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Abstract
This document describes the conventions for using the one-way hash functions in the SHA3
family with the Cryptographic Message Syntax (CMS). The SHA3 family can be used as a message
digest algorithm, as part of a signature algorithm, as part of a message authentication code, or as
part of a Key Derivation Function (KDF).
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1. Introduction
The Cryptographic Message Syntax (CMS)  is used to digitally sign, digest, authenticate,
or encrypt arbitrary message contents. This specification describes the use of the four one-way
hash functions in the SHA3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512)  with
the CMS. In addition, this specification describes the use of these four one-way hash functions
with the RSASSA PKCS#1 version 1.5 signature algorithm  and the Elliptic Curve Digital
Signature Algorithm (ECDSA)  with the CMS signed-data content type.

[RFC5652]

[SHA3]

[RFC8017]
[DSS]
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This document should not be confused with , which defines conventions for using the
SHAKE family of SHA3-based extensible output functions with the CMS.

[RFC8702]

1.1. ASN.1
CMS values are generated with ASN.1 , using the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) .

[X.680]
[X.690]

1.2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14  when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Message Digest Algorithms
One-way hash functions are also referred to as message digest algorithms. This section specifies
the conventions employed by CMS implementations that support SHA3-224, SHA3-256, SHA3-384,
and SHA3-512 .

Digest algorithm identifiers are located in the SignedData digestAlgorithms field, the SignerInfo
digestAlgorithm field, the DigestedData digestAlgorithm field, and the AuthenticatedData
digestAlgorithm field.

Digest values are located in the DigestedData digest field and the Message Digest authenticated
attribute. In addition, digest values are input to signature algorithms.

SHA3-224, SHA3-256, SHA3-384, and SHA3-512 produce output values with 224, 256, 384, and 512
bits, respectively. The object identifiers for these four one-way hash functions are as follows:

When using the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm identifiers, the
parameters field  be absent, not NULL but absent.

[SHA3]

   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-sha3-224 OBJECT IDENTIFIER ::= { hashAlgs 7 }

   id-sha3-256 OBJECT IDENTIFIER ::= { hashAlgs 8 }

   id-sha3-384 OBJECT IDENTIFIER ::= { hashAlgs 9 }

   id-sha3-512 OBJECT IDENTIFIER ::= { hashAlgs 10 }

MUST
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3. Signature Algorithms
This section specifies the conventions employed by CMS implementations that support the four
SHA3 one-way hash functions with the RSASSA PKCS#1 v1.5 signature algorithm  and
the ECDSA  with the CMS signed-data content type.

Signature algorithm identifiers are located in the SignerInfo signatureAlgorithm field of
SignedData. Also, signature algorithm identifiers are located in the SignerInfo
signatureAlgorithm field of countersignature attributes.

Signature values are located in the SignerInfo signature field of SignedData. Also, signature
values are located in the SignerInfo signature field of countersignature attributes.

[RFC8017]
[DSS]

3.1. RSASSA PKCS#1 v1.5 with SHA3
The RSASSA PKCS#1 v1.5 is defined in . When RSASSA PKCS#1 v1.5 is used in
conjunction with one of the SHA3 one-way hash functions, the object identifiers are:

The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys in certificates is specified in 
, and it is repeated here for convenience:

When the rsaEncryption, id-rsassa-pkcs1-v1-5-with-sha3-224, id-rsassa-pkcs1-v1-5-with-sha3-256,
id-rsassa-pkcs1-v1-5-with-sha3-384, and id-rsassa-pkcs1-v1-5-with-sha3-512 algorithm identifiers
are used, the AlgorithmIdentifier parameters field  contain NULL.

When the rsaEncryption algorithm identifier is used, the RSA public key, which is composed of a
modulus and a public exponent,  be encoded using the RSAPublicKey type as specified in 

. The output of this encoding is carried in the certificate subject public key. The
definition of RSAPublicKey is repeated here for convenience:

[RFC8017]

   OID ::= OBJECT IDENTIFIER

   sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

   id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

   id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

   id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

   id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

[RFC3279]

   rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
       us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

MUST

MUST
[RFC3279]
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When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a single value. That value
is used directly as the signature value.

   RSAPublicKey ::= SEQUENCE {
      modulus INTEGER, -- n
      publicExponent INTEGER } -- e

3.2. ECDSA with SHA3
The ECDSA is defined in . When the ECDSA is used in conjunction with one of the SHA3 one-
way hash functions, the object identifiers are:

When the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm identifier is used, the
parameters field  be absent, not NULL but absent.

When the id-ecdsa-with-sha3-224, id-ecdsa-with-sha3-256, id- ecdsa-with-sha3-384, and id-ecdsa-
with-sha3-512 algorithm identifiers are used, the parameters field  be absent, not NULL but
absent.

The conventions for ECDSA public keys are as specified in . The ECParameters
associated with the ECDSA public key in the signers certificate  apply to the verification of
the signature.

