
Lexis: An optimization-based model for the evolution of protocol
stacks

Saamer Akhshabi, Constantine Dovrolis
College of Computing, Georgia Tech

August 28, 2013

1 Motivation
Network protocol stacks typically follow a multi-layer hierarchical architecture. What determines the required number
of layers, or the number of protocols at each layer? The space of applications, services and user expectations (at the
top layer) and the space of elementary functions (at the bottom layer) are constantly evolving – how does this dynamic
environment affect the organization of layered protocol stacks? What determines the evolvability of a protocol in the
presence of changes? And how can we design new protocols that can effectively coexist, or even replace, older incumbents
that are widely deployed?

Why is it important to investigate these questions now? We argue that the current level of knowledge about protocol
stacks is similar to that of shipbuilding in ancient Egypt – Egyptians were good at building ships (or some form of floating
vessels) by the 4th millennium BC. They were doing so however without knowing about buoyancy, Archimedes’ principle
or the key equations of hydrostatics or hydrodynamics. It is likely that they had some empirical understanding of these
concepts, but not an organized system of knowledge that we usually associate with the science of naval architectures today.
Without such a system of knowledge every new floating vessel would be viewed as a new “invention”, comparisons between
the properties of different ships would be mostly subjective, and questions about the limits and capabilities of different
designs would be tractable only after the corresponding vessel was built.

Our research in this area asks some basic questions about protocol design, and it aims to investigate the role of layering,
modularity, complexity, and robustness in network architectures. The over-arching theme, however, is evolution – protocols
and protocol stacks are not designed to work in a static environment. Applications, services, user expectations, communi-
cation and computing technologies, as well as the underlying economics, are all in a constant state of flux. A protocol stack
designed in 2013 should not just be optimal in terms of what is known in 2013; instead, it should be able to evolve, and
more importantly, maintain or improve its features while evolving.

We are studying the previous abstract but fundamental questions using a new model that we have recently developed,
referred to as Lexis. Lexis is formulated based on cost objectives, and so it may be more appropriate for capturing the design
and evolution of technological (engineered) systems compared to strictly evolutionary models. The model is described in
Section 3. This extended abstract does not include any results. This is ongoing work and we expect to present our first
results at the ITAT workshop in December’13.

2 An overview of Lexis
Lexis1 captures a cost-minimizing hierarchical design process. The input to the design process is an alphabet where letters
correspond to elementary functions. The output of the design process is a layered DAG that shows how to construct a given
set of regular expressions, which correspond to the final applications that the architecture should provide. The objective
of the Lexis design process is to construct the desired regular expressions hierarchically, first constructing simpler (i.e.,
shorter) regular expressions (protocol modules) at internal layers, and reusing those as much as possible. The incentive to
reuse existing regular expressions comes from the cost formulation: each regular expression has a cost that is related to its

1Lexis means “word” in Greek.

1



length relative to the length of its constituent regular expressions. The overall objective is to minimize the total cost of the
designed architecture.

In Lexis, each protocol has an economic value. Fundamentally, each protocol has a value (or utility, fitness) that largely
determines the evolution of that protocol, its competition with other similar protocols, and its likelihood of replacement.
The value of a protocol X in Lexis depends on two related factors: a) the location of X in the protocol stack (typically,
protocols with a large number of upstream dependencies are more valuable), and b) the number of people that directly or
indirectly make use of X. Additionally, each protocol in Lexis has an economic cost, which depends on the complexity of
that protocol’s functionality relative to the complexity of its inputs. We believe that the cost of a protocol is determined by
its internal complexity surplus, i.e., the complexity of the additional functionality it provides relative to the complexity of
the functionality provided by its inputs. For example, the cost of TCP is arguably higher than the cost of UDP because of
the additional functionality provided by the former.

To evaluate the predictive power of Lexis, we examine whether the model can produce the following qualitative proper-
ties of existing and extinct protocol stacks:

• The number of lower-layer protocols and of higher-layer protocols is typically higher than the number of protocols at
the middle-layers. A specific instance of this observation is the “hourglass pattern” in the Internet protocol architec-
ture.

• We expect that the frequency at which new protocols are created, or existing protocols need to evolve, is higher as we
move closer to the top or bottom layers of the protocol stack, compared to the middle layers. This is related to the
observed “ossification” of protocols such as TCP or IPv4 in the case of the Internet protocol architecture.

• It has been repeatedly observed that whenever a new functionality is needed, perhaps to support a wave of emerging
applications or user expectations, the protocol or mechanism that eventually “wins” is that which provides the desired
functionality in the simplest possible way, or at the minimum possible cost.

