
IPSO Smart Objects
Jaime Jimenez∗, Michael Koster†, Hannes Tschofenig‡

∗Ericsson, Email: jaime.jimenez@ericsson.com
†SmartThings, Email: michael.koster@smartthings.com
‡ARM Limited, Email: hannes.tschofenig@arm.com

I. INTRODUCTION

Standards for constrained devices are rapidly consolidating and the availability of IP on constrained devices enabled these
devices to easily connect to the Internet. The IETF has also created a set of specifications for such IP-enabled devices to work
in a Web-like fashion. One such protocol is the Constrained Application Protocol (CoAP) [1] that provides request/response
methods, ways to identify resources, discovery mechanisms, etc. similar to HTTP [2] but for use in constrained environments.

However, the use of standardized protocols does not ensure interoperability on the application layer. Therefore, there is a
clear need for being able to communicate using structured data models on top of protocols like CoAP and HTTP.

IPSO Smart Objects provide a common design pattern, an object model, to provide high level interoperability between Smart
Object devices and connected software applications on other devices and services. IPSO Objects are defined in such a way
that they do not depend on the use of CoAP, any RESTful protocol is sufficient. Nevertheless, to develop a complete and
interoperable solution the Object model is based on the Open Mobile Alliance Lightweight Specification (OMA LWM2M) [3],
which is a set of management interfaces built on top of CoAP in order to enable device management operations (bootstrapping,
firmware updates, error reporting, etc.). While LWM2M uses objects with fixed mandatory resources, IPSO Smart Objects use
a more reusable design.

II. DATA MODEL

The data model for IPSO Smart Objects consists of four parts:
1) Object Representation
2) Data Types
3) Operations
4) Content Formats

A. Object Representation

Objects and resources are implicitly mapped into the URI path hierarchy by following the OMA LWM2M object model,
in which each URI path component sequentially represents the Object Type ID, the Object Instance ID and the Resource
Type ID. More precisely the structure consists of three unsigned 16-bit integers separated by the character ’/’ in the following
form Object ID/Instance ID/Resource ID. This URI template approach follows the Web Linking [4] and the IETF CoRE Link
Format [5]. Objects are typed containers, which define the semantic type of instances. Instances represent specific object types
at runtime, and allow Smart Object endpoints to expose multiple sensors and actuators of a particular type. Object instances
are themselves containers for resources, which are the observable properties of an object.

Figure 1 shows an example URI of a temperature sensor.

Fig. 1. Temperature Sensor URI Example.

Semantically, the object type represents a single measurement, actuation, or control point for example a temperature sensor,
a light (actuator), or an on-off switch (control point).

A resource specifies a particular view or active property of an object. For example, a temperature sensor object might expose
the current value (most recent reading), also the minimum and maximum possible reading, the minimum and maximum reading
in an interval, and attributes like engineering units and application type.

POSITION PAPER FOR THE ’IOT SEMANTIC INTEROPERABILITY WORKSHOP 2016’, 17th AND 18th MARCH 2016, SAN JOSE, US. The content of this
document describes the current state of work at the IPSO Alliance. The document has been reviewed and approved by the IPSO Smart Object Committee.



2

Attributes describe the metadata configuration, settings, and state of an object or resource, and are discoverable by reading
the link-format data of an object or resource. Multiple attributes may be serialized in the link-format descriptors that an object
exposes. Some attributes are immutable for a given object or resource type. For example, the static read, write, and execute
capability attributes are derived from a Smart Object’s definition file, while other attributes, like the LWM2M Notification
Attributes, are used to dynamically configure a particular object instance or resource. Attributes are represented using the IETF
CoRE Link Format (RFC 6690) or an equivalent mapping to other content formats, for example, application/json+ld.

This abstraction allows application software to use simple APIs. For complex objects, linking of an object to another object
through an object link resource is allowed. This enables the recursion to be handled at the object level, using design patterns
similar to web linking. An application client can consume a devices API without knowing its structure and attributes a priori.

B. Data Types

IPSO Smart Objects re-use the data types defined in the OMA LWM2M specification [3].

1) String: A UTF-8 string
2) Integer: An 8, 16, 32 or 64-bit signed integer.
3) Float: A 32 or 64-bit floating point value.
4) Boolean
5) Opaque: A sequence of binary octets.
6) Time: Unix Time.
7) Object Link: The object link is used to refer an instance of a given object.

C. Operations

IPSO Objects and their resources have the same operations as their counterparts in the OMA LWM2M specification [3] with
the same semantics.

