
1

IETF Security Tutorial

Radia Perlman
Intel Labs

August 2012

(radia@alum.mit.edu)

2

Why an IETF Security Tutorial?

•  Security is important in all protocols; not just
protocols in the security area

•  IETF specs mandated to have a “security
considerations” section

•  There is no magic security pixie dust where you
can ignore security and then plug in a security
considerations section

•  A quick intro into a potentially intimidating area

3

A plea for cross-fertilization

•  The best way to get advice, say from a
security expert, is to make it easy for them
to come up to speed on your protocol

•  Summarizing, explaining things at
conceptual levels, is not a waste of time,
even for those that (think they) understand
the protocol

4

This tutorial

•  An overview of basic security stuff,
including demystifying cryptography

•  Some interesting “off the beaten track”
kinds of security things that protocol
designers think about, in addition to the
usual stuff

5

Agenda

•  Introduction to Security
•  Introduction to Cryptography
•  Authenticating People
•  Security mechanisms to reference rather than

invent
–  Public Key / Secret Key infrastructures
–  Formats

•  Security Considerations Considerations

6

Where to start

•  What problem are you trying to solve?
•  What is the threat model (what can attackers

do, what can you trust)

7

The Internet

•  Internet evolved in a world w/out predators. DOS
was viewed as illogical and undamaging.

•  The world today is hostile. Only takes a tiny
percentage to do a lot of damage.

•  Must connect mutually distrustful organizations
and people with no central management.

•  And society is getting to depend on it for
reliability, not just “traditional” security concerns.

8

Security means different things to
different people

•  Limit data disclosure to intended set
•  Monitor communications to catch terrorists
•  Keep data from being corrupted
•  Make sure nobody can access my stuff without

paying for it
•  Destroy computers with pirated content
•  Track down bad guys
•  Communicate anonymously

9

Intruders: What Can They Do?

•  Eavesdrop--(compromise routers, links, routing
algorithms, or DNS)

•  Send arbitrary messages (including IP hdr)
•  Replay recorded messages
•  Modify messages in transit
•  Write malicious code and trick people into

running it
•  Exploit bugs in software to ‘take over’ machines

and use them as a base for future attacks

10

Some basic terms

•  Authentication: “Who are you?”
•  Authorization: “Should you be doing that?”
•  DOS: denial of service
•  Integrity protection: a checksum on the data

that requires knowledge of a secret to
generate (and maybe to verify)

11

Some Examples to Motivate the
Problems

•  Sharing files between users
– File store must authenticate users
– File store must know who is authorized to read

and/or update the files
–  Information must be protected from disclosure

and modification on the wire
– Users must know it’s the genuine file store (so

as not to give away secrets or read bad data)
– Users may want to know who posted the data in

the file store

12

Examples cont’d
•  Electronic Mail

– Send private messages
– Know who sent a message (and that it hasn’t

been modified)
– Non-repudiation - ability to forward in a way

that the new recipient can know the original
sender

– Anonymity
– Virus Scanning
– Anti-spam

13

Examples cont’d

•  Electronic Commerce
– Pay for things without giving away my credit

card number
•  to an eavesdropper
•  or phony merchant

– Buy anonymously
– Merchant wants to be able to prove I placed the

order

14

Examples, cont’d

•  Routing protocol
– Handshake with neighbor

•  Is the message from a valid router? (replay?)
•  How do we recognize a valid router?

(autoconfiguration incompatible with security)
•  How do we know whether a message is new?

– Routing messages
•  Even valid routers might lie (become subverted)

– Forwarding

15

DOS

•  In early days of networking, this threat was
underestimated

•  Then it started being a single attacker,
limited by bandwidth of that attacker

16

Outdated DOS defenses

•  Cookies (different from web cookies)
– Proof that you could receive at the address you

claim to be coming from
– Helps to prevent one attacker from lying about

its address
•  IP traceback

–  If it ever worked, helps find the attacker that is
lying about its source address

17

DDOS

•  Chillingly clever attack
•  Break into lots of machines
•  Command them all to attack
•  Cookies don’t help, IP traceback doesn’t

help. Nobody is lying about its source
address

•  Cryptographic credentials also don’t help

18

Agenda

•  Introduction to Security
•  Introduction to Cryptography
•  Authenticating People
•  Security mechanisms to reference rather than

invent
–  Public Key / Secret Key infrastructures
–  Formats

•  Security Considerations Considerations

19

Cryptography

•  It’s not as scary as people make it out to be
•  You don’t need to know much about it to

understand what it can and can’t do for you

20

Features

•  Main features
– Encryption
–  Integrity protection
– Authentication

21

Cryptography

•  Three kinds of cryptographic algorithms
you need to understand
– secret key
– public key
– cryptographic hashes

