
1

Tutorial on Bridges, Routers, 

Switches, Oh My!

Radia Perlman
(radia.perlman@sun.com)



2

Why?

• Demystify this portion of networking, so 

people don’t drown in the alphabet soup

• Think about these things critically

• N-party protocols are “the most interesting”

• Lots of issues are common to other layers

• You can’t design layer n without 

understanding layers n-1 and n+1



3

What can we do in 1 ½ hours?

• Understand the concepts

• Understand various approaches, and 

tradeoffs, and where to go to learn more

• A little of the history: without this, it’s hard 

to really “grok” why things are the way they 

are



4

Outline

• layer 2 issues: addresses, multiplexing, 

bridges, spanning tree algorithm

• layer 3: addresses, neighbor discovery, 

connectionless vs connection-oriented

– Routing protocols

• Distance vector

• Link state

• Path vector



5

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 

designed before routers

• OSI Layers

– 1: physical



6

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 

designed before routers

• OSI Layers

– 1: physical

– 2: data link (nbr-nbr, e.g., Ethernet)



7

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 

designed before routers

• OSI Layers

– 1: physical

– 2: data link (nbr-nbr, e.g., Ethernet)

– 3: network (create entire path, e.g., IP)



8

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 

designed before routers

• OSI Layers

– 1: physical

– 2: data link (nbr-nbr, e.g., Ethernet)

– 3: network (create entire path, e.g., IP)

– 4 end-to-end (e.g., TCP, UDP)



9

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 

designed before routers

• OSI Layers

– 1: physical

– 2: data link (nbr-nbr, e.g., Ethernet)

– 3: network (create entire path, e.g., IP)

– 4 end-to-end (e.g., TCP, UDP)

– 5 and above: boring



10

Definitions

• Repeater: layer 1 relay



11

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay



12

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay



13

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?



14

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

– The “right” definition: layer 2 is neighbor-

neighbor. “Relays” should only be in layer 3!



15

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

• True definition of a layer n protocol: 

Anything designed by a committee whose 

charter is to design a layer n protocol



16

Layer 3 (e.g., IPv4, IPv6, DECnet, 

Appletalk, IPX, etc.)

• Put source, destination, hop count on packet

• Then along came “the EtherNET”

– rethink routing algorithm a bit, but it’s a link not a 

NET!

• The world got confused. Built on layer 2

• I tried to argue: “But you might want to talk from 

one Ethernet to another!”

• “Which will win? Ethernet or DECnet?”



17

Layer 3 packet

data

Layer 3 header

source dest hops



18

Ethernet packet

data

Ethernet header

source dest



19

Ethernet (802) addresses

• Assigned in blocks of 224

• Given 23-bit constant (OUI) plus g/i bit

• all 1’s intended to mean “broadcast”

OUI

global/local admin

group/individual



20

It’s easy to confuse “Ethernet” with 

“network”

• Both are multiaccess clouds

• But Ethernet does not scale. It can’t replace IP as 

the Internet Protocol

– Flat addresses

– No hop count

– Missing additional protocols (such as neighbor 

discovery)

– Perhaps missing features (such as fragmentation, error 

messages, congestion feedback)



21

Horrible terminology

• Local area net

• Subnet

• Ethernet

• Internet



22

So where did bridges come from?



23

Problem Statement

Need something that will sit between two Ethernets, and

let a station on one Ethernet talk to another

A C



24

Basic idea

• Listen promiscuously

• Learn location of source address based on 

source address in packet and port from 

which packet received

• Forward based on learned location of 

destination



25

What’s different between this and 

a repeater?

• no collisions

• with learning, can use more aggregate 

bandwidth than on any one link

• no artifacts of LAN technology (# of 

stations in ring, distance of CSMA/CD)



26

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S



27

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S



28

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S



29

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S



30

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S



31

What to do about loops?

• Just say “don’t do that”

• Or, spanning tree algorithm

– Bridges gossip amongst themselves

– Compute loop-free subset

– Forward data on the spanning tree

– Other links are backups



32

Algorhyme

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree which must be sure to span
So packets can reach every LAN.