1) Resource values: Read, Write, Execute (restricted by the Access Type field)
2) Object Instances: Create, Delete (restricted by the Multiple Instances field)
3) Objects and their instances: Read, Write
4) Attributes: Set, Discover

D. Content Formats

Content formats are those specified by the OMA LWM2M specification [3]:

1) Resource values: text/plain, tlv
2) Objects: text/senml+json, application/cbor, binary/tlv
3) Attributes: link-format, link-format+json

III. HUMIDITY SENSOR EXAMPLE

Specification authors use different ways to describe resources exposed by IoT devices. Often natural text is used and
sometimes more formal techniques are relied on. For the definition of the IPSO Smart Objects tables with natural language
descriptions and XML (to offer machine-readable descriptions) are used.

The following is an example of a humidity sensor that contains the sensor value, units, min and max measured values, min
and max range values and a resets for those. Figure 2 shows the object and resource definitions in a tabular form and the
definition in XML is shown in Appendix A.

IV. COMPOSITE OBJECTS

As devices increase in complexity (e.g., from a sensor to an appliance, from a switch to a complex actuator) the need to
link resources to create more complex objects or ”Composite Objects” arises. Such a composite object can, for example, be
constructed with a single reusable type ”generic composite object” with one ID. The resources may be of a generic reusable
link type, also using a single ID, with multiple instances allowed. For example, ’4000/0/6700/0’ where 4000 is a ”composite
object” and 6700 is ”generic object link”. Composite objects offer higher granularity than one large nested object would. An
observer of a device represented as a composite object could reduce bandwidth utilization by observing only the linked object
instances instead of the full object. Figure 3 shows an example, performing a GET operation to the IPSO thermostat composite
object ”/8300/0/7100” would retrieve an object link to ”/3300/0”.



3

Fig. 2. IPSO Humidity Object Definition.

Fig. 3. Composite Object Example.

V. IPSO SMART OBJECTS

A. Starter Pack

This IPSO Smart Objects Starter Pack describes 18 Smart Objects, including a temperature sensor, a light controller, an
accelerometer, a presence sensor, and other types of sensors and actuators. These objects are common in many application
domains. Appendix B shows the list of objects defined in the Starter Pack.

With this initial publication the IPSO Alliance aimed to offer developers and standardization experts a starting point from
which to build more complex objects in order to address vertical IoT market segments. One important design criteria in the
design of the IPSO Smart Objects was and is to making it easy for developers to derive new objects based on their use case
needs, while promoting interoperability to an extent as is practical. Naturally, a device that has not seen a newly defined object
cannot know the semantics even if the contained resources can be understood on a syntactical level. However, re-use of existing
object and resource definitions allows application developers to re-use code

B. Expansion Pack

To complement the initial set of objects, the IPSO Smart Object Expansion Pack was published. The Expansion Pack adds
16 common template sensors, 6 special template sensors, 5 actuators and 6 control switch types.

Some of the newly defined objects are generic in nature, such as voltage, altitude or percentage, while others are more
specialized like the Color Object or the Gyrometer Object. New actuators and controllers are defined such as timer, buzzer,
joystick and level. All of these objects were found to be necessary on a variety of use case domains.

Appendix C lists the objects defined in the IPSO Expansion Pack.



4

C. Extensibility

Apart from the objects published by the IPSO Alliance developers and standardization experts are encouraged to define new
objects tailored to their use cases if the already available functionality is insufficient.

The Starter and Expansion Pack provide basic examples for common sensors and actuators. Developers may extend the
existing object set and submit them to IPSO.

VI. ACKNOWLEDGMENTS

The authors would like to thank Bill Silverajan and Jens Eliasson for their feedback.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” Internet Engineering Task Force, RFC 7252, Jun. 2014.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7252.txt

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” Internet Engineering
Task Force, RFC 2616, Jun. 1999. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2616.txt

[3] O. M. Alliance, “Lightweight Machine-to-Machine Technical Specification v1.0, Candidate Enabler,” Dec. 2015. [Online]. Available: http:
//technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0

[4] M. Nottingham, “Web Linking,” Internet Engineering Task Force, RFC 5988, Oct. 2010. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5988.txt
[5] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,” Internet Engineering Task Force, RFC 6690, Aug. 2012. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc6690.txt

APPENDIX

APPENDIX A: HUMIDITY OBJECT DEFINITION IN XML FORMAT
The following is the definition document for the Humidity Object in XML.