•  Used for
– authentication, integrity protection, encryption

22

Secret Key Crypto

•  Two operations (“encrypt”, “decrypt”)
which are inverses of each other. Like
multiplication/division

•  One parameter (“the key”)
•  Even the person who designed the algorithm

can’t break it without the key (unless they
diabolically designed it with a trap door)

•  Ideally, a different key for each pair of users

23

Secret key crypto, Alice and Bob
share secret S

•  encrypt=f(S, plaintext)=ciphertext
•  decrypt=f(S, ciphertext)=plaintext
•  authentication: send f(S, challenge)
•  integrity check: f(S, msg)=X
•  verify integrity check: f(S, X, msg)

24

Secret Key Encrypt

Key K

Plaintext
Ciphertext

Cphertext
Plaintext

Encrypt

Decrypt

25

Secret Key Integrity Check

Message

Key K

Compute integrity check Integrity check

Message

Key K
Verify integrity check Valid/Not Valid

Integrity check

26

A Cute Observation

•  Security depends on limited computation
resources of the bad guys

•  (Can brute-force search the keys)
–  assuming the computer can recognize plausible

plaintext
•  A good crypto algo is linear for “good guys” and

exponential for “bad guys”
•  Faster computers work to the benefit of the good

guys!

27

Two types of secret key functions

•  Block cipher
–  Fixed size block (e.g., 128 bits), encrypted with fixed

size key (e.g., 256 bits)
–  Block size need not be the same as the key size

•  Stream cipher
–  Key is used by both ends in a pseudorandom number

generator
–  Result is ⊕’d with the message
–  ⊕ with same thing twice gives you the original

28

Block cipher

plaintext

key (some size, say 256)

encrypt ciphertext

fixed size, say 128 bits same size, say 128 bits

Note: block size is independent of key size

29

XOR (Exclusive-OR) ⊕

•  Bitwise operation with two inputs where the
output bit is 1 if exactly one of the two input
bits is one

•  (B ⊕ A) ⊕ A) = B
•  If A is a “one time pad”, very efficient and

secure
•  Common encryption schemes (e.g. RC4)

calculate a pseudo-random stream from a key

30

Stream cipher

key generate
pseudorandom
stream

x

msg ⊕ x = ciphertext

Encrypt

ciphertext ⊕ x = msg

Decrypt

31

Public Key Crypto

•  Two keys per user, keys are inverses of
each other (as if nobody ever invented
division)
– public key “e” you tell to the world
– private key “d” you keep private

•  Yes it’s magic. Why can’t you derive “d”
from “e”?

•  and if it’s hard, where did (e,d) come from?

32

Public Key Encryption for
Privacy

Plaintext Ciphertext Plaintext

Public Key Private Key

33

Digital Signatures (Public Key
Integrity Check)

•  One of the best features of public key
•  An integrity check

– calculated as f(priv key, data)
– verified as f(public key, data, signature)

•  Verifiers don’t need to know secret
•  vs. secret key, where integrity check is

generated and verified with same key, so
verifiers can forge data

34

Public Key Integrity Protection

Generate
Signature

Verify
Signature

Signature

Plaintext

Yes/No

Private Key Public Key

35

Repeat for emphasis

•  Really important difference between secret key
and public key integrity protection, especially
when multiple receivers of a message
–  With secret key, verifier uses same key as sender; if

you can verify a message, you can forge it
–  With public key, verifier uses public key, sender uses

private key; so verifier can’t forge

36

Cryptographic Hashes

•  Invented because public key is slow
•  Slow to sign a huge msg using a private key
•  Cryptographic hash

–  fixed size (e.g., 160 bits)
– But no collisions! (at least we’ll never find one)

•  So sign the hash, not the actual msg
•  If you sign a msg, you’re signing all msgs

with that hash!