When signing, the ECDSA algorithm generates two values. These values are commonly referred
to as r and s. To easily transfer these two values as one signature, they  be ASN.1 encoded
using the ECDSA-Sig-Value defined in , which is repeated here for convenience:

[DSS]

   sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

   id-ecdsa-with-sha3-224 OBJECT IDENTIFIER ::= { sigAlgs 9 }

   id-ecdsa-with-sha3-256 OBJECT IDENTIFIER ::= { sigAlgs 10 }

   id-ecdsa-with-sha3-384 OBJECT IDENTIFIER ::= { sigAlgs 11 }

   id-ecdsa-with-sha3-512 OBJECT IDENTIFIER ::= { sigAlgs 12 }

MUST

MUST

[RFC5480]
SHALL

MUST
[RFC3279]

 ECDSA-Sig-Value ::= SEQUENCE { r INTEGER, s
INTEGER }

4. Message Authentication Codes Using HMAC and SHA3
This section specifies the conventions employed by CMS implementations that support the
Hashed Message Authentication Code (HMAC)  with SHA3 message authentication code
(MAC).

[RFC2104]
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MAC algorithm identifiers are located in the AuthenticatedData macAlgorithm field.

MAC values are located in the AuthenticatedData mac field.

When HMAC is used in conjunction with one of the SHA3 one-way hash functions, the object
identifiers are:

When the id-hmacWithSHA3-224, id-hmacWithSHA3-256, id-hmacWithSHA3-384, and id-
hmacWithSHA3-512 algorithm identifiers are used, the parameters field  be absent, not
NULL but absent.

   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-hmacWithSHA3-224 OBJECT IDENTIFIER ::= { hashAlgs 13 }

   id-hmacWithSHA3-256 OBJECT IDENTIFIER ::= { hashAlgs 14 }

   id-hmacWithSHA3-384 OBJECT IDENTIFIER ::= { hashAlgs 15 }

   id-hmacWithSHA3-512 OBJECT IDENTIFIER ::= { hashAlgs 16 }

MUST

5. Key Derivation Functions
The CMS KEMRecipientInfo structure  is one place where algorithm identifiers for key-
derivation functions are needed.

[RFC9629]

5.1. HKDF with SHA3
This section assigns four algorithm identifiers that can be employed by CMS implementations
that support the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) 
with the SHA3 family of hash functions.

When HKDF is used in conjunction with one of the SHA3 one-way hash functions, the object
identifiers are:

[RFC5869]

   id-alg OBJECT IDENTIFIER ::= { iso(1) member-body(2)
       us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

   id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

   id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }
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When id-alg-hkdf-with-sha3-224, id-alg-hkdf-with-sha3-256, id-alg-hkdf-with-sha3-384, or id-alg-
hkdf-with-sha3-512 is used in an algorithm identifier, the parameters field  be absent, not
NULL but absent.

MUST

K

X

L

S

5.2. KMAC128-KDF and KMAC256-KDF
This section specifies the conventions employed by CMS implementations that employ either
KMAC128 or KMAC256 as KDFs as defined in Section 4.4 of .

KMAC128 and KMAC256 are specified in . The use of KMAC128 and KMAC256 as
KDFs are defined as follows:

KMAC128-KDF is KMAC128(K, X, L, S).

KMAC256-KDF is KMAC256(K, X, L, S).

The parameters to the KMAC128 and KMAC256 functions are:

The input key-derivation key. The length of K  be less than 22040.

The context, which contains the ASN.1 DER encoding of CMSORIforKEMOtherInfo when the
KDF is used with .

The output length in bits. L  be greater than or equal to 0 and  be less than 22040.

The optional customization label, such as "KDF" (0x4B4446). The length of S  be less than

22040.

The K parameter is known to all authorized parties; it is often the output of a KEM Decap()
operation. The X parameter is assembled from data that is transmitted by the originator. The L
parameter is determined by the size of the output keying material. The S parameter is optional,
and if it is provided by the originator, it is passed in the parameters field of the KDF algorithm
identifier.

When KMAC128-KDF or KMAC256-KDF is used, the object identifiers are:

When id-kmac128 or id-kmac256 is used as part of an algorithm identifier, the parameters field 
 be absent when there is no customization label (S). If any value is provided for S, then the

parameters field  be present and contain the value of S, encoded as Customization.

[NIST.SP.800-108r1-upd1]

[NIST.SP.800-185]

MUST

[RFC9629]

MUST MUST

MUST

   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-kmac128 OBJECT IDENTIFIER ::= { hashAlgs 21 }

   id-kmac256 OBJECT IDENTIFIER ::= { hashAlgs 22 }

MUST
MUST
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   Customization ::= OCTET STRING

5.3. KDF2 and KDF3 with SHA3
This section specifies the conventions employed by CMS implementations that employ either the
KDF2 or KDF3 functions defined in . The CMS KEMRecipientInfo structure 

 is one place where algorithm identifiers for key-derivation functions are needed.

The key-derivation function algorithm identifier is an object identifier and optional parameters.
When KDF2 and KDF3 are used, they are identified by the id-kdf-kdf2 and id-kdf-kdf3 object
identifiers, respectively. The key-derivation function algorithm identifier parameters carry a
message digest algorithm identifier, which indicates the hash function that is being employed. To
support SHA3, the key-derivation function algorithm identifier parameters contain an algorithm
identifier from Section 2.

