
	

Derived	Models	for	Interoperability	Between	IoT	Ecosystems	
J.	Clarke	Stevens,	Piper	Merriam	

oneIoTa	Overview	
The	Open	Connectivity	Foundation’s	(OCF)	oneIoTa	tool	is	essentially	a	web-based,	Integrated	
Development	Environment	(IDE)	for	crowd-sourcing	data	models	for	the	Internet	of	Things.	This	
paper	assumes	a	basic	understanding	of	the	features	of	oneIoTa	and	concentrates	instead	on	
the	interoperability	between	IoT	ecosystems	supported	by	the	OCF	common	data	model	and	its	
derivative	models.	
	
Interoperability	
One	of	the	major	problems	with	the	Internet	of	Things	is	that	there	are	many	incompatible	
ecosystems.	While	some	have	addressed	this	problem	by	writing	various	types	of	converters	
between	ecosystems,	this	becomes	hard	to	scale.	The	OCF	architecture	and	the	oneIoTa	tool	
use	OCF	data	models	as	a	“common”	data	model	and	a	derived	version	of	these	models	to	
define	conversions	between	OCF	and	other	IoT	ecosystems.	This	makes	all	derived	models	
interoperable	with	OCF	and	all	other	derived	models	through	(at	most)	two	conversion	steps.	
As	with	all	OCF	data	models	derived	models	can	be	machine-read	to	automatically	create	code	
stubs.	
	
Derived	Models	
Derived	models	use	standard	JSON	schema	syntax.	Fundamentally,	derived	models	provide	a	
conversion	mapping	between	OCF	data	models	and	similar	data	models	in	another	IoT	
ecosystem.	These	conversions	can	be	very	simple	(as	in	just	a	property	name	conversion)	to	
extremely	complex	(as	in	converting	between	different	numbers	of	properties	with	complex	
mathematics).	Examples	of	the	various	conversions	are	described	below.	
	
Simple	Mapping	
Simple	mapping	just	converts	between	different	field	names.	Simple	mapping	accounts	for	field	
mappings	between	ecosystems.	It	can	be	used	in	combination	with	direct	mappings	as	well	as	
more	complex	mathematical	conversions.	In	the	example	below,	the	derived	model	defines	the	
field	“lightness”	to	map	to	the	OCF	field	“brightness.”	It	also	maps	the	derived	ecosystem	field	
“rgb_color”	to	the	three	OCF	fields	“red,”	“green,”	and	“blue.”	

	
{
 properties: {
 lightness: {
 type: "number",
 oic_conversion: {
 oic_alias: "brightness",
 }
 },
 rgb_color: {
 type: "string",
 oic_conversion: {
 oic_alias: ["red", "blue", "green"],
 }
 }
 }
}
	
Simple	Conversion	
Simple	conversion	defines	mathematical	conversion	between	simple	mappings.	It	does	this	
using	the	two	fields	“from_oic”	and	“to_oic.”	The	mathematical	conversion	is	defined	in	a	
string.	The	string	is	not	validated.	In	this	example,	the	field	“darkness”	in	the	derived	model	is	
converted	to	the	field	“brightness”	in	the	OCF	model	by	subtracting	it	from	255.	A	script	that	
creates	code	stubs	could	read	this	model	to	identify	input	and	output	variables	and	use	the	
conversion	strings	as	comments	that	a	coder	could	reference	to	properly	implement	the	
conversions	in	any	programming	language.	
	
{
 properties: {
 darkness: {
 type: "number",
 oic_conversion: {
 to_oic: "brightness = 255 - darkness",
 from_oic: "darkness = 255 - brightness"
 }
 }
 }
}
	
The	following	example	is	a	bit	more	complex	and	demonstrates	the	use	of	a	list	of	strings.	The	
derived	model	field	“darkness_percentage”	is	converted	to	and	from	the	OCF	field	brightness	
with	two	conversion	steps	for	each	direction.	
	
{
 properties: {
 darkness_percentage: {
 type: "number",
 oic_conversion: {
 to_oic: [
 "darkness = 255 * darkness_percentage",
 "brightness = 255 - darkness"
],
 from_oic: [

 "darkness = 255 - brightness",
 "darkness_percentage = darkness_percentage / 255"
]
 }
 }
 }
}

	
Complex	Conversion	
Sometimes	conversions	are	too	complex	to	capture	well	in	a	from_oic/to_oic	syntax.	One	
example	is	conversion	between	RGB	and	HSV	color	schemes.	This	conversion	requires	
intermediate	variables	and	several	conditional	assignments.	The	example	below	shows	how	this	
could	be	done	using	the	oic_conversions	field.	The	from_properties	and	to_properties	define	
the	mappings	while	from_steps	and	to_steps	define	the	list	of	conversion	steps	to	be	taken.	
Again,	the	strings	defined	in	the	steps	are	not	validated,	but	are	used	as	comments	when	code	
stubs	are	generated	so	the	conversion	process	can	be	implemented	in	any	programming	
language.	
	