37

Example Secret Key Algorithms

•  DES (old standard, 56-bit key, slow,
insecure)

•  3DES: fix key size but 3 times as slow
•  RC4: variable length key, “stream

cipher” (generate stream from key, XOR
with data), really fast, stream sometimes
awkward

•  AES: replacement for DES

38

Example Public Key Algorithms

•  RSA: nice feature: public key operations
can be made very fast, but private key
operations will be slow. Patent expired.

•  ECC (elliptic curve crypto): smaller keys,
so faster than RSA.

39

Crypto-agile

•  Notice all the crypto algorithms
•  The cryptographers can tell you at any time

that the one you picked isn’t good
•  So you have to design your protocols to be

able to switch crypto algorithms
•  Which means for interoperability your

protocol has to do negotiation

40

Encrypting Large Messages:
“modes” and “IV”s

•  The basic algorithms encrypt a fixed size block
•  Obvious solution is to encrypt a block at a time.

This is called Electronic Code Book (ECB)
•  Repeated plaintext blocks yield repeated

ciphertext blocks
•  Other modes “chain” to avoid this (CBC, CFB,

OFB)

41

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E

42

CBC Decryption

IV C1 C2 C3 C4

IV M1 M2 M3 M4

D D D D

43

Encrypting with public key
Instead of:

Message

Encrypted with Alice’s Public Key
Use:

Randomly
Chosen K

Encrypted with
Alice’s Public Key

Message

Encrypted with
Secret Key K

+

Message

44

Digital Signatures
Instead of:

Message

Signed with Bob’s Private Key

Use:

Message

Message

Signed with Bob’s Private Key

Digest (Message)
Message +

45

Signed and Encrypted Message

Randomly
Chosen K

Encrypted with
Alice’s Public Key

Message

Encrypted with
Secret Key K

+

Digest (Message)
+ Signed with

Bob’s Private Key

46

Don’t try this at home

•  No reason (except for the Cryptography
Guild) to invent new cryptographic
algorithms

•  Even if you could invent a better (faster,
more secure) one, nobody would believe it

•  Use a well-known, well-reviewed standard

47

Challenge / Response
Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R
Encrypt R using K
(getting C)

If you’re Alice, decrypt C

R

48

Non-Cryptographic Network
Authentication (olden times)

•  Password based
– Transmit a shared secret to prove you know it

•  Address based
–  If your address on a network is fixed and the

network makes address impersonation difficult,
recipient can authenticate you based on source
address

– UNIX .rhosts and /etc/hosts.equiv files

49

Agenda

•  Introduction to Security
•  Introduction to Cryptography
•  Authenticating People
•  Security mechanisms to reference rather than

invent
–  Public Key / Secret Key infrastructures
–  Formats

•  Security Considerations Considerations
•  Security Working Groups

50

Authenticating people

•  What you know (passwords)
•  What you have (smart cards, SecurID cards,

challenge/response calculators)
•  What you are (biometrics)

51

Passwords are hard to get right!

•  People “can’t” remember passwords with
enough cryptographic strength to provide
meaningful security as keys

•  People reuse passwords, so it is dangerous
to have servers storing passwords for their
users

•  Turn user authentication into real keys as
close to the user as possible

52

People

•  “Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed
and accuracy when performing cryptographic
operations. They are also large, expensive to maintain,
difficult to manage, and they pollute the environment.
It is astonishing that these devices continue to be
manufactured and deployed, but they are sufficiently
pervasive that we must design our protocols around
their limitations.”
– Network Security: Private Communication in a

Public World

53

Passwords ‘in the clear’ considered
harmful

•  Assume eavesdropping on the Internet is
universal.

•  Surest way to get your protocol bounced by
IESG.

54

On-Line Password Guessing

•  If guessing must be on-line, password need only
be mildly unguessable

•  Can audit attempts and take countermeasures
– ATM: eat your card
– military: shoot you
– networking: lock account (subject to DOS) or be

slow per attempt

55

Off-Line Password Guessing

•  If a guess can be verified with a local
calculation, passwords must survive a very
large number of (unauditable) guesses

56

Passwords as Secret Keys

•  A password can be converted to a secret key
and used in a cryptographic exchange

•  An eavesdropper can often learn sufficient
information to do an off-line attack

•  Most people will not pick passwords good
enough to withstand such an attack

57

Off-line attack possible
Alice
(knows pwd)

Workstation Server
(knows h(pwd))

“Alice”, pwd
Compute h(pwd)

I’m Alice

R (a challenge)

{R}h(pwd)