3 Model description
This section presents Lexis in more detail. This model captures a cost-minimizing hierarchical design process. The input
to the design process is an alphabet, E, where letters correspond to elementary functions. The output of the design process
is a layered DAG, G, that shows how to construct a given set of regular expressions, S, which correspond to the final
applications that the architecture should provide. Regular expressions are a simple but powerful modeling tool as they can
represent any finite automaton. The objective of the Lexis design process is to construct the desired regular expressions
hierarchically, first constructing simpler (i.e., shorter) regular expressions (protocol modules) at internal layers, and reusing
those as much as possible. The incentive to reuse existing regular expressions comes from the cost formulation: each
regular expression has a cost that is related to its length relative to the length of its constituent regular expressions. The
overall objective is to minimize the total cost of the designed architecture.

Consider an alphabet E = {e1, e2, . . . en} of n characters. Each character can be thought of as an elementary function
in terms of computation, storage, transmission, etc. Even the simplest protocol module would require the appropriate
interconnection of several such elementary functions.

A protocol module corresponds to a regular expression w that consists of characters fromE combined with the three reg-
ular expression operators: union (∪), concatenation (·), and Kleene’s star (�), listed here in order of increasing precedence.
The union operator captures that a module’s function requires either of two underlying functions, while the concatenation
operator captures that both functions are needed in a certain order (as usual, we omit the notation (·) for the concatenation
operator). The star operator reflects that a certain function can be repeated an arbitrary number of times in a computation
loop. A rigorous (recursive) definition can be found in many textbooks and is omitted.

More generally, a regular expression w can be constructed from a set I(w) of one or more shorter regular expressions,
referred to as input operands of w, if w can be written as a function of only members of I(w) using the operators {∪, ·,� }.
For example, the regular expression w = a · b ∪ a · (c ∪ d) · a · b can be constructed from the set of input operands
I(w) = {a · b, a, c ∪ d}, but it can also be constructed from the more elementary inputs I(w) = {a, b, c, d}. The fact that
two applications or protocols may share similar functionality (e.g., the reliable transfer of a byte stream) can be modeled
with regular expressions that share similar segments. Also, the length of a regular expression represents the complexity of
the corresponding function; longer (but not just repetitive) regular expressions represent more complex functionality.

2



Next, we present a static optimization problem, where the set of words, S, and the alphabet, E, are time-invariant and
the design process is executed once. This is followed by a dynamic optimization in which the design evolves to include new
elementary functions (changes in the alphabet E) and new applications (changes in the final regular expressions S).

Static Design: In the static design problem, we are given the alphabet E and a set of regular expressions S that represent
target applications. The objective of the design process is to construct an architecture G, i.e., a layered directed acyclic
graph of regular expressions such that: a) the bottom layer nodes are the letters in E, b) the nodes of G include all regular
expressions in S, and c) each expression w in G can be constructed from its input operands I(w), i.e., the nodes of G that
have an outgoing edge to w. Note that the top-layer nodes are always regular expressions in S, but the converse is not
necessarily true; some target applications may be input operands for other regular expressions. Fig. 1(a) offers a simple
illustrative example.

The cost of a regular expression w is defined based on the cost of its input operands. Specifically, the cost γ(w, I(w))
of a regular expression w with input operands I(w) is the minimum number of operators that are required to construct w
from I(w). It follows that the cost of a single-letter regular expression (i.e., a regular expression at the bottom layer of G) is
zero. For example, the cost of w = ab ∪ a(c ∪ d)ab with I(w) = {ab, a, c ∪ d} is 3, while the cost of the same w using the
input operands I(w) = {a, b, c, d} is 6. In other words, the cost of a regular expression is defined based on the additional
complexity (length) of that expression relative to the complexity of its input operands.

The following example illustrates an important point about the star operator. The cost of w = ababab using I(w) =
{(ab)�} is zero because w can be constructed from the input operand (ab)� without any additional operators. On the other
hand, constructing w from I(w) = {a, b} has a cost of two. In other words, the star operator allows us to construct a
repetitive function at a lower cost.

Finally, the cost γ(G) of an architecture G is defined as the cumulative cost of all regular expressions in G,

γ(G) =
∑

w∈G

γ(w, I(w)) (1)

Note that this cost formulation provides the incentive to construct regular expressions located at internal layers of G, if
they can be used as input operands for longer regular expressions. Additionally, reusing more complex (i.e., longer) regular
expressions results in lower cost than reusing simpler (i.e., shorter) expressions,

The static hierarchical design problem is then to design a minimum cost architecture G given E and S: Given a set
of services S and an alphabet E, design a DAG architecture G that can construct all regular expressions in S and that
minimizes the cost γ(G). A first important question is whether the problem in NP-Hard, and if so, are there efficient ways to
solve it heuristically? Can we derive a good approximation bound for those heuristics? This algorithmic investigation will
also focus on the factors that determine the optimal number of layers in an protocol architecture. A related question is: how
does service diversity (in terms of entropy in the regular expressions that correspond to the given applications set) affect
the resulting protocol stack? For instance, compare a network that offers just few services (e.g., POTS) with one that has to
offer many heterogenous services (Internet). Which of the two architectures will have more layers, and which architecture
will have more intermediate protocols at each layer?

