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The Message

● IP is lightweight

● … but weight has performance implications

● IP is small

● … but means API changes

● IP is power-efficient

● … but low power subtly affect the system
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lwIP
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uIP
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Contiki

(and many more) uIPv6
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Fundamental Challenges
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Fundamental Challenges

● Cost

● Physical size

● Energy
● Batteries

● Power
● Energy scavenging

● Wireless/lossy communication
● Bandwith

● Lossy links

● Lack of visibility
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Device-level Implications

● Small memory size

● Kilobytes of RAM

● Simple processor

● Megahertz

● No MMU

● Example: MSP430f1449

● 8 kb RAM, 40 kb ROM
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Memory
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The size of TCP/IP

● ”IP is heavyweight”

● Linux, BSD stacks 200+ kb code, 300+ kb RAM

● lwIP: TCP/UDP/ICMP/IPv4 in 30 kb ROM

● uIP: TCP/UDP/ICMP/IPv4 in 5 kb ROM

● uIPv6: TCP/UDP/ICMPv6/IPv6 in 13 kb 
ROM
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uIP: Making IP Small

● Shared packet buffer

● Event-driven API
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Shared packet buffer

● All packets – both outbound and inbound –
use the same buffer

● Size of buffer determines throughput

Packet buffer

Incoming packet
Outbound packet
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Shared packet buffer II

● Implicit locking: single-threaded access

1) Grab packet from network – put into buffer

2) Process packet

● Put reply packet in the same buffer

3) Send reply packet into network

Packet buffer
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Throughput

● uIP trades throughput for RAM

● Low RAM usage = low throughput

● Small systems = not that much data

● Current work:

● Improve TCP throughput by low-power 
pipelined forwarding

Less memory

More memory
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Example: uIP-based Pico Satellite

● CubeSat pico satellite

● MSP430-based

● 128 bytes of RAM for uIP
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Application Programming Interface I

● uIP does not have BSD sockets

● BSD sockets are built on threads

● Threads induce overhead (RAM)

● Instead – event-driven API

● Execution is always initiated by uIP

● Applications are called by uIP, call must return

● Protosockets – BSD socket-like API based 
on protothreads
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Application Programming Interface II

void example2_app(void) {
struct example2_state *s = 
(struct example2_state *)uip_conn->appstate;

if(uip_connected()) {
s->state = WELCOME_SENT;
uip_send("Welcome!\n", 9);
return;

}

if(uip_acked() && 
s->state == WELCOME_SENT) {
s->state = WELCOME_ACKED;

}

if(uip_newdata()) {
uip_send("ok\n", 3);

}

if(uip_rexmit()) {
switch(s->state) {
case WELCOME_SENT:

uip_send("Welcome!\n", 9);
break;

case WELCOME_ACKED:
uip_send("ok\n", 3);
break;

}
}

}
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Application Programming Interface III

● Event-driven API sometimes is problematic

● Not all programs are well-suited to it

● Programs are explicit state machines

● Protosockets: sockets-like API using protothreads

● Extremely lightweight stackless threads

● 2 bytes per-thread state, no stack

● Protothreads allow “blocking” functions, even 
when called from uIP
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Application Programming Interface IV
PT_THREAD(smtp_protothread(void))
{

PSOCK_BEGIN(s);

PSOCK_READTO(s, '\n');

if(strncmp(inputbuffer, “220”, 3) != 0) {
PSOCK_CLOSE(s);
PSOCK_EXIT(s);

}

PSOCK_SEND(s, “HELO ”, 5);
PSOCK_SEND(s, hostname, strlen(hostname));
PSOCK_SEND(s, “\r\n”, 2);

PSOCK_READTO(s, '\n');

if(inputbuffer[0] != '2') {
PSOCK_CLOSE(s);
PSOCK_EXIT(s);

}
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Protothreads: Lightweight, thread-
like programming

● A design point between events and threads

● Programming primitive: conditional blocking wait

● PT_WAIT_UNTIL(condition)

● Single stack

● Low memory usage, just like events

● Sequential flow of control

● No explicit state machine, just like threads

● Programming language helps us: if and while
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An example protothread
int a_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if(something) {

