
RFC 9688
Use of the SHA3 One-Way Hash Functions in the
Cryptographic Message Syntax (CMS)

Abstract
This document describes the conventions for using the one-way hash functions in the SHA3
family with the Cryptographic Message Syntax (CMS). The SHA3 family can be used as a message
digest algorithm, as part of a signature algorithm, as part of a message authentication code, or as
part of a Key Derivation Function (KDF).

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9688
Standards Track
November 2024
2070-1721
R. Housley
Vigil Security

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9688

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Housley Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9688
https://www.rfc-editor.org/info/rfc9688
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. ASN.1

1.2. Terminology

2. Message Digest Algorithms

3. Signature Algorithms

3.1. RSASSA PKCS#1 v1.5 with SHA3

3.2. ECDSA with SHA3

4. Message Authentication Codes Using HMAC and SHA3

5. Key Derivation Functions

5.1. HKDF with SHA3

5.2. KMAC128-KDF and KMAC256-KDF

5.3. KDF2 and KDF3 with SHA3

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. ASN.1 Module

Acknowledgements

Author's Address

2

3

3

3

4

4

5

5

6

6

7

8

8

9

9

9

11

11

17

18

1. Introduction
The Cryptographic Message Syntax (CMS) is used to digitally sign, digest, authenticate,
or encrypt arbitrary message contents. This specification describes the use of the four one-way
hash functions in the SHA3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512) with
the CMS. In addition, this specification describes the use of these four one-way hash functions
with the RSASSA PKCS#1 version 1.5 signature algorithm and the Elliptic Curve Digital
Signature Algorithm (ECDSA) with the CMS signed-data content type.

[RFC5652]

[SHA3]

[RFC8017]
[DSS]

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 2

This document should not be confused with , which defines conventions for using the
SHAKE family of SHA3-based extensible output functions with the CMS.

[RFC8702]

1.1. ASN.1
CMS values are generated with ASN.1 , using the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) .

[X.680]
[X.690]

1.2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Message Digest Algorithms
One-way hash functions are also referred to as message digest algorithms. This section specifies
the conventions employed by CMS implementations that support SHA3-224, SHA3-256, SHA3-384,
and SHA3-512 .

Digest algorithm identifiers are located in the SignedData digestAlgorithms field, the SignerInfo
digestAlgorithm field, the DigestedData digestAlgorithm field, and the AuthenticatedData
digestAlgorithm field.

Digest values are located in the DigestedData digest field and the Message Digest authenticated
attribute. In addition, digest values are input to signature algorithms.

SHA3-224, SHA3-256, SHA3-384, and SHA3-512 produce output values with 224, 256, 384, and 512
bits, respectively. The object identifiers for these four one-way hash functions are as follows:

When using the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm identifiers, the
parameters field be absent, not NULL but absent.

[SHA3]

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-sha3-224 OBJECT IDENTIFIER ::= { hashAlgs 7 }

 id-sha3-256 OBJECT IDENTIFIER ::= { hashAlgs 8 }

 id-sha3-384 OBJECT IDENTIFIER ::= { hashAlgs 9 }

 id-sha3-512 OBJECT IDENTIFIER ::= { hashAlgs 10 }

MUST

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 3

3. Signature Algorithms
This section specifies the conventions employed by CMS implementations that support the four
SHA3 one-way hash functions with the RSASSA PKCS#1 v1.5 signature algorithm and
the ECDSA with the CMS signed-data content type.

Signature algorithm identifiers are located in the SignerInfo signatureAlgorithm field of
SignedData. Also, signature algorithm identifiers are located in the SignerInfo
signatureAlgorithm field of countersignature attributes.

Signature values are located in the SignerInfo signature field of SignedData. Also, signature
values are located in the SignerInfo signature field of countersignature attributes.

[RFC8017]
[DSS]

3.1. RSASSA PKCS#1 v1.5 with SHA3
The RSASSA PKCS#1 v1.5 is defined in . When RSASSA PKCS#1 v1.5 is used in
conjunction with one of the SHA3 one-way hash functions, the object identifiers are:

The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys in certificates is specified in
, and it is repeated here for convenience:

When the rsaEncryption, id-rsassa-pkcs1-v1-5-with-sha3-224, id-rsassa-pkcs1-v1-5-with-sha3-256,
id-rsassa-pkcs1-v1-5-with-sha3-384, and id-rsassa-pkcs1-v1-5-with-sha3-512 algorithm identifiers
are used, the AlgorithmIdentifier parameters field contain NULL.

When the rsaEncryption algorithm identifier is used, the RSA public key, which is composed of a
modulus and a public exponent, be encoded using the RSAPublicKey type as specified in

. The output of this encoding is carried in the certificate subject public key. The
definition of RSAPublicKey is repeated here for convenience:

[RFC8017]

 OID ::= OBJECT IDENTIFIER

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

 id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

 id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

 id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

[RFC3279]

 rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

MUST

MUST
[RFC3279]

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 4

When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a single value. That value
is used directly as the signature value.

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

3.2. ECDSA with SHA3
The ECDSA is defined in . When the ECDSA is used in conjunction with one of the SHA3 one-
way hash functions, the object identifiers are:

When the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm identifier is used, the
parameters field be absent, not NULL but absent.

When the id-ecdsa-with-sha3-224, id-ecdsa-with-sha3-256, id- ecdsa-with-sha3-384, and id-ecdsa-
with-sha3-512 algorithm identifiers are used, the parameters field be absent, not NULL but
absent.

The conventions for ECDSA public keys are as specified in . The ECParameters
associated with the ECDSA public key in the signers certificate apply to the verification of
the signature.

