
Secure Firmware Update Over the Air in the Internet of Things Focusing
on Flexibility and Feasibility

Proposal for a Design

Silvie Schmidt1, Mathias Tausig1, Matthias Hudler1, and Georg Simhandl2
1Competence Centre for IT-Security, FH Campus Wien, University of Applied Sciences, Vienna, Austria; 2Adaptivia GmbH,

Vienna, Austria
{silvia.schmidt, mathias.tausig, matthias.hudler}@fh-campuswien.ac.at; georg.simhandl@adaptivia.com

Keywords: Firmware Update, Secure Firmware Update Over the Air, FOTA, Internet of Things, IoT, Embedded Systems

Abstract: The rapid development of the IoT challenges various fields of security. One of the most delicate issues in
this area is the process of updating the firmware of a device connected to the IoT. This article describes the
development of a design for such an update process focusing on flexibility and feasibility - without neglecting
security. This is achieved by our proposal due to an enhanced bootloader which “decides” the kind of update
process used based on the user’s settings. Our proposal consists of four update-process-packages, each offering
different feature sets of security.

1 INTRODUCTION

The Internet of Things (IoT) is becoming more and
more a part of our everyday life. Due to the rapid
development of the IoT and the demand for more fea-
tures by users, the process of updating the firmware
of the “Things in the Internet” gained in importance
regarding its security.

In our setting the firmware is the RIOT-OS1 appli-
cation running on our board. Updating(Zimmer et al.,
2015) this firmware means correcting bugs, adding
new features, patching security, etc. If we think about
security, we mainly think about protection against
unauthorized access to the device and against threats
from malware, and the Internet (Kleidermacher and
Kleidermacher, 2012). Subsequently, we defined var-
ious preconditions for our test setting: there is no
physical access to the devices and as an evaluation
board we chose Atmel SAMR21-Xplained Pro Evalu-
ation Board (Cortex-M0+, 256kB Flash,32kB RAM).

Firmware updates over the air (FOTA) arise var-
ious security issues, and this does not automati-
cally target malicious attackers, i.e. a wrong firmware
might be uploaded, the transmission of the new image
failed, or the new firmware simply does not work as
intended. Additionally, without any security checks
malware can be uploaded instead of the firmware up-
date. Often, a failed update process causes the device
to become unusable at all. Regarding embedded de-
vices used nowadays, this lack of security might have
severe consequences since cars or even medical de-
vices are part of the IoT.

1https://www.riot-os.org/

2 CONSIDERATIONS FOR A
SECURE REMOTE FIRMWARE
UPDATE PROCESS

The most sensitive issue concerning embedded sys-
tems security is the process of updating the firmware.

The firmware’s integrity has to be validated and
may be decrypted. Without any security mechanism,
the update would be written over the old one with-
out any revision. There are several strategies to up-
date firmware concerning security, system stability,
and transmission reliability.

Memory Partitioning (Atmel, 2013) is a tech-
nique to ensure the continuous availability of a work-
ing firmware. This strategy requires double memory
size which is a drawback for devices with small mem-
ory size or applications with big code size.

Figure 2 shows our concept for an optimal Mem-
ory Partitioning containing explicit areas for the up-
date and the backup. All tests highlighted in figure 1
are performed in the update area - except the operabil-
ity, which is executed at the firmware’s area. Conse-
quently, the update package is copied into the backup
area if all checks were successful. If the update pro-
cess fails, the backup is installed.

2.1 Requirements of a Secure Remote
Firmware Update

The firmware integrity has become the most impor-
tant security issue for embedded devices because its
protection solves various security issues regarding the
update process. Therefore, signing the firmware up-
date is easy to implement and subsequently, often the
only security mechanism used. This is also caused

by concerns about decreasing performance due to en-
hanced security. Nevertheless, signing the firmware
update should never be the only security feature pro-
vided (Cui et al., 2013). Firstly, we identified several
requirements regarding security issues derived from
the process of updating firmware. Nevertheless, we
are aware that the requirements may differ concern-
ing the device and/or its application.

The major requirements are:
• Authentication: The device may only accept soft-

ware from a specific source.

• Version Control: Only the version intended for the
device shall be accepted; this also prevents the in-
stallation of outdated software.

• Package Integrity and Complete & Error-Free
Transmission: Tampered or incomplete firmware
may not be accepted by the device. After its trans-
mission the update package has to be checked for
errors and it has to be transfered completely.

• Operability Check: The new firmware has to be
checked if it is working as intended.

• Reduced User Interaction: The user should not
have to interact extensively since this is a “good”
source of errors.
Our assumption is, that if stronger security is

required efficiency decreases. Therefore, a bal-
ance has to be found. What is crucial for my de-
vice/application? Moreover, one has to decide if sys-
tem reliability is worth the cost of a larger memory.
Summing up, a flexible solution has to be found for a
secure firmware update.

3 SECFOTA - PROPOSAL FOR A
SECURE FOTA

The delivery status of the embedded device
(client) contains the bootloader + public keys + se-
cret keys (including fall-back keys) and the initial ap-
plication/firmware.