[ANS-X9.44-2007]
[RFC9629]

   x9-44 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
       tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) }

   x9-44-components OBJECT IDENTIFIER ::= { x9-44 components(1) }

   id-kdf-kdf2 OBJECT IDENTIFIER ::= { x9-44-components kdf2(1) }

   id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

6. Security Considerations
Implementations must protect the signer's private key. Compromise of the signer's private key
permits masquerade.

Implementations must protect the key-derivation key. Compromise of the key-derivation key
permits others to derive the derived keying material, which would result in loss of
confidentiality, integrity, or authentication, depending on the use of the derived keying material.

When more than two parties share the same message-authentication key, data origin
authentication is not assured. Any party that knows the message-authentication key can compute
a valid MAC; therefore, the content could originate from any one of the parties.

Implementations must randomly generate message-authentication keys and one-time values,
such as the a per-message secret number (called the k value) when generating an ECDSA
signature. In addition, the generation of public/private key pairs relies on a random numbers.
The use of inadequate pseudorandom number generators (PRNGs) to generate cryptographic
values can result in little or no security. Instead of brute-force searching the whole key space, an
attacker may find it much easier to reproduce the PRNG environment that produced the keys and
then search the resulting small set of possibilities. The generation of quality random numbers is
difficult.  offers important guidance in this area, and Appendix 3 of FIPS PUB 186-4 

 provides some PRNG techniques.
[RFC4086]

[DSS]
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8. References

Implementers should be aware that cryptographic algorithms become weaker with time. As new
cryptanalysis techniques are developed and computing performance improves, the work factor
to break a particular cryptographic algorithm will reduce. Therefore, cryptographic algorithm
implementations should be modular, allowing new algorithms to be readily inserted. That is,
implementers should be prepared to regularly update the set of algorithms in their
implementations.

7. IANA Considerations
IANA has assigned one object identifier for the ASN.1 module in Appendix A in the "SMI Security
for S/MIME Module Identifiers (1.2.840.113549.1.9.16.0)" registry :

IANA has assigned four object identifiers for the HKDF using SHA3 algorithm identifiers in the
"SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)" registry :

[IANA-MOD]

   id-mod-sha3-oids-2023 OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) mod(0) 78 }

[IANA-ALG]

   id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

   id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

[ANS-X9.44-2007]

[DSS]

[NIST.SP.800-108r1-upd1]
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Appendix A. ASN.1 Module
This section contains the ASN.1 module for the algorithm identifiers using the SHA3 family of
hash functions . This module imports types from other ASN.1 modules that are defined in 

.
[SHA3]

[RFC5912]

<CODE BEGINS>
   SHA3-OIDs-2023
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
       smime(16) modules(0) id-mod-sha3-oids-2023(78) }

   DEFINITIONS IMPLICIT TAGS ::=
   BEGIN

   EXPORTS ALL;

   IMPORTS

     AlgorithmIdentifier{}, DIGEST-ALGORITHM, SIGNATURE-ALGORITHM,
     KEY-DERIVATION, MAC-ALGORITHM
     FROM AlgorithmInformation-2009  -- [RFC5912]
       { iso(1) identified-organization(3) dod(6) internet(1)
         security(5) mechanisms(5) pkix(7) id-mod(0)
         id-mod-algorithmInformation-02(58) }

    mda-sha1, pk-rsa, pk-ec, ECDSA-Sig-Value
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    FROM PKIXAlgs-2009  -- [RFC5912]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-algorithms2008-02(56) }

    mda-sha224, mda-sha256, mda-sha384, mda-sha512
    FROM PKIX1-PSS-OAEP-Algorithms-2009  -- [RFC5912]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-rsa-pkalgs-02(54) } ;

   --
   -- Alias
   --

   OID ::= OBJECT IDENTIFIER

   --
   -- Object Identifier Arcs
   --

   nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) 4 }

   hashAlgs OID ::= { nistAlgorithm 2 }

   sigAlgs OID ::= { nistAlgorithm 3 }

   x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
       country(16) x9(840) x9Standards(9) x9-44(44) }

   x9-44-components OID ::= { x9-44 components(1) }

   id-alg OID ::= { iso(1) member-body(2) us(840)
       rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

   --
   -- Message Digest Algorithms
   --

   id-sha3-224 OID ::= { hashAlgs 7 }

   id-sha3-256 OID ::= { hashAlgs 8 }

   id-sha3-384 OID ::= { hashAlgs 9 }

   id-sha3-512 OID ::= { hashAlgs 10 }

   mda-sha3-224 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-224
       PARAMS ARE absent }

   mda-sha3-256 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-256
       PARAMS ARE absent }
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   mda-sha3-384 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-384
       PARAMS ARE absent }

   mda-sha3-512 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-512
       PARAMS ARE absent }

   HashAlgorithm ::= AlgorithmIdentifier{ DIGEST-ALGORITHM,
                         { HashAlgorithms } }

   HashAlgorithms DIGEST-ALGORITHM ::=  {
       mda-sha3-224 |
       mda-sha3-256 |
       mda-sha3-384 |
       mda-sha3-512,
       ... }

