CoRE Working Group C. Bormann

Internet Draft K. Hartke
<draft-bormann-core-6lowpan-fluff- Universitat Bremen TZI
minus-01>

Intended status: Informational March 18, 2011

Expires: September 2011

Garrulity and Fluff

draft-bormann-core-6lowpan-fluff-minus-01

Status of this Memo

This Internet-Draft is submitted to IETF pursuant to, and in full conformance with, the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also distribute working documents
as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress”.

The list of current Internet-Drafts can be accessed at <http://www.ietf.org/ietf/1id-
abstracts.txt>.

The list of Internet-Draft Shadow Directories can be accessed at
<http://www.ietf.org/shadow.html>.

This Internet-Draft will expire in September 2011.

Copyright Notice

Copyright © 2011 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents in effect on the date of publication of this document
(http://trustee.ietf.org/license-info). Please review these documents carefully, as they
describe your rights and restrictions with respect to this document.

Abstract

In engineering digital networks and systems, we have a hard time getting rid of things. Our
Architectures may start strong (at best), but get diluted ever after.

Constrained node/networks may give us a unique chance to build strong protocols again. This
note takes the position that we should do that.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.status
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.copyrightnotice
http://trustee.ietf.org/license-info
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.abstract

1. Introduction

In engineering digital networks and systems, we have a hard time getting rid of things we no
longer want.

Our PCs still have BIOSes that can only be understood with a history book and the help of a
couple of retired employees. Sometimes the historical baggage is just at the level of some
pesky idiosyncrasies. Sometimes it is the source of significant complexities, as anyone trying
to set up a device in the PC “architecture” can tell.

Looking at protocols (to pick out one innocent victim: [RFC2131]) with a significant history
and a lot of success [RFC5218] quickly gives one the same feeling. Often, an existing protocol
[RFC0822] is almost completely repurposed [RFC2045], but cannot get rid of the remnants of
the old protocol; this causes not only inefficiencies but above all complexity.

As a strategy for growing meaningful systems by starting simple and growing sideways, this
isn‘t even bad. However, can this layering of complexity over complexity go on indefinitely?
Sometimes protocols simply fall out of favor [RFC0959] when there are newer protocols that
are more aligned with current requirements [RFC2616]. However, as often, no such
replacement happens to appear, and we are saddled with all the accreted complexity.

Constrained nodes often cannot sustain all the complexity of these protocols. In some cases,
IETF has started to generate simplified [I-D.ietf-core-coap] or optimized [I-D.ietf-6lowpan-
nd] versions of an existing protocol.

The objective of these new designs is not so much to save bytes (this is an objective, just
not the overriding one), but to reduce complexity. Some of this complexity comes from the
multiple layers of re-work existing protocols sometimes exhibit [ARCH]. Some of it also
comes from other sources which we will discuss below.

But isn't there a danger that the new designs will accrete all the layers of fat that the
existing successful protocols already have? There definitely is. The most important antidote is
having a well-defined set of Architectural Constraints, such as the REST considerations that
led to the CoAP design [REST]. But still, we have to be vigilant. The forces that pull in
additional complexity are strong.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.1
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#problems
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC2131
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC5218
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC0822
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC2045
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC0959
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC2616
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#I-D.ietf-core-coap
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#I-D.ietf-6lowpan-nd
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#ARCH
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#REST

2. The Seven Fallacies

No manifesto is complete without a list of seven somethings. Here, we will describe seven
fallacies of protocol design that will need to be actively avoided in the area of constrained
node/network design: we have much, much less space for fluff and garrulity than the general
Internet.

2.1 The fallacy of giving in to complexity

The introduction has described how protocols manage to accrete complexity over time.
However, sometimes complexity is designed into a protocol.

The reality is complex, so won't our protocols have to be? Actually not, if there is a good set
of architectural constraints governing the protocol.

Some of this complexity may be needed for business reasons by the users of the protocol.
This is the most difficult complexity to avoid — even if it is foreseeable that the need for the
complexity will go away due to a changing environment (e.g., in the course of digital
convergence). SIP [RFC3261] is one particular victim of this process, and the present essay
has little to offer to mitigate it, except maybe for a strong taste about which business
requirements should indeed be catered to.

The proverbial source of designed-in complexity is “design by committee”. Why is that so?
Some problems stem from the shortcomings of committees themselves. In standards work,
there also often is a lack of shared architectural vision — even if some of the members are
strong on architecture, it is often hard to transfer the more subtle aspect of design taste to
everyone. Success here sometimes requires the occasional appeal to authority.

