
1 Adam Dunkels

Lightweight,
Low-Power IP

Adam Dunkels, PhD

Swedish Institute of Computer Science

adam@sics.se

A part of Swedish ICT

2 Adam Dunkels

The Message

● IP is lightweight

● … but weight has performance implications

● IP is small

● … but means API changes

● IP is power-efficient

● … but low power subtly affect the system

3 Adam Dunkels

id -G -n

4 Adam Dunkels

Adam Dunkels
Swedish Institute of Computer Science

adam@sics.se
http://www.sics.se/~adam/

5 Adam Dunkels

lwIP

6 Adam Dunkels

uIP

7 Adam Dunkels
Contiki

(and many more) uIPv6

8 Adam Dunkels

9 Adam Dunkels

Fundamental Challenges

10 Adam Dunkels

Fundamental Challenges

● Cost

● Physical size

● Energy
● Batteries

● Power
● Energy scavenging

● Wireless/lossy communication
● Bandwith

● Lossy links

● Lack of visibility

11 Adam Dunkels

Device-level Implications

● Small memory size

● Kilobytes of RAM

● Simple processor

● Megahertz

● No MMU

● Example: MSP430f1449

● 8 kb RAM, 40 kb ROM

12 Adam Dunkels

Memory

13 Adam Dunkels

The size of TCP/IP

● ”IP is heavyweight”

● Linux, BSD stacks 200+ kb code, 300+ kb RAM

● lwIP: TCP/UDP/ICMP/IPv4 in 30 kb ROM

● uIP: TCP/UDP/ICMP/IPv4 in 5 kb ROM

● uIPv6: TCP/UDP/ICMPv6/IPv6 in 13 kb
ROM

14 Adam Dunkels

uIP: Making IP Small

● Shared packet buffer

● Event-driven API

15 Adam Dunkels

Shared packet buffer

● All packets – both outbound and inbound –
use the same buffer

● Size of buffer determines throughput

Packet buffer

Incoming packet
Outbound packet

16 Adam Dunkels

Shared packet buffer II

● Implicit locking: single-threaded access

1) Grab packet from network – put into buffer

2) Process packet

● Put reply packet in the same buffer

3) Send reply packet into network

Packet buffer

17 Adam Dunkels

Throughput

● uIP trades throughput for RAM

● Low RAM usage = low throughput

● Small systems = not that much data

● Current work:

● Improve TCP throughput by low-power
pipelined forwarding

Less memory

More memory

18 Adam Dunkels

Example: uIP-based Pico Satellite

● CubeSat pico satellite

● MSP430-based

● 128 bytes of RAM for uIP

19 Adam Dunkels

Application Programming Interface I

● uIP does not have BSD sockets

● BSD sockets are built on threads

● Threads induce overhead (RAM)

● Instead – event-driven API

● Execution is always initiated by uIP

● Applications are called by uIP, call must return

● Protosockets – BSD socket-like API based
on protothreads

20 Adam Dunkels

Application Programming Interface II

void example2_app(void) {
struct example2_state *s =
(struct example2_state *)uip_conn->appstate;

if(uip_connected()) {
s->state = WELCOME_SENT;
uip_send("Welcome!\n", 9);
return;

}

if(uip_acked() &&
s->state == WELCOME_SENT) {
s->state = WELCOME_ACKED;

}

if(uip_newdata()) {
uip_send("ok\n", 3);

}

if(uip_rexmit()) {
switch(s->state) {
case WELCOME_SENT:

uip_send("Welcome!\n", 9);
break;

case WELCOME_ACKED:
uip_send("ok\n", 3);
break;

}
}

}

21 Adam Dunkels

Application Programming Interface III

● Event-driven API sometimes is problematic

● Not all programs are well-suited to it

● Programs are explicit state machines

● Protosockets: sockets-like API using protothreads

● Extremely lightweight stackless threads

● 2 bytes per-thread state, no stack

● Protothreads allow “blocking” functions, even
when called from uIP

22 Adam Dunkels

Application Programming Interface IV
PT_THREAD(smtp_protothread(void))
{

PSOCK_BEGIN(s);

PSOCK_READTO(s, '\n');

if(strncmp(inputbuffer, “220”, 3) != 0) {
PSOCK_CLOSE(s);
PSOCK_EXIT(s);

}

PSOCK_SEND(s, “HELO ”, 5);
PSOCK_SEND(s, hostname, strlen(hostname));
PSOCK_SEND(s, “\r\n”, 2);

PSOCK_READTO(s, '\n');

if(inputbuffer[0] != '2') {
PSOCK_CLOSE(s);
PSOCK_EXIT(s);

}

23 Adam Dunkels

Protothreads: Lightweight, thread-
like programming

● A design point between events and threads

● Programming primitive: conditional blocking wait

● PT_WAIT_UNTIL(condition)

● Single stack

● Low memory usage, just like events

● Sequential flow of control

● No explicit state machine, just like threads

● Programming language helps us: if and while

24 Adam Dunkels

An example protothread
int a_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if(something) {