When signing, the ECDSA algorithm generates two values. These values are commonly referred
to as r and s. To easily transfer these two values as one signature, they be ASN.1 encoded
using the ECDSA-Sig-Value defined in , which is repeated here for convenience:

[DSS]

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-ecdsa-with-sha3-224 OBJECT IDENTIFIER ::= { sigAlgs 9 }

 id-ecdsa-with-sha3-256 OBJECT IDENTIFIER ::= { sigAlgs 10 }

 id-ecdsa-with-sha3-384 OBJECT IDENTIFIER ::= { sigAlgs 11 }

 id-ecdsa-with-sha3-512 OBJECT IDENTIFIER ::= { sigAlgs 12 }

MUST

MUST

[RFC5480]
SHALL

MUST
[RFC3279]

 ECDSA-Sig-Value ::= SEQUENCE { r INTEGER, s
INTEGER }

4. Message Authentication Codes Using HMAC and SHA3
This section specifies the conventions employed by CMS implementations that support the
Hashed Message Authentication Code (HMAC) with SHA3 message authentication code
(MAC).

[RFC2104]

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 5

MAC algorithm identifiers are located in the AuthenticatedData macAlgorithm field.

MAC values are located in the AuthenticatedData mac field.

When HMAC is used in conjunction with one of the SHA3 one-way hash functions, the object
identifiers are:

When the id-hmacWithSHA3-224, id-hmacWithSHA3-256, id-hmacWithSHA3-384, and id-
hmacWithSHA3-512 algorithm identifiers are used, the parameters field be absent, not
NULL but absent.

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-hmacWithSHA3-224 OBJECT IDENTIFIER ::= { hashAlgs 13 }

 id-hmacWithSHA3-256 OBJECT IDENTIFIER ::= { hashAlgs 14 }

 id-hmacWithSHA3-384 OBJECT IDENTIFIER ::= { hashAlgs 15 }

 id-hmacWithSHA3-512 OBJECT IDENTIFIER ::= { hashAlgs 16 }

MUST

5. Key Derivation Functions
The CMS KEMRecipientInfo structure is one place where algorithm identifiers for key-
derivation functions are needed.

[RFC9629]

5.1. HKDF with SHA3
This section assigns four algorithm identifiers that can be employed by CMS implementations
that support the HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
with the SHA3 family of hash functions.

When HKDF is used in conjunction with one of the SHA3 one-way hash functions, the object
identifiers are:

[RFC5869]

 id-alg OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

 id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

 id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 6

When id-alg-hkdf-with-sha3-224, id-alg-hkdf-with-sha3-256, id-alg-hkdf-with-sha3-384, or id-alg-
hkdf-with-sha3-512 is used in an algorithm identifier, the parameters field be absent, not
NULL but absent.

MUST

K

X

L

S

5.2. KMAC128-KDF and KMAC256-KDF
This section specifies the conventions employed by CMS implementations that employ either
KMAC128 or KMAC256 as KDFs as defined in Section 4.4 of .

KMAC128 and KMAC256 are specified in . The use of KMAC128 and KMAC256 as
KDFs are defined as follows:

KMAC128-KDF is KMAC128(K, X, L, S).

KMAC256-KDF is KMAC256(K, X, L, S).

The parameters to the KMAC128 and KMAC256 functions are:

The input key-derivation key. The length of K be less than 22040.

The context, which contains the ASN.1 DER encoding of CMSORIforKEMOtherInfo when the
KDF is used with .

The output length in bits. L be greater than or equal to 0 and be less than 22040.

The optional customization label, such as "KDF" (0x4B4446). The length of S be less than

22040.

The K parameter is known to all authorized parties; it is often the output of a KEM Decap()
operation. The X parameter is assembled from data that is transmitted by the originator. The L
parameter is determined by the size of the output keying material. The S parameter is optional,
and if it is provided by the originator, it is passed in the parameters field of the KDF algorithm
identifier.

When KMAC128-KDF or KMAC256-KDF is used, the object identifiers are:

When id-kmac128 or id-kmac256 is used as part of an algorithm identifier, the parameters field
 be absent when there is no customization label (S). If any value is provided for S, then the

parameters field be present and contain the value of S, encoded as Customization.

[NIST.SP.800-108r1-upd1]

[NIST.SP.800-185]

MUST

[RFC9629]

MUST MUST

MUST

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-kmac128 OBJECT IDENTIFIER ::= { hashAlgs 21 }

 id-kmac256 OBJECT IDENTIFIER ::= { hashAlgs 22 }

MUST
MUST

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 7

 Customization ::= OCTET STRING

5.3. KDF2 and KDF3 with SHA3
This section specifies the conventions employed by CMS implementations that employ either the
KDF2 or KDF3 functions defined in . The CMS KEMRecipientInfo structure

 is one place where algorithm identifiers for key-derivation functions are needed.

The key-derivation function algorithm identifier is an object identifier and optional parameters.
When KDF2 and KDF3 are used, they are identified by the id-kdf-kdf2 and id-kdf-kdf3 object
identifiers, respectively. The key-derivation function algorithm identifier parameters carry a
message digest algorithm identifier, which indicates the hash function that is being employed. To
support SHA3, the key-derivation function algorithm identifier parameters contain an algorithm
identifier from Section 2.

[ANS-X9.44-2007]
[RFC9629]

 x9-44 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) }

 x9-44-components OBJECT IDENTIFIER ::= { x9-44 components(1) }

 id-kdf-kdf2 OBJECT IDENTIFIER ::= { x9-44-components kdf2(1) }

 id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

6. Security Considerations
Implementations must protect the signer's private key. Compromise of the signer's private key
permits masquerade.

