
IAB IOTSI workshop 2016

IoT Bridge Taxonomy
By Dave Thaler (dthaler@microsoft.com)

Abstract

Today, many organizations develop and implement different schemas for the same kind of things. For

example, there are already many different ways to express the notion of a “light bulb”. In this position

paper, we assume that there will continue to be heterogeneity in protocols and schemas, at least for the

forseeable future, given that IoT is relatively early in the technology lifecycle. This position paper focuses

on the question “How can we achieve interoperability when different organizations, companies and

individuals develop extensions?”, and in particular how to translate, or “bridge”, between two endpoints

with differing protocols and schemas. We define a simple taxonomy of bridging types involving a

protocol translation component (or “protocol bridge”) combined with one or more schema translation

components (or “schema bridges”), and provide recommendations on future directions.

1 Terminology
In this paper we use the following terms:

 “server”: an endpoint exposing information (e.g., a smart object such as a light bulb or TV). Also

known as a producer or provider in some protocols.

 “client”: an endpoint consuming such information (e.g., an app). Also known as a consumer in

some protocols.

 “data model”: a concrete schema, i.e., a schema expressed in a particular language/format (e.g.,

in RAML, JSON Schema, D-Bus introspection XML, etc.).

 “resource”: a specific instance of something implementing one or more data models for different

types of functionality, exposed by a server.

 “bridge”: a device designed to translate from one protocol and/or data model to another, to

allow a client of one to communicate with a server of another. The bridge may be physically

collocated with the server, or the client, or (more typically) in a separate device such as a hub.

 “schema bridge”: a bridge component that can translate data expressed in a given data model to

another one that expresses the same information in a different way. The conversion might

involve conversion of data types (e.g., integers vs string literals), property names, resource

granularity (e.g. one data model vs two more specific data models), or other more complex

conversions.

 “protocol bridge”: a bridge component that can translate from a given protocol to another given

protocol, but does not translate the data model. Thus, often a protocol bridge requires one or

more schema bridges due to the two protocols using different data models.

2 Taxonomy
We first define two important axes for any given scenario:

1. Is the server’s resource exposing a “standard” data model, or a vendor-specific data model?

2. Is the bridge exposing that resource as a “standard” data model, or a dynamically created data

model?

mailto:dthaler@microsoft.com

IAB IOTSI workshop 2016

2.1 Bridging standard-to-(other)-standard (S2S)
This scenario typically requires translation code on a per-data model basis, since each standard can

express things completely differently. However, since both are standards, such code can be authored by

a third party (i.e., someone other than the client and server code owners).

Server ClientBridge

Bridge

Standard
Light Bulb

code

Standard
TV

code

Light Bulb

TV

Light Bulb

TV

Protocol A Protocol B

2.2 Bridging proprietary-to-standard (P2S)
This similarly requires bridging code on a per-data model basis. Since the server’s data model is not a

standard, it often must be authored by the same vendor/coder as the server or by someone who obtains

permission from them. Thus the bridge must either be server-vendor-specific itself, or else it must allow

vendor-specific extensions to be included or added.

Server Client
Bridge

Protocol A Protocol B

Bridge

Vendor
Light Bulb

code

Vendor
TV

code

TV

Light Bulb
Light Bulb

TV

2.3 Bridging any-to-dynamic
In this case, the bridge does not try to translate to a particular schema/data model, but attempts to keep

the same data model (whether standard or proprietary) as much as possible and only translate the actual

syntax into the language/format used on the other side (e.g., XML to JSON or vice versa), without any

domain-specific knowledge of the data model being translated or its semantics. Thus, there is only one

dynamic schema bridge needed (at least for a given pair of protocols), and it can be authored by a third

party.

IAB IOTSI workshop 2016

Bridge

Bridge

Generic
Code

Protocol A Protocol B

Server
Light Bulb

TV

Client

Light Bulb

TV

The benefit is that the bridge can be used to translate essentially any resource, rather than only being

able to translate ones it has a priori knowledge of the data model(s) for. The downside is that different

servers exposing different data models for the same thing will appear as different sorts of things to the

client.

3 Recommendations
In general, we believe that bridges should use specific schema bridges for known data models (which we

call “static schema bridges”), and fall back to using a dynamic schema bridge when no specific schema

bridge is found for a discovered resource. Furthermore, we believe that static schema bridges are

important to convergence (e.g., one client communicating with multiple server implementations), and it

is thus important for bridges (that aren’t embedded into the server itself) to separate the notion of

“protocol bridge” from “(static) schema bridge” and allow extensibility by others. The bridge, or the

owner of a bridge, should be able to easily install schema bridges for new and/or proprietary data

models.

To ease the job of developing schema bridges and increase semantic interoperability, it is desirable that

different data models for the same type of thing (e.g., light bulbs) are as similar as possible for basic

functionality. In an ideal world, data models used by different protocols and organizations would

express exactly the same information in ways that are algorithmically translatable by a dynamic schema

bridge with no domain-specific knowledge. Sharing data models more widely, and having agreements in

principle of at least using the same abstract information model, would be very beneficial.

It is also important to keep in mind that the IoT ecosystem is still undergoing significant innovation,

especially in terms of new types of resources, and even new variations of existing types of resources.

For example, while classic light bulbs historically had on/off, then dimming capability, many now have

color settings, and perhaps other bells and whistles. It is important to not preclude innovation and

vendor differentiation, in order to grow the IoT ecosystem and allow it to evolve. Thus it is also critically

important to not limit use to only standard schemas. Hence the recommendation to support dynamic

schema bridges, as well as allowing bridges to acquire new static schema bridges.