First the Root must be selected
By ID it is elected.

Least cost paths from Root are traced
In the tree these paths are placed.

A mesh is made by folks like me.
Then bridges find a spanning tree.

Radia Perlman



33

93

4

11
7

10

14

2
5

6

2,0,2

2,0,2

2,1,14

2,1,5

2,1,7

2,1,6

2,2,4

2,2,4

2,3,3

2,2,11

A

X



34

Bother with spanning tree?

• Maybe just tell customers “don’t do loops”

• First bridge sold...



35

First Bridge Sold

A C



36

So Bridges were a kludge, 

digging out of a bad decision

• Why are they so popular?

– plug and play

– simplicity

– high performance

• Will they go away?

– because of idiosyncracy of IP, need it for lower 

layer. 



37

Note some things about bridges

• Certainly don’t get optimal 

source/destination paths

• Temporary loops are a disaster

– No hop count

– Exponential proliferation

• But they are wonderfully plug-and-play



38

So what is Ethernet?

• CSMA/CD, right? Not any more, really...

• source, destination (and no hop count)

• limited distance, scalability (not any more, 

really)



39

Switches

• Ethernet used to be bus

• Easier to wire, more robust if star (one huge 

multiport repeater with pt-to-pt links

• If store and forward rather than repeater, 

and with learning, more aggregate 

bandwidth

• Can cascade devices…do spanning tree

• We’re reinvented the bridge!



40

Basic idea of a packet

Destination address

Source address

data



41

When I started

• Layer 3 had source, destination addresses

• Layer 2 was just point-to-point links 

(mostly)

• If layer 2 is multiaccess, then need two 

headers:

– Layer 3 has ultimate source, destination

– Layer 2 has next hop source, destination



42

Hdrs inside hdrs

R1

R2 R3

β χ
α δ ε φ

S D

As transmitted by S? (L2 hdr, L3 hdr)

As transmitted by R1?

As received by D?



43

Hdrs inside hdrs

R1

R2 R3

β χ
α δ ε φ

S D

S:

Layer 2 hdr Layer 3 hdr

Dest=β
Source=α

Dest=D

Source=S



44

Hdrs inside hdrs

R1

R2 R3

β χ
α δ ε φ

S D

R1:

Layer 2 hdr Layer 3 hdr

Dest=δ
Source=χ

Dest=D

Source=S



45

Hdrs inside hdrs

R1

R2 R3

β χ
α δ ε φ

S D

R2:

Layer 2 hdr Layer 3 hdr

Dest=D

Source=S



46

Hdrs inside hdrs

R1

R2 R3

β χ
α δ ε φ

S D

R3:

Layer 2 hdr Layer 3 hdr

Dest=φ
Source=ε

Dest=D

Source=S



47

What designing “layer 3” meant

• Layer 3 addresses

• Layer 3 packet format (IP, DECnet)

– Source, destination, hop count, …

• A routing algorithm

– Exchange information with your neighbors

– Collectively compute routes with all rtrs

– Compute a forwarding table



48

Network Layer

• connectionless fans designed IPv4, IPv6, 

CLNP, IPX, AppleTalk, DECnet

• Connection-oriented reliable fans designed 

X.25

• Connection-oriented datagram fans 

designed ATM, MPLS



49

Pieces of network layer

• interface to network: addressing, packet 

formats, fragmentation and reassembly, 

error reports

• routing protocols

• autoconfiguring addresses/nbr

discovery/finding routers



50

Connection-oriented Nets

S

A

R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)

(4,8)=(7,92)

(4,17)=(7,12)

(2,12)=(3,15)

(2,92)=(4,8)

(1,8)=(3,6)

(2,15)=(1,7)
VC=8, 92, 8, 6

8

92

8

6



51

Lots of connection-oriented 

networks

• X.25: also have sequence number and ack

number in packets (like TCP), and layer 3 

guarantees delivery

• ATM: datagram, but fixed size packets (48 

bytes data, 5 bytes header)



52

MPLS (multiprotocol label 

switching)

• Connectionless, like MPLS, but arbitrary 

sized packets

• Add 32-bit hdr on top of IP pkt

– 20 bit “label”

– Hop count (hooray!)