Implementations must protect the key-derivation key. Compromise of the key-derivation key
permits others to derive the derived keying material, which would result in loss of
confidentiality, integrity, or authentication, depending on the use of the derived keying material.

When more than two parties share the same message-authentication key, data origin
authentication is not assured. Any party that knows the message-authentication key can compute
a valid MAC; therefore, the content could originate from any one of the parties.

Implementations must randomly generate message-authentication keys and one-time values,
such as the a per-message secret number (called the k value) when generating an ECDSA
signature. In addition, the generation of public/private key pairs relies on a random numbers.
The use of inadequate pseudorandom number generators (PRNGs) to generate cryptographic
values can result in little or no security. Instead of brute-force searching the whole key space, an
attacker may find it much easier to reproduce the PRNG environment that produced the keys and
then search the resulting small set of possibilities. The generation of quality random numbers is
difficult. offers important guidance in this area, and Appendix 3 of FIPS PUB 186-4

 provides some PRNG techniques.
[RFC4086]

[DSS]

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 8

8. References

Implementers should be aware that cryptographic algorithms become weaker with time. As new
cryptanalysis techniques are developed and computing performance improves, the work factor
to break a particular cryptographic algorithm will reduce. Therefore, cryptographic algorithm
implementations should be modular, allowing new algorithms to be readily inserted. That is,
implementers should be prepared to regularly update the set of algorithms in their
implementations.

7. IANA Considerations
IANA has assigned one object identifier for the ASN.1 module in Appendix A in the "SMI Security
for S/MIME Module Identifiers (1.2.840.113549.1.9.16.0)" registry :

IANA has assigned four object identifiers for the HKDF using SHA3 algorithm identifiers in the
"SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)" registry :

[IANA-MOD]

 id-mod-sha3-oids-2023 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) mod(0) 78 }

[IANA-ALG]

 id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

 id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

[ANS-X9.44-2007]

[DSS]

[NIST.SP.800-108r1-upd1]

8.1. Normative References

,

, , 2017,
.

,
, , , 3 February 2023,

.

,
, , , 2

February 2024,
.

American National Standards Institute "Public Key Cryptography for the
Financial Services Industry -- Key Establishment Using Integer Factorization
Cryptography" ANSI X9.44-2007 (R2017) <https://webstore.ansi.org/
standards/ascx9/ansix9442007r2017>

National Institute of Standards and Technology "Digital Signature Standard
(DSS)" FIPS PUB 186-5 DOI 10.6028/NIST.FIPS.186-5 <https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf>

Chen, L. "Recommendation for Key Derivation Using Pseudorandom
Functions" NIST SP 800-108r1-upd1 DOI 10.6028/NIST.SP.800-108r1-upd1

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-108r1-upd1.pdf>

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 9

https://webstore.ansi.org/standards/ascx9/ansix9442007r2017
https://webstore.ansi.org/standards/ascx9/ansix9442007r2017
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

[NIST.SP.800-185]

[RFC2104]

[RFC2119]

[RFC3279]

[RFC5480]

[RFC5652]

[RFC5869]

[RFC5912]

[RFC8017]

[RFC8174]

[SHA3]

[X.680]

, , and ,
, ,

, December 2016,
.

, , and ,
, , , February 1997,

.

, , ,
, , March 1997,
.

, , and ,

, , , April 2002,
.

, , , , and ,
, , ,

March 2009, .

, , , ,
, September 2009, .

 and ,
, , , May 2010,

.

 and ,
, , , June 2010,

.

, , , and ,
, , ,

November 2016, .

, ,
, , , May 2017,

.

,
, ,

, August 2015,
.

,
, ,

, February 2021, .

Kelsey, J. Chang, S. R. Perlner "SHA-3 Derived Functions: cSHAKE,
KMAC, TupleHash and ParallelHash" NIST SP 800-185 DOI 10.6028/NIST.SP.
800-185 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-185.pdf>

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bassham, L. Polk, W. R. Housley "Algorithms and Identifiers for the
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 3279 DOI 10.17487/RFC3279 <https://
www.rfc-editor.org/info/rfc3279>

Turner, S. Brown, D. Yiu, K. Housley, R. T. Polk "Elliptic Curve
Cryptography Subject Public Key Information" RFC 5480 DOI 10.17487/RFC5480

<https://www.rfc-editor.org/info/rfc5480>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Hoffman, P. J. Schaad "New ASN.1 Modules for the Public Key
Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912
<https://www.rfc-editor.org/info/rfc5912>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

National Institute of Standards and Technology "SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions" NIST FIPS 202 DOI 10.6028/
NIST.FIPS.202 <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf>

ITU-T "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680 ISO/IEC
8824-1:2021 <https://www.itu.int/rec/T-REC-X.680-202102-I/en>

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3279
https://www.rfc-editor.org/info/rfc3279
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.itu.int/rec/T-REC-X.680-202102-I/en

[X.690] ,

, , ,
February 2021, .

ITU-T "Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1:2021

<https://www.itu.int/rec/T-REC-X.690-202102-I/en>

[IANA-ALG]

[IANA-MOD]

[RFC4086]

[RFC8702]

[RFC9629]

8.2. Informative References

, ,
.

, ,
.

, , and ,
, , , , June 2005,

.

 and ,
, , , January

2020, .

, , and ,
, ,

, August 2024, .

