

Networking over Bluetooth: overview and issues

Pravin Bhagwat Mobile Networking Group IBM T. J. Watson Research http://www.research.ibm.com/people/p/pravin pravinb@us.ibm.com

IAB Wireless Workshop Feb 29 - March 2, 2000 Sunnyvale, CA

Bluetooth

- A cable replacement technology
- 1 Mb/s symbol rate
- Range 10+ meters
- Single chip radio + baseband
 - at low power & low price point

Why not use Wireless LANs?

- power

- cost

Value proposition of Bluetooth

02/29/00

Bluetooth working group history

- February 1998: The Bluetooth SIG is formed
 - promoter company group: Ericsson, IBM, Intel, Nokia, Toshiba
- May 1998: The Bluetooth SIG goes "public"
- July 1999: 1.0A spec (>1,500 pages) is published
- December 1999: ver. 1.0B is released
- December 1999: The promoter group increases to 9
 - 3Com, Lucent, Microsoft, Motorola
- February 2000: There are 1,500+ adopters
 - adopters "enjoy" royalty free use of the Bluetooth technology
 - products must pass Bluetooth certification

New Applications

Synchronization

User benefits

- Automatic synchronization of calendars, address books, business cards
- Push button synchronization
- Proximity operation

Cordless Headset

User benefits

- Multiple device access
- Cordless phone benefits
- Hand's free operation

Usage scenarios examples

- Data Access Points
- Synchronization
- Headset
- Conference Table
- Cordless Computer
- Business Card Exchange
- Instant Postcard
- Computer Speakerphone

Bluetooth Specifications

Bluetooth Stack

A hardware/software/protocol description
 An application framework

Interoperability & Profiles

- A profile represents a default solution for a usage model
- Vertical slice through the protocol stack
- Basis for interoperability and logo requirements
- Each Bluetooth device supports one or more profiles

Technical Overview

Bluetooth Radio Specification

Radio

Low Cost

- Single chip radio (minimize external components)
- Today's technology
- Time divison duplex

Low Power

- Standby modes
- Low voltage RF

Robust Operation

- Fast frequency hopping
- Strong interference protection
 - Fast ARQ
 - Robust access code
 - Forward header correction

1600 hops/sec

Sniff, Hold, Park

Radio

0 dBm	- Tx power					
-20 -	- Rx power @ 10 cm					
	 Allow low cost low IF Trade sensitivity for integration One chip radio is possible 					
-70 -	- Rx power @ 10m					
-91 -	Noise floor $C/I = 21 \text{ dB}$					

Baseband

Connection Setup

Inquiry - scan protocol

 to lean about the clock offset and device address of other nodes in proximity

Piconet formation

Page - scan protocol

 to establish links with nodes in proximity

Addressing

Bluetooth device address (BD_ADDR)
A8 bit IEEE MAC address

► 48 bit IEEE MAC address

Active Member address (AM_ADDR)

- 3 bits active slave address
- all zero broadcast address

Parked Member address (PM_ADDR)

▶ 8 bit parked slave address

Piconet channel

1600 hops/sec

Multi slot packets

FH/TDD

Data rate depends on type of packet

Packet Format

	72 bits	54 bits	0	- 2745	bits
Synch: ident Fi	Access code ronizatio ificatio ltering	Header Header Addre Packe Flow ARQ SEQN HEC	Payl ss t Type control	oad Error 1/3 2/3 ARQ s tł	correction rate FEC rate FEC cheme for he data

Smaller than an ATM cell ! Notice that there is no protocol type field

Physical Link Types

Synchronous Connection Oriented (SCO) Link

- slot reservation at fixed intervals
 - No ARQ, No CRC
 - FEC (optional)
 - 64 Kbps

Asynchronous Connection-less (ACL) Link

- Polling access method
- ► ARQ, CRC
- FEC (optional)
- Symmetric data rate 108 433 Kbps
- Asymmetric data rate up to 723 Kbps

Mixed Link Example

02/29/00

Inter piconet communication

Scatternet

Scatternet, scenario 2

Link Manager Protocol

Setup and Management of Baseband connections

- Piconet Management
- Link Configuration
- Security

Link Manager Protocol

Piconet Management

- Attach and detach slaves
- Master-slave switch
- Establishing SCO and ACL links
- Handling of low power modes (Sniff, Hold, Park)

Link Configuration

- packet type negotiation
- power control

Security functions

- Authentication
- Encryption

Logical Link Control and Adaptation Protocol

L2CAP provides

- Protocol multiplexing
- Segmentation and Re-assembly
- Quality of service negotiation
- Group abstraction

L2CAP Packet Format (CO)

L2CAP Packet Format (CL)

Baseband packets

02/29/00

Serial Port Emulation using RFCOMM

Serial Port emulation on top of a packet oriented link

- Similar to HDLC
- For supporting legacy apps

Bluetooth Service Discovery Protocol

Example usage of SDP

- Establish L2CAP connection to remote device
- Query for services
 - search for specific class of service, or
 - browse for services
- Retrieve attributes that detail how to connect to the service
- Establish a separate (non-SDP) connection to user the service

IP over Bluetooth V 1.0

GOALS

- Internet access using cell phones
- Connect PDA devices & laptop computers to the Internet via LAN access points

LAN access point profile

Security Authentication Access control Efficiency header and data compression Auto-configuration Lower barrier for deployment

Access Point

Inefficiency of layering

Emulation of RS-232 over the Bluetooth radio link could be eliminated

Terminate PPP at LAN access point

- PPP server function at each access point
 - management of user name/password is an issue
 - roaming is not seamless

L2TP style tunneling

Tunneling PPP traffic from access points to the PPP server

- 1) centralized management of user name/password
- 2) reduction of processing and state maintenance at each access point
- 3) seamless roaming

IP over Bluetooth

Next steps

IP based network connectivity

peer-to-peer connectivity Internet connectivity for non-PC devices

IP over wireless media Decentralized techniques for link formulation, naming, addressing, and routing Investigation of the right design point for running IP over toasters, light switches, & fire alarms

Research challenges

Plug-n-play applications

Resource Discovery

Routing over scatternets

Techniques for link formation

Will the current solutions for each layer work in this environment?

What is different in this scenario ?

Connection oriented, lowpower link technology

Small, multi-hop networks

Simple devices

Isolated network

Dynamic network

Applications ---> services ----> routing ----> link creation

Link Formation

The problem does not exist in most wired/wireless networks

Proximity Link Low power modes require careful use of broadcast

Maintaining connectivity in absence of application traffic seems wasteful

Hints from higher layer are needed

Routing over Scatternets

Nodes must co-operate to forward packets (MANET style protocols)

Forwarding at Layer 2 or Layer 3?

Bridging or routing ?

What interface should be exported to the above layer? Better coupling with the service discovery layer is needed

Service discovery

Need solutions for address allocation, name resolution, service discovery

Existing solutions in the Internet depend on infrastructure

Judicious use of Multicast/broadcast is needed

These goals are similar to what Zero-conf WG is already working on

Point to ponder

Will Zero-conf on top of MANET on top of scatternet construction algorithm solve our problem?

Layered and simple, but potential inefficiencies

Cross-layer optimizations are worth considering

Final Remarks

- Zero-conf and Bluetooth can benefit from each other
- Similarly, MANET and Bluetooth can also benefit from each other
- A new working group in IETF for IP over Bluetooth ?

 Multi-hop wireless networks will force us to reevaluate our assumptions about network layering.
 Should IRTF start looking into those issues?

http://www.research.ibm.com/people/p/pravin