

A Framework for Improving Web Affordability and Inclusiveness

How 'worldwide' is access to the World Wide Web?

How would stakeholders benefit from Web equity?

How do we work towards equitable Web access?

Coverage

Digital Literacy

Social stigma

Censorship

Rumaisa Habib

IAB BIAS 2024

Stanford University

Coverage

Digital Literacy

Cost of web access

Social stigma

Censorship

Rumaisa Habib

IAB BIAS 2024

Stanford University

Difficulties in web access

- 48% of respondents had difficulty paying for their mobile data
 - World Bank survey in 11 emerging countries
- Rising webpage sizes and stagnant broadband prices
- Each access has become more expensive

Variations in...

broadband price

206 countries ITU dataset

web complexity 99 countries

Alexa top 1000 ~72k webpages

Variations in...

ITU dataset

web complexity 99 countries Alexa top 1000 ~72k webpages

94 countries do not meet the 2% target (set by the UN Broadband commission) for the 2GB DO plan

Three data plans

Variations in... broadband price web complexity 99 countries 206 countries Alexa top 1000 ITU dataset ~72k webpages 1.0 0.8 11 0.6 ä CDF 11 0.4 Developing

non cached Page sizes in...

...developing regions: 2.87 MB ...developed regions: 2.64 MB

novel fairness metric to quantify affordability... **PAW Index**

reduction required in avg. page size by each country to equalize web access

PAW Index

reduction required in avg. page size by each country to equalize web access

Rumaisa Habib

IAB BIAS 2024

PAW Index

reduction required in avg. page size by each country to equalize web access

1.0 $W_{i,avg}$ P_i 0.8 48 out of 96 countries have a PAW > 1 (for at least one plan) **U.4** Developing (DHVU) Developed (DHVU) Developing (DO) (Cache) 0.2 Developed (DO) (Cache) Developing (DHVU) (Cache) Developed (DHVU) (Cache)

8

PAW Index

10

12

14

0.0

0

2

How 'worldwide' is access to the World Wide Web?

How would stakeholders benefit from Web equity?

How do we work towards equitable Web access?

Do users even *want* their webpages reduced?

Rumaisa Habib

IAB BIAS 2024

Do users even *want* their webpages reduced?

- 100 participants
- 10 webpages with varying levels of reduction

Rumaisa Habib

Do users even *want* their webpages reduced?

- 100 participants
- 10 webpages with varying levels of reduction

willing to trade off webpage quality for number of accesses

Other Stakeholders

So now that we know that...

... this problem **exists**

So now that we know that...

... this problem **exists** ... it **matters**

So now that we know that...

... this problem **exists** ... it **matters** ... people are **willing** to adopt solutions

How 'worldwide' is access to the World Wide Web?

How would stakeholders benefit from Web equity?

How do we work towards equitable Web access?

AW4A Affordable Web For All

Prior work

What went wrong?

Prior work

What went wrong?

¹ Breaks pages

² Lack of web developer consent (impacts revenue)

- ³ Violated net neutrality principles
- ⁴ Broke end-to-end encryption

Goals & principles

Goals & principles

Goals & principles

Optimization problem

- 1. Maximize page quality
- 2. Given a **page size** limit

Optimization problem

- 1. Maximize page quality
- 2. Given a **page size** limit

$$maximize \quad \frac{\sum_{i=1}^{k} w_i \times Q_i}{\sum_{i=1}^{k} w_i},$$

$$page_size = \sum_{i=1}^{k} b_i \leq target$$

Two stages

Two stages

Two stages

Two stag

Stanford University

Zooming into stage 2...

Grid Search

- Brute Force Approach
- Searches discrete space
- Higher quality pages
- Exponential run time

VS

HBS

- Heuristics Based Approach
- Uses a set of heuristics
- Lower quality pages
- Linear run time

Rumaisa Habib

IAB BIAS 2024

Stanford University

IAB BIAS 2024

Quality of webpages produced by HBS

Half of the pages maintain a quality* of **0.98 or higher**

* weighted avg. of the quality of objects on a page

Quality of webpages produced by HBS

Users slightly **preferred HBS** over

Conclusion

We show that...

... lack of affordability is a key barrier in accessing the web

... users are willing to trade quality for quantity of access

... there are practical **solutions** to improve affordability

Thank you!

For more details...

... contact 📨 us at <u>rumaisa@stanford.edu</u> or <u>23100099@lums.edu.pk</u>

... view our **source code** 💻 at https://github.com/nsgLUMS/sigcomm2023-aw4a

... and check out the full paper 😎

Backup Slides >>

Gzip compression

Rumaisa Habib

IAB BIAS 2024

Stanford University

PAW Index equation

Pi: average broadband price in region *i PT*: target broadband price (2% of a country's GNIpc) *Wi,avg*: average page sizes in region *i Wglobal*: average page size globally