
Exchanging Security Events of flow-based Intrusion Detection
Systems at Internet Scale

Jessica Steinberger∗†, Anna Sperotto†, Harald Baier∗ and Aiko Pras†

∗da/sec - Biometrics and Internet Security Research Group
University of Applied Sciences Darmstadt

Darmstadt, Germany
Email:{Jessica.Steinberger, Harald.Baier}@h-da.de

†Design and Analysis of Communication Systems (DACS)
University of Twente,

Enschede, The Netherlands
Email:{J.Steinberger, A.Sperotto, A.Pras}@utwente.nl

I. INTRODUCTION

In recent years, network-based attacks became one of the top concerns for network infrastructure and service outage [1]. To reduce the
impact of network-based attacks (e.g. Distributed Denial of Service (DDoS)) multiple attack detection methods [2] and countermeasures have
been proposed [3]. In detection and countermeasures, we observe two growing trends. First, flow-based solutions are becoming more and more
popular. Second, collaborative approaches, especially among trusted partners, have proven to be a necessary step to counteract large attacks
[4]. However, these collaborative approaches do not take into account to exchange threat information in an interoperable, standardized format.

Header
X-XARF: Secure
Subject: C&C Traffic from <src> to <dst>
Content-Type: application/pkcs7-mime; name=”smime.p7m”

ASN.1 data (type:pkcs7-envelopedData)

AES key encrypted with recipient certificates
(object:rsaEncryption)

encrypted data (object: pkcs7-data)

Content-Type: multipart/signed;

protocol=”application/pkcs7-signature”;micalg=”sha256”

FLEX container

S/MIME signature

Fig. 1. Components of a FLEX message

An interoperable format provides accurate, context rich, directed and action-
able threat information in a timely manner [5]. In case of an ongoing network-
based attack, an interoperable format supports an automatic dissemination of
threat information and thus lessens the time to respond [6], [7]. A standardized
format ensures the availability of detail and context information and reduces
manual processing (e.g. normalization, exchanging data between different sys-
tems) [6], [7]. In the last years, several exchange formats (e.g., Incident Object
Description Exchange Format (IODEF), Intrusion Detection Message Exchange
Format (IDMEF), Abuse Reporting Format (ARF) and Extended Abuse Reporting
Format (x-arf v0.1 and v0.2) have been published [8]. However, it is still a
challenge to find a standardized exchange format that is thoroughly validated
and tested in full scale of industry trials. A previous study [9] reported that
exchange formats are often unknown for network operators. In addition, none of
the exchange formats has been used in conjunction with flow-based data.

To overcome the shortcomings of missing flow-based interoperability, this
research presents a new exchange format, which we call Flow-based Event
Exchange Format (FLEX). FLEX is placed in high-speed networks that use links
with a speed of 10 Gbps and higher [10], and use flow export technologies (e.g.
Cisco NetFlow, IPFIX) to identify, track and mitigate malicious traffic [9]. Further,
FLEX is intended to facilitate the cooperation among network operators and focus
on an automated threat information exchange. The contribution that FLEX brings
to the state of the art is that it allows the exchange of threat information based
on flow data in a structured and unambiguous manner. In addition, since FLEX
messages are disseminated using SMTP, FLEX is easy to deploy and it integrates with existing infrastructure.

II. FLEX

The Flow-based Event Exchange Format (FLEX) is based on the x-arf specification draft v0.2 X-XARF:SECURE (henceforth referred to
as x-xarf). In contrast to x-xarf, FLEX uses a generic template system. This generic template system is described by an abstract syntax denoted
using the language of Abstract Syntax Notation (ASN.1). Both, the generic template and the abstract syntax of FLEX prevent all ambiguities
when being interpreted and handled by an automatic mitigation and response system. Further, FLEX ensures the interoperability with different
flow-based export technologies as input source and makes use of both signature and encryption methods to prevent unauthorized access to the
security event message at the application layer. FLEX consists of a mail header and an enveloped-data content type. The enveloped-data content
type consists of an encrypted content of a signed multipart MIME message and encrypted content-encryption keys for one or more recipients
[11]. The enveloped-data content consists of two parts: The first part contains the FLEX container that is signed. The second part conveys the
detached signature Cryptographic Message Syntax (CMS) SignedData object. Figure 1 visualizes the components of a FLEX message.

The FLEX container is composed of data arranged in vector form and represented by F = {s0, . . . , sn0 , f0, . . . , fn1 , d0, . . . , dn2 , c0, . . . ,
cn3}, where s represents the settings, f the flow fields of the flow export technology, d additional information provided by the detection engine
and c security event related flow data. In addition, the FLEX container uses the Octet Encoding Rules (OER) of ASN.1. In contrast to other
encoding rules (e.g., Basic Encoding Rules (BER), Canonical Encoding Rules (CER), Distinguished Encoding Rules (DER)), OER produces a



compact octet-oriented encoding and increases the encoding/decoding speed. Listing 1 shows the ASN.1 structure of a FLEX message and can
be read: a FLEX message is defined as a FLEXRecord that consists of a structure (SEQUENCE) with four components: settings, flowfields,
detection and correlation. These components are called identifiers. In addition, these identifiers are described by a type. For example, settings
denotes data of type Settings and correlation, denotes a list (SEQUENCE OF) of data which are all of type CorrelatedFlows. Besides an
identifier and a type, the FLEXRecord contains tags. A tag is a number between square brackets before a type. In order to properly decode a
FLEX message and remove all ambiguities a FLEX messages uses explicitly tags.