<?xml version="1.0" encoding="utf-8"?>
<LWM2M>

<Object ObjectType="MODefinition">
<Name>Humidity</Name>
<Description1>This IPSO object should
be used with a humidity sensor to report a humidity
measurement. It also provides resources for
minimum/maximum measured values and the minimum/maximum
range that can be measured by the humidity sensor.
An example measurement unit is relative humidity as a
percentage (ucum:%).
</Description1>
<ObjectID>3304</ObjectID>
<ObjectURN>urn:oma:lwm2m:ext:3304</ObjectURN>
<MultipleInstances>Multiple</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Resources>

<Item ID="5700">
<Name>Sensor Value</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Mandatory</Mandatory>
<Type>Float</Type>
<RangeEnumeration></RangeEnumeration>
<Units>Defined by "Units" resource.</Units>
<Description>Last or Current Measured Value from
the Sensor
</Description>

</Item>
<Item ID="5601">

<Name>Min Measured Value</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Type>Float</Type>

http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://www.rfc-editor.org/rfc/rfc5988.txt
http://www.rfc-editor.org/rfc/rfc6690.txt


5

<RangeEnumeration></RangeEnumeration>
<Units>Defined by "Units" resource.</Units>
<Description>The minimum value measured by the
sensor since power ON or reset
</Description>

</Item>
<Item ID="5602">

<Name>Max Measured Value</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Type>Float</Type>
<RangeEnumeration></RangeEnumeration>
<Units>Defined by "Units" resource.</Units>
<Description>The maximum value measured by the
sensor since power ON or reset
</Description>

</Item>
<Item ID="5603">

<Name>Min Range Value</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Type>String</Type>
<RangeEnumeration></RangeEnumeration>
<Units>Defined by "Units" resource.</Units>
<Description>The minimum value that can be measured
by the sensor
</Description>

</Item>
<Item ID="5604">

<Name>Max Range Value</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Type>Float</Type>
<RangeEnumeration></RangeEnumeration>
<Units>Defined by "Units" resource.</Units>
<Description>The maximum value that can be measured
by the sensor
</Description>

</Item>
<Item ID="5701">

<Name>Sensor Units</Name>
<Operations>R</Operations>
<MultipleInstances>Single</MultipleInstances>
<Mandatory>Optional</Mandatory>
<Type>String</Type>
<RangeEnumeration></RangeEnumeration>
<Units></Units>
<Description>Measurement Units Definition e.g. "Cel"
for Temperature in Celsius.
</Description>

</Item>
<Item ID="5605">

<Name>Reset Min and Max Measured Values</Name>
<Operations>E</Operations>
<MultipleInstances>Single</MultipleInstances>



6

<Mandatory>Optional</Mandatory>
<Type>Opaque</Type>
<RangeEnumeration></RangeEnumeration>
<Units></Units>
<Description>Reset the Min and Max Measured Values to
Current Value
</Description>

</Item>
</Resources>
<Description2></Description2>

</Object>
</LWM2M>

APPENDIX B: IPSO STARTER PACK
The IPSO Starter Pack defines the objects shown in Table I.

TABLE I
IPSO STARTER PACK.

Object Object ID
Digital 3200
Digital Output 3201
Analogue Input 3202
Analogue Output 3203
Generic Sensor 3300
Illuminance Sensor 3301
Presence Sensor 3302
Temperature Sensor 3303
Humidity Sensor 3304
Power Measurement 3305
Actuation 3306
Set Point 3308
Load Control 3310
Light Control 3311
Power Control 3312
Accelerometer 3313
Magnetometer 3314
Barometer 3315

APPENDIX C: IPSO EXPANSION PACK
The IPSO Expansion Pack defines the objects shown in Table II.



7

TABLE II
IPSO EXPANSION PACK.

Object Object ID
Voltage 3316
Current 3317
Frequency 3318
Depth 3319
Percentage 3320
Altitude 3321
Load 3322
Pressure 3323
Loudness 3324
Concentration 3325
Acidity 3326
Conductivity 3327
Power 3328
Power Factor 3329
Rate 3346
Distance 3330
Energy 3331
Direction 3332
Time 3333
Gyrometer 3334
Color 3335
GPS Location 3336
Positioner 3337
Buzzer 3338
Audio Clip 3339
Timer 3340
Addressable Text Display 3341
On/Off Switch 3342
Push Button 3347
Level Control 3343
Up/Down Control 3344
Multistate Selector 3348
Multiple Axis Joystick 3345


	Introduction
	Data Model
	Object Representation
	Data Types
	Operations
	Content Formats

	Humidity Sensor Example
	Composite Objects
	IPSO Smart Objects
	Starter Pack
	Expansion Pack
	Extensibility

	Acknowledgments
	References
	Appendix

