screen. Put some birds, characters, numbers,

and graphics symbols all over the place. When your screen is
sufficiently full, type this line:

PRINT"

Did you notice a difference from before with the other PRINT

statement? Yes, this time the cursor went home but the screen

did not clear. If you don't press the ■■• si i key while typing

into the message field, the reverse S image appears

instead of the heart. The reverse S tells the VIC to home the

cursor, but do not erase the screen.

Type:

BOUNCING BALL
Clear the screen and enter the following into the VIC:

(Press | i,.,u | after typing each line.)

NEW

1 PRINT"

2 GOTO 1

RUN

When RUN is typed, the screen should fill with columns of blue

balls. Let the balls flow by for awhile and then press ETB ■

Pressing pCl causes the BREAK and READY messages

to appear. Now, typej,

1 PRINT", "R

The two reverse image characters are the symbols the VIC puts

in a message field when you hold down I,., | and press

the JZfj and J£Dk keys.

After you have typed the new line, tell the VIC to RUN this

example:

Type: RUN

What happened to the balls? Press the key to slow

down the PRINTing. There are now columns of blue rectangles

with white holes in them. Can you guess why?

58

*

<

<

<

'

c

(

c

(

c

c

c

c

c

c

Biue bars

with white

holes

Putting the RVS ON control character in front of the ball

symbol, causes the VIC to reverse the colors being used to

display each ball. The ball is normally blue and is surrounded

by white background. The reversal made the background blue

and the bail white.

Ball with

RVS OFF

(normal)

Placing the RVS OFF control character after the ball, tells

the VIC to reset the reversing of background and character

colors. That is like reversing the reverse, and you end up back

where you started. If the RVS OFF is not used, an

interesting effect is produced.

the reverse balls if need be. and enter this line:

1 PRINT l'

Type: RUN

When RVS OFF is not used, all the spaces on the screen

are reversed and become solid blocks. What an interesting

pattern maker the VIC can become. How about designing your

own textiles, or wallpaper, or floor tiles with the VIC? What can

you think to do with the VIC?

59

THE CURSOR KEYS
The four cursor control keys let you move the cursor anywhere

on the screen. You can put the cursor controls in PRINT

statement message fields to help you position the characters

and messages you are printing. Here is the bird example from

the beginning of the chapter with the addition of a few cursor

controls.

Clear the screen, and enter this new bird display:

CRSR)) CRSR

DOWNY RIGHT

This line uses several cursor controls (DOWN , RIGHT .

LEFT } to animate and move the bird image. You will see the

movements when you RUN the entire example.

2 FOR T = 1 TO 150: NEXT T * —f Wait

3 PRINT" mram -,

This line contains three LEFT cursor control characters.

4FORT=1 TO 150: NEXTT

sprint- . mmm •■;

r1 3CRSR-<
> Left yj

6FORT = 1 TO 150: NEXTT

7 GOTO 1

c

(

60

(

c

(

(

(

c

(

I

c

c

c

(

c

c

c

c

c

c

c

'

Type and check the example against the printed text. When you

are ready, type RUN and watch the birdie.

The cursor control characters in this example moves the bird

down and across the screen. Easy as bluebird pie!

Your turn again; why don't you invent another creature and

m-o-v-e it across the screen.

ANIMATING WITH

POKES AND PEEKS
So far you have learned to use the PRINT statement with the

cursor controls and the color controls to move objects around

the screen. This is probably the fastest way to move objects

using BASIC, but it is not the smartest. Most arcade-style

games require that the object moving around the screen reacts

to other objects on the screen. The only practical way to

program this is using the PEEK and POKE statements.

In order to use this technique, you must first understand the

concept of memory-mapped video. Each position on the screen

corresponds to a location inside the VIC's memory (RAM).

Since there are 506 possible positions on the screen for

characters, there are 506 locations in memory to hold the

characters. And, since each location in memory can contain a

number from 0 to 255, there are 256 possible values for each

memory location. These are the 256 different characters that

the VIC can make (see Appendix H). A number in a position in

screen memory is a code for the character in that position.

Screen memory in the VIC normally begins at location 7680,

and ends at location 8185. Location 7680 is the location of the

upper left corner of the screen. Location 7681 is the position of

the next character to the right of that one, and so on down the

row. The next location following the last character of d row is

the first character of the next row down.

61

Now let's say that we are controlling a ball bouncing on the (

screen. The ball is in the middle of the screen, column ten and

row ten. (The upper left corner is column zero, row zeroj The

formula for calculating the memory location on the screen is:

P = 7680 + X + 22*Y *

where X is the row and Y is the column. Therefore, the memory

position of the ball is 7680 + 10 + 220, or 7910. Clear the screen

and type;

POKE 36879,8

(
This changes the color of the screen to all black. Now type:

POKE 7910,81 {

A ball appears in the middle of the screen! You have placed the

character directly into screen memory without using the PRINT

statement.

<
The ball that appeared was white. However, there is a way to

change the color of an object at any location on the screen,

also using POKEs. Type; .

POKE 38630,3 (

The ball's color changes to cyan. For every spot on the VIC's

screen there are two memory locations, one for the character

code and the other for the color code. The color memory map

begins at location 38400 (top left-hand corner), and continues

on for 506 locations. The color codes from 0 to 7 will give you

the 8 colors numbered 1 to 8 on the keyboard. (Other numbers

will give strange looking results. See the VIC Programmers /

Reference Guide for a complete explanation.)

C

I

I

c

I

I

f

c

SCREEN MEMORY MAPS

This is

location

7681 CHARACTER CODES

.This is

memory

location

7680
&-•—'

.This one

is number

,7702

Location

7910

(a ball)

This is

memory

location

38400

38630

(cyan)

-—-

K

\ COLOR CODES ^

_

■-—

■A 3

■

Location

'number

8185

63

(

Here is a short program to bounce a ball around the screen, f-

followed by a detailed explanation.

10 PRINT " I " ■:: I fljft^

<

c

c

I

(

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

POKE

POKE

X = 1

Y=1

DX = 1

DY = 1

POKE

FORT

POKE

X-X -

IFX=

36879,9

36878.15

7680 + X + 22*Y,81

= 1TOl0; NEXT

7680+X

:-DX

0ORX-

Y - Y + DY

IFY =

POKE

GOTO

0ORY =

36876, 0

80

+ 22*Y, 32

21 THEN DX = -DX: POKE 36876. 220

22 THEN DY = -DY: POKE 36786, 230

c

c

c

i
Line 10 clears the screen, and line 20 sets the color of the f

screen to black with a white border. Line 30 sets the loudness

of the sound generators to the loudest level. (

The X and Y variables used in lines 40 and 50 keep track of the

current column and row position of the ball. The DX and DY ^
used in lines 60 and 70 are the horizontal and vertical direction

of the ball's movement. When a +1 is added to the X value, the

column is moved 1 to the right. When -1 is added to X, the

column of the ball is moved 1 to the left. +1 added to Y moves

the ball down a row, and -1 added to Y moves the ball up a row. (

Line 80 puts the ball character on the screen at its current

position. Line 90 is a delay loop, leaving the ball on the screen

just long enough for your eye to see it. LinetOOnow erases the

ball by putting a space (code of 32) where it was on the screen.

Line 110 adds the direction factor to X. Line 120 tests to see if

the ball has reached one of the side walls, reversing the ^

direction and beeping if there is a bounce. Lines 130 and 140 do

the same for the top and bottom walls. (

Line 150 turns off the sound, if any. to complete the bounce

sound effect. Line 160 sends the program back to display and

move the ball again.

c

Play with this program a little. By changing the number in line

80 from an 81 to another character code, you can change the

ball to any other character. If you change either DX or DY to 0,

the ball will bounce straight instead of diagonally.

Now we can add a little more intelligence to this program. So

far the only thing we check for is the X and Y values getting out

of bounds for the screen. Add the following lines to the

program shown above. (Just type these lines and they'll be

added automatically)

32 FORL = 1TO10

35 POKE 7680 + INT (RND (1) *506), 102

37 NEXT

155 IF PEEK (7680+ X + 22*Y) = 102 THEN DX = -DX: DY = -DY:

POKE 36876, 180: GOTO 110

Lines 32 to 37 put 10 gray characters on the screen in random

positions. Line 155 checks ("PEEKs") to see if the ball is about

to bounce into a grey block, and reverses the ball's direction if

so.

See Appendices H and I for more information on animation.

65

c

c

(

I

(

c

c

I

I

(

c

Try typing this program:

Type this program exactly as shown and see

what happens!

10 PRINT"

20 FOR I = 1 TO 5

30 POKE 36873+1,0

40 NEXT I

50 PRINT "WHICH VOICE (1-4)?"

60 PRINT "IF DONE, ENTER 0"

70 INPUT N

80 IFN=0THEN END

90 PRINT "WHICH PITCH (128-254)?"

100 INPUT P

110 POKE 36878, 4

120 POKE 36873+ N,P

130 FOR J = 1 TO 2000: NEXT J

140 GOTO 10

To stop the program, press the Bj key.

C

i

C

c

c

c

c

c

I

c

c

c

c

c

c

<

I

(

(

(

I

<

c

<

c

<

c

c

c

<

68

MAKING MUSIC
You may not realize it, but you and your VIC can make music

and sound effects! This chapter introduces you to the music
and sounds that the VIC can make, tt will teach you how to

control these sounds and play any kind of music from Bach —

to Rock. So put your candelabra on your TV set, and get ready

fora concert!

First, let's find out how to play a note:

Hold down the ■ ■■] key and press the

N 1 V7 and press the

E 5 [kj I.

key.

.3] [6][8] [7] 1][D

and press

At this point, you should hear a tone coming from your TV

speaker. If you don't, try adjusting the volume control on the TV
in the normal way. Set it so that the tone is comfortably

loud...like music on a TV show.

You've just played middle C. one of 128 notes in VIC's

repertoire! To turn off the tone, type this:

Next, let's find out how many notes the VIC can sing:

TypeNEWand pressl

This tells VIC you re

ready to write a new

program. It automatically

erases the old one.

Now, type (his program:

1 POKE 36878, 15

2 FOR I = 128 TO 255

3 POKE 36875, I

4 FOR D = 1 TOirj

5 NEXTD

6 NEXT I

7 POKE 36875, 0

Take a little time to look at Ihe VIC's screen, and see if all of

the lines on it look just like these. If any line looks wrong, just

lype it over again. Make sure you include the line number. VIC

will automatically substitute the new line for your previous

version. To get a listing of the lines in your program, type:

LIST and press

If all the lines are OK, type:

RUN and press

and you will hear all 128 notes that the VIC can sing with this

voice. (If you don'!, recheck the lines as you typed them.) if you

want 10 hear the notes again, type:

RUN again, and press

Now that you have heard the notes that your VIC can make, we

wan! to explain a little bit about how it does all that.

Inside the VIC, the Video Interface Chip (which gives the VIC its

name) handles both sound and picture. It lets your VIC send

sounds to the speaker of your TV set. The volume of sound can

be adjusted by the volume control on the TV or from the VIC's

keyboard.

70

C

c

t

c

(

<

c

c

c

c

c

c

c

<

c

c

c

c

c

c

{

c

c

c

c

c

(

THE FOUR VOICES OF VIC
Your VIC has four voices...that is, it can "sing" four different

notes to you at the same timei You might think 01 them as

soprano, alto, tenor, and noise. Each of the voices has a

particular "speaker control number11. By using this number, we

can turn the speaker "on" and use it to create a musical note

or sound effect. We use the word POKE to do this.

The VIC's four speaker numbers are:

36874 (speaker 1 - music)

36875 (speaker 2 - music)

36876 (speaker 3 - music), and

36877 (speaker 4 - noise).

The volume control number is 36878.

36874,. .(alto) 36875 ... {tenor) 36876 ... (soprano)

36877 . . .(noise)

speaker 1

36878. , . (volume)

To play a note, type POKE and the speaker number, a comma,

and a number representing the note you want to play.

For example, type:

POKE 36874,128 and press

71

You've just sounded note #128 using speaker #36874, the first
(lowest) voice. From now on, let's call this speaker S1 (short for
speaker 1); the second, S2; the third, S3; and the fourth, S4. S2
sings higher notes than S1 does, and S3 sings higher than S2.

S4 sings with a buzz in its voice...this "voice" creates "white
noise" used for sound effects.

By the way, to turn off a voice, POKE 0 into it, like this:

POKE 36874, 0 and press

This might seem a little complicated if you're not a "computer
musician" yet, so we've made it easier for you. You can save a

lot of typing if you use (he following short program to translate
the speaker numbers into shorter numbers.

Type this on your VIC exactly as shown:

NEW

51 = 36874

52 ■ 36875

53 = 36876

54 = 36877

V = 36878

This allows us to refer to the speaker numbers by the
abbreviations SI, S2, S3, S4, and V (volume). Before proceeding,
check to make sure that each line has been entered correctly
Now you are ready to make sounds the easy way!

POKE V, 10
This sets the volume

72

<

c

c

»

This POKEs 10 into the location that controls volume. The

volume control can store any value between 0 and 15. The

higher the number, the louder the volume,

POKE SI,195

POKE S2, 215

POKE S3, 231

Experiment a bit with this method of producing sounds. It's

much easier, isn't it? When you want to stop the sound (to let

your poor ears rest), POKE 0 into the speakers you want to turn

off, like this:

POKE SI, 0

POKE S2, 0

POKE S3, 0

Here is a chart of the values which can be POKEd into the

speakers to get various notes: (Note: numbers below 128 produce

"silence"):

TABLE OF MUSICAL NOTES

NOTE

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

VALUE

135

143

147

151

159

163

167

175

179

183

187

191

195

199

201

203

207

209

212

NOTE

G

GU

A

A#

B

C

c#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

VALUE

215

217

219

221

223

225

227

228

229

231

232

233

235

236

237

238

239

240

241

By POKEing values into the first three voices (S1-S3), you can

even play tunes. ([[White noise" isn't really appropriate to this

73

I

c

kind of thing...unless you dream of playing first-chair computer
with Pink Floyd!) Unfortunately, this POKE process is very slow
and tedious for a human...but it's child play for your VIC. So

let's put the POKEs in a program and let the computer do the
work! Anyone for "Flight of the Bumble Bee"? How about the
"Maple Leaf Rag"? r

THE "WHITE NOISE" GENERATOR {
The fourth voice, S4, is numbered 36377. We've called it "noise"
because it's actually a "white noise" generator, used primarily
for special effects. Try making the buzz of an airplane:

POKE V, 6 r-T"Y"sr tV~^
POKE S4, 130 <—7 a very low tone *)

It's a four-engine prop job, right? Now, how about the wind
whipping by the wings of a sailplane?

c
POKE S4, 240

Don't forget to turn on the volume with: t

POKE V,4 (

or whatever volume setting you like best. Now let's turn off the
sound: r

POKE S4, 0

<

<

c

<

<

<

74

PLAYING SONGS

Using the VIC speakers and table of musical note values, you

can make up your own songs, or transcribe tunes from a
songbook. The following songwriting program shows you how

to do it:

Type:
NEW

10 S2~ 36875

20 V =36878

REM means this line

is not an instruction,

but a REMark or

comment to yourself

or others

end of melody

marker

100 REM READ AND PLAY LOOP

110 POKEVJ5

I >120 READ P
130 IF P = -1 THEN 200

|—M40 READ D

VIC will look for

information ^

150 POKES2.P

160 FOR N = 1 TO D: NEXT N

170 POKES2.0

180 FOR N = 1 TO 20: NEXT N

190 GOTO 120

plays pitch P for

duration D

silence is golden

back for more

200 REM IF NOTE-1 THEN STOP

210 POKE V,0

220 END

300 DATA 225, 1000t 228I 1000, 2311 1000

310 DATA 232, i000t 235, 1000, 237, 1000

320 DATA 239, 1000, 240, 1000

330 DATA-1 < ■

In the first group of instructions then, we've set up the POKE

locations for the speaker(s) we're using, in this case speaker

2 and volume, and entered our abbreviations. The next group

of instructions begins at line 100.

75

c
Line 100 contains a REMark which explains what this section
is supposed to do. It's called a "loop" because the section
will read and play one note, then "loop" back to the (

beginning and do it again for another note. Line 110 turns ud
the volume. (

Now we'll tell the VIC to find out what note to play:

V1CTIP:

Programs don't have to start with line #1, or be
numbered by 1. Most programs start at 10 and go up in
increments of 10. This way you can go back and add

extra lines in between if you want. For example you

could add a line 11, 12, etc. between lines 10 and 20

Line 120 tells the VIC to look through the program and READ C
information — call it P — about what note to play. This
information is contained in a "mystery statement" that we
haven't written yet. Similarly, line 140 tells the VIC to READ
information — call it D — about the duration of the note.

Notice especially line 130. The function of this line is to stop
the program when the last note has been read. Without some
kind of "end of melody" marker, the program would try to read
notes that haven't been written, and make an error Line 130
says that when the VIC reads this marker, a value of -1 it
should not try to play this note, but go to an ending module at
line 200. We must remember to place -1 at the end of our
"mystery statement."

Now we'll have the VIC actually play the note, cut it off, and qo
back for another:

c

<

c

c

76 (

(
/

Line 150 simply POKEs the note we READ in line 120 into voice

1, while line 160 creates a delay for the duration we READ in

line 130. Similarly, lines 170 and 180 turns off voice 1 for a short
period. Line 190 sends the VIC back to line 120 to READ the

next note.

Now we have to write our ending section. Remember that our

"end of melody" marker, -1, sends the program to line 200.

Line 210 turns the voice off, and line 220 tells the VIC to stop

performing the instructions in this program.