IANA "SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)" <https://
www.iana.org/assignments/smi-numbers/>

IANA "SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)"
<https://www.iana.org/assignments/smi-numbers/>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Kampanakis, P. Q. Dang "Use of the SHAKE One-Way Hash Functions in the
Cryptographic Message Syntax (CMS)" RFC 8702 DOI 10.17487/RFC8702

<https://www.rfc-editor.org/info/rfc8702>

Housley, R. Gray, J. T. Okubo "Using Key Encapsulation Mechanism (KEM)
Algorithms in the Cryptographic Message Syntax (CMS)" RFC 9629 DOI
10.17487/RFC9629 <https://www.rfc-editor.org/info/rfc9629>

Appendix A. ASN.1 Module
This section contains the ASN.1 module for the algorithm identifiers using the SHA3 family of
hash functions . This module imports types from other ASN.1 modules that are defined in

.
[SHA3]

[RFC5912]

<CODE BEGINS>
 SHA3-OIDs-2023
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-sha3-oids-2023(78) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 EXPORTS ALL;

 IMPORTS

 AlgorithmIdentifier{}, DIGEST-ALGORITHM, SIGNATURE-ALGORITHM,
 KEY-DERIVATION, MAC-ALGORITHM
 FROM AlgorithmInformation-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 mda-sha1, pk-rsa, pk-ec, ECDSA-Sig-Value

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 11

https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://www.iana.org/assignments/smi-numbers/
https://www.iana.org/assignments/smi-numbers/
https://www.iana.org/assignments/smi-numbers/
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc8702
https://www.rfc-editor.org/info/rfc9629

 FROM PKIXAlgs-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

 mda-sha224, mda-sha256, mda-sha384, mda-sha512
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

 --
 -- Alias
 --

 OID ::= OBJECT IDENTIFIER

 --
 -- Object Identifier Arcs
 --

 nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) 4 }

 hashAlgs OID ::= { nistAlgorithm 2 }

 sigAlgs OID ::= { nistAlgorithm 3 }

 x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
 country(16) x9(840) x9Standards(9) x9-44(44) }

 x9-44-components OID ::= { x9-44 components(1) }

 id-alg OID ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

 --
 -- Message Digest Algorithms
 --

 id-sha3-224 OID ::= { hashAlgs 7 }

 id-sha3-256 OID ::= { hashAlgs 8 }

 id-sha3-384 OID ::= { hashAlgs 9 }

 id-sha3-512 OID ::= { hashAlgs 10 }

 mda-sha3-224 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-224
 PARAMS ARE absent }

 mda-sha3-256 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-256
 PARAMS ARE absent }

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 12

 mda-sha3-384 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-384
 PARAMS ARE absent }

 mda-sha3-512 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-512
 PARAMS ARE absent }

 HashAlgorithm ::= AlgorithmIdentifier{ DIGEST-ALGORITHM,
 { HashAlgorithms } }

 HashAlgorithms DIGEST-ALGORITHM ::= {
 mda-sha3-224 |
 mda-sha3-256 |
 mda-sha3-384 |
 mda-sha3-512,
 ... }

 --
 -- Signature Algorithms
 --

 id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

 id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

 id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

 id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

 id-ecdsa-with-sha3-224 OID ::= { sigAlgs 9 }

 id-ecdsa-with-sha3-256 OID ::= { sigAlgs 10 }

 id-ecdsa-with-sha3-384 OID ::= { sigAlgs 11 }

 id-ecdsa-with-sha3-512 OID ::= { sigAlgs 12 }

 sa-rsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-224
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-224 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-224 } }

 sa-rsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-256
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-256 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-256 } }

 sa-rsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-384

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 13

 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-384 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-384 } }

 sa-rsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-512
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-512 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-512 } }

 sa-ecdsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-224
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-224 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-224 } }

 sa-ecdsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-256
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-256 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-256 } }

 sa-ecdsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-384
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-384 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-384 } }

 sa-ecdsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-512
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-512 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-512 } }

 SignatureAlg ::= AlgorithmIdentifier{ SIGNATURE-ALGORITHM,
 { SignatureAlgs } }

 SignatureAlgs SIGNATURE-ALGORITHM ::= {
 sa-rsaWithSHA3-224 |
 sa-rsaWithSHA3-256 |
 sa-rsaWithSHA3-384 |
 sa-rsaWithSHA3-512 |
 sa-ecdsaWithSHA3-224 |
 sa-ecdsaWithSHA3-256 |
 sa-ecdsaWithSHA3-384 |
 sa-ecdsaWithSHA3-512,

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 14

 ... }

 --
 -- Message Authentication Codes
 --

 id-hmacWithSHA3-224 OID ::= { hashAlgs 13 }

 id-hmacWithSHA3-256 OID ::= { hashAlgs 14 }

 id-hmacWithSHA3-384 OID ::= { hashAlgs 15 }

 id-hmacWithSHA3-512 OID ::= { hashAlgs 16 }

 maca-hmacWithSHA3-224 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-224
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-224 } }

 maca-hmacWithSHA3-256 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-256
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-256 } }

 maca-hmacWithSHA3-384 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-384
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-384 } }

 maca-hmacWithSHA3-512 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-512
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-512 } }

 MACAlgorithm ::= AlgorithmIdentifier{ MAC-ALGORITHM,
 { MACAlgorithms } }

 MACAlgorithms MAC-ALGORITHM ::= {
 maca-hmacWithSHA3-224 |
 maca-hmacWithSHA3-256 |
 maca-hmacWithSHA3-384 |
 maca-hmacWithSHA3-512,
 ... }

 --
 -- Key Derivation Algorithms
 --

 id-alg-hkdf-with-sha3-224 OID ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OID ::= { id-alg 33 }