PT_WAIT_UNTIL(pt, condition2);

}

PT_END(pt);
}

/* … */

/* … */

/* … */

/* … */

25 Adam Dunkels

Six-line implementation

struct pt { unsigned short lc; };

#define PT_INIT(pt) pt->lc = 0

#define PT_BEGIN(pt) switch(pt->lc) { case 0:

#define PT_EXIT(pt) pt->lc = 0; return 2

#define PT_WAIT_UNTIL(pt, c) pt->lc = __LINE__; case __LINE__: \

if(!(c)) return 0

#define PT_END(pt) } pt->lc = 0; return 1

Protothreads implemented using the C switch statement

26 Adam Dunkels

C-switch expansion
int a_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if(something) {

PT_WAIT_UNTIL(pt, condition2);

}

PT_END(pt);
}

int a_protothread(struct pt *pt) {
switch(pt->lc) { case 0:

pt->lc = 5; case 5:
if(!condition1) return 0;

if(something) {

pt->lc = 10; case 10:
if(!condition2) return 0;

}

} return 1;
}

Line numbers

27 Adam Dunkels

Memory

● Yes, IP can be done in small amounts of
memory

● But may affect performance

● Event-driven interfaces, bottom-up design,
static memory allocations reduce memory

● But changes the API

28 Adam Dunkels

Power and Energy

29 Adam Dunkels

Power and Energy are Crucial

● Unattended operation, long lifetime

● Battery-powered nodes
● Replacement, recharging not feasible/possible

● Energy generation
● Low power

30 Adam Dunkels

Radio Power Consumption

● Radio dominates power consumption

● Listening as expensive as transmitting

31 Adam Dunkels

Why is Listening More Expensive
than Transmitting?

Source: Wang & Sodini, ICC 2006

32 Adam Dunkels

Low-power radio hardware

● IEEE 802.15.4 (250 kilobits/second)
● Power ~60 mW

● Sleep ~0.01 mW

● Range 40 m

● Low-power WiFi (2-50 megabits/second)
● Power ~300 mW

● Sleep ~0.02 mW

● Range 400 m

33 Adam Dunkels

Listening is Expensive

● Being always on kills you quickly

● Days of lifetime on batteries

● What about always sleeping?

● Waking up only to send

● Wake up on the hour, every hour

● Introduces strange semantics

● What about multi-hop?

34 Adam Dunkels

Listening is expensive

0

10

20

30

40

50

60

70

Always listening 10% 1%

P
o

w
er

 (m
W

)

35 Adam Dunkels

Multi-hop communication

36 Adam Dunkels

Multi-hop communication

37 Adam Dunkels

Duty Cycling (ContikiMAC)

0.125 – 1 seconds

~2 * 200 microseconds

38 Adam Dunkels

Efficiency

39 Adam Dunkels

Duty Cycling

Sleeping

Active

40 Adam Dunkels

Broadcast with Duty Cycling

Sleeping

Active

41 Adam Dunkels

Wake-up

42 Adam Dunkels

Wake-up, signal detected but no
packet

43 Adam Dunkels

Reception

44 Adam Dunkels

Unicast transmission, first time

45 Adam Dunkels

Unicast transmission, second time

46 Adam Dunkels

Unicast Tx to Awake Neighbor

47 Adam Dunkels

Broadcast transmission

48 Adam Dunkels

Energy

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Energy (mJ)

49 Adam Dunkels

Broadcast in Low-power Wireless

● Semantics slightly changed

● Not necessarily atomic

● Not necessarily synchronous

● Quantitative changes

● Broadcast more expensive than unicast

50 Adam Dunkels

Contiki Powertrace

● Network-level energy estimation

● Power state tracking, energy capsules

● Energy attribution to network-level activities

51 Adam Dunkels

Power Consumption in RPL

52 Adam Dunkels

What to do about Broadcast?

● Still an open question

● Adaptive beaconing (CTP)

● Beacon suppression (Trickle, RPL)

● Beacon coordination (Dunkels et al, EWSN 2011)

● Politecast (Lunden and Dunkels, ACM CCR April
2011)

53 Adam Dunkels

Alternatives to Asynchronous Duty
Cycling

● Sleepy nodes

● Never wake up to receive

● But fundamentally changes semantics of IP

● Time-synchronized wake-ups

● Schedule wake-ups at known times, schedule
broadcast slot

● Makes broadcast and unicast equivalent, but
spends idle energy on broadcast anyway

54 Adam Dunkels

Power and Energy

● Power and communication intertwined

● Must turn radio off to conserve power

● Reducing transmissions is not enough

● Duty cycling slightly changes things

● Non-atomic, non-synchronous

● Broadcast gets expensive

● But it does not fundamentally change the
semantics

55 Adam Dunkels

Conclusions

● Lightweight, low-power IP

● Memory

● Power

● The memory vs performance
trade-off

● API changes

● The power vs communication
trade-off

● Changes to protocols may be needed

56 Adam Dunkels

http://www.sics.se/contiki/

Thank you