Even though we've written the ending section, we're not quite

done. We still have to write our "mystery statements" to tell

the program what notes to READ. These mystery statements

are called DATA statements because they contain information,

or data. DATA statements can be located anywhere in a

program. Whenever the VIC encounters a READ instruction, it

looks around for a DATA statement to READ.

This module contains the DATA for a C major scale. Line 300

contains the first three notes. The first number is the POKE

value for the first note, 225 — low C. The second number sets

its duration, 1000 — about 1 second. Line 310 contains the next

three notes, and line 320 the last two. The values themselves

are taken from the table of musical notes above.

If the lines look correct, you're ready to RUN. You should hear a

fairly accurate C major scale! If you have a "clinker" or two, try

adjusting the values in your DATA statements, starting at line

300.

Once again: You can put DATA statements anywhere in your

program. They will be READ one by one, starting with the

lowest line number, and working through each DATA statement

from the beginning to the end.

Try substituting DATA statements to play other selections. For
example, here's an old family favorite:

300 DATA 225. 360, 225, 360, 225, 240

310 DATA 228, 120, 231, 360, 231, 240

320 DATA 228. 120, 231, 240, 232, 120

330 DATA 235, 720, 240, 360, 235, 360
340 DATA 231, 360, 225, 360, 235, 240

350 DATA 232, 120, 231, 240, 228, 120
360 DATA 225, 480

370 DATA-1

Or if you prefer classics:

300 DATA 217, 400t 213, 400, 223, 400

310 DATA 227, 200, 234, 200, 230, 400

320 DATA 227, 200, 234, 200, 230, 400
330 DATA 223T 400, 227, 400, 217, 400

340 DATA 213, 600,-1

THE VIC AS PIANO

use as many

lines as you

like to play

longer selections

but for the

purpose of this

program, stick

to 3 notes

per line.

Finally, here's a program that lets you play the VJCTs keyboard
like a piano:

NEW

10 REM STORE SOUND REGISTERS
20 S2 = 36875

30 V -36878

40 POKES2, 0

100 REM STORE B MAJOR SCALE

110 FORN = 1 TOB

120 READ A (N)

130 NEXTN

140 DATA 223, 227T 230

150 DATA 231, 234t 236

160 DATA 238, 239

200 REM PLAY KEYBOARD

210 POKE V, 3

220 GET AS: IF AS = " +1 THEN 220
230 N = VAL(A$)

240 IF N =0 OR N =9 THEN 300

Abbreviates

the voice

registers we1

need and turns

them off

Reads B major

scale from lines

140-160

Contains POKE

values for B

major scale

Turns on the volume

Finds out what key

is being pressed

Ends the program

if you've pressed

"0" or "9"

c

c

£

i

C

<

c

c

c

<

£££2'C' n KI^VTT Bfief silent interval
260 FOR T = 1 TO 25: NEXT T between notes...Shhhhh

280 GOTO S22bMN) Plays the tone280 GOTO 220 and retljrns t0

300 REM ENDING MODULE 'ook for another

310 POKE S2, 0 Turn off the sound

before you go

Now, when you type RUN (and press RETURN), you can

play tunes on your VIC. The keys in the top row with numbers

on them control the various notes:

12 3 4 5 6 7 8

DO RE Ml FA SOL LA Tl DO

The VIC will keep playing the note you hit last until you hit

another note. When you're done, press either 0 or 9, and it will

turn off. To start the VIC piano again, just reRUN the program.

Try the tollowing (sing along if you wish):

115 5 6 6 5

4 4 3 3 2 2 1

5 5 4 4 3 3 2

5 5 4 4 3 3 2

115 5 6 6 5

4 4 3 3 2 2 18

9

OR:

33455432

112 3 3 2 2

33455432

112 3 2 11

0

Take it away, Ludwig!

79

A FEW WORDS <

ABOUT POKE j
The command POKE lets you deal with your VIC on a

completely new level. POKE allows you to find a particular

memory location and change what is stored there. Since this

command operates directly on the VIC'S memory, it is possible

to make mistakes by POKEing values into the wrong locations,

or wrong values into the right locations! We want to repeat

what we told you way back in Chapter One: There is no way

you can hurt the computer by typing on the keyboard...not even

with POKE. But you can cause the VIC to just go away

someplace and sulk, cutting you off from any contact. For

example, if you're ready to end this session anyway, try typing:

POKE 788, 0

You may find that the only way you can regain communication

with a computer that has been "insulted" in this way is to type

RUN/STOP and RESTORE. If the "crash" is serious, you may

have to turn it off and turn it on again. This doesn't harm the

computer, but it does mean that whatever program you were

working on will be lost. Even if this should happen to you, a

little typing time is normally the extent of the loss. But it does

suggest that you should be careful of what you POKE, it also

underlines the value of accessories like disk drives and data

cassettes, which can store programs, as well as printers, which

can at least give you a program listing that would help you

reconstruct a lost program.

We recommend that you make a brief study of POKE in

Appendix C before you begin to POKE around indiscriminately

in your VIC. At least try the examples we give you in this book.

Be careful typing those long numbers, and double check your

work before you run your programs. A computer that has been

POKEd in the wrong place may well reason that turnabout is

fair play, and simply "turn you off."

In this chapter, you've learned how to make Bach and

Beethoven sit up and take notice. You know how to drive your

friends crazy and make them long for the good old days when

your VIC was a quiet, mild-mannered little creature that kept

pretty much to itself. So what if the VIC isn't quite as talented

as Beverly Sills or a Steinway concert grand? You and VIC can

still make beautiful music together! Maestro, please...

80

Try typing this program:

Type this program exactly as shown and see

what happens!

10 INPLJP'DEGREES FAHRENHEIT;F

20 PRINT F'DEGREESF."

30 PRINr*1SM(F-32)*5/9"DEGREES C."

40 PRINT

50 GOTO 10

To stop the program, press the

and hit

RESTORE

82

<

■;

i

<

<

<

Typing the J
word PRINT^
by itself

on a line

adds a blan!-

line when

the program

is run. Try

it with and

without this

c

c

(

c

(

I

I

<

<

<

<:

i

Good morning VIC. Your mission (and we know you are going

to accept it) is to perform miracles whenever we touch just a

few keys!

Yes, your VIC is ready, able and willing to respond to your

touch like no other computer ever made. So let's buckle down

to some non-stop fun!

d down the , U key and press the |.'■.'"] ■:.,

Type the following keys:

and the I 'S-sil ■■ key.

[3] |G] |O] [3 [O] [U and the

Now press [§] [u] [n] and

83

And the VIC responds:

c

i

1 INPUT "WHATS YOUR NAME";A$

2 PRINT" HI/1 A$

3 GOTO 2

WHAT'S YOUR NAME?

Notice that

the computer

automatically

adds the question^

mark (?) to show ^

you that it's

waiting for

an input.

At which point you type in the customary response or if your

name happens to be VIC you can type:

fvl m [cl and

<

c

And whoopee! Your name splashed all over the screen! To

slow down the show just press the fl^^ key. When you

are ready to leave stardom behind, press the

To enter another name just type RUN and you

same prompt again. The prompt in this case is:

WHAT'S YOUR NAME?

Prompts are questions directed to you in an effort to get En-

formation into the VIC. The VIC has a limited number of ways

to get information from the human world. Perhaps the most

useful method for the computer to collect information from

our keyboard is the INPUT statement. Lei's go through the

steps of our program. Here's what we told VIC to do:

First, display the message "WHAT'S YOUR NAME" on the

screen and then wait for you to put in (or fNPUT) characters

from the keyboard. Take the response and name it "AS". In

our example "VIC" becomes AS. This is a kind of shorthand

for the computer.

Second, print the word "HI" followed by whatever was typed

at the keyboard. In our example we print HI VIC.

84

C

(

C

<

<

(

c

c

c

c

I

Third, go back to line number 2.

The second and third steps combine to make the VIC con

tinuously print the message "HI1' all over the screen. If we

changed line 3 to read:

3 GOTO 1

then the message HI VIC would print on the screen only once

and the message prompt "WHAT'S YOUR NAME" would ap

pear again. This alteration makes the VIC appear to have

amnesia!

Whenever we use the INPUT statement, our program holds

everything while awaiting a response from you. It is important

to note thai VIC will wait forever or untiJ the RETURN key

is pressed, whichever comes first.

In our program we created a friendly prompt. Unless we telJ

the VIC what we want our input message to say, we will just

get a simple "?" which does not tell us much. So we will try to

build prompts which suggest what type of input is
required.

Press and at the same time.

NEW

READY

1 INPUT A$

Type NEW and

1 INPUT A$

When we type RUN the

VIC screen looks like:

The question mark alone

raises more questions than it

answers! So let's try this:

1 PRINT "MAY I HAVE YOUR NAMEir:INPUT A$

2 PRINT "WHAT IS YOUR FAVORITE FOODn:lNPUT BS

3 PRINT

4 PRINT "THANK YOU/'A$" FOR YOUR POLITE ANSWER11

5 PRINT "WE WILL GIVE YOU SOME | :> | "B$"
AS A GESTURE OF OUR APPRECIATION"

After typing RUN and | ;^ : | you will see that treating
messages with respect can result in a treat for your efforts!

85

INTRODUCING VARIABLES

Many of the programs used in this book use variables to

simplify or strengthen the program.

Variables are very useful because they can be used to repre

sent numbers, formulas, graphic symbols, words, phrases—

even whoJe sentences. Examples of variable names are; X, AB,

S2, X$, ABS, S2$. The easiest way to explain the power of

variables is to tell you that these simple variables can each be

used to represent up to 255 characters!

There are two kinds of variables; numeric variables and string

variables. Numeric variables are used to store numbers (ac

tually, numeric values). String variables can be used to store

all types of characters (numbers, letters, graphics, cursor con

trols, color controls, etc.)*

BOX A

BOX AS

Variables are like storage cabinets inside the computer. To tell

the VIC that cabinet is for numbers or values, we must use a

speciaf name. Numeric variable names may be one or two

characters long and may be one letter, two letters, or a letter

and a number. Here are some examples of numeric variable

names:

AB S2 C2 AA ZX

String variable names may be one, two or three characters

long (including the $ sign), must always begin with a letter

from A to Z and have a dollar ($) sign at the end. Here are

some string variable examples:

X$ ABS S2S C2$ AA$ ZXS

86

(

c

(

I

I

I

{

(

c

c

(

<

(

c

<

I

I

I

I

<

c

I

I

c

c

c

c

c

c

c

c

Here's a short program that shows one way to use variables:

10A$ = "VIC20"

20 PRINT"HELLO,"A$

RUN

The VIC will display HELLO, VIC 20. Why? Because in Line 10

we told the VIC that the variable A$ is the same as "VIC 20".

Now try this:

10A = 2

20B = 3

30C = 4

40PRINT A'B'C

In this example, A'B'C is the same as 2'3*4 because we

"stored" the numbers 2, 3, and 4 in the variables A, B, and C.

Here's a final example that uses two kinds of variables with

INPUT statements. The INPUT statement allows the person

running the program to define what the variable will stand for

like this:

10PRINT"WHAT WORD DO YOU WANT X$ TO STAND FOR":

INPUT X$

20PRINT"WHAT NUMBER DO YOU WANT X TO STAND FOR":

INPUT X

30PR!NT"NOW XS STANDS FOR" X$

40PRINT"AND X STANDS FOR" X

RUN

87

CHOOSE A NOTE

For this INPUT example we will tinker a little with VIC sound.

Type:

NEW

10 INPUT-HOW HIGH A NOTE";

20 IFH=0THEN90

30 INPUT"HOW LONG A NOTE";L

40 POKE 36878,15

50 POKE 36875.H

60 FORT = 1 TO LNEXT

70 POKE 36878,0

80 GOTO 10

This letter is a

number variable and is

used to define or input

a number

If a note keeps playing,'

hit

90 END

After you press the screen should look like this:

Type a number

from 128to 254

Press the mjhB key and listen to the pitch and dura

tion of the note. After each note you can create another and

gain an appreciation for how these "mysterious" POKES

translate into sound.

c

c

c

c

c

c

c

c

The first two lines of "make a note" (10 and 20) give us the

flexibility necessary to vary the pitch in line 50 and 60 respec

tively. Line 30 is our ildoor" out when we are finished ex

perimenting {just type 0 (zero) in response to HOW HIGH A

NOTE?). Line 70 turns off the voice which was activated

earlier in line 40.

IF you want alf the noteworthy details on making music with

your VIC, turn to chapter five.

THE GET STATEMENT

Now that you have mastered the INPUT statement, we will

move on to a fancier way of getting information from the

keyboard.

The GET statement is used to get characters from the

keyboard one character at a time. In fact, the person RUNning

the program need not even hit the RETURN key! Here's how

the statement looks!

10 GET A$

How do we make a program stop and wait for something to be

typed? We put the program in a loop with an IF...THEN state

ment checking for an answer.

10 GET A$

20 IF A$ = ""THEN 10

What is the use of this? For a very simple application, the lit

tle 2 line program above will allow your program to pause until

the operator hits a key on the keyboard. This is helpful in

freezing a display on the screen untrl the person has read it

and wants to go on.

Here is an expanded application for the GET statement:

10 GET A$

20 IF A$ = ""THEN 10

30 IF A$ = "A" THEN PRINT "CHICKEN SOUP"

40 IF A$ = llB'rTHEN PRINT "SPAGHETTI"

69

No space

between

the quotes

50!FA$ = "C"THEN PRINT "STEAK AND EGGS"

60 GOTO 10

RUN

When this program has been typed in and RUN, it will wait lor

the operator to hit any key. If the key was the letter A, the

words, CHICKEN SOUP appear on the screen. The letter B

makes the word SPAGHETTI appear, and the word C makes

the words STEAK AND EGGS show up. You now have the VIC

typing whole words with only 1 keystroke!

Now you will get the longest program so far, a practical exam

ple of the GET and PRINT statements used to give you a com

puterized recipe fife. Don't be alarmed by the size of this pro

gram. It uses mostfy simple PRINT statements but the lesson

here is how the A$ variable is used to starcd for several whole

phrases, and how the GET command

10 PRINT" |^^2 KTH PLEASE PICK A CHOICE"

20 PRINT 1LFROM THE MENU:11
Try typing

your own

recipes! All you

have to do is change

the titles and recipe

information...

30 PRINT

40 PRINT "A..,CHICKEN SOUP'+

50 PRINT "B...SPAGHETTI"

60 PRINT "C...STEAK & EGGS"

200 GET AS:IFA$ = ""THEN 200

210 IF A$ = "A" THEN 500

220 IF A$ = llBT1THEN 700

230 IF A$ = "Cf! THEN 900

490 GOTO 200

500 PRINT ■ I j£j (r I Hftfif MIKE'S CHICKEN SOUP"

510 PRINT

520 PRINT 'TAKE 1 CHICKEN. KILL"

90

This means

if you hit

anything else,

nothing happens

and the program

keeps waiting for

you to type

A, B or C.

<

<

c

<

I

c

c

I

<

c

c

c

c

c

(

I

c

<

c

(

c

c

c

c

c

c

I

530 PRINT "AND PLUCK. REMOVE"

540 PRINT "GIBLETS. BOIL 4 QTS"

550 PRINT ilWATER IN A LARGE POT."

560 PRINT h'ADD CHICKEN. BOIL"

570 PRINT "2 HOURS, OR UNTIL"

580 PRINT "HOUSE SMELLS GOOD.11

590 PRINT <

600 PRINT "HIT ANY KEY TO GO ON"

610 GET AS:IF A$ = 41" THEN 610

620 GOTO 10

Notice that parts

of sentences are

printed on separate

lines to make them

easier to read.

Typing PRINT on a

line by itself

puts a one-line

"SPACE" on the

screen.

700 PRINT"

710 PRINT

720 PRINT "BROWN 1 LB. GROUND1"

730 PRINT ^BEEFT WITH 1 ONION"

740 PRINT L"AND 1 GREEN PEPPER."

750 PRINT L'ADD 1 LG. CAN TOMATO"

760 PRINT "PUREE, 6 OZ. CAN TOM."

770 PRINT "PASTE. 6 OZ. WATER/"

780 PRINT "3 CLOVES GARLIC, SALT"

790 PRINT "& PEPPER, RED PEPPER/1

800 PRINT "OREGANO. SIMMER 1 HRf<

810 PRINT "& SERVE WITH COOKED"

820 PRINT "NOODLES/'

830 GOTO 590

MA'S SPAGHETTI'1

900 PRINT"

910 PRINT

STEAK AND EGGS"

920 PRINT "TAKE 1 COOKED STEAK"

930 PRINT lLAND COOKED EGGS.1+

940 PRINT "SERVE TOGETHER WITH"

950 PRINT "BEVERAGE."

960 GOTO 590

If you typed the program

correctly and typed RUN.

the screen should come up

with the following display:

PLEASE PICK A CHOICE

FROM THE MENU:

A..,CHICKEN SOUP

B...SPAGHETTI

C...STEAK&EGGS

Now the VIC is waiting for you to hit a key. If you type

anything other than A. B, or C, nothing happens at aJf (Line

200 does this). If you hit the A, you get the recipe for Mikes

Chicken Soup. Pretty terrible, huh? You can tell Mike is a

bachelor.

This can be lengthened and modified very easily for your own

use. To add items to the menu, just add a PRINT statement

after fine 60, add a new IF statement after line 230, and add

the recipe wherever there is room at the end. The last line of

your recipe should be the line GOTO 590, which tells the per

son RUNning the program to hit a Key to continue. This will

keep the recipe on the screen until they are through with it.

You can use the program we just described for more than

recipes, of course. How about a name and address file? In

stead of a "menu1* use last names with initials. Instead of

recipes, use the person's name, address and phone number.