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 15

 id-alg-hkdf-with-sha3-384 OID ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OID ::= { id-alg 35 }

 id-kmac128 OID ::= { hashAlgs 21 }

 id-kmac256 OID ::= { hashAlgs 22 }

 id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

 id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

 kda-hkdf-with-sha3-224 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-224
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-256 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-256
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-384 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-384
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-512 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-512
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-kmac128 KEY-DERIVATION ::= {
 IDENTIFIER id-kmac128
 PARAMS TYPE Customization ARE optional
 -- PARAMS are absent when Customization is ''H --
 -- No S/MIME caps defined -- }

 kda-kmac256 KEY-DERIVATION ::= {
 IDENTIFIER id-kmac256
 PARAMS TYPE Customization ARE optional
 -- PARAMS are absent when Customization is ''H --
 -- No S/MIME caps defined -- }

 kda-kdf2 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf2
 PARAMS TYPE KDF2-HashFunction ARE required
 -- No S/MIME caps defined -- }

 kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required
 -- No S/MIME caps defined -- }

 Customization ::= OCTET STRING

 KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
 { KDF2-HashFunctions } }

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 16

 KDF2-HashFunctions DIGEST-ALGORITHM ::= {
 X9-HashFunctions,
 ... }

 KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
 { KDF3-HashFunctions } }

 KDF3-HashFunctions DIGEST-ALGORITHM ::= {
 X9-HashFunctions,
 ... }

 X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 |
 mda-sha224 |
 mda-sha256 |
 mda-sha384 |
 mda-sha512 |
 mda-sha3-224 |
 mda-sha3-256 |
 mda-sha3-384 |
 mda-sha3-512,
 ... }

 KeyDerivationFunction ::= AlgorithmIdentifier{ KEY-DERIVATION,
 { KeyDevAlgs } }

 KeyDevAlgs KEY-DERIVATION ::= {
 kda-hkdf-with-sha3-224 |
 kda-hkdf-with-sha3-256 |
 kda-hkdf-with-sha3-384 |
 kda-hkdf-with-sha3-512 |
 kda-kmac128 |
 kda-kmac256 |
 kda-kdf2 |
 kda-kdf3,
 ... }

 END

<CODE ENDS>

Acknowledgements
Thanks to and for their careful review and thoughtful comments.

Thanks to , , and for getting the object identifiers assigned
for KMAC128 and KMAC256.

Daniel Van Geest Sean Turner

Sara Kerman Quynh Dang David Cooper

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 17

Author's Address
Russ Housley
Vigil Security, LLC

, Herndon VA
United States of America

housley@vigilsec.comEmail:

RFC 9688 Using SHA3 with the CMS November 2024

Housley Standards Track Page 18

mailto:housley@vigilsec.com

	RFC 9688
	Use of the SHA3 One-Way Hash Functions in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. ASN.1
	1.2. Terminology

	2. Message Digest Algorithms
	3. Signature Algorithms
	3.1. RSASSA PKCS#1 v1.5 with SHA3
	3.2. ECDSA with SHA3

	4. Message Authentication Codes Using HMAC and SHA3
	5. Key Derivation Functions
	5.1. HKDF with SHA3
	5.2. KMAC128-KDF and KMAC256-KDF
	5.3. KDF2 and KDF3 with SHA3

	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. ASN.1 Module
	Acknowledgements
	Author's Address

 Use of the SHA3 One-Way Hash Functions in the Cryptographic Message Syntax (CMS)

 Vigil Security, LLC

 Herndon
 VA
 United States of America

 housley@vigilsec.com

 SEC
 lamps
 example

 This document describes the conventions for using the one-way hash functions
in the SHA3 family with the Cryptographic Message Syntax (CMS). The SHA3
family can be used as a message digest algorithm, as part of a signature
algorithm, as part of a message authentication code, or as part of a Key
Derivation Function (KDF).

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . ASN.1

 . Terminology

 . Message Digest Algorithms

 . Signature Algorithms

 . RSASSA PKCS#1 v1.5 with SHA3

 . ECDSA with SHA3

 . Message Authentication Codes Using HMAC and SHA3

 . Key Derivation Functions

 . HKDF with SHA3

 . KMAC128-KDF and KMAC256-KDF

 . KDF2 and KDF3 with SHA3

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . ASN.1 Module

 Acknowledgements

 Author's Address

 Introduction
 The Cryptographic Message Syntax (CMS) is used to digitally sign,
digest, authenticate, or encrypt arbitrary message contents. This
specification describes the use of the four one-way hash functions in the
SHA3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512) with the
CMS. In addition, this specification describes the use of these four
one-way hash functions with the RSASSA PKCS#1 version 1.5 signature
algorithm and the Elliptic Curve Digital Signature Algorithm
(ECDSA) with the CMS signed-data content type.
 This document should not be confused with , which defines
conventions for using the SHAKE family of SHA3-based extensible output
functions with the CMS.

 ASN.1
 CMS values are generated with ASN.1 , using the Basic
Encoding Rules (BER) and the Distinguished Encoding Rules (DER) .

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Message Digest Algorithms
 One-way hash functions are also referred to as message digest algorithms.
This section specifies the conventions employed by CMS implementations
that support SHA3-224, SHA3-256, SHA3-384, and SHA3-512 .
 Digest algorithm identifiers are located in the SignedData digestAlgorithms
field, the SignerInfo digestAlgorithm field, the DigestedData digestAlgorithm
field, and the AuthenticatedData digestAlgorithm field.
 Digest values
are located in the DigestedData digest field and the Message Digest
authenticated attribute. In addition, digest values are input to signature
algorithms.
 SHA3-224, SHA3-256, SHA3-384, and SHA3-512 produce output values with
224, 256, 384, and 512 bits, respectively. The object identifiers for
 these four one-way hash functions are as follows:

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-sha3-224 OBJECT IDENTIFIER ::= { hashAlgs 7 }

 id-sha3-256 OBJECT IDENTIFIER ::= { hashAlgs 8 }

 id-sha3-384 OBJECT IDENTIFIER ::= { hashAlgs 9 }

 id-sha3-512 OBJECT IDENTIFIER ::= { hashAlgs 10 }

 When using the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512
algorithm identifiers, the parameters field MUST be absent, not NULL
but absent.