3.1 Update Process

After evaluating the issues discussed in the previous
sections, we designed a secure remote firmware up-
date process. Due to our assumption regarding the im-
pact of enhanced security on performance and mem-
ory costs, we provide four packages, which we call
SecFOTA-packages. The encryption and the signing
of the new firmware is executed by the server.

The bootloader calculates which SecFOTA-
package to use, based on the size of the firmware and
the memory’s size - and of course by the requirements
of the user and application. The package with the best
possible options is prioritized. The features provided
by the SecFOTA-packages are:
• Integrity and Authentication through digital

signature

INSTALLATION
NEW

FIRMWARE

OPERABILITY
SCAN

DECRYPTION

DELETE UPDATE
PACKAGE & SEND

ERROR MESSAGE TO
SERVER

RE-
TRANSMISSION

RECEIVING UPDATE
PACKAGE

INTEGRITY CHECK

TRANSMISSION
COUNT > 3

ENCRYPTION
ENABLED

VERSION
CONTROL

„UPDATE SUCCESSFUL“
MESSAGE TO SERVER

(& BACKUP)

„UPDATE FAILED“

TRANSMISSION
COUNT = 1

TRANSMISSION
COUNT ++

OK

NOK

OK

YES

NO

NO

YES

OK

NOK

NOK

SECURITY
PACKAGE

Figure 1: Concept for SecFOTA - Client-Side

• Fault Tolerance via backup

• Confidentiality by the means of encrypting the
transmitted update of the firmware

Table 1 shows the features provided by each pack-
age. A memory table containing all necessary ad-
dresses is managed by the bootloader in any case. The

Red Pkg SIG, EE, B
Blue Pkg SIG, EE, NoB
Yellow Pkg SIG, ED, B
White Pkg SIG, ED, NoB

Table 1: SecFOTA-packages providing various features:
encryption enabled (EE), encryption disabled (ED), backup
(B), no backup (NoB), signature (SIG).

update process on the client’s side is illustrated in fig-
ure 1.

3.2 SecFOTA-Packages in Detail

The level of security - by the means of integrity, au-
thentication, fault tolerance, and confidentiality - is
represented by various SecFOTA-packages; it is a
corporately decision by the user and the bootloader,
which package to apply.

In our concept the update area is a pre-defined
address area in the flash memory, where the verifi-
cation of the update package’s signature is executed.
All solutions contain a memory table, which is man-
aged by the bootloader. It holds the addresses for the

BOOTLOADER

MEMORY TABLE

UPDATE AREA

FIRMWARE v1.1

FIRMWARE v1.0

1.0 SIG

SIG...Signatur
TM…..Transmission
TS…....Timestamp

1.1 SIG

0x0000DC00

0x00016800

1.0

1.1

0x0000DC00

0x00016800

Figure 2: Red Package Sketch

various areas, the version number, and all important
informations regarding the applicable security pack-
age.

• White Package: representing low security, but
good performance regarding runtime.

• Yellow Package: is the same as the White Pack-
age, but it keeps a backup in the Flash memory.
Consequently, this solution saves memory in the
size of the firmware.

• Blue Package: offers memory-saving strong se-
curity.

• Red Package: stands for strong security, system
stability, and transmission reliability. The draft
for the main aspects of this solution is illustrated
in figure 2.

3.3 Techniques

The following techniques are considered to imple-
ment the ideas discussed in 3.1 and 3.2:

• Signature: ECDSA is our first choice; due to its
performance advantages Elliptic Curve Cryptog-
raphy (ECC) is predestined for constrained de-
vices.

• Encryption: Targeting a generic proposal we
have to consider a bare-metal C-implementation
of AES.

4 CONCLUSION AND FUTURE
WORK

A balance between efficiency in time and memory
consumption on one side, and the level of security on
the other has to be determined. Finding a preferable
generic solution is the goal of this work; at least, an
evaluation if such a solution is feasible. Therefore,

our future work will contain mainly performance tests
of cryptographic algorithms on the board.

4.1 Open Questions

• Is the bootloader interchangeable? Which secu-
rity issues arise?

• What tests can be performed to check the oper-
ability/functionality of the firmware?

• Are timestamps useful for re-registration-check of
the client? Is it necessary in the IoT?

• If there is no backup kept on the device, is there a
possibility to solve this problem from the server-
side? Is the device unusable forever? Is it reason-
able to keep a small application with the network
stack on the device?

• Is Secure Boot an option as a root of trust? Is it
decisive for SecFOTA?

ACKNOWLEDGEMENTS

Zoran Stojkovic, z.stojkovic@embed-it.com,
Embed-IT GmbH.

Supported by Vienna Business Agency.

REFERENCES

Atmel (2013). Atmel: At02333 - application note on safe
and secure bootloader implementation for sam3/4.

Cui, A., Costello, M., and Stolfo, S. J. (2013). When
firmware modifications attack: A case study of em-
bedded exploitation. In NDSS. The Internet Society.

Kleidermacher, D. and Kleidermacher, M. (2012). Embed-
ded Systems Security: Practical Methods for Safe and
Secure Software and Systems Development. Elsevier.

Zimmer, V., Sun, J., Jones, M., and Reinauer, S. (2015).
Embedded Firmware Solutions: Development Best
Practices for the Internet of Things. Apress, Berkely,
CA, USA, 1st edition.