Can you think of other uses for GET and INPUT based pro

grams? This is the true power of computing—being able to

tailor what the computer does to your own needs.

92

■

Try typing this program:

Type this program exactly as shown and see

what happens!

10 PRINT

20 PRINT CHR$(205.5 + RND(1));

30 GOTO 20

To stop the program, press the EH key.

94

C

C

c

c

<

(.

c

c

I

(

c

'

c

c

<

<

(

I

<

<

I

I

<

<

(

(

t

<

<

YOUR FIRST BASIC

PROGRAMS AND HOW

THEY WORK
Until now, you've been patient and typed in several programs

without understanding how they work. This chapter will explain

what those tricky little programs were all about, and get you

further along the road to programming your VIC.

PROGRAM 1: Your Name In Lights

(Chapter 2)

10 PRINT "

20 FORT = 1 TO 300: NEXT

30 PRINT "your name"

40 FOR T = 1 TO 300: NEXT

50 GOTO 10

This program and

the ones to come

.are taken from

the "sample programs"

beginning each chapter.

There doesn't seem to be much to this little program, but once

you understand what's going on here, you have the key to doing

animation. Line 10 is the PRINT command, with the character

meaning "clear the screen" inside the quote marks. If you tried

to type this without the quotes, your program line disappeared

from the screen before you could finish typing it. The VIC only

recognizes a new line when you hit the RETURN key with the

cursor on that line.

95

c

c

c
VIC TIP: QUOTES

Let's talk a little mere about what happens when you hit the quote key.

The first time you hit the quote, something funny happens. If you hit

HOME, CLF^ cursor up, down, left, or right, you get a reversed graphic

character This also happens on the VIC when any of the color control

Keys are pressed. You see, quotation marks are used in computer

programs and the VIC recognizes quote marks as a Programming

Command. Therefore, when you hit a color or cursor control key after a

quote mark, the VIC displays a special code to designate that

operation. For example when you type ll and I

ftfjfl^ " you get a reverse heart on the screen. If you see

this in a program you know it means clear screen. Other symbols

stand for other operations. Once you have hil the quote key for the

second time, any cursor controls and color keys will work normally.

The INSERT key causes a similar eflect. When this key is hit, every

space created on the line will act as if it was in quote mode. All cursor

control characters wilt appear as if they were inside quote marks. In

addition, the DELETE key will produce a speciaJ reversed graphic

character in these spaces, which will have the effect of deleting

characters when the program is fisted, and printing DELETES on the

screen when PRtNTed.

Line 20 of the program is called a time delay loop. This is

actually two BASIC statements on one line, separated from

each other by the colon {:). All that happens here is that the VIC

will count from 1 to 300, without doing anything else. This

serves to stow down the program a little. (Try deleting the lines

20 and 40 and RUNning the program. It blinks too fast!)

In line 30, you typed your name inside the quotes (At least we

hope you did.) This caused your name to be printed on the

screen. There was nothing else on the screen because line 10

already cleared it off.

Line 40 is another delay, to give your name time to be on the

screen long enough to see.

Line 50 causes the program "go to" line 10 as the next line to

be executed and briefly clears the screen.

After your name is displayed on the TV screen, there is a delay

of a second, after which the screen is erased. After another

second, the name is displayed again in the same position.

Again, it is erased, and so on. Because the letters appear in the

same position on the screen, your eye believes that they are

blinking on and off.

96

c

(

i

(

i

(

c

(

(

c

i

I

c

c

<

<

<

<

Experiment with this program. You can make the defays

between displaying and erasing your name longer or shorter by

changing the number 300 in lines 20 and 40.

PROGRAM 2: A Lot of Heart

(Chapter 3)

10

20

30

40

50

60

70

80

FOR H

PRINT

NEXT

FORC

POKE

FORT

NEXT

GOTO

= 1

= 8

TO

r

TO

36879,(

= 1

40

TO

505

255 STEP 17

500: NEXT

This program provides you with a colorful display of hearts. It

introduces the use of punctuation marks in PRiNT statements

and the use of POKE to change the screen and border colors.

Line 10 sets up a loop that counts from 1 to 505. We want 505

hearts to appear on the screen, because there are 506 spaces

on the screen. If we PRINTed the 506th character, the screen

would be forced to roll up one line (scrolling), and there would

be less hearts on the screen than before.

Line 20 PRINTs the heart character on the screen. The semi

colon (;) after the iast quote has an important effect. You see,

after a normal PRINT statement, the VIC wilf automaticafly

perform 2 operations — move the cursor back to the beginning

of the line (called a carriage return), and move the cursor down

to the next line {called a linefeed). The punctuation mark at the

end of the line wiil cancel the return and linefeed, so that the

next thing PRINTed wifl appear immediately to the right of the

last thing PRINTed.

Line 30 just completes the delay loop. As fong as the value of H

is 505 or less, the program will print hearts on the screen. When

the 505th is printed, the program continues with the line after

this one (line 40).

97

c
Line 40 establishes a new loop and sets up line 50, which (

changes the screen and border colors. C is defined as a series

of numbers from 8 to 255, which increase in increments of 17.
Every time line 70 (NEXT) is hit, 17 is added to the previous

value of C and the sum is used for the new value. This causes a

cycle of colors to be selected including black border with black

screen, white border with white screen, etc., for all 8 border

colors. Then the numbers in C go beyond the values for those
colors and pick 7 different colors for the screen. (See Appendix

I for a list of color numbers)

Line 50 is the statement that actually changes the color.- The

value contained in variable C is stored in memory location

36879. This is actually a location on the VIC chip itself, not in
your normal area of memory.

c
Line 60 is a delay loop. If this line is removed, the colors will
change fast enough to give you a headache.

Line 70 completes the loop started in line 40. Notice that the

line could have read 70 NEXT C, but doesn't have to be that (
way.

Line 80 sends the program back to cycle through the colors
again. It will run forever, unless you press the STOP key, or turn

off the VIC. Typing POKE 36879, 27 after you hit STOP will

restore the normal colors of the screen. ,-

<

<

(

98

PROGRAM 3: Exercising VIC Person

(Chapter 4)

10 PRINT"

20 PRINT "

30 PRINT '

40 PRINT"

o

'■V
■ * »

■ ■ ■

\
50 FOR T= 1 TO 300: NEXT

60 PRINT"

70 PRINT11

80 PRINT"

90 PRINT"

/

o

EH

1

\

1
100 FOR T= 1 TO 300: NEXT

110 GOTO 10

This program is similar to the iirst program we did, called Your

Name fn Lights. However, instead of drawing an image and

then blanking it out, like the Iirst program did, this one draws a

complete picture, pauses, and replaces the image with another

complete picture. The head and body of the VIC person stays in

the same position while the arms and legs change places. This

gives the illusion of movement from one position to the next.

Lines 10 and 60 bring the cursor to the upper-left corner of the

screen, whrch is known as the home position. This forces the

image of the VIC person to be displayed in the same screen

position each time.

Lines 20, 30, and 40 will "draw" each line of the VIC person's

first image.

Lines 50 and 100 are delay loops, just to give the picture

enough time on the screen.

Lines 70, 80, and 90 draw the second image on the screen. This

takes place so fast thai you can't see the transition — your eye

sees the change from one to the other as instantaneous.

99

PROGRAM 4: Choose A Note

(Chapter 5)

NEW

10 PRINT'

FOR I = 1 TO 5

POKE 36873+1,0

NEXT I

This

means

the VIC

wants you

to input a

number

PRINT "WHICH VOICE (1-4)?"

PRINT "IF DONE. ENTER 0"

INPUT N

IFN=0THEN END

PRINT "WHICH PITCH (128-254)?"

INPUT P <

POKE 36878, 4

POKE 36873+ N,P

FOR J = 1 TO 2000: NEXT N

GOTO 10

When you've checked that all the lines are correct, try running
this program (type RUN and press RETURN). It will let you

select a voice and a pitch, and play the tone you've chosen for

about two seconds. The sound shuts off, and the program asks

you for another voice and pitch. This program is a musical

experimenter's delight, so be sure to give it a try. When you

wish to stop the program, enter 0 as a voice selection. You may

suspect there's a problem when you select pitch 254 in voice 3

and hear nothing. Actually, it's not an error — this note is just
too high for human ears, (you might test it out on your dog

though!)

These lines clear the

screen and turn off

all voices

These lines allow

you to select a

voice

this line ends

the program

These lines
allow you

to select

a pitch

These lines poke the note

and volume, and provide

a 2-second delay

100

PROGRAM 5: Temperature Conversion

(Chapter 6)

10

20

30

40

50

INPUT

PRINT

PRINT

PRINT

GOTO

"DEGREES FAHRENHEIT"; F

F "DEGREES F."

"IS11 (F-32)*5/9 "DEGREES C,"

10

This introduces you to the INPUT statement which allows your

program to stop what it is doing and request necessary

information from the operator (the person who is RUNntng the

program).

Line 10 causes the message DEGREES FAHRENHEIT? to

appear on the screen. The words inside the quotes of an INPUT

statement work just like the PRINT statement. However, the

last word will always be followed by the question mark

character, and the program will wait at this point for more

information.

Line 20 prints the value of F, which is what was just typed in

(inputted). Line 30 prints the result of the conversion

calculation. In line 40, the word PRINT alone on a line causes a

blank line to appear on the screen.

line 50 makes the program go back to the beginning

and request more information to start again. The original

question will be asked again, and you can have more

temperatures converted. If you are finished, hold down the

STOP key and hit the RESTORE key. There is no other way to

tell this program you are through.

101

PROGRAM 6: Random Maze

(Chapter 7)

10 PRINT"

20 PRINT CHR$(205.5 + RND(1));

30 GOTO 20

This is a neat little program that prints pseudo-mazes all over

the screen. As you may expect, line 20 is the key here.

The CHRS function will give you a character based on a code

number from 0 to 255. Every character that the VIC can put on

the screen is encoded this way (see AppendixH). To find out

the code for any character, just type PRINT ASC!"X") where X is

the character you're checking. Then type PRINT CHR${X) where

X is the number The VIC gave you. See how it works?

Now try typing PRINT CHRS(205); CHR$(206). This should print

the two right side graphic characters on the M and N keys.

These are the two characters that the program is using for the

"mazes".

By adding the formula 205.5 + RND(1), the VIC will pick a

random number between 205.5 and 206.5. There is a fifty-fifty

chance of the number being above or below 206. When the

CHRS function works, it will ignore any fractional values.

Therefore, half the time the character with code 205 is

PRINTed, and the other half character code 206 PRINTs.

If you'd like to experiment with this program, try changing the

205.5 by adding or subtracting a couple of tenths from it. This

would give either character a greater chance of being PRINTed.

<

<

<

c

<

c

c

c

<

<

c

c

<

<

<

102

I

c

c

(

MORE ABOUT RANDOM

NUMBERS
The random number function is one of the most useful and

enjoyable aspects of BASIC, allowing you to program all sorts

of games of chance.

The line X = RND(1) will cause the VfC to select a random

number between 0 and 1, not inclusive, lo be placed into X. This

results in a range of possible values for X:

0<X<1

When you work with random numbers, it is best to keep in mind

that you will generate a range of numbers, to see how

calculations effect the whole range. For example, if you wanted

to get a set of possible values between 0 and 3, you could just

multiply X by three. The new range is:

0<X<3

If you needed to pick a number from 10 to 20, how would you

perform a calculation to change the range? First, you would

add 10 to the number picked, to change the range to

By multiplying the random number by 10 before adding 10, the

range becomes:

10<X<20

So the formula for a random number between 10 and 20 is;

X = RND(1)*10+10

So far, we have learned how 10 change the range of possible

results for the random number. However, the result of the

function wili contain messy decimal places, which are not

desirable for things like rolling dice or picking a number from 1

to 10. The function used to clean this up is the INT function.

This will chop off all decimal ptaces from the number. The

formula for a random number from 10 to 20, with the INT

function added, becomes: X = INT(RND{1)*10 + 10)

103

The range of possible results is now:

10< = X< -19

But wait! The upper limit of the range has dropped from 20 to

19 in this case. Why? Because before the range was always

less-than 20. The INT function will strip off any decimal places

from a number greater than "19 and less than 20 to result in a

19. On the other end of the range, any results between 10 and

eleven are truncated down to an even 10. If we still needed to

get a range of numbers from 10 to 20r the formula should

become:

X = INT(RND(1p1 +10)

The random number is multiplied to expand the range, and

added to move the range.

(
The general formula for a set of random numbers in a certain

range is:

X = INT(RND{1)*a) + b

(
Where a represents the number of possible results and b is the

lowest number in the range.

c

c

c

c

<

c

104

<

APPENDIX A: VIC ACCESSORIES —

A QUICK INTRODUCTION*

This is a beginner's user manual, so we are not going to spend a lot

of time and space telling you about the various peripherals that plug

into the slots on the back of your VIC,

Each of the VIC peripherals will have its own instruction manual,

which wilJ tell you how to connect it to the VIC and how to use it to do

interesting things.

Commodore has designed the VIC to grow with your needs and has

an overall plan of how the various peripheraEs will fit together in and

on the VIC. Here is the map of that plan:

i

<

c

c

c

<

c

c

THE COMMODORE VIC 20

PERSONAL COMPUTER SYSTEM*

VIC 20 COMPUTER

GAVE PORT

SPECIAL PLUG-IN PROGRAMS

Super Expander Cartridge — 3K Added Memory (converts VIC to 8K)

High Resolution Graphics & Plotting

Commands

Pre-assigned Function Keys

Programming Aid Cartridge — Programmer's "tool kit"

Machine Language Monitor

Pre-assigned function keys

(prog commands}

User-assignabie function keys

*Note: Peripherals described in this section scheduled for sale during

late 1981,

<

I

I

I

c

c

<

<

106

TAPE CASSETTE RECORDER

The first peripheral you will probably get will be the Commodore tape

recorder. The tape recorder can store several thousand characters

{letters and numbers) on an ordinary cassette tape. You can store

quite a few long programs on tape and load them back fairly quickly,

without having to type them in every lime. (See Appendix B - Working

With Tape Cassettes)

The VIC Tape Cassette pJugs into the Cassette Interface slot on the

back of the VIC with its own special plug — it does not need any

special interface. Commodore provides a variety of computer

programs on tape for use with the cassetie recorder.

MASTER CONTROL PANEL

You can plug a Master Control Panel in to the Expansion Port on the

back of the VIC. This controller lets you use more than one cartrfdge

at one time. It has six slots and accepts program cartridges, memory

expanders and includes an IEEE-48S interface which lets you use

Commodore PET/CBM peripherals and other IEEE devices.

VIC SINGLE FLOPPY DISK DRIVE

The VIC Single Floppy Disk Drive can store up to 170,000 characters

(letters and numbers) and move a very long program in or out of the

VlC's memory in a fraction of a second. No long waiting for a tape

drive to find, read and load a program. This device connects to the

VlC's serial port.

IEEE-488 INTERFACE CARTRIDGE

IEEE-486 is a universal scientific standard that lets you use

Commodore PET/CBM peripherals such as disk drives and printers,

as weJl as scientific instruments and tools.

SERIAL PRINTER

The VIC has a Serial Interface for peripherals which use serial

connections to communicate with the computer. With Commodore's

special dot matrix printer that uses this serial connection you can

print your program listings and results on paper.

107

c

(
GAME PORT c

The VIC Game Port allows you to hook up joysticks, light pens, and (
paddles, so that you can easily play exciting arcade type games

without having to use the keyboard. (

TELECOMMUNICATIONS (

You may have heard about programs that let your personal computer

talk to other computers and get information about the Stock Market,
Business, News and other things — the VIC has this ability already

built in. /

The VIC's User Port includes an RS232 interface which lets you obtain ,
or exchange information over the telephone using an inexpensive

telecommunications modem. (

SOFTWARE C

In addition to all of this hardware, the VIC has a lot of interesting

software. .

Some software programs are stored in hardware cartridges which
plug in to the back of the VIC and are ready to run as soon as the
power is turned on. Some are on tape, some are on disk, and many .

are included in the VIC Learning Series Book and cartridge sets which
let you teach yourself computing and other subjects at home. £

This has been just a short overview of accessories available to you.

KEEP IN TOUCH WITH YOUR

COMMODORE DEALER TO FIND OUT
ABOUT THE NEWEST DEVELOPMENTS!

103

"APPENDIX B"

USING THE CASSETTE RECORDER
The cassette recorder acts as the VtC's "memory1*. Without this

device, the VIC will forget any program you typed in as soon as the

power goes off tor someone uses the NEW command). You can also

use the recorder for programs you purchase. Commands used with

programs on tape are SAVEH LOAD, and VERIFY.

The VIC can also "remember" the values of variables and other

items of data, collected in a group called a file. The amount of data

stored in a file can be very large compared to the amount of RAM in

the V!C, because the VIC can operate on a small piece of the file at

a time. Statements used with data files are OPEN, CLOSE, PRINT#,

INPUTS and GET#. The system variable ST (status), is used to

check for tape markers.

PROGRAM STORAGE

Let's say you have just finished creating a new program on the VIC.

You will want to use the program again at some other time, so now

you must store it on the tape. Type the word SAVE. If you want the

program to have a name, type a quote mark (if) and the program

name. The name can contain graphics and cursor controls, and can

be up to sixteen characters long. Then just hit the RETURN key,

whether you gave it a name or not.

If your recorder is plugged into the back of the VIC, and none of its

buttons are pressed down, the following message will appear on the

screen:

PRESS PLAY AND RECORD ON TAPE

All you have to do now is put a blank cassette tape (any decent

audio tape will do) in the recorder. Hold down the RECORD key and

hit PLAY on the recorder. The tape should start moving, and the

following message will appear on the screen:

OK

SAVING name

What the VIC is doing now is recording, with a very fast series of

high and low sounds, your program in RAM onto the tape. The

program is not being disturbed at all, it is just being copied. The

VIC actually records the program twice, just in case your blank tape

isn't perfect. When the program is all on the tape, the VIC stops the

recorder (all by itself!) and gives the READY message.