 Signature Algorithms
 This section specifies the conventions employed by CMS implementations
that support the four SHA3 one-way hash functions with the RSASSA PKCS#1 v1.5 signature algorithm and the ECDSA with the CMS signed-data content type.
 Signature algorithm identifiers are located in the SignerInfo
signatureAlgorithm field of SignedData. Also, signature algorithm
identifiers are located in the SignerInfo signatureAlgorithm field
of countersignature attributes.
 Signature values are located in the SignerInfo signature field of
SignedData. Also, signature values are located in the SignerInfo
signature field of countersignature attributes.

 RSASSA PKCS#1 v1.5 with SHA3
 The RSASSA PKCS#1 v1.5 is defined in . When RSASSA PKCS#1 v1.5 is
used in conjunction with one of the SHA3 one-way hash functions, the
object identifiers are:

 OID ::= OBJECT IDENTIFIER

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

 id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

 id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

 id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

 The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys
in certificates is specified in , and it is repeated here for
convenience:

 rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

 When the rsaEncryption, id-rsassa-pkcs1-v1-5-with-sha3-224,
id-rsassa-pkcs1-v1-5-with-sha3-256,
id-rsassa-pkcs1-v1-5-with-sha3-384, and
id-rsassa-pkcs1-v1-5-with-sha3-512 algorithm identifiers are used,
the AlgorithmIdentifier parameters field MUST contain NULL.
 When the rsaEncryption algorithm identifier is used, the RSA public key,
which is composed of a modulus and a public exponent, MUST be encoded
using the RSAPublicKey type as specified in . The output of
this encoding is carried in the certificate subject public key. The
definition of RSAPublicKey is repeated here for convenience:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

 When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a
single value. That value is used directly as the signature value.

 ECDSA with SHA3
 The ECDSA is defined in
 . When the ECDSA is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-ecdsa-with-sha3-224 OBJECT IDENTIFIER ::= { sigAlgs 9 }

 id-ecdsa-with-sha3-256 OBJECT IDENTIFIER ::= { sigAlgs 10 }

 id-ecdsa-with-sha3-384 OBJECT IDENTIFIER ::= { sigAlgs 11 }

 id-ecdsa-with-sha3-512 OBJECT IDENTIFIER ::= { sigAlgs 12 }

 When the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512 algorithm
identifier is used, the parameters field MUST be absent, not NULL but absent.
 When the id-ecdsa-with-sha3-224, id-ecdsa-with-sha3-256, id-
ecdsa-with-sha3-384, and id-ecdsa-with-sha3-512 algorithm identifiers are
used, the parameters field MUST be absent, not NULL but absent.
 The conventions for
ECDSA public keys are as specified in . The
ECParameters associated with the ECDSA public key in the signers certificate
 SHALL apply to the verification of the signature.
 When
signing, the ECDSA algorithm generates two values. These values are commonly
referred to as r and s. To easily transfer these two values as one signature,
they MUST be ASN.1 encoded using the ECDSA-Sig-Value defined in
 , which is repeated here for convenience:
 ECDSA-Sig-Value ::= SEQUENCE { r INTEGER, s
INTEGER }

 Message Authentication Codes Using HMAC and SHA3
 This section specifies the conventions employed by CMS implementations
that support the Hashed Message Authentication Code (HMAC) with SHA3 message authentication code (MAC).
 MAC algorithm identifiers are located in the AuthenticatedData
macAlgorithm field.
 MAC values are located in the AuthenticatedData mac field.
 When HMAC is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-hmacWithSHA3-224 OBJECT IDENTIFIER ::= { hashAlgs 13 }

 id-hmacWithSHA3-256 OBJECT IDENTIFIER ::= { hashAlgs 14 }

 id-hmacWithSHA3-384 OBJECT IDENTIFIER ::= { hashAlgs 15 }

 id-hmacWithSHA3-512 OBJECT IDENTIFIER ::= { hashAlgs 16 }

 When the id-hmacWithSHA3-224, id-hmacWithSHA3-256,
id-hmacWithSHA3-384, and id-hmacWithSHA3-512 algorithm
identifiers are used, the parameters field MUST be absent,
not NULL but absent.

 Key Derivation Functions
 The CMS KEMRecipientInfo structure is one place where
algorithm identifiers for key-derivation functions are needed.

 HKDF with SHA3
 This section assigns four algorithm identifiers that can be employed by CMS
implementations that support the HMAC-based Extract-and-Expand Key Derivation
Function (HKDF) with the SHA3 family of hash functions.
 When HKDF is used in conjunction with one of the SHA3
one-way hash functions, the object identifiers are:

 id-alg OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

 id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

 id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

 When id-alg-hkdf-with-sha3-224, id-alg-hkdf-with-sha3-256,
id-alg-hkdf-with-sha3-384, or id-alg-hkdf-with-sha3-512 is used in
an algorithm identifier, the parameters field MUST be absent,
not NULL but absent.

 KMAC128-KDF and KMAC256-KDF
 This section specifies the conventions employed by CMS implementations
that employ either KMAC128 or KMAC256 as KDFs as
defined in Section 4.4 of .
 KMAC128 and KMAC256 are specified in . The use of KMAC128
and KMAC256 as KDFs are defined as follows:
 KMAC128-KDF is KMAC128(K, X, L, S).
 KMAC256-KDF is KMAC256(K, X, L, S).
 The parameters to the KMAC128 and KMAC256 functions are:

 K

 The input key-derivation key. The length of K MUST be less than 2 2040.