58

Other ways of authenticating
people

•  OTP
•  Tokens (e.g., challenge/response, time-

based)
•  SASL and EAP are frameworks for

negotiating what kind of authentication to
do

59

Token Cards

•  should be 2-factor (card+PIN)
•  challenge/response (need keyboard)
•  time-based

–  time skew (can adjust time and rate each time)
–  if no keyboard, PIN can be sent with value

•  sequence based
–  issue if mess up several times
– same PIN issues if no keyboard

60

Lamport’s Hash (S/Key, OTP)
Bob’s database holds:
n, salt, hashn+1(pwd | salt)

Alice Bob I’m Alice

n, salt

hashn (pwd | salt)

If h(hn)=
then decrement n,
store hashn(pwd | salt)

61

Lamport’s Hash (S/Key)

•  Offers protection from eavesdropping and
server database reading without public key
cryptography

•  No mutual authentication
•  Only finitely many logins
•  Small n attack: someone impersonates Bob

62

Trusted Third Parties

63

How do two parties get introduced?

64

Key Distribution - Secret Keys

•  Could configure n2 keys
•  Instead use Key Distribution Center (KDC)

– Everyone has one key
– The KDC knows them all
– The KDC assigns a key to any pair who need to

talk
•  This is basically Kerberos

65

KDC

Alice/Ka
Bob/Kb
Carol/Kc
Ted/Kt
Fred/Kf

Alice/Ka

Bob/Kb

Carol/Kc

Ted/Kt

Fred/Kf

66

Key Distribution - Secret Keys
Alice KDC Bob

A wants to talk to B

Randomly choose Kab

{“B”, Kab}Ka {“A”, Kab}Kb

{Message}Kab

67

Key Distribution - Public Keys

•  Certification Authority (CA) signs
“Certificates”

•  Certificate = a signed message saying “I, the
CA, vouch that 489024729 is Radia’s public
key”

•  If everyone has a certificate, a private key,
and the CA’s public key, they can
authenticate

68

Key Distribution - Public Keys
Alice Bob

[“Alice”, key=342872]CA

Auth, encryption, etc.

[“Bob”, key=8294781]CA

69

KDC vs CA Tradeoffs

•  KDC solution less secure
– Highly sensitive database (all user secrets)
– Must be on-line and accessible via the net

•  complex system, probably exploitable bugs,
attractive target

– Must be replicated for performance, availability
•  each replica must be physically secured

70

KDC vs CA

•  KDC more expensive
– big, complex, performance-sensitive, replicated
– CA glorified calculator

•  can be off-line (easy to physically secure)
•  OK if down for a few hours
•  not performance-sensitive

•  Performance
– public key slower, but avoid talking to 3rd

party during connection setup

71

KDC vs CA Tradeoffs

•  CA’s work better interrealm, because you
don’t need connectivity to remote CA’s

•  Revocation levels the playing field
somewhat

72

Revocation

•  What if someone steals your credit card?
– depend on expiration date?
– publish book of bad credit cards (like CRL

mechanism …cert revocation list)
– have on-line trusted server (like OCSP …

online certificate status protocol)

73

Another philosophy: “Identity
Providers”

•  For web-based protocols
•  Usually based on SAML standard, which

uses XML syntax
•  User authenticates to an identity provider
•  To authenticate to an affiliated web site, use

the magic of URL rewriting, http
redirection, cookies, etc., to obtain a cookie
signed by the IDP saying “this is Radia”

74

Functional difference from Kerberos

•  Although SAML could encode same information
as a (PKI) certificate, the usual use is as a “bearer
token”

•  With Kerberos, the “ticket” doesn’t prove who
you are, you have to prove knowledge of the key
inside the ticket

•  Likewise, with PKI, you still have to prove
knowledge of the private key associated with the
public key in the certificate

75

Other interesting issues (with all the
schemes)

•  You won’t have one KDC/CA/IDP for the
whole world

•  So how do you find a proper chain?

76

Strategies for CA Hierarchies

•  Monopoly
•  Oligarchy
•  Anarchy
•  Bottom-up

77

Monopoly

•  Choose one universally trusted organization
•  Embed their public key in everything
•  Give them universal monopoly to issue

certificates
•  Make everyone get certificates from them
•  Simple to understand and implement

78

What’s wrong with this model?