A more dangerous source of complexity is the divergence in perception of objectives. First of
all, each committee member has their own personal experience to guide their design taste.
Second, the business requirements of their organizations may differ. There may also be
different perspective where the area of application (or the industry as a whole) is going. This
can lead to mission creep: The protocol is trying to address an ever wider set of requirements
(which see below), with less and less focus on important architectural constraints.

This is a particular problem of “attractive protocols”. For a while, SIP was such an attractive
protocol that there were proposals to do just about everything with SIP, even where SIP
provided no appreciable benefit. Attractiveness here is a nuisance to the protocol designer.
Unfortunately, a protocol set up for success is quite likely to become “attractive” in this
sense.

The worst source of complexity, however, is the need to appease stakeholders. If there is
somebody that needs to be won to achieve consensus, that somebody may innocently (not
knowing better) ask for changes that destroy the architectural foundations of a protocol. The
desire to get another patent into the "mandatory to implement” pool is the worst source of
stakeholder “input”, but fortunately patents are generally actively shunned in the IETF. Trying
to get a “design win” for one’s favorite protocol, pure NIH thinking, or the simple desire to be
co-author on a draft, are still strong stakeholder forces that must be recognized and resisted.

2.2 The fallacy of design requirements

Some engineering disciplines that do not involve computers have a concept of design
requirements, where a specific condition to be fulfilled by the engineering product is foreseen
before the design starts (must survive a wind load of ...). Software engineering in the past
decades has been painfully learning that the 1969 analogy of software design to bridge
design is not working, and didn't really capture the essence of bridge design in the first
place.

Worse, in protocol design, “requirements” are often used to force a specific design by making
sure a “user requirement” is anchored into a set of design requirements that in turn makes
sure the competing solution cannot be chosen. Working group members then tend to fight
about requirements in order to pre-meditate the selection of their favorite solution.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-seven-fallacies
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.1
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-giving-in-to-complexity
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC3261
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.2
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-design-requirements

The IETF has mostly grown to manage this problem by wasting less time on requirements,
and, if they are needed, casting them into the form of objectives, i.e. tabulating desirable
goals for a solution each of which still must be weighed against their cost.

As a best practice, protocols are designed, not engineered from a fixed set of requirements:
The solution chosen grows in parallel with the understanding of the costs and benefits of each
of the objectives chosen.

However, sometimes falling back into “engineering requirement” think is observed; this must
then be quickly rooted out.

2.3 The fallacy of protocol requirements

Protocol specifications essentially regulate the behavior of the participating entities, outlawing
or requiring some behavior (MUST NOT, MUST [RFC2119]) or encouraging/discouraging
others.

It is important to always keep in mind that the objective of protocol specification is
interoperability, not conformance. Protocol specifications are written to influence
implementors. Other forces also pull on implementers. If there is a short path between points
A and B, and the protocol REQUIRES taking a longer path, there is no guarantee that the
longer path will indeed be taken. Actually, it is almost certain that a large part of the
implementations will simply ignore an onerous requirement.

This is less of a problem with “check-mark requirements” such as the need to implement
IPsec with IPv6 — implementers can always resort to building something that gets the
checkmark (or doesn't if nobody pays attention), but doesn’t really work toward the
objectives of that checkmark anyway.

Ignoring MUSTSs is not necessarily even a bad thing from an engineering point of view. E.g.,
when text-based protocols such as SMTP or HTTP became popular, one of their nice
properties was that one could write a shell script to implement a useful subset of the
protocol. Most definitely, these script-based implementations violated a lot of protocol
requirements. Requirements that get in the way of such highly useful but minimal
implementations will simply be ignored by a sizable population of implementers, forcing
everyone else to implement a protocol that includes all ad-hoc variants of circumventing the
requirement.

2.4 The fallacy of overhead

In constrained node/network systems, efficiency is important. This may lead people to
sacrifice an architectural principle for a byte shaved off somewhere. The overall cost of an
extra byte in a header is minimal compared with the cost of continually having to struggle
with the baroqueness of a system for the next couple of decades.

“Premature optimization is the root of all evil.”

Optimization is premature unless we already know precisely the characteristics of the
environment the protocol will be used in.

(Rule 1 of protocol design: If it is not a factor of 10, ignore it. Well, maybe unless there is
zero additional complexity.)