 X

 The context, which contains the ASN.1 DER encoding of CMSORIforKEMOtherInfo when the KDF is used with .

 L

 The output length in bits. L MUST be greater than or equal to 0 and MUST be less than 2 2040.

 S

 The optional customization label, such as "KDF" (0x4B4446). The length of S MUST be less than 2 2040.

 The K parameter is known to all authorized parties; it is often the output
of a KEM Decap() operation. The X parameter is assembled from data that
is transmitted by the originator. The L parameter is determined by the
size of the output keying material. The S parameter is optional, and if
it is provided by the originator, it is passed in the parameters field of
the KDF algorithm identifier.
 When KMAC128-KDF or KMAC256-KDF is used, the object identifiers are:

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-kmac128 OBJECT IDENTIFIER ::= { hashAlgs 21 }

 id-kmac256 OBJECT IDENTIFIER ::= { hashAlgs 22 }

 When id-kmac128 or id-kmac256 is used as part of an algorithm identifier, the
parameters field MUST be absent when there is no customization label (S). If any
value is provided for S, then the parameters field MUST be present and
contain the value of S, encoded as Customization.

 Customization ::= OCTET STRING

 KDF2 and KDF3 with SHA3
 This section specifies the conventions employed by CMS implementations
that employ either the KDF2 or KDF3 functions defined in .
The CMS KEMRecipientInfo structure is one
place where algorithm identifiers for key-derivation functions are needed.
 The key-derivation function algorithm identifier is an object identifier
and optional parameters. When KDF2 and KDF3 are used, they are identified by
the id-kdf-kdf2 and id-kdf-kdf3 object identifiers, respectively. The
key-derivation function algorithm identifier parameters carry a message
digest algorithm identifier, which indicates the hash function that
is being employed. To support SHA3, the key-derivation function
algorithm identifier parameters contain an algorithm identifier from
 .

 x9-44 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) }

 x9-44-components OBJECT IDENTIFIER ::= { x9-44 components(1) }

 id-kdf-kdf2 OBJECT IDENTIFIER ::= { x9-44-components kdf2(1) }

 id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

 Security Considerations
 Implementations must protect the signer's private key. Compromise of the
signer's private key permits masquerade.
 Implementations must protect the key-derivation key. Compromise of the
key-derivation key permits others to derive the derived keying material,
which would result in loss of confidentiality, integrity, or authentication,
depending on the use of the derived keying material.
 When more than two parties share the same message-authentication key,
data origin authentication is not assured. Any party that knows the
message-authentication key can compute a valid MAC; therefore, the content
could originate from any one of the parties.
 Implementations must randomly generate message-authentication keys
 and one-time values, such as the a per-message secret number (called the
 k value) when generating an ECDSA signature.
In addition, the generation of public/private key pairs relies on a
random numbers. The use of inadequate pseudorandom number generators
(PRNGs) to generate cryptographic values can result in little or no
security. Instead of brute-force searching the whole key space, an
attacker may find it much easier to reproduce the PRNG environment that
produced the keys and then search the resulting small set of
possibilities. The generation of quality random numbers is
difficult. offers important guidance in this area,
and Appendix 3 of FIPS PUB 186-4 provides some PRNG techniques.
 Implementers should be aware that cryptographic algorithms become weaker
with time. As new cryptanalysis techniques are developed and computing
performance improves, the work factor to break a particular cryptographic
algorithm will reduce. Therefore, cryptographic algorithm
implementations should be modular, allowing new algorithms to be readily
inserted. That is, implementers should be prepared to regularly update
the set of algorithms in their implementations.

 IANA Considerations
 IANA has assigned one object identifier for the ASN.1 module in
in the "SMI Security for S/MIME Module Identifiers (1.2.840.113549.1.9.16.0)"
registry :

 id-mod-sha3-oids-2023 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) mod(0) 78 }

 IANA has assigned four object identifiers for the HKDF using SHA3 algorithm
identifiers in the "SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)"
registry :

 id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg 33 }

 id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg 35 }

 References

 Normative References

 Public Key Cryptography for the Financial Services Industry -- Key Establishment Using Integer Factorization Cryptography

 American National Standards Institute

 Digital Signature Standard (DSS)

 National Institute of Standards and Technology

 Recommendation for Key Derivation Using Pseudorandom Functions

 National Institute of Standards and Technology

 SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash

 National Institute of Standards and Technology

 National Institute of Standards and Technology

 National Institute of Standards and Technology

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This document specifies algorithm identifiers and ASN.1 encoding formats for digital signatures and subject public keys used in the Internet X.509 Public Key Infrastructure (PKI). Digital signatures are used to sign certificates and certificate revocation list (CRLs). Certificates include the public key of the named subject. [STANDARDS-TRACK]

 Elliptic Curve Cryptography Subject Public Key Information

 This document specifies the syntax and semantics for the Subject Public Key Information field in certificates that support Elliptic Curve Cryptography. This document updates Sections 2.3.5 and 5, and the ASN.1 module of "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279. [STANDARDS-TRACK]

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

 This document specifies a simple Hashed Message Authentication Code (HMAC)-based key derivation function (HKDF), which can be used as a building block in various protocols and applications. The key derivation function (KDF) is intended to support a wide range of applications and requirements, and is conservative in its use of cryptographic hash functions. This document is not an Internet Standards Track specification; it is published for informational purposes.

