Starlink Protocol Performance

Geoff Huston APNiC

Low Earth Orbit

- LEO satellites are stations between 160km and 2,000km in altitude.
- High enough to stop it slowing down by "grazing" the denser parts of the earth's ionosphere
- Not so high that it loses the radiation protection afforded by the Inner Van Allen belt.
- At a height of 550km, the minimum signal propagation delay to reach the satellite and back is 3.7ms.

screenshot from starwatch app

Image - spacex

Starlink Constellation

At an altitude of 550km each satellite spans a terrestrial footprint of no more than ~900Km radius, or 2M K²

At a minimum, a satellite constellation needs 500 satellites to provide continuous coverage

For high quality coverage the constellation will need 6x-20x that number (or more!)

Starlink Constellation

• 4,276 in-service operational spacecraft, operating at an altitude of 550km

https://satellitemap.space/

Looking Up

Starlink tracks satellites with a minimum elevation of 25°.

There are between 30 – 50 visible Starlink satellites at any point on the surface between latitudes 56° north and south

Each satellite traverses the visible aperture for a maximum of ~3 minutes

Starlink Scheduling

- A satellite is assigned to a user terminal in 15 second time slots
- Tracking of a satellite (by phased array focussing) works across 11 degrees of arc per satellite in each 15 second slot

Starlink Spot Beams

- Each spacecraft 2,000 MHz of spectrum for user downlink and splits it into 8x channels of 250 MHz each
- Each satellite has 3 downlink antennas and 1 uplink antennas, and each can do 8 beams x 2 polarizations, for a total of 48 beams down and 16 up.

"Unveiling Beamforming Strategies of Starlink LEO Satellites"

https://people.engineering.osu.edu/sites/default/files/2022-10/Kassas_Unveiling_Beamforming_Strategies_of_Starlink_LEO_Satellites.pdf

How well does all this work?

Let's ask the Starlink modem

\$ starlink-grpc-tools/dish_grpc_text.py -v status id: ut0100000-00000000-005dd555 hardware version: rev3_proto2 software_version: 5a923943-5acb-4d05-ac58-dd93e72b7862.uterm.release state: CONNECTED uptime: 481674 snr: seconds_to_first_nonempty_slot: 0.0 non ning drop rate: 0.0 downlink_throughput_bps: 16693.330078125 uplink_throughput_bps: 109127.3984375 pop_ping_latency_ms:
Alerts bit field: 49.5 0.04149007424712181 fraction obstructed: currently_obstructed: False seconds_obstructed: obstruction duration: 1.9579976797103882 obstruction interval: 540.0 direction azimuth: -42.67951583862305direction_elevation: 64.61225128173828 is_snr_above_noise_floor: True

Reported Capacity & Latency

Reported Capacity & Latency

10

Reported Capacity & Latency

- This is going to present some interesting issues for conventional TCP
- TCP uses ACK pacing which means it attempts to optimize its sending rate over multiple RTT intervals
- The variation in latency and capacity occurs at high frequency, which means that TCP control is going to struggle to optimise

Latency

2350

2400 11

How well does all this work?

Let's measure it! Speedtest: 400 CA-Down CA 350 300 250 Mbps 200 150 100 We should be able to get 120Mbps out of a starlink connection. Right? 50

17/08

31/08

14/09

Day/Month

28/09

12/10

26/10

0 03/08

09/11

Link Characteristics

Let's measure it! Speedtest Latency:

Link Characteristics

1-second ping

TCP Flow Control Algorithms

"Ideal" Flow behaviour for each protocol

Packet Loss is not always a good congestion indicator

QUIC with CUBIC - much the same

17

It's better to use a losstolerant protocol with Starlink

18

Protocol choice matters for performance in Starlink services

Protocol Performance Compared

Protocol Considerations

- Starlink services have two issues for transport protocols:
 - Very high jitter rates
 - High levels of micro-loss
- Loss-based flow control algorithms will over-react and pull back the sending rate
 - Short transactions work well
 - Paced connections (voice, zoom) tend to work well most of the time
 - Bulk data transfer not so much
- It's better to use a conventional TCP control with a large SACK window or use loss-insensitive flow control algorithms, such as BBR, to get good performance out of these service

Questions?