

An overview of the *Wireless Application Protocol' to the IAB*.

WAP Overview Introduction

• What is the WAP Forum[™]?

- An Industry Forum established in 1997 whose stated aim is '..to develop the de-facto world standard for wireless information and telephony services on digital mobile phones and other wireless terminals.'.
- Comprised over 200 members
 - Network Operators, e.g. DeTeMobile, Cellnet, Sonera..
 - Network Infrastructure suppliers, e.g. Ericsson, Nokia...
 - Mobile Device suppliers, e.g. Ericsson, Nokia, Panasonic....
 - IT companies, e.g. IBM, HP, Microsoft, Sun...
 - Content developers

WAP Overview WAP Technology

• What is WAP Technology ?

- WAP Technology is an architecture and set of specifications that provide :
 - Access to information/services *efficiently*
 - Wireless Application Environment (WAE) targeted at devices with constrained size, power, MMI etc..
 - Protocol stack permitting network and bearer agnostic use by the Wireless Application Environment.
 - Transport layer security with authentication and encryption suitable for wireless devices.
 - Additional specifications for Wireless Telephony Applications (WTA), PUSH etc..
 - Workplan addressing many emerging network, bearer, application and security improvements

WAP Overview The Inspirations

- What are/were the inspirations for WAP Technology ?
 - The Internet
 - Browser as thin client,
 - IP as transport,
 - Transport security.
 - Nokia Smart Messaging
 - Efficient use of SMS for delivery of information,
 - Deployed in many networks.
 - Narrow Band Sockets & TTML
 - Phone.com's HDML browser and UP.Link server
 - Lightweight browser,
 - Services centric.

Abstract Network Architecture

• What is the WAP Abstract Network Architecture ?

The WAP Abstract Network Architecture resembles the Internet Browser Request-Response model.

WAP Overview WAP Stack

• What is the WAP Protocol Stack ?

The WAP Protocol Stack is based on the Internet protocol stack as used by a Browser application.

Page 7

WAP Overview Application Environment

• What is the WAP Application Environment ?

WAE consists of the WML Browser, optional WTA Browser, Script, telephony support, events etc..

Comparison with the Internet

 This all looks similar to the Internet - what are the differences ?

WAP Overview Deployment Models

• WAP deployment models.

- Two basic approaches
 - WAP WSP Server :
 - WAP Protocol Stack, User Admin, Content management
 - Web Server
 - WAP Proxy :
 - WAP Procotol Stack, User Admin, Content Management
 - HTTP Client to request content from other servers

WAP Overview Deployment Models - WSP Server

WAP Overview Deployment Models - WSP Proxy

Page 13

WAP Overview Protocol Stack

Protocol Stack

WAP Overview Protocol Stack

• Protocol Stack :

WSP - Session Protocol

WTP - Transaction Protocol

WDP - Datagram Protocol

 WCMP - Control Message Protocol

<	Wireles	ss Sessior	n Service Ac	ccess Point	
	Wireless Session Protocol				
Wireless Transaction Service Access Point					
Wireless Transaction Protocol					
Transport Service Access Point (TSAP)					
	WCMP Bearer Service A	Bearer Service B	Bearer Service C	Bearer Service D	
	Physical Layer Air Link Technology				

Protocol Stack - Datagram (WDP)

• WDP - Wireless Datagram Protocol :

- Provides a connection-less, unreliable datagram service,
- WDP is replaced by UDP when used over an IP network layer (UDP/IP)
- WDP uses the Service Primitive T-UnitData.req.ind
- Bearers currently supported
 - GSM SMS, USSD, C-S Data, GPRS
 - ANSI-136 R-Data, C-S Data, Packet
 - CDMA SMS, C-S Data
 - PDC C-S Data, Packet
 - PHS C-S Data
 - CDPD
 - iDEN SMS, C-S Data, Packet
 - FLEX and ReFLEX
 - DataTAC, Mobitex, etc.

Protocol Stack - Datagram (WDP)

• WDP - Wireless Datagram Protocol :

Example of connectivity : GSM Circuit-Switched.

Mobile

WAP Proxy/Server

IWF - InterWorking Function RAS - Remote Access Server

Protocol Stack - Datagram (WDP)

• WDP - Wireless Datagram Protocol :

Example of connectivity : GSM SMS.

Protocol Stack - Transaction (WTP)

- What is its purpose ?
 - Provides efficient request/reply based transport mechanism suitable for devices with limited resources over networks with low to medium bandwidth.
- What are the advantages ?
 - Operator Perspective Load more subscribers on the same network due to reduced bandwidth utilization.
 - Individual User Performance is improved and cost is reduced.
- ► Why not TCP/IP ?
 - Less efficient (connection oriented with opens/closes, problems with long latency networks etc..
 - TTCP is an inspiration for WTP.