Now you may wish to check the tape to make sure that the SAVEd

program is correct. After all, you are risking much of your valuable

time to an uncertain piece of thin magnetic tape. It is better to be

safe and check the program.

109

The command to check the tape is called VERIFY. First, rewind the

lape back to the beginning. Now type the word VERIFY. If your

program had a name, you may type a quote mark and the name. \f

you want to VERIFY the first program on the tape, you can just

leave off the program name. Next just hit the RETURN key.

Now, if none of the keys on the recorder are pressed, the VIC will
tell you this:

PRESS PLAY ON TAPE

Be very sure that the RECORD button is NOT down when you do

this. That would result in erasing any program or data that may have
been on the tape.

When you've pressed PL/^Y, this message appears:

SEARCHING FOR name

From this point on, the VIC will search tor the program you have

specified on the tape. If it finds any programs or data files, it wilJ
report the fact with the message:

FOUND name

If the name of the program matches, or at least matches as many

letters as you gave (which is why giving no name checks the first
program), the next message is: f

VERIFYING

When the program is completely read on the tape, the VIC gives you
the verdict. You may see the message:

OK fi

READY. £

This means that the program on the tape was identical with the
program you have in RAM currently.

c
If the programs did not match, you'fl see the message-

(
7VERIFY ERROR

READY. (

One of the extra uses of the VERIFY command is to position the

tape right after the last program, so you can add a new program to

the tape. Just VERIFY using the name of the last program on the

tape. You will end up with a VERIFY ERROR, but the tape will be

right where you want it. Tricky, right?

110

Now let's say that you've come back to the VIC and you want to use

that program you stored away. The command for this is LOAD. Type
the word LOAD, and you can follow it with a program name

(enclosed in quotes) if you like. The VIC says;

PRESS PLAY ON TAPE

You must press only the PLAY key on the recorder. The VIC will
now say:

SEARCHING FOR name

Just as in VERIFY, the VIC lets you know of any programs or files
encountered until the matching name. Then this message appears:

FOUND name

LOADING

When the program is loaded, the VIC says:

OK

READY.

Now the program is ready to be LISTedT RUN, or any other

operation, just as if you had just typed it all in.

PROGRAM 1: WRITE-TO-TAPE

10 PRINT" | r ^ WRJTE-TO-TAPE PROGRAM"

20 OPEN I.I.V'DATA FILE"

30 PRINT"NOW TYPE DATA TO BE"

^PRINT'STOREDORTYPE W-:| Jflj^ STOP

50 PRINT

60 INPUT"DATA";A$

70PRtNT#1,A£

80 IFA$<>"STOP"THEN50

90 PRINT

100PRINT"CLOSING FILE"

110 CLOSE 1

111

c

I

PROGRAM 2: READ-TAPE USING INPUT* (

10 PRINT" j UW j JrS READ-TAPE PROGRAM"

20 OPEN 1,1,0,"DATA FILE"

30 PPJNT'FILEOPEN"

40 PRINT

c
50INPUT#1,A$

60 PRINT A$

70 IF AS = "STOP'THEN END

B0 GOTO 40 £

PROGRAM 3: READ-TAPE USING GET#

Lines 10 to 40 same as PROGRAM 2

50GET#1,AS

60 IF AS = ""THEN END (

70 PRINT AS,ASC(A$) f

30 GOTO 50 C

(

c

c

I

(

c

c

c

c

(

APPENDIX C: VIC BASIC

This manual has given you an introduction to the BASIC language,

just enough for you to get a feel for computer programming and some
of the vocabulary involved. This appendix gives a complete list of the

rules (SYNTAX) of the VIC BASIC language, along with a concise
description of each. You are encouraged to experiment with these

commands, remembering that you can't do any permanent damage to

the VIC by just typing in programs, and that the best way to learn

computing is by doing.

This appendix is divided into sections according to the different types

of operations in BASIC. These include:

1. Variables and Operators: describes the different types of variables,

legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs,

edit, store, and erase them.

3. Statements: describes the BASIC program statements used in

numbered lines of programs.

4. Functions: describes the string, numerict and print functions.

The commands In each section are listed alphabetically for conve

nience. A fuller explanation of VIC BASIC commands is provided in

the VIC Programmer's Reference Guide, available where you bought

your VIC.

1. VARIABLES & OPERATORS

a, VARIABLES

The VIC uses three types of variables in BASIC. These are: normal
numeric, integer numeric, and string (alphanumeric) variables.

Normal numeric variables, also called floating point variables, can

have any vaitie from - 1QM to + 1OM, with up to nine digits of
accuracy. When a number becomes larger than nine digits will show,

as in 1010 or 10-1B, the computer will display it in scientific notation

form, with the number normalized to 1 digit and eight decimal places,

followed by the letter E and the power of ten by which the number is

multiplied. For example, the number 12345678901 will be displayed as

1.23456789E + 11.

Integer variables, are used when the number will always be between

+ 32767 and -32768, and without fractional parts. Integer variables

require less memory space than floating point variables, but the

difference probably would not be substantial unless used in a large

quantity such as an array (see below). An integer variable would be a

number like 5, 10, or -100.

String variables, are those used for character data, which may

contain numbers, letters, and any other character that the VIC can

make. An example of a string variable is "VIC20."

113

Variable names may consist of a single letter, a letter followed by a
number, or two letters.

An integer variable is specified by using the percent (%) sign after

the variable name. String variables have the dollar sign Rafter
their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ

Integer Variable Names; A%, A5%, BZ% s

Stfing Variable Names: AS, A5$, BZ$

y, are lists of variables with Ihe same name, using an extra

number to specify which is which. They are defined using the DIM

statement, and may contain floating point, integer, or string

variables. The array variable name is followed by a set of

parentheses { J enclosing 1he number of the variable in the Mst.

EXAMPLES: A(7),BZ%(11),A$<67). r

Arrays may have more than one dimension. A two dimensional array (

may be viewed as having rows and columns, with the first number

meanmg which row and the second number in the parentheses mean- (
ing which column,

EXAMPLES: A(712),BZ%(213,4),Z$(3,2)

There are three variable names which are reserved for use by the VIC, f

and may not be used for a normal purpose. These are the variables

ST, TIT and Tl$. ST is a status variable which relates to input/output

operations. The value of ST win change if there is a problem loading a

program or data from the tape or disk. A more detailed explanation of (
ST is in the VIC BASIC Programmer's Reference Manual.

Tl and Tl$ are variables which relate to the real-time clock built into
the VIC. The variable Tl is updated every 1/6Q1h of a second. Jt starts

at 0 when the VIC Is turned on, and is reset only by changing the
value of Tl$.

Tl$ is a siring which Js constantly updated by the system. The first
two characters contains the number of hours, the 3rd and 4th

characters are the number of minutes, and the 5th and 6th characters
are the number of seconds. This variable can be given any value (so

long as alf characters are numbers}, and will be updated from that
point automatically,

EXAMPLE: Tl$ = "101530" sets the clock to 10:15 and 30 seconds (AM) i

This clock is erased when the vrc is turned off, and starts at zero (
when the VJC is turned back on.

114

b. OPERATORS

The arithmetic operators include the following signs:

+ addition

- subtraction

' multiplication

/ division

t raising to power (exponentiation)

On a line containing more than one operator, there is a set order in

which operations always occur. If several operators are used together,

the computer assigns priorities as follows: First, exponentiation.

Next, multiplication and division, and last, addition and subtraction. If
you want these operations to occur in a difterent order, VIC BASIC

allows you to isolate a calculation by putting

parentheses around it. Operations enclosed in parentheses wilt take

place before other operations. Be sure that your formulas have the

same number of left parentheses (as right parentheses), or your

program will get a SYNTAX ERROR message when run.

There are also operators for equalities and inequalities:

is equal to

< is less than

> is greater than

< = or = < is less than or equal to

> = or = > is greater than or equal to

< >or > < is not equal to

Finally, there are three logical operators:

AND

OR

NOT

These are used most often to join multiple formulas in IF...THEN

statements,

EXAMPLE:

IFA = B AND C = DTHEN 100 requires both A ^ B & C = D to be true.

IFA = BORC = DTH£N 100 Allows either A = B or C = D to be true.

2. COMMANDS

CONT (Continue)

This command is used to re-start the execution of a program which

has been stopped by either using the STOP key, a STOP statement, or

an END statement within the program. The program will re-start at the

exact place from which it left off.

115

I

c

CONT will not work if you have changed or added lines of the program (

(or even just moved (he cursor to a program line and hit RETURN

without changing anything), or if the program halted due to an error,

or if you caused an error before trying to re-start the program. The

message in this case is CANT CONTINUE ERROR.

LIST (

The LIST command allows you to look at lines of a BASIC program

thai have been typed or LOADed into the VIC'S memory. When used

alone without any numbers following ft you will see a complete listing

of the program on your screen (which may be slowed down by holding

down the CTRL key or STOPped by hitting the key marked RUN

STOP}. If you follow the word LIST with a line number, the VIC will

only show you that line number. If you type LIST with 2 numbers

separated by a dash, the VIC will show all lines between the first and (

second line number. If you type LIST followed by a number and just a

dash, it will show all the lines from that number lo the end of the pro- (
gram. And ff you type LIST, a dash, and then a numbert you wilf gel ali

the lines from the beginning until that line number. Using these varfa- C
tions, you can examine any portion of a program, or bring lines to the ,

screen for modification.

EXAMPLES:

LIST Shows entire program.

LIST 10— Shows only tram line 10 until the end.

LIST 10 Shows only line 10.

LIST—10 Shows lines from the beginning untif line 10. r

LIST 10—20 Shows lines from 10 to 20, inclusive. £

c
LOAD abbrev. L sh O

This is the command to use when you have a program stored on

cassette tape or on disk, and you want to use it. If you type just the

LOAD and hit the RETURN key, the VIC will find the first program on (

the cassette tape and bring it into memory, to be RUN, LISTed, or

whatever- You can also type the word LOAD followed by a program

name, which is most often a name in quotes (""). The name may be

followed by a comma (outside of any quotes) and a number or

numeric variable, which acts as a device number to determine where

the program is coming from. If there is no number given, the VfC

assumes device #1, which is the cassette tape recorder

The other device commonly used with the LOAD command is the disk (

drive, which is device #8.

c

116

EXAMPLES:

LOAD Reads in the next program on tape

LOAD "HELLO" Searches tape for program called HELLO, and

loads if found.

LOAD A$ Looks for a program whose name is in the

variable called A$.

LOAD "HELLO",8 Looks for the program called HELLO on the disk

drive.

L0AD"*'\8 Looks for the first program on the disk.

The LOAD command can be used within a BASIC program to find and

RUN the next program on a tape.

NEW

This command erases the entire program in memory, and also clears

out any variables that may have been used. Unless the program was

previously stored somewhere, it is lost until you type it in again. BE

CAREFUL when you use this command!

The NEW command can also be used as a statement in a BASIC pro
gram. When the VIC gets to this line, the program is erased and every
thing stops. It is useful if you want to leave everything neat when the

program is done.

RUN

Once a program has been typed into memory or LOADed, the RUN

command is used to make it start working. If there is no number
following the command RUN, the computer will start with the lowest

numbered program line. If there is a number, that becomes the line

number where the program starts from.

EXAMPLES:

RUN Starts program working from lowest line number.

RUN 100 Starts program at line 100.

RUN X UNDEFINED STATEMENT ERROR {you must always type

RUN by itself or with a line number - not with a letter).

SAVE

This command will store a program currently in memory on a cassette

tape or disk. If you just type the word SAVE and hit return, the
machine will attempt to store the program on the cassette tape. It has

117

no way of checking that there is already a program on that spot, so be
careful with your tapes. If you type the SAVE command followed by a
name in quotes or a string variable name, the VIC will give the pro
gram that name, so it may be more easily located and retrieved in the
future. The name may be foflowed by a comma (after the quotes) and
a number or numeric variable. This number tells the VIC which device
on which to store the program. Device number 1 is the tape drive, and
#8 is the disk. After the number there can be a comma and a second
number, which is either 0 or 1. If the second number is 1, the VIC will
put an END-OFTAPE marker after your program. If you are trying to
LOAD a program and the VIC finds one of these markers you will oe!
a FILE NOT FOUND ERROR.

c

EXAMPLE:

SAVE

SAVE-HELLO"

SAVE AS

SAVE "HELLO",8

Stores program to tape without a name.

Stores on tape with the name HELLO.

Stores on tape with name in variable A$.

Stores on disk with name HELLO

SAVE "HELLO11,-!,! Stores on tape with name HELLO and follows

program with an END-OF-TAPE marker.

(

VERIFY

This command causes the VIC to check the program on tape or disk
against the one in memory. This is proof that the program you just

SAVEd is really saved, in case your tape is bad or something isn't
working. This command is also very useful for positioning a tape so
that the VIC will write after the last program on the tape. All you do is

tell the VIC to VERIFY the name of the last program on the tape. It will

do so, and tell you that the programs don't match (which you already
knew). Now the tape is where you want it, and you can store the next
program without any fear of erasing an old one.

VERIFY without anything after the command causes the VIC to check
the next program on tape, regardless of its name, against the program
now in memory. VERIFY followed by a program name (in quotes) or a
string variable will search the tape for that program and then check.
VERIFY followed by a name and a comma and a number will check
the program on the device with that number (1 for tape, 8 for disk).

EXAMPLE:

VERIFY Checks the next program on the tape.

VERIFY "HELLO" Searches for HELLO, checks against memory.

VERIFY "HELLO",8 Searches for HELLO on disk, then checks.

118

<

<

c

(

c

c

c

c

c

«

3. STATEMENTS

CLOSE

This command completes and closes any files used by OPEN
statements. The number following the word CLOSE is the ffle number

to be closed.

EXAMPLE:

CLOSE 2 Only file #2 is closed.

CLR

This command win erase any variables in memory, but leaves the pro

gram itself intact. This command is automatically executed when a

RUN command is given,

CMD

CMD sends the output which normally would go to the screen (i.e.

PRINT statements, LISTS, but not POKEs into the screen) to another

device instead. This could be a printer, or a data file on tape or disk.

This device or file must be OPENed first. The CMD command must be

followed by a number or numeric variable referring to the file.

EXAMPLE:

OPEN 1,4 OPENS device #4, which is the printer.

CMD 1 All normal output now goes to the printer.

LIST The LESTing goes to the printer, not 1he screen—even the

word LIST that you typed!

To start sending back to the screen normally, just CLOSE the file,

DATA

This statement is followed by a list of items to be used by READ
statements. The items may be numbers or words, and are separated

by commas. Words need not be inside ol quote marks, unless they

contain any of the following characters: SPACE, colon, or comma. If

two commas have nothing between them, the value will be READ as a

zero for a number, or an empty string.

EXAMPLE OF A DATA STATEMENT:

DATA i00,200,FRED,btHELLO, MOM",,3.14Tabc123

119

V

c
Since the program never needs to actually execute a DATA statement

in order to read the information, it is a good idea to put your DATA

statements as close to the last line of the program as possible. This

will help your programs run faster.

DEF FN (Define Function)

This command allows you to define a complex calculation as a func

tion with a short name. In the case of a long formula that is used

several times during a program, this can save lots of space.

The name you give the function will be the letters FN and any legal

variable name (1 or 2 characters long). First you must define the func

tion by using the statement DEF followed by the name you have given /

the function. Following the name is a set of parentheses 0 with a

numeric variable (in this case X) enclosed. Then you have an equal (

sign, followed by the formula you want to define. You can "call" the

formula, substituting any number for X, using the format shown in line C
20 of the example below: rTT^T^^^O

J Asterisk is used

EXAMPLE- ~C as multiplication
sign

10 DEF FNA(X) = 12*{34.75-X/.3)\

" The No. 7 is
20 PRINT FNA(7)^ ' inserted where X

is in the formula

DIM (Dimension an array) ,

Before you get to use arrays of variables, unless there are 11 or fewer (

elements, the program must first execute a DIM statement for that

array. The statement DIM is followed by the name of the array, which

may be any legal variable name. Then, enclosed in parentheses, you

put the number (or numeric variable) of elements in each dimension.

An array with more than one dimension is called a matrix. You may

use any number of dimensions, but keep in mind that the whole list of

variables you are creating takes up lots of room, and it is easy to run

out of memory if you get carried away. To figure the number of

variables created with each DIM, multiply the total number of (

elements in each dimension of the array.

EXAMPLE:

10 DIM A$(40),B7(15),CC%(4/4,4)

,41 Elements^ >16 Elements^) C125 Elements •>

You can dimension more than one array in a DIM statement by

separating the arrays by commas. Be careful not to let the program

execute a DIM statement for any array more than once, or you'll get

an error message. It is a good idea to keep DIMs near the beginning

of the program.

120 i

c

END

When the program hits a line with the END statement, the program

stops RUNning as if it ran out of lines. You may use the CONT com

mand to re-start the program.

FOR...TO...STEP

This statement works with the NEXT statement to set up a section of
the program that repeats for a set number of times. You may just

want the VIC to count up to a large number so the program will pause

for a few seconds, or you may need something counted. These are

among the most commonly used statements in BASIC.

The format of the statement is as follows:

FOR (loop variable name) = {start of count) TO (end of count). The

loop variable is a variabie which will be added or subtracted to during

the program. The start of count and end of count are the limits to the

value of the loop variable.