   --
   -- Signature Algorithms
   --

   id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

   id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

   id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

   id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

   id-ecdsa-with-sha3-224 OID ::= { sigAlgs 9 }

   id-ecdsa-with-sha3-256 OID ::= { sigAlgs 10 }

   id-ecdsa-with-sha3-384 OID ::= { sigAlgs 11 }

   id-ecdsa-with-sha3-512 OID ::= { sigAlgs 12 }

   sa-rsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-224
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-224 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-224 } }

   sa-rsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-256
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-256 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-256 } }

   sa-rsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-384
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       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-384 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-384 } }

   sa-rsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-512
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-512 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-512 } }

   sa-ecdsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-224
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-224 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-224 } }

   sa-ecdsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-256
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-256 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-256 } }

   sa-ecdsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-384
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-384 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-384 } }

   sa-ecdsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-512
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-512 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-512 } }

   SignatureAlg ::= AlgorithmIdentifier{ SIGNATURE-ALGORITHM,
                         { SignatureAlgs } }

   SignatureAlgs SIGNATURE-ALGORITHM ::= {
       sa-rsaWithSHA3-224 |
       sa-rsaWithSHA3-256 |
       sa-rsaWithSHA3-384 |
       sa-rsaWithSHA3-512 |
       sa-ecdsaWithSHA3-224 |
       sa-ecdsaWithSHA3-256 |
       sa-ecdsaWithSHA3-384 |
       sa-ecdsaWithSHA3-512,
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       ... }

   --
   -- Message Authentication Codes
   --

   id-hmacWithSHA3-224 OID ::= { hashAlgs 13 }

   id-hmacWithSHA3-256 OID ::= { hashAlgs 14 }

   id-hmacWithSHA3-384 OID ::= { hashAlgs 15 }

   id-hmacWithSHA3-512 OID ::= { hashAlgs 16 }

   maca-hmacWithSHA3-224 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-224
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-224 } }

   maca-hmacWithSHA3-256 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-256
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-256 } }

   maca-hmacWithSHA3-384 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-384
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-384 } }

   maca-hmacWithSHA3-512 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-512
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-512 } }

   MACAlgorithm ::= AlgorithmIdentifier{ MAC-ALGORITHM,
                       { MACAlgorithms } }

   MACAlgorithms MAC-ALGORITHM ::= {
       maca-hmacWithSHA3-224 |
       maca-hmacWithSHA3-256 |
       maca-hmacWithSHA3-384 |
       maca-hmacWithSHA3-512,
       ... }

   --
   -- Key Derivation Algorithms
   --

   id-alg-hkdf-with-sha3-224 OID ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OID ::= { id-alg 33 }
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   id-alg-hkdf-with-sha3-384 OID ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OID ::= { id-alg 35 }

   id-kmac128 OID ::= { hashAlgs 21 }

   id-kmac256  OID ::= { hashAlgs 22 }

   id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   kda-hkdf-with-sha3-224 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-224
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-256 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-256
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-384 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-384
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-512 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-512
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-kmac128 KEY-DERIVATION ::= {
       IDENTIFIER id-kmac128
       PARAMS TYPE Customization ARE optional
       -- PARAMS are absent when Customization is ''H --
       -- No S/MIME caps defined -- }

   kda-kmac256 KEY-DERIVATION ::= {
       IDENTIFIER id-kmac256
       PARAMS TYPE Customization ARE optional
       -- PARAMS are absent when Customization is ''H --
       -- No S/MIME caps defined -- }

   kda-kdf2 KEY-DERIVATION ::= {
       IDENTIFIER id-kdf-kdf2
       PARAMS TYPE KDF2-HashFunction ARE required
       -- No S/MIME caps defined -- }

   kda-kdf3 KEY-DERIVATION ::= {
       IDENTIFIER id-kdf-kdf3
       PARAMS TYPE KDF3-HashFunction ARE required
       -- No S/MIME caps defined -- }

   Customization ::= OCTET STRING

   KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                             { KDF2-HashFunctions } }
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   KDF2-HashFunctions DIGEST-ALGORITHM ::= {
      X9-HashFunctions,
      ... }

   KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                             { KDF3-HashFunctions } }

   KDF3-HashFunctions DIGEST-ALGORITHM ::= {
      X9-HashFunctions,
      ... }

   X9-HashFunctions DIGEST-ALGORITHM ::= {
       mda-sha1 |
       mda-sha224 |
       mda-sha256 |
       mda-sha384 |
       mda-sha512 |
       mda-sha3-224 |
       mda-sha3-256 |
       mda-sha3-384 |
       mda-sha3-512,
       ... }

   KeyDerivationFunction ::=  AlgorithmIdentifier{ KEY-DERIVATION,
                                  { KeyDevAlgs } }

   KeyDevAlgs KEY-DERIVATION ::= {
       kda-hkdf-with-sha3-224 |
       kda-hkdf-with-sha3-256 |
       kda-hkdf-with-sha3-384 |
       kda-hkdf-with-sha3-512 |
       kda-kmac128 |
       kda-kmac256 |
       kda-kdf2 |
       kda-kdf3,
       ... }

   END

<CODE ENDS>
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       Introduction
       The Cryptographic Message Syntax (CMS)   is used to digitally sign,
digest, authenticate, or encrypt arbitrary message contents.  This
specification describes the use of the four one-way hash functions in the
SHA3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512)   with the
CMS.  In addition, this specification describes the use of these four
one-way hash functions with the RSASSA PKCS#1 version 1.5 signature
algorithm   and the Elliptic Curve Digital Signature Algorithm
(ECDSA)   with the CMS signed-data content type.
       This document should not be confused with  , which defines
conventions for using the SHAKE family of SHA3-based extensible output
functions with the CMS.
       