Protocol Stack - Transaction (WTP)

- Classes of Operation
 - WTP Classes of Service
 - Class 0 Unconfirmed Invoke message with no Result message
 - a datagram that can be sent within the context of an existing WSP (Session) connection
 - Class 1 Confirmed Invoke message with no Result message
 - used for data push, where no response from the destination is expected
 - Class 2 Confirmed Invoke message with one confirmed Result message
 - a single request produces a single reply

Protocol Stack - Transaction (WTP)

- provides reliable data transfer based on request/reply paradigm,
- no explicit connection setup or tear down,
- data carried in first packet of protocol exchange,
- seeks to reduce 3-way handshake on initial request
- supports
 - retransmission of lost packets
 - selective-retransmission
 - segmentation / re-assembly
 - port number addressing (UDP ports numbers)
 - flow control
- message oriented (not stream)
- supports an Abort function for outstanding requests
- supports concatenation of PDUs

Protocol Stack - Transaction (WTP)

- uses the service primitives
 - T-TRInvoke.req .cnf. .ind .res
 - T-TRResult.req .cnf .ind .res
 - T-Abort.req .ind

Protocol Stack - Session (WSP)

- Overview
 - Provides shared state between client and server used to optimize content transfer
 - Based on HTTP V1.1
 - Enhancements for WAE, wireless networks and "low-end" devices
 - Compact encoding
 - Efficient negotiation
 - Push
 - Capability negotiation
 - Suspend and resume
 - Fully asynchronous requests
 - Connectionless service

Protocol Stack - Session (WSP)

- Enhancements beyond HTTP V1.1
 - Binary header encoding
 - Session headers
 - Confirmed and non-confirmed data push
 - Capability negotiation
 - Suspend and resume
 - Fully asynchronous requests
 - Connectionless service

Protocol Stack - Session (WSP)

- Why Not HTTP V1.1 ?
 - Encoding not compact enough
 - No push facility
 - Inefficient capability negotiation
- Header Encoding
 - Defined compact binary encoding of headers, content type identifiers and other well-known textual or structured values
 - Reduces the data actually sent over the network

Protocol Stack - Session (WSP)

- Capabilities are defined for:
 - Message Size, client and server
 - Protocol Options: Confirmed Push Facility, Push Facility, Session Suspend Facility, Acknowledgement headers
 - Maximum Outstanding Requests
 - Extended Methods
 - Header Code Pages

Protocol Stack - Session (WSP)

- Suspend and Resume
 - Server knows when client can accept a push
 - Multi-bearer devices
 - Dynamic addressing
 - Allows the release of underlying bearer resources
- Session Context and Push
 - Push can take advantage of session headers
 - Server knows when client can accept a push

Protocol Stack - Session (WSP)

- Connection and Connectionless Modes
 - Connection-mode
 - Long-lived communication
 - Benefits of the session state
 - Reliability
 - Connectionless
 - Stateless applications
 - No session creation overhead
 - No reliability overhead

Protocol Stack - Security (WTLS)

• WTLS - Wireless Transport Layer Security :

- WTLS Provides Mechanisms for :
 - secure transfer of content for allow for applications needing privacy,
 - identification,
 - verified message integrity
 - and non-repudiation
- WTLS is Transport level security,
 - based on SSL and TLS from the Internet community

Protocol Stack - Security (WTLS)

- WTLS Services and Characteristics:
 - Specifies a framework for secure connections, using protocol elements from common Internet security protocols like SSL and TLS.
 - Provides security facilities for encryption, strong authentication, integrity, and key management
 - Compliance with regulations on the use of cryptographic algorithms and key lengths in different countries
 - Provides end-to-end security between protocol end points

Protocol Stack - Security (WTLS)

• WTLS - Wireless Transport Layer Security :

- WTLS Services and Characteristics:
 - Provides connection security for two communicating applications
 - privacy (encryption)
 - data integrity (MACs)
 - authentication (public-key and symmetric)
 - Lightweight and efficient protocol with respect to bandwidth, memory and processing power
 - Employs special adapted mechanisms for wireless usage
 - Long lived secure sessions
 - Optimised handshake procedures
 - Provides simple data reliability for operation over datagram bearers

Protocol Stack - Security (WTLS)

- Goals and Requirements:
 - Interoperable protocols
 - Scalability to allow large scale application deployment
 - First class security level
 - Support for public-key certificates
 - Support for WAP transport protocols

Protocol Stack - Security (WTLS)

- Services & Protocols
 - Provide reliable data transfer based on request/reply paradigm
 - No explicit connection setup or tear down
 - Data carried in first packet of protocol exchange
 - Seeks to reduce 3-way handshake on initial request
 - Supports port number addressing
 - Message oriented (not stream)
 - Supports an Abort function for outstanding requests
 - Supports concatenation of PDUs
 - User acknowledgement or Stack acknowledgement option
 - acks may be forced from the WTP user (upper layer)
 - default is stack ackh

Protocol Stack - Security (WTLS)

- Uses WDP (UDP/IP) rather than TCP/IP;
- Supports quick negotiation;
- Supports DES and ECC;
 - ECC provides stronger encryption strength per key bit;
 - Limits the processing and memory requirements;
- WTLS security will be between the client and Proxy or WSP Server;
- WTLS provide end-to-end security only between WTLS endpoints;
- Does not interoperate with TLS/SSL;
- Certificate management is an issue at present;
- Good system design required to achieve overall security of which WTLS is a major part.