The logic of the FOR statement is as follows. First, the loop variable

is set to the start of count value. The end of count value is saved for

later reference by the VIC. When the program reaches a line with the

command NEXT, it adds one to the value of the loop variable and

checks to see if it is higher than the end of loop value. If it is not

higher, the next line executed is the statement immediately following

the FOR statement. If the loop variable is larger than the end of loop

number, then the next statement executed will be the one following

the NEXT statement.

EXAMPLE:

10FORL = 1TO10

20 PRINT L

30 NEXT L

40 PRINT "I'M DONE! L = "L

This program will print the numbers from one to ten on the screen,

followed by the message I'M DONE! L=11. Do you see why it works?

If not, try re-reading the paragraph before the example again, and

tracing through the program one step at a time on paper.

The end of loop value may be followed by the word STEP and another

number or variable. In this case, the value following the STEP is

added each time instead of one. This allows you to count backwards,

by fractions, or any way necessary.

121

You can set up loops inside one another. This is known as nesting

loops. You must be careiul to nest loops so that the later loop to start

is the earlier one to end.

EXAMPLE OF NESTED LOOPS:

10FORL=1 TO 100

20 FOR A = 5TO 11 STEP '

30 NEXT A

This for...next

loop is "nested"

inside the larger

one.

40 NEXT L

Not correct:

10 FOR L=1 TO 100

20 FOR A = 5 TO 11 STEP 2

30 NEXT L

40 NEXT A

GET

The GET statement is a way to get data from the keyboard one

character at a time. When (he GET is executed, the character that was

typed is received. If no character was typed, then a null (empty)

character is received, and the program continues. There is no need to

hit the RETURN key, and in fact the RETURN key can be received with

a GET.

The word GET is followed by a variable name, usually a string

variable. If a numeric were used and any key other than a number was

hit, the program would stop with an error message. The GET state

ment may also be put into a loop, checking for an empty result, which

will wait for a key to be struck. (^"V~V"V-V—

example- (This line waits X
> for a key to be)

10 GET A$: IF A$ = "" THEN 10 -*—(struck. Typing any >
7 key will continue ^

the program.

c

I

I

122

GET*

Used with a previously OPENed device or file to input one charcter at

a time,

EXAMPLE:

GET#1,A$

GOSLJB

This statement is like the GOTO statement, except that the VfC

remembers where it came from. When a line with a RETURN state

ment is encountered, the program jumps back to the statement im

mediately following the GOSUB. This is useful if there is a routine in

your program that occurs several times in different parts of the pro

gram. Instead of typing the same over and over, you type it once and

GOSUB to it from the different parts of the program. 20 GOSUB 800

means go to the subroutine beginning at line 800 and execute it.

GOTO or GO TO

When a statement with the GOTO command is reached, the next line

to be executed will be the one with the line number following the word

GOTO,

IF...THEN

The IF...THEN statement lets your VIC analyze a situation and take

two possible courses of action depending on the outcome. If the ex

pression being evaluated is found to be true, the statement following

the word THEN is executed. This may be a line number, which will

cause The VIC to GOTO That line of the program* It may also be any

other BASIC statement or statements. If the expression is false, then

the next line [not the next statement on the same line) is execuTed

instead.

The expression being evaluated may be a variable or formula, in which

case it is considered true if non-zero, and false if zero. In most cases,

there is an expression involving the relational operators (=,,, =, = ,

,AND,OR,NOT). If the result is found to be true, it has a value of — 1,

and a value of 0 if false. See the section on relational operators for an

explanation of how this works.

123

(
INPUT (

The INPUT statement allows the computer to get data into a variable r

from the person running the program. The program will stop, print

a question mark (?) on the screen, and wait for the person to type the

answer and hit the RETURN key.

The work INPUT is followed by a variable name or list of variable

names separated by commas. There may be a message inside of

quotes before the list of variables to be input. If this message (called

a prompt) is present, there must be a semicolon (;) after the last quote

of the prompt. When more than one variable is to be INPUT, they g"

should be separated by commas when typed in.

EXAMPLE:

c
10 INPUT-PLEASE TYPE A #";A

20 INPUT"AND YOUR NAME";A$.

30 INPUT B$ /■

40 PRINT"BET YOU DIDN'T KNOW WHAT I WANTED!" (

I
INPUT*

This works like INPUT, but takes the data from a previously OPENed

file or device.

LET

The word LET itself is hardly ever used in programs, since it is op

tional, but the statement is the heart of all BASIC programs. The

variable name which is to get the result of a calculation is on the left

side of the equal sign, and the number or formula is on the right side.

EXAMPLE:

10LETA = 5 (

20 B = 6 (

30C = A*B + 3 (

124

NEXT

The NEXT statement is always used in conjunction with the FOR

statement. When the program gets up to a NEXT statement, it goes

back to the FOR statement and checks the loop. (See FOR statement

for more detail.) If the loop is finished, execution proceeds with the

statement after the NEXT statement. The word NEXT may be followed

by a variable name, or a list of variable names, separated by commas.

If there are no names listed, the last loop started is the one being

completed. If the variables are given, they are completed in order form

left to right.

EXAMPLE:

10 FOR L = 1 TO10:NEXT

20FORL = 1 TOiOrNEXTL

30 FOR L = 1 TO 10:FOR M = 1 TO 10:NEXT M,L

ON

This command can make the GOTO and GOSUB commands into

special versions of the IF statement. The word ON is followed by a

formula, which is evaluated into a number. The word GOTO or GOSUB

is followed by a list of line numbers separated by commas. If the

result of the calculation is 1, the first line in the list is executed. If the

result is 2, the second line number is executed, and so on. If the result

is 0, negative, or larger than the list of line numbers, the next line

executed will be the statement following the ON statements.

EXAMPLE:

10 INPUT X

20 ON X GOTO 10,50,50,50

30 PRINT "NOPE!"

40 GOTO 10

50 PRINT"YUP!"

60 ON X GOTO 10,30,30

125

OPEN ^

The OPEN statement allows the VIC to access devices such as the (

cassette recorder and disk for data, a printer, or even the screen of

the VIC. The word OPEN is followed by a number, which is the

number to which all other BASIC statements will refer. This number is

from t to 255. There is usually a second number after the first,

separated by a comma. This is the device number, 0 for the VJC

screen, 1 for the cassette recorder, 4 for the printer, 8 for the disk. It is

a good idea to use 1he same reference number as the device number,

which makes it easy to remember which is which. Following the

second number may be a third number, separated again by a comma, (

which is the secondary address. In the case of the cassette, this may

be 0 for read, 1 for write, and 2 for write with end-af-tape marker at the (
end. In the case of the disk, the number refers to the buffer, or chan

nel, number. In the printer, the secondary addresses become different (
types of commands. See the VIC Programmers' Reference Manual for

more on these. There may also be a string following the third number,

which would be a command to the disk drive or the name of the file

on tape.

EXAMPLE:

c
10 OPEN 1,0 OPENS the SCREEN as a device.

20 OPEN 2,1,0T"D" OPENs the cassette for reading, file to be

searched for is named D.

30 OPEN 3,4 To use the printer.

40 OPEN 4,8,15 OPENs the data channel on the disk.

(
See also: CLOSE, CMD, GET#, INPUT*, and PRINT* statements,

system variable ST, and Appendix E.

c
POKE ,

The POKE command is always followed by two numbers, or formulas. ^

The first number is a location inside 1he VIC's memory. There could

be locations numbered trom 0 to over 65000. Some of these, like the (
ones described in the chapters on sound and colors, can be used

easily in your programs. Some, however, are used by the VIC itself,

to keep track of your programs and so on. Experimenting with the

POKE statement will probably result in some interesting effects. If

something happens and you can't stop itT just turn the VIC off and on {

again, or hold down 1he RUN/STOP key and hit RESTORE.

c

c

c

c

126

The second number is a value from 0 to 255, which will be placed in

the memory location, replacing any value that was there previously.

EXAMPLE:

10 POKE 36879,6

20 POKE 9*161 3 + 15,27

PRINT

The PRINT statement is the first one most people learn to use, but

there are lots of subtleties to be mastered here as well. The word print

can be followed by any of the following things;

Words inside of quotes

Variable names

Functions

Punctuation marks

The words inside of quotes are often called literals because they are

printed literally as they are typed in. Variable names outside of quotes

will have the value they contain printed. Functions will have their

values printed also. Punctuation marks are used to help format the

data neatly on the screen. The comma is used to divide the screen in

to 2 columns, while the semicolon doesn't leave any space at all.

Either mark can be used as the last symbol in the statement. This

results in 1he next thing PRINTed coming out as if it were continuing

the same PRINT statement.

EXAMPLE:

10 PRINT "HELLO"

20 PRINT-HELLO, "AS

30 PRINT A + B;

50 PRINT J;

60 PRINT A,BfC,D

See also: POS(), SPC(), TAB(> functions.

PRINT**

There are a few differences between this statement and the PRINT.

First of all, the word PRINT# is followed by a number, which refers to

the device or data file previously OPENed. The number is followed by

a comma, and a list of things to be PRINTed. The comma and

semicolon have the same effect on adding spaces as they do in the

PRINT, but some devices may not work with TAB and SPC.

127

(

c

EXAMPLE: (

100 PRINT#1."HELLO THERE!";A$,B$

<
READ

(
This statement is used to get information from DATA statements into

variables, where they may be used. Care must be taken lo avoid

reading strings where the READ statement wants a number, which

will give you a TYPE MISMATCH ERROR.

C

REM (remark) C

The REMark is just a note to whoever is reading a LIST of the pro

gram. It may explain a sect ton of the program, give information about

the author, etc. REM statements in no way effect the operation of the

program, except to add to its length. The word REM may be followed (

by any text, although use of graphic characters will give strange

results (see the VIC PROGRAMMER'S REFERENCE GUIDE for £

more info.)

RESTORE

When executed in a program, the pointer to which item in a DATA

statement will be read next is reset lo the first item in the list. This

gives you the ability to re-READ the information. The word RESTORE

stands by itself on the line. (

RETURN

This statement is always used in conjunction with the GOSUB state

ment. When the program hits a RETURN statement, it wilJ go to the

statement immediately following the GOSUB command. If no GOSUB

was previously issued, there is a RETURN WITHOUT GOSUB ERROR.

There is nothing following the word RETURN. f~

<
STOP

This statement will halt the program. A message, BREAK ERROR IN

LINE xxxx, where xxxx is the tine number containing the STOP. The

program can be re-started by using the CONT command. The STOP

statement is used for debugging a program.

I
SYS

The word SYS \s followed by a decimaf number or numeric variable in

the range 0-65535. The program will at this point begin executing the

machine ianguage program starting at that memory location. This is (

similar to the USR function, but does not allow parameter passing,

128

WAIT

The WAIT statement is used to halt the program until the contents of

a location in memory changes in a specific way. The word WAIT is

followed by a number, which is the memory address being checked.

Then comes a comma, and another number. There may be another

comma and a third number as well. These last two numbers must be

within the range 0-255.

The contents of the memory location are tirst exclusive-QRed with the

third number, if present, and then logically ANDed with the second

number. If the result is zero, the program goes back to that memory

location and checks again. When the result is non-zero, the program

continues with the next statement.

4. FUNCTIONS

a. NUMERIC

ABS(X) (absolute value)

The absolute value returns the value of the number, without it's sign

(- or +). The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in

radians.

EXP(X)

Returns the value of the mathematical constant e {2,71827183) raised

to the power of X.

FNXX(X)

Returns the value of the user-defined function XX created in a DEF

FNXX statement.

INT(X) (Integer)

Returns the truncated value of X, that isr with all decimal places to

the right of the decimal point removed. The result will always be less-

than or equal-to X. Thus, any negative numbers with decimal places

will become the integer less-than their current vafue.

129

If the INT function is to be used for rounding up or down, the form is /

INT(X + .5).

EXAMPLE:

<
X = INT(X'100 + ,5)/100 Rounds to the nearest penny.

(

LOG(X) (logarithm) c

This will return the natural log of X. The natural log is log to the base

e (see EXP(X)). To convert to log base 10, simply divide by LOG(10), (

PEEK(X)

This is used for finding out the contents of memory location X, in the

range of 0-65535, giving a result from 0-255. This is often used in con

junction with the POKE statement.

<

RND(X) (random number) (

This function will return a random (or nearly so} number between 0 (

and 1. This is useful in games, to simulate dice rolls and other

elements of chance, and is also used in some statistical applications.

The first random number should be generated by the formula RND(-TI),

to start things off differently every time. After thfs, the number in X

should be a 1, or any positive number. If X is zero, the result will be

the same random number as the iast one. A negative value for X will

re-seed the generator. The use of the same negative number for X will (

result in the same sequence of "random11 numbers.

To simulate the rolling oi a die. use the formula INT{RND(1)'6+ 1).

First the random number from 0-1 is multiplied by 6, which expands

the range to 0-6 (actually, greater than zero and less then six). Then 1

is added, making the range 1-under 7. The INT function chops off all

the decimal places, leaving the result as a digit from 1 to 6.

To simulate 2 dice, add two of the numbers obtained by the above /

formula together.

(
EXAMPLE:

100 X = INT(RND(1)*6) + INT(RND(1}'6} -f 2 Simulate 2 dice,

100 X = INT(HND(1)*1000J +1 Number from 1-1000.

100 X+ INT(RND(1)'150) +100 Number from 100-249. f

SGN(X) (sign)

This function returns the sign, as in positive, negative or zero, of X.

The result will be +1 if positive, 0 if zero, and - 1 if negative.

130

I

SIN(X) (Sine)

This is the trigonometric sine function. The result will be the sine ot X,

where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive

number or 0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR (X)

When this (unction is used, the program jumps to a machine
language program whose starting point is contained in memory loca

tions 1 and 2. The parameter X is passed to the machine language

program, which will return another number back to the BASIC pro

gram. See the VIC PROGRAMMER'S REFERENCE MANUAL for more

details on this, and on machine language programming.

b. STRING FUNCTIONS

ASC(XS)

This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose

ASCII code is X.

LEFT$(XS,X>

This will return a string containing the leftmost X characters of X$.

LEN(XS)

Returned will be the number of characters (including spaces and

other symbols) in the string X$.

MIDS(XS,S,X)

This will return a string containing X characters, starting from the Sth

character in XS.

131

I

RK3HT$(X$,X)

This will return the rightmost X characters in XS.

STRS(XJ

This wiil contain a string which is identical to the PRINTed version of
XS. (

VAL(X$)

This function converts the string X$ into a number, and is essentially
the inverse operation from STRS. The string is examined from the left
most character to the right, for as many characters as are in (

recognizable number format. If the VIC ffnds illegal characters, only
the portion of the string up to that point is converted. (

EXAMPLE: (

I

<

I

I

10 X = VAL("123.456")

1OX = VAL("12A13B")

10X = VALCRIU017"PT)

10 X = VALC'-1.23.23.23")

c. OTHER FUNCTIONS

FRE(X)

X

X

X

X

= 123.456

= 12

= 0

= -1.23

This function returns fhe number of unused bytes available in
memory, regardless of the value of X. (

POS(X)

This function returns the number of the column (0-21) at which the t
next PRINT statement will begin on the screen. X may have any value
and is not used. /

SPC(X)

This is used in the PRINT statement to skip X spaces forward.

TAB(X>

This is used in the PRINT statement. The next item to be printed will
be in column number X. (

132 (

c

APPENDIX D:

ABBREVIATIONS FOR BASIC KEYWORDS

As a time saver when typing in programs and commands, VIC BASIC

allows the user to abbreviate most keywords. The abbreviation for the

word PRINT ts a question mark. The abbreviations for the other words

are made by typing the first one or two letters of the key word,

followed by the SHIFTed next letter of the word, if the abbreviations

are used in a program line, the keyword will LIST in the longer form.

Note that some of the keywords when abbreviated include the first

parenthesis, and others do not.

Commind

AND

NOT

CLOSE

CLR

CMD

CONT

DATA

END

FOR

GET

GOSUB

GOTO

IN PITT*

LET

LIST

LOAD

NEXT

OPEN

POKE

PRINT

Abbreviation

A

N

CL

C

c i

c

D

D

0

E

F

<3

GO

G

I

L

L

L

N

O

P

Look* likn

this an screen

A 0

N | |

CL |]

c a

C |\]

c D

D ^

I H
t 0

* n

c B

GO ^

G | j

L

L

L

N

O

B

H

D

0

D

Comrniind

PRINT*

READ

RESTORE

RETURN

RUN

SAVE

STEP

STOP

srs

THEN

VERIFY

WAIT

ABS

ASC

ATN

CHFfi

EXP

FRE

LEFTS

M10S

PEEK

RIGHTS

RE

H

S

ffT

S

S

T

V

w

A

A

A

C

E

F

LE

M

P

R

R

E

S

T

u

A

£

T

Y

H

E

A

B

5

I

Look* like

lh*» on scf

B

B

0

H

D

w

- B

133

Cornmind

RND

SGN

SIN

SPCi

SQR

Looks Ilka

AbbrmJitlon i":s on icreen

<
Comnund

D

D

Looks Ilka

Ihls on scra*n

ST

APPENDIX E

SCREEN & BORDER COLOR COMBINATIONS

You can change the screen and border colors of the VIC anytime, in or

out of a program, by typing

POKE 36879, X

where X is one of the numbers shown in the chart below. POKE 36879,

27 returns the screen to the normal color combination, which is a

CYAN border and white screen.

Try typing POKE 36879, 8. Then type CTRL and you

have white letters on a totally black screen! Try some other

combinations. This POKE command is a quick and easy way to

change screen colors in a program.