53

Hierarchical connections (stacks of 

MPLS labels)

R1

R2

S1

S8

S6

S9

S5

S2

S4

S3

D2

D1

D8

D2 D9

D3

D5
D4

Routers in backbone only need to know about

one flow: R1-R2



54

MPLS

• Originally for faster forwarding than 

parsing IP header

• later “traffic engineering”

• classify pkts based on more than destination 

address



55

Connectionless Network Layers

• Destination, source, hop count

• Maybe other stuff

– fragmentation

– options (e.g., source routing)

– error reports

– special service requests (priority, custom routes)

– congestion indication

• Real diff: size of addresses



56

Addresses

• 802 address “flat”, though assigned with 

OUI/rest. No topological significance

• layer 3 addresses: locator/node : 

topologically hierarchical address

• interesting difference:

– IPv4, IPv6, IPX, AppleTalk: locator specific to 

a link

– CLNP, DECnet: locator “area”, whole campus



57

Hierarchy within Locator

• Assume addresses assigned so that within a circle 

everything shares a prefix

• Can summarize lots of circles with a shorter prefix

27*
23*

2428*

2*

279* 272*



58

New topic: Routing Algorithms



59

Distributed Routing Protocols

• Rtrs exchange control info

• Use it to calculate forwarding table

• Two basic types

– distance vector

– link state



60

Distance Vector

• Know

– your own ID

– how many cables hanging off your box

– cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”



61

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



62

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



63

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



64

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



65

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



66

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



67

Looping Problem

A B C



68

Looping Problem

A B C

012
Cost to C



69

Looping Problem

A B C

012
Cost to C

direction

towards C

direction

towards C



70

Looping Problem

A B C

012
Cost to C

What is B’s cost to C now?



71

Looping Problem

A B C

012
Cost to C

3



72

Looping Problem

A B C

012
Cost to C

3

direction

towards C

direction

towards C



73

Looping Problem

A B C

012
Cost to C

34

direction

towards C

direction

towards C



74

Looping Problem

A B C

012
Cost to C

34

5

direction

towards C

direction

towards C



75

Looping Problem

worse with high connectivity

Q Z B A C N M V

H



76

Split Horizon: one of several 

optimizations
Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

A B

C

D



77

Link State Routing

• meet nbrs

• Construct Link State Packet (LSP)

– who you are

– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (“a miracle occurs”)

• Store latest LSP from each rtr

• Compute Routes (breadth first, i.e., “shortest path”

first—well known and efficient algorithm)



78

A B C

D E F

G

6 2
5

1

212

2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1



79

Computing Routes

• Edsgar Dijkstra’s algorithm:

– calculate tree of shortest paths from self to each

– also calculate cost from self to each

– Algorithm:

• step 0: put (SELF, 0) on tree

• step 1: look at LSP of node (N,c) just put on tree. If 

for any nbr K, this is best path so far to K, put (K, 

c+dist(N,K)) on tree, child of N, with dotted line

• step 2: make dotted line with smallest cost solid, go 

to step 1



80

Look at LSP of new tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)



81

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)



82

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

E(4) G(3)



83

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(4) G(3)



84

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)



85

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)



86

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)



87

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)



88

Look at newest tree node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)



89

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)



90

Look at newest node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

A(7)



91

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)



92

We’re done!

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)



93

“A miracle occurs”

• First link state protocol: ARPANET

• I wanted to do something similar for 

DECnet

• My manager said “Only if you can prove 

it’s stable”

• Given a choice between a proof and a 

counterexample…



94

Routing Robustness

• This failure mode actually occurred in the 

ARPANET

• I designed “self-stabilizing” link state 

protocol…but only after sick/evil node gone

• IS-IS and OSPF do it self-stabilizing

• My thesis: robust even if some of the routers are 

evil. More than securing the routing protocol: it 

deals with packet delivery



95

Distance vector vs link state

• Memory: distance vector wins (but memory is 

cheap)

• Computation: debatable

• Simplicity of coding: simple distance vector wins. 