Application Environment (WAE)

• WAE - Wireless Application Environment :

- Objective :
 - Network-neutral application environment,
 - Suitable for narrow-band wireless devices,
 - Permit a high degree of device independence,
 - Use an Internet/WWW programming model,
 - leverage Internet Standard technology,
 - WAP Protocol stack for efficiency,
 - Enable telephony aware applications
 - And a high degree of interoperability and internationalisation.

WAP Overview Application Environment (WAE)

• WAE - Wireless Application Environment :,

Application Environment (WAE)

• WAE - Content Formats :

- Tokenised WML & Compiled WMLScript
- WBXML
- Images: WBMP (Wireless BitMaP)
- Business cards: IMC vCard standard
- Calendar: IMC vCalendar standard

Application Environment (WAE)

• WAE - WML Explained :

- Tag-based browsing language:
- Screen management (text, images)
- Data input (text, selection lists, etc.)
- Hyperlinks & navigation support
- W3C XML-based language

Application Environment (WAE)

• WAE - WML Card Metaphor Explained :

- User interactions are split into cards
- Navigation occurs between cards
- Explicit inter-card navigation model
- Hyperlinks
- UI Event handling
- History
- State management and variables
- Reduce network traffic
- Results in better caching

Application Environment (WAE)

• WAE - WMLScript design point :

- Scripting language:
 - Procedural logic, loops, conditionals, etc.
 - Optimized for small-memory, small-cpu devices
- ► Based on ECMAScript[™]
- Integrated with WML
- Powerful extension mechanism
- Reduces overall network traffic

Application Environment (WAE)

• WAE - WMLScript in practice :

- Bytecode-based virtual machine
- ROM-able
- Designed for simple, low-impact implementation
- Compiler in network
- Better network bandwidth use
- Better use of terminal memory/cpu.

Application Environment (PUSH)

• PUSH framework:

- permits content to be pushed in order to avoid cost and bandwidth penalty of polling,
- Special security considerations provided,
- Several control mechanisms provided for:
 - Lifetime of PUSHed content
 - Removal of PUSHed content
 - etc.
- Can be applied to unprovisioned device.

Application Environment (UAPROF)

• User Agent PROFile:

- Permits devices to advertise their capabilities to WAP Proxies or WSP Servers and Application Servers,
- Powerful extensible mechanism for relating many aspects of applications, preferences etc.,
- Developed jointly with W3C (W3C calls it CC/PP)

Application Environment (WTA)

• WTA - Wireless Telephony Environment :

- Tools for building telephony applications
- Initialy designed primarily for:
 - Network Operators / Carriers
 - Equipment Vendors
- Network security and reliability a major consideration
- WTA Browser function:
 - Extensions added to standard WML/WMLScript browser
 - Exposes additional API (WTAI) which includes call control, network text messaging, phone book interface
 - WTAI available in WML & WMLScript

Page 43

Futures

• WAP Futures (Short Term):

- Protocols
 - More networks and bearers
- Security
 - Enhance current security offering etc.
- Application Environment
 - Extensions for new types of services
 - Extend to support off-line operation
 - Enrichen the experience

WAP Overview Futures

• WAP Futures (Longer Term):

Convergence !

WAP

Why was WAP needed? Why were the IP insufficent?

- Why was WAP needed ?
 - To meet the needs of wireless devices, e.g. constrained bandwidth and device resources, but with scaleability.
 - Scales from 'Dilbert Ring' through PDA and notebook.
 - Concept of Interoperability Certification useful.
- Why were the IP insufficient ?
 - IP seen as an overhead in SMS/USSD
 - TCP seen as too verbose when used for browser, Datagram concept well liked. WTP perceived as offering sufficient reliability.
 - HTTP V1.1 well liked but long life sessions and efficiency investigated
 - TLS pre-req of reliable transport inhibited acceptibility.
 - HTML V3.2 & 4.0 too rich and lack telephony awareness

WAP

A Personal Critique

- Plus's
 - Addresses the delivery of information to constrained devices, e.g. bandwidth and resources
 - Adopts Internet technology asis where appropriate and optimises otherwise
 - Scales from 'Dilbert Ring' through PDA
 - Has developed the need for capability negotiation allowing targetted content
 - Concept of Interoperability Certification useful.
- Minus's
 - Interoperability with Internet services.
 - protocols, security, etc..
 - Issues of using Internet to get to WAP services based on WSP Server or non-operator Proxy