SCREEN

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

LT. ORANGE

PINK

LT. CYAN

LT. PURPLE

LT. GREEN

LT. BLUE

BLK

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

WHT

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

RED

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

BOROER

CYAN

11

27

43

59

75

91

107

123

539

155

171

187

203

219

235

PUR

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

GRN

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

BLU

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

YEL

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

LT. YELLOW 248 249 250

134

251 252 253 254 255

(

(

(

(

I

(

<

I

I

c

(

(

I

(

c

c

c

(

(

(

c

<

(

APPENDIX F

TABLE OF MUSICAL NOTES

APPROX.

NOTE

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

Cff

D

D#

E

F

F#

VALUE

135

143

147

151

159

163

167

175

179

183

187

191

195

199

201

203

207

209

212

SPEAKER COMMANDS:

POKE 36878, X

POKE 36874, X

POKE 36875, X

POKE 36876, X

POKE 36877, X

APPROX.

NOTE

G

G#

A

A#

B

C

c#

0

Dtt

E

F

F#

G

G#

A

Aft

B

C

C#

WHERE X CAN BE:

0to15

128 to 255

128 to 255

128 to 255

128 to 255

VALUE

215

217

219

221

223

225

227

228

229

231

232

233

235

236

237

238

239

240

241

FUNCTION:

sets volume

plays tone

plays tone

plays tone

plays "noise"

APPENDIX G:

20 SOUND EFFECTS FOR THE VIC-20

Here are some sample routines to use as a guide for creating sounds

to enhance your programs. You may type them into your VIC -20 either

by themselves or inside other programs. Of course, these are not

nearly all of the possible sounds that your VIC-20 can play, so feel

free to use your creativity.

The sound effects listed here will make a program pause for however

long they take to be completed. It is possible to put these effects into

a program in a way that does not stop whatever animation may be

running, and this topic is discussed in detail in the VIC-20

Programmer's Reference Manual.

135

Remember to use line numbers when you type these routines into the

computer. The numbers are not shown here in order to avoid

confusion when you enter them into your programs.

#1: SCALES

POKE 36878,15

FOR L= 250 TO 200 STEP -2

POKE36876;L

FORM = 1 TO 100

NEXTM

NEXTL

FOR L = 205 TO 250 STEP 2

POKE 36876.L

FOR M = 1 TO 100

NEXTM

NEXTL

POKE 36676,0

POKE 36878,0

#2: COMPUTER MANIA

POKE 36373,15

FOR L=1 TO 100

POKE 36a76TINT{RND(1)' 128) +

FORM = 1 TO 10

NEXTM

NEXTL

POKE 36876,0

POKE3687S.0

#3: EXPLOSION

POKE 36B77.220

FOR L = 15 TOO STEP -1

PQKE36878.L

FOR M = 1 TO 300

NEXTM

NEXTL

POKE 36877,0

POKE 36878,0

#4: BOMBS AWAY

POKE 36676,10

FORL = 230TO126STEP -1

POKE 36876.L

FOR M = 1 TO 20

NEXTM

NEXTL

POKE 36876,0

POKE 36877,200

FOR L= 15 TOO STEP -.05

POKE 36878,L

NEXT L

POKE36877H0

128

#5: RED ALERT

POKE 36878,15

FOR L = 1 TO 10

FORM = 180 TO 235 STEP 2

POKE36876,M

FOR N=1T0 10

NEXT N

NEXT M

POKE 36876,0

FOR M = 1 TO 100

NEXTM

NEXTL

POKE 36878,0

#6: LASER BEAM

POKE 36878,15

FORL = 1T0 30

FOR M = 250 TO 240 STEP - 1

POKE36876.M

NEXTM

FOR M= 240 TO 250

POKE 36876.M

NEXTM

POKE 36876,0

NEXTL

POKE 36878,0

#7:HIGH-LOWSIREN

POKE3687B.15

FOR L=1 TO 10

POKE 36875,200

FOR M - 1 TO 500

NEXTM

POKE 36875,0

POKE 36876,200

FOR M = 1 TO 500

NEXT M

POKE 36876,0

NEXT L

POKE 36878,0

<

<

1

(

(

(

(

<

(

I

i

(

C

i

i

'

136

#8: BUSY SIGNAL #12: OCEAN WAVES

{

(

(

(

{

(

<

(

(

POKE 36873,15

FORL=1 TO 15

POKE 36876,160

FORM = 1 TO 400

NEXTM

POKE 36876,0

FORM = 1 TO 400

NEXTM

NEXTL

POKE 36378,0

#9: PHONE RINGING

POKE36S78.15

FOR L = 1 TO 5

FOR M - 1 TO 50

POKE 36876,220

FOR N - 1 TO 5

NEXTN

POKE 36876,0

NEXT M

FOR M = 1 TO 3000

NEXT M

NEXTL

POKE 36878,0

#10: BIRDS CHIRPING

POKE 36877,180

FOR L = 1 TO 10

D = INT(RND(1)*5J*5O + 5O

FOR M = 3 TO 15

POKE 36878.M

FOR N = 1 TO D

NEXTN

NEXTM

FORM = 15 TO 3 STEP -1

POKE36S78.M

FOR N = 1 TO D

NEXTN

NEXTM

NEXTL

POKE 36878,0

POKE 36877,0

#13: VANISHING UFO

POKE 36878,15

FOR L= 130 TO 254

POKE36876,L

FOR M = 1 TO 40

NEXT M

NEXTL

POKE 36878,0

POKE 36876,0

POKE 36878,15

FOR L = 1 TO 20

FOR M=254T0 240-HNT{RND(1}"10}STEP -1

POKE36876,M

NEXTM

POKE 36876,0

FOR M =0 TO INT(RND{1K 100) +120

NEXTM

NEXT L

#11: WIND

POKE 36878,15

POKE 36874.170

POKE 36877.240

FOR L = 1 TO 2000

NEXTL

POKE36874T0

POKE36S77T0

POKE 36378,0

#14: UFO LANDING

POKE 36878,15

FOR L=1 TO 20

FOR M = 220-L TO 160-L STEP - 4

POKE 36876,M

NEXT M

FOR M-160-LTO220-L5TEP4

POKE 36876,M

NEXTM

NEXT L

POKE 36878,0

POKE 36876,0

137

#15: UFO SHOOTING

POKE 36878,15

FOR L=1 TO 15

FORM = 200 TO 220+ L*2

POKE36876,M

NEXTM

NEXTL

POKE 36878t0

POKE 36876,0

#16: WOLF WHISTLE

POKE 36878,15

FOR L - 148 TO 220 STEP .7

POKE 36876.L

NEXTL

FOR L = 128 TO 200

POKE36876,L

NEXTL

FOR L = 200TO 128 STEP -1

POKE36876,L

NEXTL

POKE 36878,0

POKE 36876,0

#17: RUNNING FEET

POKE 36878,15

FOR L-1 TO 10

POKE 36874,200

FORM = 1 TO 10

NEXTM

POKE 36874,0

FOR M = 1 TO 100

NEXTM

NEXTL

POKE 36878,0

#18: TICK—TOOK

POKE 36878.15

FORL = 1TO 10

POKE 36875.200

FOR M = 1 TO 10

NEXTM

POKE 36875.0

FOR M = 1 TO 300

NEXTM

POKE 36874.200

FOP M = 1 TO 10

NEXTM

POKE 36874,0

FOR M = 1 TO 300

NEXTM

NEXTL

POKE36878r0

#19: DOOR OPENING

POKE 36878,15

B-0

FORL = 128TO255STEP11

POKE 36874.L

FOR M = 1 TO 10

NEXTM

B-B + 1

IF B-3THEN B-0: POKE 35874,0

NEXTL

POKE 36874,0

POKE 36878,0

#20: BLIPS

POKE 36873,15
POKE 36876,220

FORL = 1 TO 5

NEXTL

POKE 36876,0

FOR L = 1 TO 500

NEXTL

POKE 36876,200

FOR L=1 TO 5

NEXTL

POKE 36876,0

FOR L = 1 TO 500

NEXT L

POKE 36878,0

<

I

I

<

<

i

<
j

I

1

(
*-

(

(

(

1

i

«

(

<

138

c

c

(APPENDIX H: SCREEN DISPLAY CODES

The following chart lists all of the characters built-in to the V1C20

character sets. They show which numbers should be POKEd into

screen memory {locations 7680 to 8185} to get a desired character.

Also, it shows what character corresponds to a number PEEKed from

the screen.

The two character sets are available, but only one set at a time. This

(means that you cannot have characters from one set on the screen at

the same time you have characters from the other set displayed. The

(sets are switched by holding down the SHIFT and COMMODORE keys

simultaneously. This actually changes the 2 bit in memory location

36B69, which means that the statement

POKE 36869, 240 will set the character set to upper case, and POKE

36869, 242 switches to lower case.

If you want to do some serious animation, you will finci that it is

easier to control objects on the screen by POKEing them into screen

memory (and erasing them by poking a 32, which is the code for a

(blank spacet into the same memory location), than by PRINTing to the

screen by using cursor control characters.

Any number shown on the chart may also be displayed in REVERSE.

Reverse characters are not shown, but the reverse of any character

(may be obtained by adding 128 to the numbers shown.

(NOTE: SEE SCREEN MEMORY MAP APPENDIX.

If you want to display a heart at screen location 7S00, find the number

of the character you want to display there (in this case a heart) in this

chart...the number for the heart is S3..,then type in a POKE statement

with the number of the screen location (7800) and the number of the

symbol (83) like this:

POKE 7300. 83

A white heart should appear in the middle area of the screen. Note

thai it will be invisible if the screen is white. Try changing the position

by changing the larger number, or type in different symbols using the

numbers from the chart.

If you want to change the COLOR of the symbol being displayed,

consult the accompanying chart which lists the COLOR NUMBERS

for EACH MEMORY LOCATION. In other words, to get a different

colored symbol at a particular location, this requires another POKE

command.

139

For example, to get a red heart, type the following:

POKE 38520, 2 |n screen pokes

this color is

one less than

the numbers on the <
V keyboard color keys J

This changes the color of the symbol at location 7800 to red. If you

had a different symbol Ihere, that symbol would now be red. You can

display any character in any of the available colors by combining

these two charts. These POKE commands can be added in your

programs and are very effective especially in animation — and also

provide a means to PEEK at certain locations if you are doing

sophisticated programming such as bouncing a ball, which requires

this information.

c

(

(

c

c

(

(

*

c

140

SCREEN CODES

SET1 SET 2 POKE

@ 0

A a 1

B b 2

C c 3

D d 4

E e 5

F f 6

G g 7

H h 8

I i 9

J j 10

K k 11

L I 12

M m 13

N n 14

0 o 15

P p 16

Q q 17

R r 18

S s 19

T t 20

SET1 SET 2 POKE

U

V

w

X

Y

z

&

LJ

V

w

X

y

z

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

SET1 SET 2 POKE

42

+ 43

44

- 45

46

/ 47

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

: 58

; 59

60

61

> 62

141

SET1

B

□

□

Sir I 2

A

B

C

D

E

F

G

H

1

J

K

L

M

N

0

P

Q

R

S

POKE

63

64

65

66

67

68

69

70

71

72

73

74

75 |

76

77

78

79

80

81

82

83

SET1

D

A
53

D

B

♦I

H

|i

TT

a

C
y

—

8£

□

a

B

SET 2

T

U

V

w

X

Y

z

B3

S3

1

m

142

POKE

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

SET 1

1

h

H

a

L

r

pc

T

r

C

E

3

H

n
L

U

L

■

SET 2 POKE

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

y/ 122

123

124

125

126

127

(

I

'

I

f

<

(

I

(

!

<
I

(
1

■

c

c

c

(

1

<

(

{
'

c

c

c

c

c

APPENDIX 1: SCREEN MEMORY MAPS

Use this appendix to find the memory location of any position on the

screen. Just find the position in the grid and add the numbers on the

row and column together. For example, if you want to poke the

graphic "ball11 character onto the center of the screen, add the

numbers at the edge of row 11 and column 11 (7900+10) for a total of

7910. If you poke the code fora ball (81, see Appendix H) into location

7910 by typing POKE 7910,81, a white bail appears on the screen. To

change the color of the ball (or other character), find the correspond

ing position on the color codes memory map, add the row and column

numbers together (38620 + 10, or 38630) for the color code and type a

second poke statement. For example, if you poke a color code into

this location, POKE 33630,3 the ball will change color to cyan. Note

that when PQKEing, the character color numbers are one less than

the numbers on the color keys—as shown below.

Abbreviated

Code

0

1

2

3

4

5

6

7

List of Color Codes

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

143

7680

7702

1(24

7746

7768

//yu

7812

(tt'M

7856

7878

7900

7922

7944

7966

7988

8010

8032

8054

8076

8098

B120

8142

8164

0 1 2 3 4 b b a 9 10 11 12 13 14 15 16 17 i.a 19 20 21

PAGE 1: SCREEN CHARACTER CODES

38400

38422

38444

38466

38488

38510

38532

38554

38576

38598

38620

38642

38664

38686

38708

38730

38752

38774

38796

38818

38840

38862

38884

0 1 2 3 4 5 ti I - 9 10 11 12 13 14 15 IE 17 16 19 20 21

■

PAGE 2: COLOR CODES MEMORY MAP

144

<

i

t

APPENDIX J: ASCII AND CHRS CODES

This appendix shows you what characters will appear if you

PRINT CHRS (X), for all possible values of X. It will also show the

values obtained by typing PRINT ASC ("x") where x is any character

you can type. This is useful in evaluating the character received in a

GET statement, converting upper/lower case, and printing character-

based commands (like switch to upper/lower case) that could not be
enclosed in quotes.

PRINTS CHRS

0

1

2

3

4

mi 5

6

7

8

9

10

11

12

ca
1 SWITCH 10 ^^V
■ inwen case ILI

15

PRINTS

H
D

m

13

m

CHRS

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

PRINTS

jj SPACE

1

■'

#

$

%

&

(

)

-

+

i

—

I

CHRS

j 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

PRINTS

0

1

2

3

4

5

6

7

8

9

=

1

CHRS

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

145

PRINTS

&

A

B

C

D

E

F

G

H

1

J

K

1

M

N

O

P

Q

R

S

T

CHRS

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

PRINTS

U

V

W

X

V

t

I

-

B

Q

i

CHRS

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

PRIN1

J

|

\

\A

n

□

I

: r!

X

i

—i

j

[
TT

CHRS

106

107

108

109

110

111

112

113

114

115

111

117

118

119

120

121

122

123

124

125

126

PRINTS

h

f3

f5

f7

f2

U

f6

f3

switch to
UPPEFt CASE

CHRS

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

146

(

(

<

(

(

(

(

(

(

(

(

(

(

(

<

(

(

(

(

<

(

<

(

(

(

(

(

(

PRINTS CHRS

148

149

150

151

152

153

154

155

156

157

158

■

a
□

PRINTS CHRS

170

171

172

173

174

175

176

177

178

179

180

□

I

PRINTS CHRS

181I

n

182

183

3 184

185

186|

K

188

189

190

191

147

APPENDIX K:

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to VIC BASIC may be calculated as follows:

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

VIC BASIC EQUIVALENT

SEC(X) = 1/COS(X]

CSC(X) = 1/SIN(X)

COT(X) = 1iTAN(X)

ARCSIN(X) = ATN(X/SQR(- X*X +1))

ARCCOS(X)= -ATN(X/SQR

(-X*X + 1))+ JTIZ

ARCSEC(X) = ATN(X/SQR(X-X- 1))

ARCCSC(X) = ATN(X;SQR(X"X- 1))

+ (SGN(X)-1)* Tt\2

ARCOT(X) = ATN(X) + H72

SINH(X) - (EXP(X) - EXP(- X))/2

COSH(X) = (EXP(X) + EXP(- X))I2

TANH(X) = -EXP(-X)/(EXP(x)+EXP

<-X»*2+1

SECH(X) = 2/(EXP(X) + EXP(- X))

CSCH(X) - 2/(EXP(X) - EXP(- X)}

COTH(X) = EXP(- X)/(EXP(X)

-EXP(-X)>-2+1

ARCSINH(X) - LOG(X + SQR(X*X + 1)}

ARCCOSH(X] = LOG(X + SQR(X'X -1))

ARCTANH(X) = LOG((1 +X)/f1 -X)]/2

ARCSECH(X) = LOG((SQR

ARCCSCH(X) = LOG((SGN(X)"SQR
(X*X + 1)/x>

ARCCOTH(X) = LOG{(X + 1V(X - 1))£

c

c

c

(

(

(

(

c

c

(

c

c

c

148

c

c

(

(

c

c

APPENDIX L:

PINOUTS FOR INPUT/OUTPUT DEVICES

Here is a picture of the I/O ports on the VIC:

1

1) Game I/O 4) Serial I/O (disk)

2) Memory Expansion 5) Cassette

3) Audio and Video 6) User Port (modem)

1) GAME I/O

o o o

o o o

PINS

1

2

3

4

5

6

7

8

9

TYPE

JOY0

JOY1

JOY2

JOY3

POTY

LIGHT PEN

+ 5V

GND

POTX

NOTE

MAX. 100mA

149

2) MEMORY EXPANSION

12 3 4 5 6 7 1819

ABCDEFHJKLMNPRSTUVWXYZ

PIN 3

1

2

3

4

5

6

7

8

9

10

11

TYPE

GND

CD0

CD1

CD2

CD3

CD4

CDS

CD6

CD7

BLK1

BLK2

PIN #

A

B

C

D

E

F

H

J

K

L

M

TYPE

GND

CA0

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CA8

CA9

PIN #

12

13

14

15

16

17

18

19

21

22

TYPE

BLK3

BLK5

RAM1

RAM2

RAM3

VR/W

CR/W

IRQ

NC

+ 5V

GND

PIN U

N

P

R

S

T

U

V

w

X

Y

2

TYPE

CA10

CA11

CA12

CA13

1/02

1/03

S02

NMI

RESET

NC

GND

150

c

<

I

<

I

I

I

I

(

!