Systems that try to reduce overhead by inducing complexity generally get overtaken by
leaner systems that because of their agility can simply be further ahead on the curve
described by Moore’s law.

For example, the CoAP protocol [I-D.ietf-core-coap] has evolved into a clearly separated
“message layer” with a “request/response layer” on top. While munging them up might shave
off a byte here and there, separating the two layers will allow both for leaner
implementations and for faster evolution of each of the layers. The design win cannot be
expressed in the number of bytes saved per message (yet), but will become obvious over the


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.3
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-protocol-requirements
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC2119
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.4
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-overhead
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#I-D.ietf-core-coap

life of the protocol.

There is a flip side to this observation. Wantonly ignoring the constraints of an environment
will lead to pain [RFC1925]. (This is sometimes called “premature pessimization”.) E.g., using
a protocol that assumes multicast is free and highly reliable (as it is on Ethernet and trivially
on point-to-point links) in a network where subnet-wide multicast is extremely expensive and
unreliable for fundamental reasons, is the wrong approach.

[I-D.ietf-6lowpan-nd] was started as a “culturally compatible” replacement of [RFC4861] for
networks with expensive non-local multicast. (Unfortunately, it accreted too many features,
and in the middle of its completion, it was replaced by overpainting the undesirable features
of [RFC4861] with the salient ones of its replacement; partially to appease stakeholders. Due
to the design taste of its creators, the result still is quite good though.)

2.5 The fallacy of flexibility

One of the worst sources of complexity is the desire to be flexible. Making a feature an
option (often the result of committee indecision) surprisingly often leads to more code
(handling both the case the feature is present and the case it is not) than simply
implementing the feature everywhere. Handling multiple slightly different ways to do the
same thing also is a source of complexity and unexpected interoperability problems. At least
the IETF does not negotiate byte ordering as some other protocols do (see also “overhead”
below) and has agreed on using UTF-8 for pretty much everything.

There are other examples where gratuitous flexibility leads to complexity in implementations
and interoperability nightmares. E.g., the “"RFC 822" header format used in many IETF
protocols from [RFC0822] to [RFC2616] and [RFC3261] is both very “flexible” with respect to
the case, writing style, and whitespace used and allows any ordering. An “RFC 822" parser
pretty much needs to handle an infinite number of ways to express the same semantics.

Contrast this to the design of CoAP, which has strived to provide exactly one way to encode
a specific set of semantics. CoAP “options” are sent in order (there is no MUST involved, as
the encoding makes sure there simply is no way to send them out of order). Unforeseen
cases (e.g., an option with an unsupported length) are handled like unknown options. A CoAP
parser is very sure at which place it has to expect what part of the message, so it may be
able to process a message entirely on the fly. More importantly, interoperability testing need
test only a single variant of encoding a specific set of semantics. (As with any architectural
principle, there are limits to how far this can go, but it is good wherever it can be achieved.)

(A related set of problems comes up where an encoding surprisingly allows useless cases. In
the encoding of length information in IPv4, the length often includes fixed parts, leading to
minimal values that MUST NOT be underrun — e.g., the second nibble of the IPv4 header or
the option length encoding. This not only wasted potential for extensibility, as with the well-
known limitations of the TCP header option space, but also caused surprisingly common
implementation errors such as infinite loops in option processing. This wasn’t caused by too
much flexibility, but by simply not being aware of the principle not even to allow encoding
meaningless values.)

A related form of flexibility is the Postel principle that is usually quoted as “Be liberal in what
you accept and conservative in what you send” — it turns out this principle is much less
desirable in the long run than for early experimentation. Taking it to the limit actually is
responsible for one of the worst interoperability nightmares of today’s Internet: HTML. Once
“liberal in what you accept” became a marketing feature for browsers, these started to
compete on the forgiveness implemented, as in: my browser can show a (bad) page that
your browsers can’t (i.e., rightfully reject). As this went on, conforming implementations were
less and less able to make sense of the HTML pages out there in the Web. While liberal
receiver implementations made minimal creator implementations easier (as in using Notepad
to type up a web page), the resulting “race to the bottom"” of protocol conformance has
mostly destroyed the architecture of HTML as a language (which therefore has recently been
resurrected at the DOM level).

