
	

Open	Connectivity	Foundation	oneIoTa	Tool	
J.	Clarke	Stevens	
 
Introduction	
The	Open	Connectivity	Foundation	(OCF)	was	established	with	the	goal	of	providing	a	common	
scalable	standard	for	the	Internet	of	Things	with	a	certification	tool	that	could	ensure	
interoperability	and	an	open-source	implementation	that	could	accelerate	implementation	
time.	In	order	to	meet	these	objectives,	a	RESTful	architecture	was	developed	that	would	limit	
the	system	to	just	five	(CRUDN)	APIs	and	a	constructive	data	model	that	would	create	complex	
devices	and	systems	as	collections	of	simpler	devices	and	resources.	It	was	also	important	to	
ensure	interoperability	with	other	ecosystems	in	order	to	expand	the	market	and	simplify	the	
user	experience.	

	



Overview	
oneIoTa	(one	Internet	of	Things	architecture)	is	essentially	an	Integrated	Development	
Environment	(IDE)	that	sits	at	the	center	of	these	requirements	and	delivers	on	this	promise	
using	OCF.	It	has	integrated,	syntax-colored,	and	validating	text	editors	for	the	needed	RAML	
(Restful	API	Modeling	Language)	interface	definitions	and	the	JSON	(JavaScript	Simple	Object	
Notation)	schemas	that	define	each	model.	It	supports	a	crowd-sourced	process	that	allows	
anyone	to	submit	model	proposals,	and	a	back-end	approval	process	that	allows	multiple	
organizations	to	approve	models	for	their	particular	ecosystems.	Finally,	it’s	backed	by	a	git	
repository	so	anyone	can	get	the	models	without	ever	using	the	tool	if	they	choose	to	do	so.	
	
User	Types	
There	are	four	types	of	users	supported	in	the	oneIoTa	tool.	User	rights	are	cumulative.	The	
roles	are	listed	her	from	most	restrictive	to	least	restrictive.	

• Viewer	–	Viewers	are	allowed	to	browse	the	database	of	models	and	and	download	
them	as	they	choose.	Included	files	are	discovered	and	linkable,	so	the	device	model	
tree	can	be	easily	traversed.	The	models	list	can	be	filtered	by	approval	status	and	
organization	with	the	filter	drop-down	at	the	top	right	of	the	models	screen	

• Submitter	–	A	submitter	is	allowed	to	create	new	model	proposals	and	submit	them	to	
organizations	for	approval.	A	submitter	must	agree	to	the	OCF	contribution	agreement.	

• Reviewer	–	A	reviewer	has	approval	rights	for	a	particular	organization	(e.g.	OCF	or	
UPnP).	Once	a	proposal	is	submitted,	a	reviewer	can	change	the	status	of	a	model	from	
“pending”	to	“approved.”	A	reviewer	can	also	tag	a	release.	Typically,	there	will	only	be	
a	handful	of	reviewers	for	a	particular	organization	and	they	will	determine	their	own	
process	for	reviewing	models	and	tagging	releases.	

• Admin	–	An	admin	has	the	privileges	of	all	other	roles	and	is	also	able	to	grant	any	role	
to	other	users.	

	
Process	
All	models	have	the	potential	to	go	through	the	process	starting	as	a	draft	and	ending	as	an	
approved	model	in	a	release.	The	process	is	described	below.	
	
Proposals	
All	models	start	as	a	proposal	developed	by	a	submitter.	A	submitter	just	clicks	on	the	“Create	
Proposal”	button	to	create	a	new	model.	A	proposal	can	contain	one	or	more	models.	The	
“Proposal	Summary”	is	an	optional	description	field	that	will	eventually	show	up	in	the	git	
repository	if	the	proposal	is	approved.	When	a	file	name	is	added	(all	files	must	either	have	the	
file	extension	“.raml”	or	“.json”),	the	file	is	automatically	created	and	an	editing	window	is	
opened.	The	submitter	can	simply	begin	entering	code,	start	with	a	default	template,	or	paste	
in	copied	text.	Files	can	also	be	batch-imported	via	an	import	window	that	allows	for	the	
selection	of	multiple	files	in	a	single	import	instance.		If	a	file	being	added	to	or	imported	to	a	
proposal	already	exists	then	oneIoTa	automatically	creates	a	new	version	of	that	file.			
	



Draft	Status	
Once	created,	the	proposal	is	in	“draft”	status.	Drafts	are	editable	files	that	have	not	yet	been	
submitted	for	approval	by	an	organization.	The	editor	automatically	checks	and	highlights	
syntax	and	validates	the	file	as	you	type.	Errors	are	indicated	above	the	edit	window.	All	models	
must	have	a	RAML	interface	and	may	include	any	number	of	JSON	schema	files.	All	the	current	
OCF	release	1.0.0	models	are	already	entered	into	oneIoTa,	so	they	can	be	studied	in	order	to	
understand	the	basic	structure.	Be	sure	to	consult	the	organization	for	which	the	model	is	
intended	in	order	to	understand	naming	conventions	and	other	requirements.	
	