•  Monopoly pricing
•  Getting certificate from remote organization

will be insecure or expensive (or both)
•  That key can never be changed
•  Security of the world depends on honesty

and competence of that one organization,
forever

79

One CA Plus RAs

•  RA (registration authority), is someone
trusted by the CA, but unknown to the rest
of the world (verifiers).

•  You can request a certificate from the RA
•  It asks the CA to issue you a certificate
•  The CA will issue a certificate if an RA it

trusts requests it
•  Advantage: RA can be conveniently located

80

What’s wrong with one CA plus
RAs?

•  Still monopoly pricing
•  Still can’t ever change CA key
•  Still world’s security depends on that one

CA key never being compromised (or
dishonest employee at that organization
granting bogus certificates)

81

Oligarchy of CAs

•  Come configured with 80 or so trusted CA
public keys (in form of “self-signed”
certificates!)

•  Usually, can add or delete from that set
•  Eliminates monopoly pricing

82

Default Trusted Roots in IE

83

What’s wrong with oligarchy?

•  Less secure!
– security depends on ALL configured keys
– naïve users can be tricked into using platform

with bogus keys, or adding bogus ones (easier
to do this than install malicious software)

–  impractical for anyone to check trust anchors
•  Although not monopoly, still favor certain

organizations. Why should these be trusted?

84

CA Chains

•  Allow configured CAs to issue certs for
other public keys to be trusted CAs

•  Similar to CAs plus RAs, but
– Less efficient than RAs for verifier (multiple

certs to verify)
– Less delay than RA for getting usable cert

85

Anarchy

•  Anyone signs certificate for anyone else
•  Like configured+delegated, but user consciously

configures starting keys
•  Problems

– won’t scale (computationally too difficult to
find path)

– no practical way to tell if path should be
trusted

–  too many decisions for user

86

Top Down with Name
Subordination

•  Assumes hierarchical names
•  Each CA only trusted for the part of the

namespace rooted at its name
•  Can apply to delegated CAs or RAs
•  Easier to find appropriate chain
•  More secure in practice (this is a sensible

policy that users don’t have to think about)

87

Bottom-Up Model

•  Each arc in name tree has parent certificate (up)
and child certificate (down)

•  Name space has CA for each node
•  “Name Subordination” means CA trusted only for

a portion of the namespace
•  Cross Links to connect Intranets, or to increase

security
•  Start with your public key, navigate up, cross, and

down

88

Intranet

abc.com

nj.abc.com ma.abc.com

alice@nj.abc.com bob@nj.abc.com carol@ma.abc.com

89

Extranets: Crosslinks

abc.com xyz.com

90

Extranets: Adding Roots

abc.com xyz.com

root

91

Advantages of Bottom-Up

•  For intranet, no need for outside
organization

•  Security within your organization is
controlled by your organization

•  No single compromised key requires
massive reconfiguration

•  Easy configuration: public key you start
with is your own

92

Comparisons

•  IPsec and DTLS protects packets
– Could be end to end or between firewalls
– Today, most uses are transparent to applications

•  TLS & SSH protect TCP sessions
•  OpenPGP, S/MIME and CMS, XML-DSIG

and XML-encryption, protect messages
(needed for store and forward)

93

IPsec vs. TLS

•  IPsec idea: don’t change applications or API
to applications, just OS

•  TLS idea: don’t change OS, only change
application (if they run over TCP)

•  but… unless OS can set security context of
application, server applications need to
know identity of their clients

94

IPsec vs. TLS

•  IPsec advantages
– Rogue packet problem

•  TCP doesn’t participate in crypto, so attacker can
inject bogus packet, no way for TCP to recover

– easier to do outboard hardware processing
(since each packet independently encrypted)

•  IPsec disadvantage
•  DTLS is TLS over UDP, so it’s similar to

IPsec

95

Creating a session key

96

An Intuition for Diffie-Hellman

•  Allows two individuals to agree on a secret
key, even though they can only
communicate in public

•  Alice chooses a private number and from
that calculates a public number

•  Bob does the same
•  Each can use the other’s public number and

their own private number to compute the
same secret

•  An eavesdropper can’t reproduce it

97

Why is D-H Secure?