         ASN.1
         CMS values are generated with ASN.1  , using the Basic
Encoding Rules (BER) and the Distinguished Encoding Rules (DER)  .
      
       
         Terminology
         
    The key words " MUST", " MUST NOT",
    " REQUIRED", " SHALL", " SHALL NOT",
    " SHOULD", " SHOULD NOT",
    " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be
    interpreted as described in BCP 14     when, and only when, they appear in all capitals, as
    shown here.
        
      
    
     
       Message Digest Algorithms
       One-way hash functions are also referred to as message digest algorithms.
This section specifies the conventions employed by CMS implementations
that support SHA3-224, SHA3-256, SHA3-384, and SHA3-512  .
       Digest algorithm identifiers are located in the SignedData digestAlgorithms
field, the SignerInfo digestAlgorithm field, the DigestedData digestAlgorithm
field, and the AuthenticatedData digestAlgorithm field.
       Digest values
are located in the DigestedData digest field and the Message Digest
authenticated attribute.  In addition, digest values are input to signature
algorithms.
       SHA3-224, SHA3-256, SHA3-384, and SHA3-512 produce output values with
224, 256, 384, and 512 bits, respectively.  The object identifiers for
      these four one-way hash functions are as follows:
       
   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-sha3-224 OBJECT IDENTIFIER ::= { hashAlgs 7 }

   id-sha3-256 OBJECT IDENTIFIER ::= { hashAlgs 8 }

   id-sha3-384 OBJECT IDENTIFIER ::= { hashAlgs 9 }

   id-sha3-512 OBJECT IDENTIFIER ::= { hashAlgs 10 }

       When using the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512
algorithm identifiers, the parameters field  MUST be absent, not NULL
but absent.
    
     
       Signature Algorithms
       This section specifies the conventions employed by CMS implementations
that support the four SHA3 one-way hash functions with the RSASSA PKCS#1 v1.5 signature algorithm   and the ECDSA   with the CMS signed-data content type.
       Signature algorithm identifiers are located in the SignerInfo
signatureAlgorithm field of SignedData.  Also, signature algorithm
identifiers are located in the SignerInfo signatureAlgorithm field
of countersignature attributes.
       Signature values are located in the SignerInfo signature field of
SignedData.  Also, signature values are located in the SignerInfo
signature field of countersignature attributes.
       
         RSASSA PKCS#1 v1.5 with SHA3
         The RSASSA PKCS#1 v1.5 is defined in  .  When RSASSA PKCS#1 v1.5 is
used in conjunction with one of the SHA3 one-way hash functions, the
object identifiers are:
         
   OID ::= OBJECT IDENTIFIER

   sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

   id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

   id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

   id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

   id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

         The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys
in certificates is specified in  , and it is repeated here for
convenience:
         
   rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
       us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

         When the rsaEncryption, id-rsassa-pkcs1-v1-5-with-sha3-224,
id-rsassa-pkcs1-v1-5-with-sha3-256,
id-rsassa-pkcs1-v1-5-with-sha3-384, and
id-rsassa-pkcs1-v1-5-with-sha3-512 algorithm identifiers are used,
the AlgorithmIdentifier parameters field  MUST contain NULL.
         When the rsaEncryption algorithm identifier is used, the RSA public key,
which is composed of a modulus and a public exponent,  MUST be encoded
using the RSAPublicKey type as specified in  .  The output of
this encoding is carried in the certificate subject public key.  The
definition of RSAPublicKey is repeated here for convenience:
         
   RSAPublicKey ::= SEQUENCE {
      modulus INTEGER, -- n
      publicExponent INTEGER } -- e

         When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a
single value. That value is used directly as the signature value.
      
       
         ECDSA with SHA3
         The ECDSA is defined in
 .  When the ECDSA is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:
         
   sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

   id-ecdsa-with-sha3-224 OBJECT IDENTIFIER ::= { sigAlgs 9 }

   id-ecdsa-with-sha3-256 OBJECT IDENTIFIER ::= { sigAlgs 10 }

   id-ecdsa-with-sha3-384 OBJECT IDENTIFIER ::= { sigAlgs 11 }

   id-ecdsa-with-sha3-512 OBJECT IDENTIFIER ::= { sigAlgs 12 }

          When the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm
identifier is used, the parameters field  MUST be absent, not NULL but absent.
          When the id-ecdsa-with-sha3-224, id-ecdsa-with-sha3-256, id-
ecdsa-with-sha3-384, and id-ecdsa-with-sha3-512 algorithm identifiers are
used, the parameters field  MUST be absent, not NULL but absent.
         The conventions for
ECDSA public keys are as specified in  .  The
ECParameters associated with the ECDSA public key in the signers certificate
 SHALL apply to the verification of the signature.
         When
signing, the ECDSA algorithm generates two values.  These values are commonly
referred to as r and s.  To easily transfer these two values as one signature,
they  MUST be ASN.1 encoded using the ECDSA-Sig-Value defined in
 , which is repeated here for convenience:
          ECDSA-Sig-Value ::= SEQUENCE { r INTEGER, s
INTEGER }
      
