
Instant Messaging and Presence: A
Cautionary Tale

In one sense, instant messaging has been a part of the Internet
toolkit from very early days, as many of the systems which were
connected to the early network had multi-terminal interaction
systems (like the TOPS-20 talk command). The extension of those
into multi-system usage was a natural evolution, with the Unix
version of talk gaining the facility in 1983, spawning a set of further
extensions (ytalk, utalk, etc.) Tests for a user’s presence were
similarly early, with Name/Finger being described in 1977. With
those early antecedents, we might expect that instant messaging
and presence would be part of the interoperable core of the Internet
protocol suite, well-defined and deployed nearly universally.

The history is a bit different. Those early systems have been
replaced multiple times, first by IRC and then by a series of different
efforts, many using proprietary protocols and organization-specific
presence registration. One aspect of that history is that many large
service providers had internal IM systems that they opened to the
Internet; AOL’s AIM, Microsoft’s Windows Messenger, and Yahoo!
Messenger are examples of this. They did not share underlying
protocols or formats and so were not part of a larger, single system.

The IETF attempted to address that fragmentation in the IMPP
working group whose BoF proceedings demonstrate a will to create
an interoperable system but a bit of a bake-off problem: SIP, TOC,
and Zephyr were each proposed. While it was eventually chartered
to “define protocols and data formats necessary to build an internet-
scale end-user presence awareness, notification and instant
messaging system.”, the group instead created a model and two
data formats: one for message exchange among systems and one
for presence information. The protocol work, normally the core of an
interoperability effort at the IETF, simply dropped away.

The reason for that was a practical one: several of the largest
existing IM systems were completely uninterested in adopting any
new protocols. The existing systems provided a lock-in to their
services and ensured that the network effects of a large user base
remained in their own hands. As was clear in the proceedings of
IETF 48, even the protocols being developed within the IETF
context (like SIP) were reluctant to use other protocols for any key
features. Without a willingness to adopt new protocols, large sets of
existing users would be outside any new system dependent on
them. No matter how well-built the architecture, the resulting
system would have a serious problem building up a network effect
strong enough to counter those already locked into the existing

file:///tmp/mozilla_stephen0/IMPPCautionaryTal...

1 of 3 06/05/2019, 12:50

systems.

As a result, the group shifted to working out how the different
systems could exchange messages and presence data instead.
 Though these might never be the common internal representations,
the idea was that it would allow any system interested in exchanging
messages outside its own garden to implement a single format and
method to interchange with any other system. Given the reluctance
of the major parties to adopt new protocols, this seemed like a
reasonable interoperability strategy to propose. There was even a
first customer, as the SIMPLE and XMPP camps looked willing to
adopt it for interchange.

Despite that willingness, the resulting mechanisms saw very little
use. While some of that was based on the ongoing reluctance of
the existing providers, a good bit of it is actually was because a
completely different interoperability strategy took off: the multiservice
client. Originally called GAIM to signal its ability to work with AOL’s
AIM, the first of these clients added the ability to work with Microsoft,
Yahoo Messenger, and a host of other niche systems. Instead of
the backend systems interchanging messages on behalf of the user,
in other words, the users interacted with each system for
themselves.

These new clients didn’t create a single identity for the user but
instead logged into each of the systems with the user’s existing
credentials. While that had the downside of creating a problem in
tracking who was on which system, it also allowed individuals to use
different identities and to maintain different circles with each. If a
user had a work account on Windows Messenger, for example,
messages to friends on AIM did not have to pass through Microsoft
via CPIM and PDIF; the user’s multiservice client simply logged into
both. That improved latency as well as providing some level of
isolation.

It was good enough that the systems around during IMPP’s tenure
did not feel any great user pressure to adopt CPIM or PDIF, and
they failed to take root. Had the multiservice clients never emerged,
IMPP might have eventually succeeded, but some caution in making
that conclusion is warranted. Creating protocol mechanisms that
encouraged a specific interoperability strategy was the limit of the
IETF’s power here; it could smooth the way, but no more. In this
case, it wasn’t enough.

As we consider the more general question of how design
expectations and deployment realities diverge, it’s important to
recognize that the interoperability strategy of the implementers is a
key factor. If they are uninterested in interoperation at all, efforts to
produce new standards will be a waste of time. Even when they are
interested in some level of interoperability, the initial design
expectations can be overcome by events as other strategies come
into play or other players enter the field. In those cases, any
protocol features which were built with a specific architecture in
mind may be abandoned or may need to change. For protocol
designers, that signals a need to consider carefully both how small
the building blocks to be developed should be and how likely they

file:///tmp/mozilla_stephen0/IMPPCautionaryTal...

2 of 3 06/05/2019, 12:50

are to be reused rather than remade.

file:///tmp/mozilla_stephen0/IMPPCautionaryTal...

3 of 3 06/05/2019, 12:50