•  We assume the following is hard:
•  Given g, p, and gX mod p, what is X?
•  With the best known mathematical techniques,

this is somewhat harder than factoring a composite
of the same magnitude as p

•  Subtlety: they haven’t proven that the algorithms
are as hard to break as the underlying problem

98

Diffie-Hellman
Alice Bob

choose random A choose random B

gA mod p

gB mod p

agree on g,p

compute (gB mod p)
A compute (gA mod p)B

agree on gAB mod p

99

Man in the Middle

Alice Bob

gA mod p

Trudy

agree on gAT mod p

gT mod p

gT mod p

gB mod p

agree on gTB mod p

{data}gAT mod p

{data}gAT mod p

{data}gTB mod p

{data}gTB mod p

100

Signed Diffie-Hellman
(Avoiding Man in the Middle)

Alice Bob

choose random A choose random B

[gA mod p] signed with Alice’s Private Key

[gB mod p] signed with Bob’s Private Key

verify Alice’s signature

agree on gAB mod p

verify Bob’s signature

101

If you have keys, why do D-H?

•  “Perfect Forward Secrecy” (PFS)
•  Prevents me from decrypting a conversation

even if I break into both parties after it ends
(or if private key is escrowed)

102

Example non-PFS (like SSL)

Alice Bob

{K}Bob

protect conversation using K

103

PFS without Diffie-Hellman

Alice Bob

{K}P

protect conversation using K

invent new RSA pair
for this conversation [Use public key P]Bob

104

Replay Issues

•  Usually use a sequence number
•  Without unique session key per session, if

start with same initial sequence number, can
do replays

•  What if sequence number too small?

105

Extended sequence number

•  For instance, TCP’s sequence number is too
small

•  Instead of changing the protocol to have a
larger sequence number, do the integrity
check on a larger sequence number,
“pretending” it’s in the packet

106

DNSSEC

•  Provides signature for information in DNS
– So don’t need to have super trusted DNS

servers
•  Also provides public key of of (child) zone

– So it’s the top-down model
•  If one of the records in a DNS entry were

“public key of server”, then DNSSEC could
be lightweight PKI

107

Agenda

•  Introduction to Security
•  Introduction to Cryptography
•  Authenticating People
•  Security mechanisms to reference rather than

invent
–  Public Key / Secret Key infrastructures
–  Formats

•  Security Considerations Considerations

108

Every RFC needs a “security
considerations” section

•  What do you have to think about?
•  Not enough to say “just use IPsec”
•  Sometimes (as with VRRP) protecting one

protocol in a vacuum is wasted effort
– putting expensive locks on one window, while

the front door is wide open
•  We don’t need to protect a protocol. We

need to protect the user

109

Things to put in a security
considerations section

•  What are the threats? Which are in scope?
Which aren’t? (and why)

•  What threats are defended against? Which
are the protocol susceptible

•  Implementation or deployment issues that
might impact security

•  See RFC 3552 “Guidelines for Writing RFC
Text on Security Considerations”

110

Examples

•  Putting integrity checks on routing msgs
– Defends against outsiders injecting routing

msgs. That’s good, but
– Doesn’t prevent outsiders from answering

ARPs, or corrupting DNS info
– Doesn’t protect against “Byzantine

failures” (where a trusted thing goes bad)

111

Examples

•  SNMP
•  Should be straightforward end-to-end

security
•  But it has to work when the network is flaky

– DNS not available
– LDAP database for retrieving certificates might

be down, as might revocation infrastructure

112

Examples

•  Non-crypto things
– Use up resources

•  DHCP, could request all possible addresses
•  Use all bandwidth on a link

–  Interface to human – internationalized names
– Active Content

•  Too many examples of hidden places for active
content!

113

Examples

•  Email (much more detail in RFC 2552), but
some cute points
– Trivial to spoof mail
– Message path leaks information
– There’s a protocol for asking if an email

address is valid---useful for/against spammers
– Even with S/MIME, header fields not protected

114

Example

•  Kerberos Network Auth Service
•  Some excerpts

–  solves authentication
–  does not address authorization or DOS or PFS
–  requires on-line database of keys, so NAS must be

physically secured
–  subject to dictionary attack (pick good pwds)
–  requires reasonably synchronized clocks
–  tickets might contain private information
–  NAS must remember used authenticators to avoid

replay

115

Conclusions

•  Until a few years ago, you could connect to the
Internet and be in contact with hundreds of
millions of other nodes, without giving even a
thought to security. The Internet in the ’90’s was
like sex in the ’60’s. It was great while it lasted,
but it was inherently unhealthy and was destined
to end badly. I’m just really glad I didn’t miss out
again this time. 	
 	
—Charlie Kaufman	

