IPv6 EH Traversal Edge measurements

Ana Custura ana@erg.abdn.ac.uk

> 06-11-2022 IEPG IETF 115

Scope of Experiments

- Tests concerned with edge networks
- Consumer Edge: RIPE Atlas probes
- Server Edge: Web + Authoritative NSes for the Alexa Top 1M domains

RIPE ATLAS experiments

- ~5500 IPv6-enabled probes in RIPE, globally distributed
- Tested traversal by sending packets to 2 target servers (in UK and Canada)
 - {TCP, UDP} to port 443
 - {DOPT, HBHOPT}
 - {8,16,32,40,48,56,64} B in size
 - Thanks Brian!

RIPE ATLAS experiments

- ~5500 IPv6-enabled probes in RIPE, globally distributed
- Tested traversal by sending packets to 2 target servers (in UK and Canada)
 - {TCP, UDP} to port 443
 - {DOPT, HBHOPT}
 - {8,16,32,40,48,56,64} B in size
 - Thanks Brian!

At a glance - traversal

- 8B PadN option
- High traversal for **Destination Options (DOPTs)**
- Some paths support Hop-by-Hop Options (HBHOPTs)
- Difference between UDP and TCP regardless of EH

Drops by 1st hop on the path

IEPG IETF 115

Drops by 1st hop on the path

IEPG IETF 115

Per-AS traversal (UK path)

DOPT

		ISLAS	A31>A32	00
The local AS is responsible for most of the drops:	DOPT UDP 8B	95.3%	93%	91.5%
 5% for UDP 25% for TCP	DOPT TCP 8B	74.7%	70%	68.5%

101.100

IEPG IETF 115

HBHOPT		1st AS	AS1>AS2	2nd AS	AS2>AS3	∞
 The local AS is responsible for most of the drops: 68% for UDP 74% for TCP 	HBHOPT UDP 8B	31.4%	20.1%	15%	12.2%	11.4%
	HBHOPT TCP 8B	26.9%	16.3%	13.9%	9.7%	8.6%

Drops are considered to be within the AS if the next hop on a control measurement is also in that AS. If the next hop would otherwise be in a different AS, then the drop is attributed to the AS boundary.

What if packets would traverse the first AS?

- Most probes have public IPv6 addresses
- Reverse traceroute on paths where drops happen in first AS
- Same protocol/port
- Does the packet reach original AS?

What if packets would traverse the first AS?

		% make it ba original A	ick to %p S ti	%predicted traversal	
DOPTs	DOPT UDP (UK)	97.6%		~96%	
Reverse traceroute on paths	DOPT TCP (UK)	TBD		TBD	
where drops happen in first AS (n=271 paths for UDP)	DOPT UDP (Canada)	95.3%		~96%	
	DOPT TCP (Canada)	TBD		TBD	
HBOPTs		% make it back to original AS	%predicted traversal	Notes	
Reverse traceroute on paths where drops happen in first AS	HBHOPT UDP (UK)	10%	~17%	60% packets get dropped at LINX peering	
(n=3150 paths for UDP)	HBHOPT UDP (Canada)	17%	~25%		

Traversal vs size

- TCP sees the biggest drop in traversal at 48B: 48 + 20 = 68B (108B total)
- UDP sees the biggest drop at 56B: 56 + 8 = 64B (104B total)
- 40B the magic number?
- 40B is the max for IPv4 options

IEPG IETF 115

PathSpider Experiments

- 12 globally distributed vantage points
- DNS/{UDP,TCP}/IPv6

• {DOPT, HBHOPT}

- IPv6 authoritative NS-es for domains in Alexa Top 1M list (=~20,000 targets)
- Test for valid DNS response!!

- Valid PadN
- Invalid length
- Unknown option

Not a "traversal" test! It is a "functional" test! IEPG IETF 115

Protocol and size: DNS server edge

	DOPT - UDP	DOPT - TCP	HBHOPT - UDP	HBHOPT - TCP
8B	53%	51.16%	16.2%	15.7%
16B	9%	8.7%	2%	2%

N= 19966 DNS Servers autoritative for Alexa Top 1M domain Test is "successful" if the server replies to a DNS Query

- Very small difference between TCP and UDP
- DOPT results validated from 12 locations
- HBHOPT results validated from 3 locations

Server Edge ASes not passing DOPTs

- AS 63911 NetActuate (880)
- AS 8075 Microsoft Corporation (926)
- AS 397238 Ultradns (4572)
- AS 209453, AS 29169 Gandi (6136)
- AS 16509 Amazon-02 (n=16668)
- AS13335 Cloudflare (n=28098 paths validated over 12 locations)

If these were transparent, E2E test success would be 87%

IEPG IETF 115

Test from 12 locations, for 20,000 servers (number of paths tested in brackets).

Which fields are inspected?

Invalid EH or Opt Length makes a difference to traversal Invalid or unknown option type does not make a difference Payload of option does not make a difference

What did we learn this time?

- DOPTs currently travel very far along a path, seen in both consumer and server edge networks
 - However, some edge paths still drop packets with DOPTs
- HBHOPTs are currently dropped on many types of paths edge CPE, CDNs (Akamai, Cloudflare and friends), mobile networks and some transit networks
 - A diverse set of paths still support HBHOPTs
 - TCP sees higher drops at the consumer edge

QUESTION TIME

IEPG IETF 115

Experiments Overview

	End2End traversal tests	Traceroute-style tests
Protocol	DNS/{UDP,TCP}/IPv6	{UDP, TCP}/IPv6
Test	Send a DNS query and tests for valid responses	Records ICMP replies from routers along the path
Targets?	IPv6 authoritative NS-es for domains in Alexa Top 1M list (=~20,000 targets)	5000 RIPE Atlas probes to and from 2 vantage points
Additional tests	 Valid PadN Invalid length Unknown option 	8, 16, 32, 48, 56, 64B

Both tests done for Hop By Hop and Destination Options

Anatomy of a HBHOPT/DOPT Ext. Header

16B HBHOPT with a PadN Option and a PMTU Option

x11	x01	x01	x04	\x00	\x30	x04	\x05\xac	\x00\x0	0
		Туре	Len	Value	Туре	Len	Value	2 PAD1	
								options	
	IEPG IETE 1*						15		

Comparison to RFC7872

- Drops at the server edge AS have increased compared to RFC7872 (result of a few major players), but drops in ASes other than the destination edge have decreased
 - Transit networks see better traversal