The first vector stores setting information (s0, . . . , sn0) on how to interpret the transmitted data. The settings vector contains a unique
message identifier, a description of the event type and the type and version of the flow data. The data representation of the settings vector
is described in Listing 2. The flow field types of a flow format are stored in the vector (f0, . . . , fn1). The quantity of the flow field types
depends on the ASN.1 choice element used to enter the flow data. Thus, FLEX uses a generic template system that provides the capabilities
to exchange several flow-based security events. This generic template is shown in Listing 3.

FLEXRecord ::= [APPLICATION 0] SEQUENCE {
settings [0] Settings,
flowFields [1] FlowFieldTypes,
detection [2] Detection,
correlation [3] SEQUENCE OF CorrelatedFlows DEFAULT {}
}

Listing 1. ASN.1 structure of a FLEX message

Settings ::= [APPLICATION 1] SEQUENCE {
id [0] INTEGER,
eventType [1] ENUMERATED{CuC(0), DDoS(1)},
type [2] ENUMERATED{netflow(0), ipfix(1)},
version [3] ENUMERATED{two(0), four(1), five(2), nine(3)}
}

Listing 2. Settings

FlowFieldTypes ::= CHOICE {
netflow5 [0] NetFlow5,
netflow9 [1] NetFlow9,
ipfix [2] Ipfix
}

Listing 3. Flow field types

Next, information of a detection engine is stored in the vector (d0, . . . , dn2). The detection engine provides additional data such as severity,
impact, priority, NAT, reliability, correlated data flow sets and an observation ID. The data representation of the detection engine vector is
presented in Listing 4. The last vector (c0, . . . , cn3) provides optional data and is composed of unique identification numbers of the correlated
flow sets and an identification number of the observation point. The data representation of flows related to this security event is shown in
Listing 5. Finally, this FLEX message is placed within the FLEX container that is signed. The encrypted data content consists of both, the
FLEX container and the detached signature.

Detection ::= [APPLICATION 2] SEQUENCE {
severity [0] INTEGER,
impact [1] INTEGER,
priority [2] ENUMERATED{high(0), medium(1), low(2)},
nat [3] ENUMERATED{true(0), false(1), na(3)},
observationID [4] INTEGER
}

Listing 4. Additional data of the detection engine

CorrelatedFlows ::= SEQUENCE {
flowID [0] INTEGER,
observationID [1] INTEGER
}

Listing 5. Correlated flows of a FLEX message

The main advantage of FLEX over existing exchange formats lies in the generic template system that provides extensibility and machine
readability to support automatic processing of security events. In addition, FLEX integrates with the existing infrastructure using SMTP and
thus is easy to deploy. Further, FLEX constitutes an viable and more structured alternative to share threat information based on flow data.

ACKNOWLEDGEMENTS

The work has been funded by the German Federal Ministry of Education and Research (#03FH005PB2), CASED and by EU FP7 Flamingo (ICT-318488).

REFERENCES

[1] D. Anstee, C. Chui, J. Escobar, and G. Sockrider, “Worldwide Infrastructure Security Report,” Arbor Networks Inc., Tech. Rep. X, Jan. 2015,
http://www.arbornetworks.com/research/infrastructure-security-report.

[2] G. Münz and G. Carle, “Real-time Analysis of Flow Data for Network Attack Detection,” in Proceedings of the 10th IFIP/IEEE International Symposium
on Integrated Network Management (IM 2007), May 2007, pp. 100–108.

[3] H. Beitollahi and G. Deconinck, “Analyzing well-known countermeasures against distributed denial of service attacks,” Computer Communications, vol. 35,
no. 11, pp. 1312–1332, 2012.

[4] J. François, I. Aib, and R. Boutaba, “Firecol: A collaborative protection network for the detection of flooding DDoS attacks,” IEEE/ACM Transactions
on Networking, vol. 20, no. 6, pp. 1828–1841, Dec 2012.

[5] TM Forum, “Sharing Threat Intelligence to Mitigate Cyber Attacks,” http://www.tmforum.org/browse.aspx?linkid=51490&docid=19968, 2013.
[6] B. Hartman, D. Marting, D. Moreau, K. Moriarty, E. Schwartz, and P. M. Tan, “Breaking Down Barriers to Collaboration in the Fight Against Advanced

Threats,” http://www.emc.com/collateral/industry-overview/11652-h9084-aptbdb-brf-0212-online.pdf, 2012.
[7] K. Moriarty, “Transforming Expectations For Threat-Intelligence Sharing,” http://www.emc.com/collateral/emc-perspective/h12175-transf-expect-for-threat-

intell-sharing.pdf, 2013.
[8] J. Steinberger, A. Sperotto, M. Golling, H. Baier, and A. Pras, “How to Exchange Security Events? Overview and Evaluation of Formats and Protocols,”

in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM 2015), May 2015, to appear.
[9] J. Steinberger, L. Schehlmann, S. Abt, and H. Baier, “Anomaly Detection and Mitigation at Internet Scale: A Survey,” in Emerging Management

Mechanisms for the Future Internet, ser. Lecture Notes in Computer Science, G. Doyen, M. Waldburger, P. Čeleda, A. Sperotto, and B. Stiller, Eds.
Springer Berlin Heidelberg, 2013, vol. 7943, pp. 49–60. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-38998-6 7

[10] M. Golling, R. Hofstede, and R. Koch, “Towards multi-layered intrusion detection in high-speed networks,” in Cyber Conflict (CyCon 2014), 2014 6th
International Conference On, June 2014, pp. 191–206.

[11] R. Housley, “Cryptographic Message Syntax (CMS),” RFC 5652 (Standard), Internet Engineering Task Force, Sep. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5652.txt


