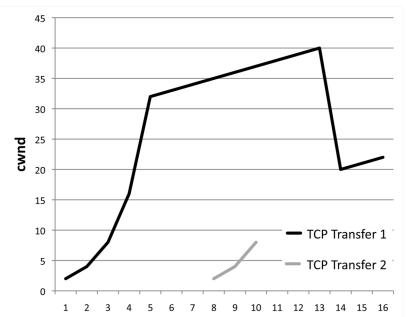


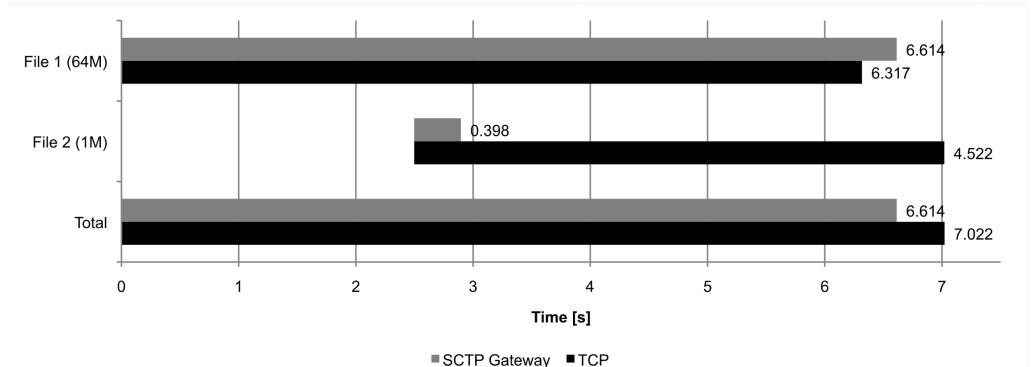
UiO Faculty of Mathematics and Natural Sciences
University of Oslo

One control to rule them all

Michael Welzl

IAB/IRTF CC Workshop @IETF84 28. 07. 2012


How we use the Internet today: 3 stories


- 1. I clean our flat while listening to Spotify
 - in parallel, downloading files via my own
 - Suddenly I begin to think:
 "please, dear downloads, don't make the music stop!"
- 2. I am in a hotel room, using Skype to see my daughter
 - Quality barely good enough; I avoid clicking on anything
 - Note: that's different when I talk to my mother...
- 3. Downloads can have different priorities, too
 - When I download two files, I try to guess whether the downloads slow each other down

So you care more about "performance"?

What is it to you?

UiO Faculty of Mathematics and Natural Sciences University of Oslo

How to fix this

- The problem can be solved with a single Congestion Control instance (as in RFC3124)
 - But solving it in general is hard RFC3124 leaves some key issues unresolved + benefits weren't shown
 - shared bottleneck or not?
 - overally less aggressive CC bad e.g. for short flows?
 - ... all at the cost of a complex implementation!
- But we could do this right for rtcweb
 - Common bottleneck is assumed (all-over-one-5-tuple)
 - long connections are somewhat likely

UiO Faculty of Mathematics and Natural Sciences University of Oslo

Lots of benefits

- Really able to control fairness
 - outcome is result of a sender-side scheduler, not of "fighting it out" at the bottleneck
- Less queuing delay: only one flow
- Better performance for short or applicationlimited flows
 - skip slow start; again less queuing delay from slow start overshoot
- Less feedback needed
 - avoid that e.g. data channel feedback (SCTP SACK chunks) is ignored by RTP's CC.