    
     
       Message Authentication Codes Using HMAC and SHA3
       This section specifies the conventions employed by CMS implementations
that support the Hashed Message Authentication Code (HMAC)   with SHA3 message authentication code (MAC).
       MAC algorithm identifiers are located in the AuthenticatedData
macAlgorithm field.
       MAC values are located in the AuthenticatedData mac field.
       When HMAC is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:
       
   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-hmacWithSHA3-224 OBJECT IDENTIFIER ::= { hashAlgs 13 }

   id-hmacWithSHA3-256 OBJECT IDENTIFIER ::= { hashAlgs 14 }

   id-hmacWithSHA3-384 OBJECT IDENTIFIER ::= { hashAlgs 15 }

   id-hmacWithSHA3-512 OBJECT IDENTIFIER ::= { hashAlgs 16 }

       When the id-hmacWithSHA3-224, id-hmacWithSHA3-256,
id-hmacWithSHA3-384, and id-hmacWithSHA3-512 algorithm
identifiers are used, the parameters field  MUST be absent,
not NULL but absent.
    
     
       Key Derivation Functions
       The CMS KEMRecipientInfo structure   is one place where
algorithm identifiers for key-derivation functions are needed.
       
         HKDF with SHA3
         This section assigns four algorithm identifiers that can be employed by CMS
implementations that support the HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)   with the SHA3 family of hash functions.
         When HKDF is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:
         
   id-alg OBJECT IDENTIFIER ::= { iso(1) member-body(2)
       us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

   id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

   id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

         When id-alg-hkdf-with-sha3-224, id-alg-hkdf-with-sha3-256,
id-alg-hkdf-with-sha3-384, or id-alg-hkdf-with-sha3-512 is used in
an algorithm identifier, the parameters field  MUST be absent,
not NULL but absent.
      
       
         KMAC128-KDF and KMAC256-KDF
         This section specifies the conventions employed by CMS implementations
that employ either KMAC128 or KMAC256 as KDFs as
defined in Section 4.4 of  .
         KMAC128 and KMAC256 are specified in  . The use of KMAC128
and KMAC256 as KDFs are defined as follows:
         KMAC128-KDF is KMAC128(K, X, L, S).
         KMAC256-KDF is KMAC256(K, X, L, S).
         The parameters to the KMAC128 and KMAC256 functions are:
         
           K
           
             The input key-derivation key.  The length of K  MUST be less than 2 2040.
          
           X
           
             The context, which contains the ASN.1 DER encoding of CMSORIforKEMOtherInfo when the KDF is used with  .
          
           L
           
             The output length in bits.  L  MUST be greater than or equal to 0 and  MUST be less than 2 2040.
          
           S
           
             The optional customization label, such as "KDF" (0x4B4446).  The length of S  MUST be less than 2 2040.
          
        
         The K parameter is known to all authorized parties; it is often the output
of a KEM Decap() operation.  The X parameter is assembled from data that
is transmitted by the originator.  The L parameter is determined by the
size of the output keying material.  The S parameter is optional, and if
it is provided by the originator, it is passed in the parameters field of
the KDF algorithm identifier.
         When KMAC128-KDF or KMAC256-KDF is used, the object identifiers are:
         
   hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

   id-kmac128 OBJECT IDENTIFIER ::= { hashAlgs 21 }

   id-kmac256 OBJECT IDENTIFIER ::= { hashAlgs 22 }

         When id-kmac128 or id-kmac256 is used as part of an algorithm identifier, the
parameters field  MUST be absent when there is no customization label (S).  If any
value is provided for S, then the parameters field  MUST be present and
contain the value of S, encoded as Customization.
         
   Customization ::= OCTET STRING

      
       
         KDF2 and KDF3 with SHA3
         This section specifies the conventions employed by CMS implementations
that employ either the KDF2 or KDF3 functions defined in  .
The CMS KEMRecipientInfo structure   is one
place where algorithm identifiers for key-derivation functions are needed.
         The key-derivation function algorithm identifier is an object identifier
and optional parameters.  When KDF2 and KDF3 are used, they are identified by
the id-kdf-kdf2 and id-kdf-kdf3 object identifiers, respectively.  The
key-derivation function algorithm identifier parameters carry a message
digest algorithm identifier, which indicates the hash function that
is being employed.  To support SHA3, the key-derivation function
algorithm identifier parameters contain an algorithm identifier from
 .
         
   x9-44 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
       tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) }

   x9-44-components OBJECT IDENTIFIER ::= { x9-44 components(1) }

   id-kdf-kdf2 OBJECT IDENTIFIER ::= { x9-44-components kdf2(1) }

   id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

      
    