(

(

I

I

I

I

I

<

I

<

<

I

I

I

c

<

c

3) AUDIO/VIDEO

4) SERIAL I/O

5) CASSETTE

1 2 3 4 5 6

A B C D E F

PIN#

1

2

3

4

5

TYPE

+ 5V REG

GND

AUDIO

VIDEO LOW

VIDEO HIGH

NOTE

10mA MAX

PIN #

1

2

3

4

5

6

TYPE

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT

SERIAL CLK IN/OUT

SERIAL DATA IN/OUT

RESET

PIN #

A-1

B-2

C-3

D-4

E-5

F-6

TYPE

GND

+ 5V

CASSETTE MOTOR

CASSETTE READ

CASSETTE WRITE

CASSETTE SWITCH

151

6) USER I/O

12 3 4 5 6 7 9 10 11 12

A8CDEFHJKLMN

PINS

1

2

3

4

5

6

7

8

9

18

11

12

TYPE

GND

+ 5V

RESET

JOY0

JOY1

JOY2

LIGHT PEN

CASSETTE SWITCH

SERIAL ATN IN

+ 9V

GND

GND

NOTE

1ffl0mA MAX.

1010mA MAX.

PIN #

A

B

C

D

E

F

H

J

K

L

M

N

TYPE

GND

CB1

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB2

GND

NOTE

i

t

(

c

(

I

(

(

(

I

(

(

152

A
P
P
E
N
D
I
X

M
:

V
I
C
P
R
O
G
R
A
M
S
T
O
T
R
Y

1
R
E
M

T
H
H
K
-
V
-
U
F
Q

B
V

D
.
L
f
l
T
E
R

5
O
F
=
3
0
7
2
0

3
P
O
K
E
V
R
+
1
,
2
5

3
P
R

T
N
T

"

2
0

P
R
I
N
T
'
S
*
*

T
f
l
N
K
V
E
R
S
U
S

U
F
O

*
*
"

2
1

P
R
I
N
T
"
Z
-
L
E
F
T
,
C
-
R
I
G
H
T
,
B
-
F
I
R
E
"

I
B
@

P
R

T
M
T

"
al

l

F
O
R
B
=
3
S
4
0
0
T
O
3
8
4
S
0
+
2
2
*
2
3

1
Q
5

F
R
I
N
T
"
a

|
"

1
1
0

P
R
I
N
T
"

_
3

■
_
"

1
1
5

P
R
I
N
T
"

H
i
O
O
G
l

"

1
2
0

P
R
I
N
T
"
3
Z
n
"
t

:
G
O
T
O
2
2
0

1
3
0

1
3
5

I
F
P
E
E
K
<
1
9
7
>
=
3
5
R
N
D
B
=
@
T
H
E
N
B
=
1

i
C
=
S

,
4
:
G
O
T
G
1
7
0

1
3
6

I
F
L
=
0
T
H
E
N
1
4
0

1
3
7

P
O
K
E
V
R
.
.
P
s
P
=
P
-
l
:
I
F
P
=
-
1
T
H
E
H
L
=
0
:
P
O
K
E
V
N
,
8

1
4
0

I
F
B
=
0
T
H
E
H
1
7
0

1
4
1

F
O
R
H
=
1
T
O
2

K
E
Y
T
O
S
P
E
C
I
A
L

S
Y
M
B
O
L
S

"
□
"

"
g
"

"
®
"

11
II
"

"
0
"

"
(
§
"

"
B
"

I
S

C
L
R

I
S
H
O
M
E

I
S

C
R
S
R

D
O
W
N

I
S

C
R
S
R

L
E
F
T

I
S

C
R
S
R

U
P

I
S
C
T
R
L
-
2

I
S

C
T
R
L
-
3

I
S

C
T
R
L
-
5

I
S

C
T
R
L
-
1

i
s
P
O
K
E
V
N
,
1
5
8
j
P
O
K
E
C
,
1
6
0
:
P
O
K
E
C
+
O
F

1
5
0

1
5
5

I
F
(
X
7
7
4
6
T
H
E
N
B
=
0
!
O
O
T
G
1
7
0

1
6
0

P
O
K
E
C
,
4
6

1
6
1

N
E
X
T

1
7
0

I
F
D
=
0
T
H
E
N
8
0
@

1
7
2

I
F
D
=
0
T
H
E
M
1
8
0

T
H
E
N
6
0
0

1
7
4

P
O
K
E
E
,
3
2
i
P
G
K
E
E
-
1
,
3
2
1
P
O
K
E
E
-
2
,
3
2
:
K
=
K
+
1

1
7
6

I
F
E
=
I
T
H
E
N
D
=
0
:
G
O
T
Q
1
S
0

1
7
8

E
=
E
+
J
:

P
O
K
E
E
.
,
6
2
:
P
G
K
E
E
-
l
,
4
2
:
P
O
K
E
E
-
2
,
f
c
"
0

1
7
9

I
F
J
=
1
T
H
E
M
1
8
2

1
8
0

I
F
I
N
T
<
<
8
1
3
6
-
E
}
/
2
2
>
=
2
2
-
K
-
R
f
l
H
D
F
=
0
T
H
E
H

F
=
l
:
G
=
E
+
2
1
:
M
=
2
1
I
0
0
T
Q
I
8
3

1
S
1

G
0
T
0
1
8
3

1
8
2

1
F
I
H
T
<
<
8
Q
9
S
-
E
>
.
-
"
2
2
>
=
f
i
-
K
R
H
D
F
=
@
T
H
E
N
F
=
1
:
G
=
E
+
2
3
:
M
=
2
3

1
8
3

I
F
F
=
@
T
H
E
N
1
2
5

1
3
4

P
0
K
E
G
,
3
2
;
G
«
=
Q
+
M

l
s
e

I
F
P
E
E
K
<
O
>
O
3
2
T
H
E
N
7
S
0

1
8
7

I
F
G
>
7
6
8
0
+
2
2
*
2
1
T
H
E
N
F
=
Q
:
G
O
T
O
5
0
0

1
8
9

P
O
K
E
G
,
S
1
:
G
0
T
G
1
2
5

2
2
0

I
F
H
O
T
H
E
M
F
I
-
0

2
2
1

l
F
f
l
>
l
?
T
H
E
N
R
=
1
5

2
2
2
P
R
I
N
T
T
R
B
<
R
V

|
"

di
2
2
5

p
r
i
h
t
t
r
b
'
:
r
>
"

_
a

■
_
'
■

^
2
3
@

P
R
I
H
T
T
R
B
f
R
>
"

P
O
O
O
|

"
2
3
5
P
R
I
N
T
"
T
n
M

i
:
0
0
T
Q
1
3
S

3
0
0

P
R
I
N
T
T
R
B
<
R
>
"

3
0
5

P
R
I
N
T
T
R
B
C
R
>
"

3
1
0

P
R
I
N
T
T
R
B
v
R
>
"

3
1
5
P
R
l
N
T
"
i
m
"
;
:
R
E
T
U
R
N

4
0
0

P
R
I
N
T
P
E
E
K
C
1
9
7
5
I
O
O
T
O
4
S
0

P
O
K
E
C
v
.
6
6
:
P
O
K
E
G
+
l
,
?
8
:
P
O
K
E
G
-
l
,
7
7
:
P
O
K
E
G
-
2
0
.
r
4
6
:
P
O
K
E
G
-
2
1
,
4
6
:
P
O
K
E
G
-
2
2
.
4
6

P
0
K
E
G
-
2
3
^
4
6
:
P
0
K
E
G
-
2
4
,
4
6

5
2
0

F
O
R
R
R
=
1
T
O
1
0
0
:
N
E
X
T

5
3
9

P
O
K
H
3
,
3
2
»
P
0
K
E
0
+
l

.
.
3
2
:
P
O
K
E
G
-
1
,
3
2
:
P
O
K
E
G
-
2
0
.
3
2
:
P
O
K
E
G
-
2
i

.
.
3
2
:
P
0
K
E
G
~
2
2
,
3
2

5
3
5

P
O
K
E
G
-
2
3
^
3
2
s
P
O
K
E
G
-
2
4
,
3
2

5
9
0

G
0
T
0
1
2
5

6
0
0

P
O
K
E
C
,
1
6
Q
:
P
0
K
E
C
+
l
,
1
6
0
:
P
O
K
E
C
-
1

..
1
6
9
:
P
0
K
E
C
+
2
2
,
1
6
0
:
P
0
K
E
C
-
2
2
.
.
I
S
O

6
0
1

L
=
0

^
V

/
^
\

^
*

■*
"*
*

*
*
^

^
-
S

>
^

*
—
•
»

>
^
S

f
*
^

^
^

,
A

*
^
i

<
—
-

-
*
^
^

>
«
\

j
*
*

^
^

-
<
^
.
^

^
^

s
^
-

<
~
-

^
"
^

'
'
^

*
^
^

6
1
0

P
O
K
E
V
N
,
1
2
8
+
1
8
0

6
1
1

F
O
R
G
G
=
1
5
T
G
0
S
T
E
P
-
1
:
P
O
K
E
V
R
.
.
G
G
:
F
O
R
G
H
=
1
T
O
7
0
j
N
E
X
T
:
H
E
X
T

6
1
5

B
-
8
:
D
=
0

6
1
6

F
0
K
E
C
.
.
3
2

:
F
O
K
E
C
+
1
,

3
2
:
P
0
K
E
C
-
l
,

3
2
=
P
0
K
E
C
+
2
,

3
2
:
P
0
K
E
C
-
2
,
3
2
:
P
Q
K
E
C
+
3
,
3
2
i
P
O
K
E
C
-
'
3

,
3
2

6
1
7

F
O
K
E
C
-
2
2
,
3
2
:
P
O
K
:
E
C
+
2
2
,
3
£

6
4
0

E
=
E
+
2
2
+
J
:
P
O
K
E
V
R
,
1
5
:
P
O
K
E
V
N
,
0
:

6
4
5

P
O
K
E
E

,
6
2

:
P
O
I
^
E
E
-
1

,
4
2
:
P
0
K
E
E
-
2
r
6
9

6
4
6

F
0
R
Q
=
2
4
S
T
G
2
5
3
:
P
0
K
E
V
N
-
l
,
0
:
N
E
X
T
:
F
0
R
0
=
2
5
3
T
G
2
4
S
S
T
E
F
-
l
i
P
O
K
E
V
H
-
1
,
O
s
M
E
X
T

£
4
7

P
O
K
E
E
,
3
2
:
P
O
K
E
E
-
1
.
3
2
:
P
O
K
E
E
-
2
.
3
2

6
5
0

I
F
E
<
7
6
&
Q
+
2
0
*
2
2
T
H
E
H
6
4
0

6
5
1

E
=
e
+
J

6
5
2

P
0
K
E
E
+
2
2
,
6
2
:
P
0
K
E
E
+
2
1
,
4
2
:
P
G
K
E
E
+
2
Q
,
6
e
:

P
0
K
E
E
+
U
F
.
.
4
:
P
O
K
E
E
+
O
F
-
1
,
4
s
P
O
K
E
E
+
G
F
-
2
,
4

6
5
3

P
G
K
E
E
+
2
2
+
G
F
.
e
:
P
O
K
E
E
+
2
1
+
G
F
,
0
:
P
G
K
E
E
+
2
0
+
G
F
.
.
3
2

6
5
4

P
G
K
E
V
H
-
1
,
0
:
P
O
K
E
V
H
,
1
2
8
:
F
O
R
Q
=
1
T
G
2
9
:
P
G
K
E
V
f
t
,
1
5
-
I
H
T
C
Q
/
l
.
3
3
>

6
5
5

P
O
K
E
E
,
2
2
3
:
P
O
K
E
E
-
1
,
2
2
3
:
P
0
K
E
E
-
2
.
2
2
3
:
F
O
R
O
=
1
T
G
S
0
:
H
E
H
T

S
5
6

P
O
K
E
E
,
2
3
3
s
P
O
K
E
E
-
1
.
2
3
3
:
P
0
K
E
E
-
2
,
2
3
3
:
F
O
R
G
=
1
T
O
S
0
s
N
E
X
T

6
5
7

N
E
X
T
:
P
G
K
E
E
,
3
2
:
P
G
K
E
E
-
l
,
3
2
:
P
G
K
E
E
-
2
,
3
2
:
P
O
K
E
E
+
2
2
,
3
2
:
P
O
K
E
E
+
2
1
,
3
2
:
P
O
K
E
E
+
2
0
,
3
2

:

6
5
8

P
R
I
N
T
"
n
f
e
M
5
3

6
5
9

D
U
=
D
U
+
1

:

6
6
8

G
G
T
0
1
2
5

7
0
S

P
O
K
E
V
H
.
1
2
8
:
L
=
9

7
0
1

f
i
=
f
l
+
l

:
F
0
R
K
L
=
l
T
0
2
e
t
i
:
P
0
K
E
V
f
l
,
1
5
-
I
W
T
<
K
L
/
1
3
>

:

7
0
4

7
G
5

7
1
5

7
2
0

7
2
5

P
R
I
N
T
T
R
B
<
R
>
l
l
;
i
a

7
3
5

F
R
I
H
T
"
:
i
T
\
;

7
4
0

N
E
K
T

7
4
5

P
R
2
H
T
T
R
B
<
f
i
>
"

7
5
8

P
R
I
N
T
T
f
l
E
K
R
V

U
"

7
5
1

P
R
I
H
T
T
R
B
<
f
l
-
l
V

"
}

7
5
2
P
R
I
N
T
'
I
H
T
;

7
5
6

P
R
I
H
T
"
5
H
S
B
]

)

7
5
2

P
R

I
N
T
"
H
I
T
;

7
5
6

F
R
I
N
T
"
5
E
I
S
I
S

7
5
7

D
T
=
D
T
+
1

:
P
R
I
N
T
"
S
S
S
l
5
j
L
l
F
0
S
1
'
D
U
"
T
f
i
N
K
S
"
D
T

:

7
6
Q

F
=
8
:

R
«
=
0
b
B
O
T
O
1
0
S

8
1
3
0

D
=
l
:
E
=
7
7
0
a
+
l
H
T
<
R
M
3
<
l
>
#
1
4
>
*
2
2
+
e
S

:
I
=
E
-
2
@
:
K
=
B
s
J
=
-
l

:
I
F
R
N
C
K

1
>
>
.
5
T
H
E
H
E
=
E
-
2
1

2
0
:
J
=
1

8
0
5

G
O
T
O
1
7
2

S
R
E
F
-
r
i
M
i
M
!
"

K
I
L
L
E
R

C
O
M
E
T

B
V

D
U
f
l
N
E

L
f
l
T
E
R

1
0
=
7
6
8
9
+
2
2
*
6
■
D
I
M
E
(
1
2
>
:
L
L
=
C
:
P
O
K
E
3
#
1
6
t
3
+
1
5
j
8

2
P
R
I
H
T
'
T
i
T
J
*
*
*

K
I
L
L
E
R

C
O
M
E
T

*
*
*
"
^
T
=
y

3
P
R
I
N
T
"

H
I
T

f
t
H
V

K
E
V
"

8
P
O
K
E
8
1
7
9
,
l
b
0
-

9
F
O
R
f
i
=
3
8
4
4
4
T
O
3
S
4
0
0
+
5
0
5
:
P
O
K
E
R
,
i
:
N
E
X
T

1
0

■

2
0

F
O
R
f
l
=
I

T
O

1
2
;
B
<
f
l
>
-
1
6
0
:
N
E
X
T

2
1

I
F
W
=
0
T
H
E
N
2
5

2
2

P
0
K
E
9
*
i
6
T
3
+
1
4
»
U
■

I
l
=
U
-
2
:
I
F
I
K
=
@
T
H
E
N
W
=
8
:
P
O
K
E
S
*
1
6
t
S
+
1
3
.
■

2
5

t
f
-
I
-
R
E
H

E
R
F
I
M
E
T
E
O
R

2
6

F
O
R
E
=
0
T
O
4
4
3
T
E
P
2
2

2
7

F
0
R
D
=
C
+
E
T
0
C
+
3
+
E
:
P
O
K
E
D
j
3
2

■
F
=
F
+
1
:
N
E
X
T
■
H
E
X
T

2
S

C
=
C
+
1

2
9

F
=
1
=
R
E
M

D
R
f
l
W

M
E
T
E
O
R

3
0

P
0
K
E
8
1
7
9
,
1
6
0
:
F
O
R
E
=
0
T
O
4
4
3
T
E
P
2
2

3
5

F
0
R
D
=
C
+
E
T
0
C
+
3
+
E
:
P
O
K
E
D
,
B
<
F
>
-
F
=
F
+
1
-
H
E
K
T
^
H
E
X
T

3
6

I
F
P
E
E
K
<
8
1
7
8
>
M
6
0
T
H
E
N
P
R
I
N
T
\
T
M
M
M
O
T
O
O
N

E
R
S
E

D
E
S
T
R
O
V
E
D

!
"

=G
O
T
O
5
0
0

4
0

G
E
T
f
i
*

=
I
F
f
l
*
O
"
"
f
l
N
D
G
=
0
T
H
E
N
G
=
l
:
S
=
7
S
8
0
+
1
5
+
2
2
#
i
i
l

5
9

5
5

P
O
K
E
S
,
3
2
:
5
=
3
-
2
2

7
1

"
7
5

P
0
K
E
S
-
.
8
1

I?
^
U
l
l
m
K
p
R
I
N
T
"
H
M
W
H
E
T
E
O
R

DE
ST
RO
YE
D*
**
"

:F
0
R
R
R
-
1
T
0
2
W
HE
XT

=L
L=
LL
+4
4

:O
H
.