// OCF Model
{
 properties: {
 Hue: {
 type: "number",
 },
 Saturation: {
 type: "number",
 },
 Value: {
 type: "number",
 },
 }
}

// Derivative Model
{
 oic_conversions: [
 {
 from_properties: ["Hue", "Saturation", "Value"],
 to_properties: ["Red", "Green", "Blue"],
 from_oic_steps: [
 "C = V x S",
 "H_prime = H / 60 degrees",
 "X = C * (1 - |H_prime mod2 - 1|)",
 "if H is undefined: R, G, B = (0, 0, 0)",
 "if 0 < H_prime < 1: R_1, G_1, B_1 = (C, X, 0)",
 "if 1 < H_prime < 2: R_1, G_1, B_1 = (X, C, 0)",
 "if 2 < H_prime < 3: R_1, G_1, B_1 = (0, C, X)",
 "if 3 < H_prime < 4: R_1, G_1, B_1 = (0, X, C)",
 "if 4 < H_prime < 5: R_1, G_1, B_1 = (X, 0, C)",
 "if 5 < H_prime < 6: R_1, G_1, B_1 = (C, 0, X)",
 "m = V - C",
 "R, G, B = (R_1 + m, G_1 + m, B_1 + m)"
]
 }

],
 properties: {
 Red: {
 type: "number",
 },
 Green: {
 type: "number",
 },
 Blue: {
 type: "number",
 },
 }
}

	
One	to	Many	
The	following	example	shows	how	you	can	convert	from	one	ecosystem	with	a	single	field	to	a	
derived	model	with	multiple	fields.	
	
// OCF Model
{
 properties: {
 rgb: {
 type: "string",
 }
 }
}

// Derivative Model
{
 oic_conversions: {
 to_oic: [
 "rgb = r + b + g",
]
 },
 properties: {
 red: {
 type: "string",
 oic_conversions: {
 oic_alias: "rgb",
 from_oic: [...]
 }
 },
 blue: {
 type: "string",
 oic_conversions: {
 oic_alias: "rgb",
 from_oic: [...]
 }
 },
 green: {
 type: "string",
 oic_conversions: {
 oic_alias: "rgb",
 from_oic: [...]
 }
 },

 }
}

	
Many	to	One	
This	example	shows	how	to	convert	between	an	OCF	model	with	several	fields	to	a	derived	
model	with	a	single	field.	
	
// OCF Model
{
 properties: {
 red: {
 type: "string",
 },
 blue: {
 type: "string",
 },
 green: {
 type: "string",
 },
 }
}

// Derivative Model
{
 properties: {
 rgb: {
 type: "string",
 oic_conversions: {
 oic_alias: ["red", "blue", "green"],
 from_oic: ["rgb = red + blue + green"],
 to_oic: [
 "red = ...",
 "blue = ...",
 "green = ...",
]
 }
 }
 }
}
	
Derivative	Model	Validation	
As	with	common	“OCF”	models,	derived	models	are	validated	against	JSON	syntax.	In	addition,	
derived	models	are	validated	to	ensure	they	are	properly	referenced	to	an	OCF	model.	The	
derived	model	must	include	all	the	fields	of	the	OCF	model	from	which	it	is	derived.	These	fields	
consist	of	oic_alias	and	from_properties	within	the	oic_conversoins	property.	
	
This	means	that	if	a	relevant	model	does	not	yet	exist	in	OCF,	it	must	be	proposed	and	accepted	
by	OCF	before	a	derived	model	can	be	created	in	some	other	ecosystem.	This	expands	the	
models	within	OCF	and	guarantees	that	the	derived	model	with	work	with	OCF	models	and	all	
other	derived	models.	
	

What’s	Next?	
Derived	models	in	OCF	are	an	extremely	powerful	solution	to	interoperability	between	
ecosystems	in	the	Internet	of	Things.	They	are	also	very	flexible	in	being	able	to	support	RESTful	
as	well	as	other	architectures.	A	prototype	has	been	built	showing	interoperability	between	
UPnP,	AllSeen	and	Philips	HUE	light	bulbs	being	adjusted	in	unison	from	a	UPnP	control	point.	
	
While	oneIoTa	is	currently	only	populated	with	OCF	models,	derived	UPnP	models	will	soon	be	
added.	Other	ecosystems	interested	in	using	oneIoTa	and	adding	their	models	to	the	
interoperable	OCF	ecosystem	should	contact	OCF.	