     
       Security Considerations
       Implementations must protect the signer's private key.  Compromise of the
signer's private key permits masquerade.
       Implementations must protect the key-derivation key.  Compromise of the
key-derivation key permits others to derive the derived keying material,
which would result in loss of confidentiality, integrity, or authentication,
depending on the use of the derived keying material.
       When more than two parties share the same message-authentication key,
data origin authentication is not assured.  Any party that knows the
message-authentication key can compute a valid MAC; therefore, the content
could originate from any one of the parties.
         Implementations must randomly generate message-authentication keys
  and one-time values, such as the a per-message secret number (called the
  k value) when generating an ECDSA signature.
In addition, the generation of public/private key pairs relies on a
random numbers.  The use of inadequate pseudorandom number generators
(PRNGs) to generate cryptographic values can result in little or no
security.  Instead of brute-force searching the whole key space, an
attacker may find it much easier to reproduce the PRNG environment that
produced the keys and then search the resulting small set of
possibilities.  The generation of quality random numbers is
difficult.    offers important guidance in this area,
and Appendix 3 of FIPS PUB 186-4   provides some PRNG techniques.
       Implementers should be aware that cryptographic algorithms become weaker
with time.  As new cryptanalysis techniques are developed and computing
performance improves, the work factor to break a particular cryptographic
algorithm will reduce.  Therefore, cryptographic algorithm
implementations should be modular, allowing new algorithms to be readily
inserted.  That is, implementers should be prepared to regularly update
the set of algorithms in their implementations.
    
     
       IANA Considerations
       IANA has assigned one object identifier for the ASN.1 module in  
in the "SMI Security for S/MIME Module Identifiers (1.2.840.113549.1.9.16.0)"
registry  :
       
   id-mod-sha3-oids-2023 OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) mod(0) 78 }

       IANA has assigned four object identifiers for the HKDF using SHA3 algorithm
identifiers in the "SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)"
registry  :
       
   id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

   id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }
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       ASN.1 Module 
       This section contains the ASN.1 module for the algorithm identifiers using the SHA3
family of hash functions  .  This module imports types from other ASN.1
modules that are defined in  .
       
   SHA3-OIDs-2023
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
       smime(16) modules(0) id-mod-sha3-oids-2023(78) }

   DEFINITIONS IMPLICIT TAGS ::=
   BEGIN

   EXPORTS ALL;

   IMPORTS

     AlgorithmIdentifier{}, DIGEST-ALGORITHM, SIGNATURE-ALGORITHM,
     KEY-DERIVATION, MAC-ALGORITHM
     FROM AlgorithmInformation-2009  -- [RFC5912]
       { iso(1) identified-organization(3) dod(6) internet(1)
         security(5) mechanisms(5) pkix(7) id-mod(0)
         id-mod-algorithmInformation-02(58) }

    mda-sha1, pk-rsa, pk-ec, ECDSA-Sig-Value
    FROM PKIXAlgs-2009  -- [RFC5912]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-algorithms2008-02(56) }

    mda-sha224, mda-sha256, mda-sha384, mda-sha512
    FROM PKIX1-PSS-OAEP-Algorithms-2009  -- [RFC5912]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-rsa-pkalgs-02(54) } ;


   --
   -- Alias
   --

   OID ::= OBJECT IDENTIFIER


   --
   -- Object Identifier Arcs
   --

   nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16)
       us(840) organization(1) gov(101) csor(3) 4 }

   hashAlgs OID ::= { nistAlgorithm 2 }

   sigAlgs OID ::= { nistAlgorithm 3 }

   x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
       country(16) x9(840) x9Standards(9) x9-44(44) }

   x9-44-components OID ::= { x9-44 components(1) }

   id-alg OID ::= { iso(1) member-body(2) us(840)
       rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }


   --
   -- Message Digest Algorithms
   --

   id-sha3-224 OID ::= { hashAlgs 7 }

   id-sha3-256 OID ::= { hashAlgs 8 }

   id-sha3-384 OID ::= { hashAlgs 9 }

   id-sha3-512 OID ::= { hashAlgs 10 }

   mda-sha3-224 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-224
       PARAMS ARE absent }

   mda-sha3-256 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-256
       PARAMS ARE absent }

   mda-sha3-384 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-384
       PARAMS ARE absent }

   mda-sha3-512 DIGEST-ALGORITHM ::= {
       IDENTIFIER id-sha3-512
       PARAMS ARE absent }

   HashAlgorithm ::= AlgorithmIdentifier{ DIGEST-ALGORITHM,
                         { HashAlgorithms } }

   HashAlgorithms DIGEST-ALGORITHM ::=  {
       mda-sha3-224 |
       mda-sha3-256 |
       mda-sha3-384 |
       mda-sha3-512,
       ... }


   --
   -- Signature Algorithms
   --

   id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

   id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

   id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

   id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

   id-ecdsa-with-sha3-224 OID ::= { sigAlgs 9 }

   id-ecdsa-with-sha3-256 OID ::= { sigAlgs 10 }

   id-ecdsa-with-sha3-384 OID ::= { sigAlgs 11 }

   id-ecdsa-with-sha3-512 OID ::= { sigAlgs 12 }

   sa-rsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-224
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-224 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-224 } }

   sa-rsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-256
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-256 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-256 } }

   sa-rsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-384
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-384 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-384 } }

   sa-rsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-512
       PARAMS TYPE NULL ARE required
       HASHES { mda-sha3-512 }
       PUBLIC-KEYS { pk-rsa }
       SMIME-CAPS {IDENTIFIED BY
           id-rsassa-pkcs1-v1-5-with-sha3-512 } }

   sa-ecdsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-224
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-224 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-224 } }

   sa-ecdsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-256
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-256 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-256 } }

   sa-ecdsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-384
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-384 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-384 } }

   sa-ecdsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-sha3-512
       VALUE ECDSA-Sig-Value
       PARAMS ARE absent
       HASHES { mda-sha3-512 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-512 } }