:
G
O
T
0
2

8
2

F
0
R
E
=
S
T
0
4
4
S
T
E
P
2
2

^
^
^

8
4

F
0
R
D
=
C
+
E
T
0
C
+
3
+
E
=
I
F
P
E
E
K
<
D
)
=
3
2
T
H
E
N
B
<
;
F
>
*
J
2

8
6

F
=
F
+
1

N
E
X
T
:
N
E
X
T

9
6

G
0
T
0
2
1

5
0
0

P
0
K
E
9
*
1
6
T
3
+
1
3
,
1
2
8
+
5

5
0
5

P
O
K
E
S
*
1
6
1
3
+
1
4
,
5

=F
O
R
R
R
=
I
T
U
3
0
W
:
N
E
X
T

5
1
S

F
O
R
H
=
1
5
T
O
0
S
T
E
P
-
1

5
1
1

P
0
K
E
9
*
1
6
T
3
+
1
4
,
f
l

5
2
0

F
O
R
R
R
=
1
T
O
5
0
0
-
'
N
E
X
T

5
3
0

N
E
X
T

5
4
0

F
O
R
R
R
=
1
T
O
2
0
0
0
;
N
E
X
T
:
R
U
N

1
R
E
M
"
I
U
«
1
M
I
"

2
i
i
l
i
a
i
l
u

R
O
C
K
E
T

C
O
M
M
f
l
N
D

B
V

B
U
f
l
N
E
L
R
T
E
R

1
0

'
,
'
I
=
9
*
1
6
t
3

:O
F
=
3
8
4
0
0
-
7
£
8
f
l

:P
P
I
N
T
M
"

11
F
O
R
f
i
=
3
i
3
4
0
0
+
2
2
T
O
3
S
4
0
@
+
2
2
*
2
3

■P
O
K
E
R
,
0

:N
E
X
T

1
5
C
=
7
6
8
y
+
2
2
*
2
0
+
1
5

2
0

P
O
K
E
V
I
+
1
5
,
6
+
1
2
8
+
6
4
+
3
2
+
8

3
0

P
R
I
N
T
"
M
B
#
#
#

R
O
C
K
E
T

C
O
M
M
f
l
N
B

#
#
#
"

:
3
5

P
R
I
N
T
"

H
I
T

f
t
N
V
K
E
V
"

4
0

F
^
r
N
T
u
M
!
l
W
!
8
f
B
M
B
)
f
f
l
S
i
^
^

5
0

P
R

I
NT

11
T
M
M
M
Q
H
M
M
l
t
t
f
T
t
f
t
t
t
t
t
t
f

6
0

R
=
7
b
o
0
+
2
2
*
2
2
+
1
5

7
0

O
E
T

f
l
*
:
I
F
f
l
*
<
>
"
"
f
l
H
D
B
=
0
T
H
E
N
B
=
l
-
P
0
K
E
C
+
2
2
,
3
2
:
D
=
C
■
C
=
C
-
I
-
K
=
1
:
P
0
K
E
9
#
1
6
t
3
+
1
3
,
1
2
8
+
1
2
5

L
=
1
6

7
1

I
F
K
=
l
T
H
E
N
L
=
L
-
i
:
P
0
K
E
9
#
1
6
t
3
+
1
4
,
L

7
2

I
F
L
=
0
T
H
E
N
K
=
0
i
P
O
K
E
9
*
1
6
1
3
+
1
3
j
0

7
5

I
F
C
=
S
1
2
1
T
H
E
N
P
R
I
H
T
"
i
i
i
«
i
!
W
P
M
(
!
H
0

M
O
R
E

P
O
C
K
E
T
S
!
!

l
n
-
-
p
O
K
E
9
*
1
6
t
9
+
i
4
,
0
:

F
O
R
H
f
l
=
l
T
O
3
0
0
0
:

N
E
X
T
:
P
U
N

8
0

I
F
E
=
U
T
H
E
N
1
1
0

8
5

P
O
K
E
D
,
3
2
:
r
i
=
D
-
2
2

1
9
0

I
F
D
C
7
6
8
0
+
8
S
T
H
E
N
E
=
0
-
G
O
T
O
1
1
0
.

1
0
5

P
O
K
E
D
/
3
@

1
1
0

I
F
H
=
0
T
H
E
N
2
8
U

1
1
5

I
F
H
=
O
T
H
E
N
7
0

1
2
0

P
0
K
E
F
,
3
2
:
F
=
F
+
E

1
2
5

I
F
F
=
I
T
H
E
N
H
=
0
-
G
O
T
O
7
0

1
3
0

I
F
P
E
E
K
C
F
>
=
3
0
T
H
E
H
l
3
O
S
U
B
5
0
0
:
G
O
T
O
F
0

1
4
0

P
O
K
E
F
,
C
^
G
O
T
O
7
0

2
0
0

H
=
l

>
*
1
0
>
+
b
>
*
2
2
:
I
=
F
-
2
2
:
G
=
f
c
"
G
:

G
0
T
0
U
5

0
1
C
O

2
1
0

E
=
l
:
F
=
7
6
8
@
+
<
I
N
T
<
R
H
D
C
i
>
*
i
e
>
+
6
>
3
|
i
2
2
;
l
=
F
+
2
£
:
0
=
6
2
:

G
0
T
Q
1
1
5

5
0
8

B
=
9

:H
=
9

5
0
1

8
C
=
S
C
+
I
B
:
p
R
I
N
T
"
f
f
l
l
W
n
p
S
K
C
0
R
E

=
"
S
C

5
0
2

P
O
K
E
F
+
u
F
,
4
:
F
G
K
E
F
+
1
+
0
F
,
4
:
P
Q
K
E
F
-
i
+
0
F
,
4

5
0
3

P
0
K
E
F
+
0
F
+
2
2
,
4
:
p
0
K
E
F
-
2
2
+
0
F
.
4

5
1
0

F
O
K
E
F
,
1
6
O
:
P
O
K
E
F
+
1
,
l
f
c
S
:
P
0
K
E
F
-
1
,
1
6
0
■
F
O
K
E
F
+
2
2
,
1
6
0
:
P
O
K
E
F
-
2
2
,
1
6
0

5
2
1

P
0
K
E
S
<
*
1
6
t
;
3
+
1
3
.
1
2
8
+
3
5

5
2
2

F
G
R
V
=
l
b
T
u
0
:
r
.
T
E
P
-
l

5
2
3

P
0
k
E
S
<
*
l
f
c
"
t
3
+
1
4
,
1
T
'

5
2
4

F
0
R
P
=
1
T
O
9
0
i
N
E
X
T
■
N
E
X
T

5
3
0

P
O
K
E
F
,
3
2
■
P
O
K
E
F
+
1
,
3
2
:
P
O
K
E
F
-
1
,
3
2
:
P
D
K
E
F
+
2
2
,
3
2
:
P
O
K
E
F
-
2
2
,
3
2

5
3
1

P
O
K
E
F
+
O
F
.
.
O
-
P
O
K
E
F
+
1
+
0
F
,
0

:
P
O
K
E
F
-
1
+
O
F
,
0

5
3
2

P
0
K
E
F
+
0
F
+
2
2
,
0
:
P
G
K
E
F
-
2
2
+
0
F
,
0

5
3
-
3

P
0
K
E
9
*
l
f
a
r
3
+
1
3
,
0

5
4
0

F
0
R
G
H
=
F
T
O
F
+
2
2
#
1
6
S
T
E
P
2
2

5
4
4

I
I
=
P
E
E
K
'
:
G
H
>
-
P
O
K
E
G
H
,
0

■
F
O
R
O
O
=
1
T
O
6
0
:
N
E
X
T

5
4
6

p
o
k
e
g
h
,
i
i
:
n
e
:
*
:
t

8
0
0

R
E
T
U
R
N

9
9
3

G
O
T
0
7
0

1
0
0
0

P
0
K
E
9
*
1
6
f
3
+
1
3
.
1
2
8
+
1
2
5

1
0
8
1

F
O
R
V
=
l
f
c
"
T
O
e
S
T
E
P
-
l

1
0
0
5

P
0
K
E
9
*
1
6
t
3
+
1
4
,
V

1
9
1
0

N
E
X
T
-
P
G
K
E
9
+
l
b
t
3
+
1
3
,
6

1
0
2
0

R
E
T
U
R
N

APPENDIX N: ERROR MESSAGES (

This appendix contains a complete list of the error messages (

generated by the VIC, with a description of the causes.

BAD DATA...String data was received from an open fiie, but the pro

gram was expecting numeric data. (

BAD SUBSCRIPT...The program was trying to reference an element of

an array whose number is outside of the range specified in the DIM

statement.

CANT CONTINUE...The CONT command will not work, either

because the program was newer RUN, there has been an error, or a <

line has been edited.

(
DEVICE NOT PRESENT...The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUTS, or GET#. (

DIVISION BY ZERO...Division by zero is a mathematical oddity and

not allowed. *

EXTRA IGNORED..Too many items of data were typed in response to (

an INPUT statement. Only the first few items were accepted.

(
FILE NOT FOUND...If you were looking for a file on tape, and END-

OF-TAPE marker was found. If you were looking on disk, no file with

that name exists.

FILE NOT OPEN.-The file specified in a CLOSE, CMD; PRINTS, IN- ,

PUT#, or GET#r must first be OPENed.

FILE OPEN...An attempt was made to open a file using the number of

an already open file. (

FORMULA TOO COMPLEX...The string expression being evaluated

should be split into at feast two parts for the system to work with.

ILLEGAL DIRECT...The INPUT statement can only be used within a

program+ and not in direct mode.

fLLEGAL QUANTITY...A number used as the argument of a function

or statement is out of the allowable range. (

LOAD,.There is a problem with the program on tape. (

NEXT WITHOUT FOR..This is caused by either incorrectly nesting

loops or having a variable name in a NEXT statement that doesn't cor

respond wrth one in a FOR statement

NOT INPUT FILE...An attempt was made to INPUT or GET data from a

file which was specified to be for output only, f

c

160 t

*

NOT OUTPUT FILE...An attempt was made 1o PRINT data to a lile

which was specified as input only.

OUT OF DATA...A READ statement was executed but there is no data

(left unREAD in a DATA statement.

OUT OF MEMORY...There is no more RAM available for program or

variables, This may also occur when too many FOR loops have been

nested, or when there are too many GOSUBs in effect.

OVERFLOW...The result of a computation is larger than the largest

(number allowed, which is 1.70141864E + 38.

REDIM'D ARRAY...An array may only be DIMensioned once. If an ar

ray variable is used before that array is DIM'd, an automatic DIM

operation is performed on that array sett ing the number of elements

Jo ten, and any subsequent DIMs will cause this error.

REDO FROM START...Character data was typed in during an INPUT

statement when numeric data was expected. Just re-type the entry so

* that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB,..A RETURN statement was encountered,

and no GOSUB command has been issued.

(
STRING TOO LONG...A string can contain up to 255 characters.

SYNTAX...A statement is unrecognizable by the VIC. A missing or ex

tra parenthesis, misspelled keywords, etc.

TYPE MISMATCH...This error occurs when a number is used in place

(of a string, or vice-versa.

UNDEF'D FUNCTION...A user defined function was referenced, but if

has never been defined using the DEF FN statement.

UNDEF'D STATEMENT...An attempt was made to GOTO or GOSUB or

RUN a line number that doesn't exist.

VERIFY...The program on tape or disk does not match the program

(currently in memory.

161

INDEX

Abbreviations. BASJC commands 133

Accessories 106. 109

Addition 24, 115

AND operator 115

Animation 50, 51-66, 99, 139, 143

Arithmetic Operators 24, 116

Arithmetic Formulas 24r 115, 123, 148

Arrays 114-120

ASC funtign 131, 145

ASCII character codes 145

ATN function 129

5

BASIC

abbreviations 133

commands 115

operators 115

statements 119

variables 86, 113

Buffer 110

Calculations 24

Cassette tape recorder 107, 109

Cassette port 106

CHR$ function 102, 131, 145

CLR statement 119

CUR/HOME key 6.18
Cfock 114

CLOSE statement 110, 119

Color

Keys 19, 32

Memory map 63, 143-144

Screen and Border 33P 36, 38, 39. 13A

Commands, BASIC 115

Commodore key (see graphics key)

Connecting the VIC to TV / monitor V

CONT command 115

CTRL key 18

CRSR keys 18. 60

Correcting errors 8. 50

Cursor3, 18, 60

COSine function 129

D

DATA statement 79:119

Data, saving & retrieving from tape 109

DEFirie statement 120

Delay Loop 55, 78.96

DELete key 3, 8. 19

DlMension statement 120

Division 115, 160

Duration (see FOR....NEXT)

Editing programs 8, 50

END statement 121

Equal, riot-equal-to sign 115

Equations 115

Error Messages 6, 160

Expansion port 106, 149

Exponent function 129

Exponentiation 115

Files, casselte tape 109

FOR statement 121

FOR....NEXT loop 121

FRE function 132

Functions 129

G

Games to try 153

Game controls 108

Game port IDS, 149

GET statement 69h 122

GETS statement 123, 111

Getting started V, 3

GOSUB statement 123

GOTO statement 123

Graphic keys 14h 19

Graphic symbols 14,142, 146-147

Greater than 115

H

Hyperbolic functions 148

I

IEEE-4SS Interface 107

IF...THEN statement 123

INPUT statement 84, 124

INPUTS statement 111

INSert key 3, 8,19

INTeger function 129

Integer variables 113

I iO pinouts 149

I/O ports 106, 149

Joysticks 108

K

Keyboard 17-20

c

c

i

(

(

c

c

c

c

162

c

LEFTS (unction 131

LENgth function 131

Less than 115

LET statement 124

Line numbers 78

LIST command 8, 9, 50, 116

LOAD command 109, 116

Loading programs on tape 1G9

LOGarithm function 130

Loops, time delay bb. 78. 96

Lower case characters 20

M

Mailing label program 92

Mathematics

formulas 24. 115. 123, 148, 160

function table 14S

symbols 115

Memory 36, 80. 125. 126, 130

Memory expansion 107

MIDS function 43. 131

Modulator, RF VJ

Multiplication 115

Music

pitch 68

sound ettects 135

table of notes 73

VIC piano 75

writing Songs 77

N

Names

program 109

variable 86

Nested Loops 122

NEW command 7

NEXT statement 125

Noise 71, 74

NOT operator 115

Numbers 23, 24, 115, 123

Numeric variables 66, 113

ON statement 125

OPEM statement 12$

Operators

Arithmetic 24T114

Logical 115

Relational 115

Parentheses 115

PEEK function 130

Peripherals 106

Pi 20

POKE statement 36, 60, 125

Ports. I/O 149

PO3 function 132

PRINT statement 5, 21r 127

PRINTtf 127

Programs

editing 8, 50

fine numbering 79

loading I saving on tape 109

Prompt 84

Q

Quotation marks 96

Random numbers 40, 43, 103

READ statement 79.128

REMark statement 128

Reserved Words 36

Reset (see Restore Key)

Restore Key 17, 26

RESTORE statement 128

Return key 18

RETURN statement 126

RIGHTS function 132

RND function 40.43, 130

ROCKET COMMAND program 153

RUN command 117

RUN /STOP key 19

SAVE command 109, 117

Saving proQrams on tape 109

Screen memory maps 63, 143-144

Serial bus 107

SGN function 130

Shift key 18

SlNe function 131

Sound effects 135

SPC function 132

SOR function 131

ST system variable 86

Stop Key 19

STOP command 128

String variables 42. 86, 113

STRS function 132

Subscripted Variables 114

Subtraction 115

SYS statement 12B

Syntax Error 6

163

(

i
TAB function 132

TAN function 131 (

Tape Cassette operation 109

Tl variable 114 f

Tl$ variable 114

Time, setting VIC clock 114 f

TO in BASIC statements 121

Tones 70 f

TV, connecting trie VIC V

(

u c
Upper / lower case mode 20

USR (unction 131 (
User-defined function (DEF) 120

v C

VALue function 132 i

Variables *■
Array 114 s

Floating point 113

Integer 113 ^

Numeric 86, 113

Siring 42, 86, 113

VERIFY command 1G9, 118

VICTIPS 3, 8, 16, 39. 40. 47, 50, 7B, 96 ,

VIC person (see animation)

Video port / connections V, 150

Volume 69,71.72

WAIT statement 129

Writing to tape 109

Your Name in Lights (program) 95

s

f

164

)

>

3

)

)

A"USERFRIENDLY" COMPUTER
The new VIC computer is designed to be the most

user friendly computer on the market...friendly in

price, friendly in size, friendly to use and expand.

With the VIC, Commodore is providing a computer

system which helps almost anyone get involved in
computing quickly and easily...with enough built-in
expansion features to let the system "grow" with the

user as his knowledge and requirements become

more sophisticated.

VIC owners who wish to learn more about computing

should ask their Commodore dealer about these

other self-teaching and reference materials:

• VIC LEARNING SERIES...a library of self-teaching

books and tapes/cartridges which help you learn

about computing and other subjects. Volume I in the
VIC Learning Series is called "Introduction to

Computing...On the VIC". Volume II is called
"Introduction to BASIC Programming". Subsequent

titles will include Animation, Sound and Music, and

more.

• VIC PROGRAMMER'S REFERENCE GUlDE...a

comprehensive guide io the VIC20 Personal

Computer, including important information for new

and experienced programmers alike.

• VtC-PROGRAM TAPES, CARTRIDGES AND

DISKS...a growing library of recreational,
educational and home utility programs which let you

use the VIC to solve problems, develop learning
skills, and play exciting television games. These
easy-to-use programs require no previous computer

experience.

t commodore

COMPUTER