Summary: Flexibility is overrated.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC1925
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#I-D.ietf-6lowpan-nd
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC4861
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC4861
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.5
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-flexibility
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC0822
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC2616
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC3261

Generality, i.e., the lack of artificial limitations, however, is always a good property if it
doesn’t generate additional complexity.

Justifying complexity with the potential future need for a feature is mostly a fallacy, as it is
extremely hard to foresee the future. There is only a single requirement that is certain: the
need for change. Strong architectural foundations may support the needed change much
better than a weak hodgepodge of alternatives none of which quite fits the future.

2.6 The fallacies of cognitive dissonance

There are good reasons to strive for familiarity. Implementers who are familiar with a
concept can reach a working implementation in less time, at a lower cost (a point that may
get amplified if there is some actual reusability of code).

However, familiarity often is used as an implicit measure of quality by individuals that try to
assess a new protocol. Not doing things “the usual way” (a way that the assessors have
familiarized themselves with before) causes cognitive dissonance.

Actually, we need to design protocols to maintain “familiarity” and to avoid cognitive
dissonance wherever a design decision is essentially a bike shed color issue. But we can't
have cognitive dissonance guide our architectures; sometimes we do have to ask our
implementers to familiarize themselves with the new architecture.

Designing a new protocol to exploit the familiarity with a different protocol may increase the
acceptance at first, but will lead to false expectations later. SIP was designed to be “almost,
but not entirely unlike” HTTP, and many intuitions of early designers and implementers were
led astray by this. A related danger has to be actively avoided all the time in the design of
CoAP — “just because HTTP does something in some way” is only a good guidance if this is
an expression of a strong architectural principle [REST] or if this is a bike-shed issue (say,
status code numbering). In all other cases, CoAP needs to do the thing that is right for CoAP,
not necessarily the thing that evolved historically with HTTP and its usage.

A related, but different, problem of cognitive dissonance is the tendency to ignore aspects of
reality that are unpleasant. E.g., the IETF has for a long time ignored the presence of NATs
on the Internet. While NATs do violate the principles of the Internet architecture, acting as if
they were not happening created countless problems for protocols that were willfully designed
in the knowledge they would be hard to deploy in NATted environments. Similarly, the design
of the host-to-router protocols for Ethernet has ignored the needs for configuration and
authorization, which has caused relatively strange protocols such as PPPoE to pop up.

2.7 The fallacy of perfection

In the IETF, we want to create protocols of high quality. This can lead to multi-year “big
design up front” efforts, where in reality the agreement on a small base protocol, that is then
used as the base of a growing ecosystem, would be more fruitful.

It turns out all successful protocols started relatively small and had a multi-decade lifetime
where they adapted to their growing ecosystem (this observation may be a tautology based
on our definition of success [RFC5218]). So, on one hand, we need to “design for decades”,
to enable the protocol to survive the growth. On the other hand, we don’t have the slightest
idea what turns the uses of the protocol and the resulting changing requirements will take, so
designing the protocol to cover all current and potential future protocols is futile (and will
lead to lots of unneeded complexity).

Where we are designing replacements for existing protocols, we must be extra careful not to
fall into Fred Brook’s “second system syndrome”. The constrainedness of constrained
node/network systems may help us here; e.g., when designing the observe feature of CoAP
[I-D.ietf-core-observe], we managed to resist the urge to do another baroque publish-
subscribe system just because there may be “requirements” for it and we are “familiar” with
them.

In the IETF, the desire for high quality often leads to a struggle at the end to convince the


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.6
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacies-of-cognitive-dissonance
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#REST
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.2.7
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#the-fallacy-of-perfection
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#RFC5218
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#I-D.ietf-core-observe

” A\}

IESG to accept the result. See “appeasing stakeholders”, “big design up front”, “check-mark
requirement” above for some of the results. It may be better for a protocol to leave a flank
wide open, and look for the actual requirements to be fulfilled in its actual use, then to
design in a half-hearted solution appeasing the blocking IESG member that then quickly
becomes a piece of fluff when it is replaced (or, worse, over-painted) by the real thing. (The
stick of keeping a protocol “experimental” instead of “standards track” is then often used to
push those “solutions” through.)

A related result of the struggle for perfection may be strong coupling of unrelated elements.
If protocol A needs a solution for a problem that leads to protocol B, there is a natural
tendency to make the two protocols depend on each other. If one succeeds and the other
needs to be replaced later, it may be hard to surgically remove that strong coupling. (The flip
side, of course, is trying to emancipate B into a full protocol if it is just a point solution that
should stay part of A. These decisions do require design taste.)