Proposals	can	be	shared	so	that	groups	of	users	can	collaborate	on	models	that	are	in	draft	
mode.	Just	copy	the	listed	link	and	share	it	with	any	intended	collaborators.	They	must	have	the	
submitter	role	to	edit	or	add	files	in	the	proposal.	Only	the	proposal	creator	will	be	able	to	
submit	the	proposal.	
	
As	models	may	evolve	over	time,	new	proposals	can	be	created	from	existing	proposals	by	
clicking	the	pencil	icon	above	the	edit	box	of	any	approved	model.	It	is	up	to	the	target	
organization	to	ensure	backwards	compatibility	or	make	sure	other	requirements	are	met	when	
new	versions	of	a	model	are	created.	All	versions	of	a	model	and	the	status	of	each	are	listed	on	
the	editor	screen.	Any	version	can	be	selected	and	viewed.	
	
Submitting	a	Proposal	
Once	a	proposal	is	deemed	ready	for	submission,	the	submitter	who	created	the	proposal	may	
submit	it	for	approval.	The	submission	must	be	targeted	to	a	particular	organization	that	can	be	
selected	from	the	drop-down	on	the	editing	screen.	The	proposal	can	also	be	discarded	by	
clicking	the	“Discard”	button.	Once	submitted,	the	proposal	status	will	change	to	“pending”	and	
will	show	up	in	the	reviewer’s	queue	to	be	reviewed	and	potentially	approved.	
	
Approval	Process	
A	reviewer	will	periodically	review	the	pending	models	and	determine	if	the	proposal	should	be	
approved.	If	approved,	no	status	indicator	will	show	and	the	proposal	will	be	pushed	to	the	git	
repository.	At	that	point,	it	can	be	pulled	from	the	git	repository	or	viewed	in	oneIoTa,	but	it	
can	no	longer	be	edited.	It	will	be	tagged	as	part	of	the	next	release	unless	a	new	proposal	is	
created	and	accepted	before	the	release	is	tagged.	
	
Releases	
Releases	are	simply	a	noted	point	in	time	with	an	instructive	label.	The	latest	approved	version	
of	all	accepted	models	at	that	point	in	time	will	be	tagged	with	the	label	determined	by	the	
reviewer	who	tags	the	version.	The	tag	will	also	be	applied	to	the	git	repository	at	that	point.	
	
Git	Repository	
The	oneIoTa	tool	only	commits	to	and	tags	a	git	repository	master.	oneIoTa	maintains	a	
separate	internal	database	for	its	functionality.	The	approving	organization	will	determine	



which	repository	it	wants	to	use.	In	the	case	of	OCF,	the	repository	is	open	to	all	for	pulling	the	
models,	but	contributions	back	to	the	master	must	be	done	through	oneIoTa.	
	
What’s	Next?	
While	oneIoTa	can	do	a	lot	to	crowd-source	the	models	required	for	the	Internet	of	Things;	this	
paper	has	only	hinted	at	the	interoperability	features	it	supports.	The	is	the	subject	of	a	
separate	paper.	There	are,	however,	a	couple	of	features	that	are	associated	with	oneIoTa	and	
the	OCF	data	model	approach.	RAML	and	JSON	files	are	machine	readable	and	complete,	and	
can	therefore	be	directly	used	to	create	documentation	and	code.	OCF	data	model	
specifications	are	currently	created	directly	from	the	RAML	and	JSON	files	–	not	vice-versa.	
When	a	release	is	tagged,	the	models	in	the	release	are	used	to	generate	a	file	that	can	be	used	
with	mail	merge	in	most	word	processing	programs.	In	addition	to	documentation,	the	models	
can	be	used	to	generate	code	stubs	in	any	programming	language	and	on	any	platform	(using	
Python	scripts,	for	example).	Generic	user	interfaces	can	also	be	generated.	So,	for	example,	a	
simple	OCF	RESTful	interface	core	could	be	created	on	a	Raspberry	Pi.	The	code	stubs	for	the	
CRUDN	functions	could	then	be	automatically	generated	for	any	model	in	oneIoTa.	Another	
script	could	automatically	generate	a	user	interface	with	buttons	for	booleans,	sliders	for	
integers,	etc.	on	an	Android	phone.	A	new	prototype	device	could	be	created,	implemented	
and	fully	functional	in	hardware	in	a	matter	of	minutes.	
	
The	oneIoTa	tool	is	one	step	in	the	direction	of	a	scalable	and	interoperable	Internet	of	Things.	