   SignatureAlg ::= AlgorithmIdentifier{ SIGNATURE-ALGORITHM,
                         { SignatureAlgs } }

   SignatureAlgs SIGNATURE-ALGORITHM ::= {
       sa-rsaWithSHA3-224 |
       sa-rsaWithSHA3-256 |
       sa-rsaWithSHA3-384 |
       sa-rsaWithSHA3-512 |
       sa-ecdsaWithSHA3-224 |
       sa-ecdsaWithSHA3-256 |
       sa-ecdsaWithSHA3-384 |
       sa-ecdsaWithSHA3-512,
       ... }


   --
   -- Message Authentication Codes
   --

   id-hmacWithSHA3-224 OID ::= { hashAlgs 13 }

   id-hmacWithSHA3-256 OID ::= { hashAlgs 14 }

   id-hmacWithSHA3-384 OID ::= { hashAlgs 15 }

   id-hmacWithSHA3-512 OID ::= { hashAlgs 16 }

   maca-hmacWithSHA3-224 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-224
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-224 } }

   maca-hmacWithSHA3-256 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-256
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-256 } }

   maca-hmacWithSHA3-384 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-384
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-384 } }

   maca-hmacWithSHA3-512 MAC-ALGORITHM ::= {
       IDENTIFIER id-hmacWithSHA3-512
       PARAMS ARE absent
       IS-KEYED-MAC TRUE
       SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-512 } }

   MACAlgorithm ::= AlgorithmIdentifier{ MAC-ALGORITHM,
                       { MACAlgorithms } }

   MACAlgorithms MAC-ALGORITHM ::= {
       maca-hmacWithSHA3-224 |
       maca-hmacWithSHA3-256 |
       maca-hmacWithSHA3-384 |
       maca-hmacWithSHA3-512,
       ... }


   --
   -- Key Derivation Algorithms
   --

   id-alg-hkdf-with-sha3-224 OID ::= { id-alg 32 }

   id-alg-hkdf-with-sha3-256 OID ::= { id-alg 33 }

   id-alg-hkdf-with-sha3-384 OID ::= { id-alg 34 }

   id-alg-hkdf-with-sha3-512 OID ::= { id-alg 35 }

   id-kmac128 OID ::= { hashAlgs 21 }

   id-kmac256  OID ::= { hashAlgs 22 }

   id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   kda-hkdf-with-sha3-224 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-224
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-256 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-256
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-384 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-384
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-hkdf-with-sha3-512 KEY-DERIVATION ::= {
       IDENTIFIER id-alg-hkdf-with-sha3-512
       PARAMS ARE absent
       -- No S/MIME caps defined -- }

   kda-kmac128 KEY-DERIVATION ::= {
       IDENTIFIER id-kmac128
       PARAMS TYPE Customization ARE optional
       -- PARAMS are absent when Customization is ''H --
       -- No S/MIME caps defined -- }

   kda-kmac256 KEY-DERIVATION ::= {
       IDENTIFIER id-kmac256
       PARAMS TYPE Customization ARE optional
       -- PARAMS are absent when Customization is ''H --
       -- No S/MIME caps defined -- }

   kda-kdf2 KEY-DERIVATION ::= {
       IDENTIFIER id-kdf-kdf2
       PARAMS TYPE KDF2-HashFunction ARE required
       -- No S/MIME caps defined -- }

   kda-kdf3 KEY-DERIVATION ::= {
       IDENTIFIER id-kdf-kdf3
       PARAMS TYPE KDF3-HashFunction ARE required
       -- No S/MIME caps defined -- }

   Customization ::= OCTET STRING

   KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                             { KDF2-HashFunctions } }

   KDF2-HashFunctions DIGEST-ALGORITHM ::= {
      X9-HashFunctions,
      ... }

   KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                             { KDF3-HashFunctions } }

   KDF3-HashFunctions DIGEST-ALGORITHM ::= {
      X9-HashFunctions,
      ... }

   X9-HashFunctions DIGEST-ALGORITHM ::= {
       mda-sha1 |
       mda-sha224 |
       mda-sha256 |
       mda-sha384 |
       mda-sha512 |
       mda-sha3-224 |
       mda-sha3-256 |
       mda-sha3-384 |
       mda-sha3-512,
       ... }

   KeyDerivationFunction ::=  AlgorithmIdentifier{ KEY-DERIVATION,
                                  { KeyDevAlgs } }

   KeyDevAlgs KEY-DERIVATION ::= {
       kda-hkdf-with-sha3-224 |
       kda-hkdf-with-sha3-256 |
       kda-hkdf-with-sha3-384 |
       kda-hkdf-with-sha3-512 |
       kda-kmac128 |
       kda-kmac256 |
       kda-kdf2 |
       kda-kdf3,
       ... }

   END
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