Dynamic Design: Suppose now that both the set S and the alphabet E can change with time, forcing the architecture G to
also evolve. We want to understand how the dynamics of S(t) and E(t) can influence the architecture G(t). Additionally,
we want to understand how to design the architecture G(t) so that it can be evolvable, i.e., capable of evolving over a long
time horizon at a low cost.

One approach is to redesign the architecture “from scratch” whenever there is a change in E or S, solving the static
design problem after each change. This approach can be viewed as “clean slate” design, producing an optimized architecture
at each point in time. It may have a significant cost overhead, however, because it does not attempt to reuse any of the
existing protocols/modules (represented with internal regular expressions).

Another approach, is to incrementally design a new architectureG(t+1) from an existing architectureG(t), minimizing
the modification cost γδ (G(t), G(t + 1)) between the two architectures, i.e., the cost of the new regular expressions (nodes)
in G(t + 1) that are not present in G(t). This approach can be viewed as an evolutionary design process. It is important
to note that even though this approach attempts to minimize the cost of each architectural transition, it may gradually
produce architectures that are far from optimal, i.e., with a total cost γ(G(t)) that is much larger than the cost of the optimal
architecture at time t. A key question we plan to investigate is: How does the evolutionary (incremental) design process
compare to the optimized (clean slate) design process in terms of the cost of the overall architecture? Is it that the cost of
the former gradually deviates from the latter, leading to an increasingly bad architecture? Or is it that, depending on the
dynamics of S(t), the evolutionary design cost remains close to the optimized design cost?

3



(a) Initial architecture (b) Evolved architecture

Figure 1: Left: The alphabet E is shown in blue. The set of applications is shown in red. The green nodes represent regular
expressions that are constructed as intermediate modules. The cost of each node is also shown. Right: The architecture
evolves to support a different set of applications S′ (the grey node is a removed application). A new internal node has been
constructed. The modification cost is γδ=2 because of the two new nodes. The total cost of the architecture (γ(G)=9) has
not increased however, because it is now “cheaper” to construct the existing applications.

Note that the evolutionary design process may both add and remove edges from G(t). Removing edges can produce
nodes without any outgoing edges. Such regular expressions are no longer required and can be removed from the architec-
ture; this mechanism captures the removal of protocols from an architecture when they are not used any more (Property P8).
The removal of a regular expression does not affect the modification cost.

We now state the evolutionary design problem: Given an architecture G(t) that constructs a set of applications S(t)
from an alphabet E(t), and given a new set of applications S(t + 1) and potentially a new alphabet E(t + 1), design
the architecture G(t + 1) that can construct S(t + 1) minimizing the modification cost γδ (G(t), G(t + 1)). The previous
formulation implies a myopic and memoryless approach to evolutionary design. In other words, it does not try to learn
from experience (how did S(t) change in the past?) and it does not try to predict the future beyond time t + 1. We will
also consider extensions along those lines with more sophisticated evolutionary models, even though the design of most
networking protocol stacks has arguably been rather myopic in practice.

Obviously, the dynamics in the time series S(t) are very important in shaping the evolution of a protocol stack. A key
question is whether the process that creates this time series is exogenous to the architecture G(t) or not. New applications
that can be easily constructed using the existing architecture may be more likely than those requiring completely new un-
derlying modules and protocols. For example, it is easier to create an Internet telephony application (like Skype) that is
based on the best-effort capabilities provided by IP and UDP than to create a telephony application that requires QoS guar-
antees. How do the dynamics of S(t) affect the resulting architecture G(t)? We will start this investigation comparing the
following two processes: a) each new application is generated independently of existing applications (exogenous creation
of new regular expressions in S(t)), and b) each new application is a modification of one or more existing application (en-
dogenous creation of S(t)). In both cases, services can become gradually more complex as captured by regular expressions
of increasing length.

Finally, to evaluate the robustness of different architectures, we will also consider “disruptions” that may cause any of the
following: a) introduction of new capabilities (new letters in the alphabet), b) introduction of completely new applications
(regular expressions that have very low similarity with any existing expressions in S(t)), and c) sudden removal of many
existing applications when a new “wave” of similar applications appears. Which features make a protocol stack robust to
such unexpected disruptions? Another important question is when and whether it is simpler (i.e., lower cost) to address
such disruptions with a completely new architecture versus with incremental modifications.

4