Complex new-fangled distance vector, no

• Convergence speed: link state

• Functionality: link state; custom routes, mapping 

the net, troubleshooting, sabotage-proof routing



96

Specific Routing Protocols

• Interdomain vs Intradomain

• Intradomain:

– link state (OSPF, IS-IS)

– distance vector (RIP)

• Interdomain

– BGP



97

BGP (Border Gateway Protocol)

• “Policies”, not just minimize path

• “Path vector”: given reported paths to D 

from each nbr, and configured preferences, 

choose your path to D

– don’t ever route through domain X, or not to D, 

or only as last resort

• Other policies: don’t tell nbr about D, or lie 

to nbr about D making path look worse



98

Path vector/Distance vector

• Distance vector

– Each router reports to its neighbors {(D,cost)}

– Each router chooses best path based on min 
(reported cost to D+link cost to nbr)

• Path vector

– Each rtr R reports {(D,list of AS’s in R’s 
chosen path to D)…}

– Each rtr chooses best path based on configured 
policies



99

BGP Configuration

• path preference rules

• which nbr to tell about which destinations

• how to “edit” the path when telling nbr N 

about prefix P (add fake hops to discourage 

N from using you to get to P)



100

RBridges

• TRILL WG

– Do link state routing

– Encapsulate with “safe hdr” (include TTL)

– Still learn like bridges

– But forward like routers

– Zero configuration like bridges



101

Algorhyme v2

I hope that we shall one day see
A graph more lovely than a tree.

A graph to boost efficiency
While still configuration-free.

A network where RBridges can
Route packets to their target LAN.

The paths they find, to our elation,
Are least cost paths to destination.

With packet hop counts we now see,
The network need not be loop-free.

RBridges work transparently.
Without a common spanning tree.

Ray Perlner



102

Wrap-up

• folklore of protocol design

• things too obvious to say, but everyone gets 

them wrong



103

Forward Compatibility

• Reserved fields

– spare bits

– ignore them on receipt, set them to zero. Can 

maybe be used for something in the future

• TLV encoding

– type, length, value

– so can skip new TLVs

– maybe have range of T’s to ignore if unknown, others 

to drop packet



104

Forward Compability

• Make fields large enough

– IP address, packet identifier, TCP sequence #

• Version number

– what is “new version” vs “new protocol”?

• same lower layer multiplex info

– therefore, must always be in same place!

– drop if version # bigger



105

Fancy version # variants

• Might be security threat to trick two Vn

nodes into talk V(n-1)

• So maybe have “highest version I support”

in addition to “version of this packet”

• Or just a bit “I can support higher” (we did 

this for IKEv2)

• Maybe have “minor version #”, for 

compatible changes. Old node ignores it



106

Version #

• Nobody seems to do this right

• IP, IKEv1, SSL unspecified what to do if 

version # different. Most implementations 

ignore it.

• SSL v3 moved version field!

– v2 sets it to 0.2. v3 sets (different field) to 3.0.

– v2 node will ignore version number field, and 

happily parse the rest of the packet



107

Avoid “flag days”

• Want to be able to migrate a running 

network

• ARPANET routing: ran both routing 

algorithms (but they had to compute the 

same forwarding table)

– initially forward based on old, compute both

– one by one: forward based on new

– one-by-one: delete old



108

Parameters

• Minimize these:

– someone has to document it

– customer has to read documentation and 

understand it

• How to avoid

– architectural constants if possible

– automatically configure if possible



109

Settable Parameters

• Make sure they can’t be set incompatibly 

across nodes, across layers, etc. (e.g., hello 

time and dead timer)

• Make sure they can be set at nodes one at a 

time and the net can stay running



110

Parameter tricks

• IS-IS

– pairwise parameters reported in “hellos”

– area-wide parameters reported in LSPs

• Bridges

– Use Root’s values, sent in spanning tree msgs



111

Summary

• If things aren’t simple, they won’t work

• Good engineering requires understanding 

tradeoffs and previous approaches.

• It’s never a “waste of time” to answer “why 

is something that way”

• Don’t believe everything you hear

• Know the problem you’re solving before 

you try to solve it!