3. IANA Considerations

Good architectures have well-defined extensibility points, many of which have to be
maintained in the form of registries.

Conversely, the use of registries to punt design decisions is one of the contributors to fluff.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.3
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#iana-considerations

4. Security Considerations

Simple systems with strong architectures are much easier to secure than kitchen sink
systems.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.4
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#security-considerations

5. Acknowledgements

Much of the fervor of the present research note stems from discussions we had at Dagstuhl
11042 — thanks to all the participants that made this a useful event, and in particular to
Henning Schulzrinne for further fanning that fervor.

Thanks to Oliver Widder for an excellent, if exaggerated illustration of one of our main
problems.

This work was partially funded by the Klaus Tschira Foundation.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.5
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#acknowledgements

6. References

6.1 Normative References

[RFC2119] Bradner, S., “"Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,
RFC 2119, March 1997.

6.2 Informative References

[RFC1925]
[RFC2131]

[RFC5218]
[RFC0822]

[RFC2045]

[RFC0959]

[RFC2616]

[RFC4861]

[RFC3261]

[I-D.ietf-core-coap]

[I-D.ietf-core-observe]

[I-D.ietf-6lowpan-nd]

[REST]

[ARCH]

Callon, R., “The Twelve Networking Truths”, RFC 1925, April 1996.

Droms, R., “Dynamic Host Configuration Protocol”, RFC 2131,
March 1997.

Thaler, D. and B. Aboba, “*What Makes For a Successful Protocol?”,
RFC 5218, July 2008.

Crocker, D.H., “Standard for the format of ARPA Internet text
messages”, STD 11, RFC 822, August 1982.

Freed, N. and N.S. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies”,
RFC 2045, November 1996.

Postel, J. and J. Reynolds, “File Transfer Protocol”, STD 9, RFC 959,
October 1985.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2616, June 1999.

Narten, T., Nordmark, E., Simpson, W., and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6)”, RFC 4861, September 2007.

Rosenberg, 1., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,
J., Sparks, R., Handley, M., and E. Schooler, “SIP: Session Initiation
Protocol”, RFC 3261, June 2002.

Shelby, Z., Hartke, K., Bormann, C., and B. Frank, “Constrained
Application Protocol (CoAP)”, Internet-Draft draft-ietf-core-coap-05
(work in progress), March 2011.

Hartke, K. and Z. Shelby, “"Observing Resources in CoAP”, Internet-
Draft draft-ietf-core-observe-02 (work in progress), March 2011.

Shelby, Z., Chakrabarti, S., and E. Nordmark, “Neighbor Discovery
Optimization for Low-power and Lossy Networks”, Internet-
Draft draft-ietf-6lowpan-nd-15 (work in progress), December 2010.

Fielding, R., “Architectural Styles and the Design of Network-based
Software Architectures”, 2000.

Widder, O., “Architectural Best Practices”, 2011,
<http://j.mp/gsD4r7 >.


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.6
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.6.1
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.section.6.2
mailto:rcallon@baynetworks.com
http://tools.ietf.org/html/rfc1925
mailto:droms@bucknell.edu
http://tools.ietf.org/html/rfc2131
http://tools.ietf.org/html/rfc5218
mailto:DCrocker@UDel-Relay
http://tools.ietf.org/html/rfc822
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc959
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/draft-ietf-core-coap-05
http://tools.ietf.org/html/draft-ietf-core-observe-02
http://tools.ietf.org/html/draft-ietf-6lowpan-nd-15
http://j.mp/gsD4r7
http://j.mp/gsD4r7

Authors' Addresses

Carsten Bormann
Universitat Bremen TZI
Postfach 330440

Bremen, D-28359

Germany

Phone: +49-421-218-63921
Fax: +49-421-218-7000
EMail: cabo@tzi.org

Klaus Hartke

Universitat Bremen TZI
Postfach 330440

Bremen, D-28359

Germany

Phone: +49-421-218-63905
Fax: +49-421-218-7000
EMail: hartke@tzi.org


file:///Users/cabo/tmp/kramdown/draft-bormann-fluff-minus-01.xml#rfc.authors
tel:+49-421-218-63921
fax:+49-421-218-7000
mailto:cabo@tzi.org
tel:+49-421-218-63905
fax:+49-421-218-7000
mailto:hartke@tzi.org