PT_WAIT_UNTIL(pt, condition2);

}  

PT_END(pt);
}

/* … */

/* … */

/* … */

/* … */
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Six-line implementation

struct pt { unsigned short lc; };

#define PT_INIT(pt)           pt->lc = 0

#define PT_BEGIN(pt)          switch(pt->lc) { case 0:

#define PT_EXIT(pt)           pt->lc = 0; return 2

#define PT_WAIT_UNTIL(pt, c)  pt->lc = __LINE__; case __LINE__: \

if(!(c)) return 0

#define PT_END(pt)            } pt->lc = 0; return 1

Protothreads implemented using the C switch statement
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C-switch expansion
int a_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if(something) {

PT_WAIT_UNTIL(pt, condition2);

}  

PT_END(pt);
}

int a_protothread(struct pt *pt) {
switch(pt->lc) { case 0:

pt->lc = 5; case 5:
if(!condition1) return 0;

if(something) {

pt->lc = 10; case 10:
if(!condition2) return 0;

}  

} return 1;
}

Line numbers
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Memory

● Yes, IP can be done in small amounts of 
memory

● But may affect performance

● Event-driven interfaces, bottom-up design, 
static memory allocations reduce memory

● But changes the API
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Power and Energy
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Power and Energy are Crucial

● Unattended operation, long lifetime

● Battery-powered nodes
● Replacement, recharging not feasible/possible

● Energy generation
● Low power
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Radio Power Consumption

● Radio dominates power consumption

● Listening as expensive as transmitting
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Why is Listening More Expensive 
than Transmitting?

Source: Wang & Sodini, ICC 2006
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Low-power radio hardware

● IEEE 802.15.4 (250 kilobits/second)
● Power ~60 mW

● Sleep ~0.01 mW

● Range 40 m

● Low-power WiFi (2-50 megabits/second)
● Power ~300 mW

● Sleep ~0.02 mW

● Range 400 m
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Listening is Expensive

● Being always on kills you quickly

● Days of lifetime on batteries

● What about always sleeping?

● Waking up only to send

● Wake up on the hour, every hour

● Introduces strange semantics

● What about multi-hop?
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Listening is expensive
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Multi-hop communication
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Multi-hop communication
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Duty Cycling (ContikiMAC)

0.125 – 1 seconds

~2 * 200 microseconds
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Efficiency
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Duty Cycling

Sleeping

Active
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Broadcast with Duty Cycling

Sleeping

Active
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Wake-up
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Wake-up, signal detected but no 
packet
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Reception
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Unicast transmission, first time
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Unicast transmission, second time
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Unicast Tx to Awake Neighbor
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Broadcast transmission
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Energy
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Broadcast in Low-power Wireless

● Semantics slightly changed

● Not necessarily atomic

● Not necessarily synchronous

● Quantitative changes

● Broadcast more expensive than unicast
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Contiki Powertrace

● Network-level energy estimation

● Power state tracking, energy capsules

● Energy attribution to network-level activities
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Power Consumption in RPL
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What to do about Broadcast?

● Still an open question

● Adaptive beaconing (CTP)

● Beacon suppression (Trickle, RPL)

● Beacon coordination (Dunkels et al, EWSN 2011)

● Politecast (Lunden and Dunkels, ACM CCR April 
2011)
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Alternatives to Asynchronous Duty 
Cycling

● Sleepy nodes

● Never wake up to receive

● But fundamentally changes semantics of IP

● Time-synchronized wake-ups

● Schedule wake-ups at known times, schedule 
broadcast slot

● Makes broadcast and unicast equivalent, but 
spends idle energy on broadcast anyway
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Power and Energy

● Power and communication intertwined

● Must turn radio off to conserve power

● Reducing transmissions is not enough

● Duty cycling slightly changes things

● Non-atomic, non-synchronous

● Broadcast gets expensive

● But it does not fundamentally change the 
semantics
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Conclusions

● Lightweight, low-power IP

● Memory

● Power

● The memory vs performance 
trade-off

● API changes

● The power vs communication 
trade-off

● Changes to protocols may be needed
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http://www.sics.se/contiki/

Thank you