 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)

 The Public Key Infrastructure using X.509 (PKIX) certificate format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

 National Institute of Standards and Technology

 Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation

 ITU-T

 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Informative References

 SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)

 IANA

 SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)

 IANA

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Use of the SHAKE One-Way Hash Functions in the Cryptographic Message Syntax (CMS)

 This document updates the "Cryptographic Message Syntax (CMS) Algorithms" (RFC 3370) and describes the conventions for using the SHAKE family of hash functions in the Cryptographic Message Syntax as one-way hash functions with the RSA Probabilistic Signature Scheme (RSASSA-PSS) and Elliptic Curve Digital Signature Algorithm (ECDSA). The conventions for the associated signer public keys in CMS are also described.

 Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)

 The Cryptographic Message Syntax (CMS) supports key transport and key agreement algorithms. In recent years, cryptographers have been specifying Key Encapsulation Mechanism (KEM) algorithms, including quantum-secure KEM algorithms. This document defines conventions for the use of KEM algorithms by the originator and recipients to encrypt and decrypt CMS content. This document updates RFC 5652.

 ASN.1 Module
 This section contains the ASN.1 module for the algorithm identifiers using the SHA3
family of hash functions . This module imports types from other ASN.1
modules that are defined in .

 SHA3-OIDs-2023
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-sha3-oids-2023(78) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 EXPORTS ALL;

 IMPORTS

 AlgorithmIdentifier{}, DIGEST-ALGORITHM, SIGNATURE-ALGORITHM,
 KEY-DERIVATION, MAC-ALGORITHM
 FROM AlgorithmInformation-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 mda-sha1, pk-rsa, pk-ec, ECDSA-Sig-Value
 FROM PKIXAlgs-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

 mda-sha224, mda-sha256, mda-sha384, mda-sha512
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

 --
 -- Alias
 --

 OID ::= OBJECT IDENTIFIER

 --
 -- Object Identifier Arcs
 --

 nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) 4 }

 hashAlgs OID ::= { nistAlgorithm 2 }

 sigAlgs OID ::= { nistAlgorithm 3 }

 x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
 country(16) x9(840) x9Standards(9) x9-44(44) }

 x9-44-components OID ::= { x9-44 components(1) }

 id-alg OID ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

 --
 -- Message Digest Algorithms
 --

 id-sha3-224 OID ::= { hashAlgs 7 }

 id-sha3-256 OID ::= { hashAlgs 8 }

 id-sha3-384 OID ::= { hashAlgs 9 }

 id-sha3-512 OID ::= { hashAlgs 10 }

 mda-sha3-224 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-224
 PARAMS ARE absent }

 mda-sha3-256 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-256
 PARAMS ARE absent }

 mda-sha3-384 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-384
 PARAMS ARE absent }

 mda-sha3-512 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha3-512
 PARAMS ARE absent }

 HashAlgorithm ::= AlgorithmIdentifier{ DIGEST-ALGORITHM,
 { HashAlgorithms } }

 HashAlgorithms DIGEST-ALGORITHM ::= {
 mda-sha3-224 |
 mda-sha3-256 |
 mda-sha3-384 |
 mda-sha3-512,
 ... }

 --
 -- Signature Algorithms
 --

 id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

 id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

 id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

 id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

 id-ecdsa-with-sha3-224 OID ::= { sigAlgs 9 }

 id-ecdsa-with-sha3-256 OID ::= { sigAlgs 10 }

 id-ecdsa-with-sha3-384 OID ::= { sigAlgs 11 }

 id-ecdsa-with-sha3-512 OID ::= { sigAlgs 12 }

 sa-rsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-224
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-224 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-224 } }

 sa-rsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-256
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-256 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-256 } }

 sa-rsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-384
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-384 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-384 } }

 sa-rsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-512
 PARAMS TYPE NULL ARE required
 HASHES { mda-sha3-512 }
 PUBLIC-KEYS { pk-rsa }
 SMIME-CAPS {IDENTIFIED BY
 id-rsassa-pkcs1-v1-5-with-sha3-512 } }

 sa-ecdsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-224
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-224 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-224 } }

 sa-ecdsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-256
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-256 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-256 } }

 sa-ecdsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-384
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-384 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-384 } }

 sa-ecdsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-ecdsa-with-sha3-512
 VALUE ECDSA-Sig-Value
 PARAMS ARE absent
 HASHES { mda-sha3-512 }
 PUBLIC-KEYS { pk-ec }
 SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-512 } }

 SignatureAlg ::= AlgorithmIdentifier{ SIGNATURE-ALGORITHM,
 { SignatureAlgs } }

 SignatureAlgs SIGNATURE-ALGORITHM ::= {
 sa-rsaWithSHA3-224 |
 sa-rsaWithSHA3-256 |
 sa-rsaWithSHA3-384 |
 sa-rsaWithSHA3-512 |
 sa-ecdsaWithSHA3-224 |
 sa-ecdsaWithSHA3-256 |
 sa-ecdsaWithSHA3-384 |
 sa-ecdsaWithSHA3-512,
 ... }

 --
 -- Message Authentication Codes
 --

 id-hmacWithSHA3-224 OID ::= { hashAlgs 13 }

 id-hmacWithSHA3-256 OID ::= { hashAlgs 14 }

 id-hmacWithSHA3-384 OID ::= { hashAlgs 15 }

 id-hmacWithSHA3-512 OID ::= { hashAlgs 16 }

 maca-hmacWithSHA3-224 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-224
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-224 } }

 maca-hmacWithSHA3-256 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-256
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-256 } }

 maca-hmacWithSHA3-384 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-384
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-384 } }

 maca-hmacWithSHA3-512 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA3-512
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-512 } }

 MACAlgorithm ::= AlgorithmIdentifier{ MAC-ALGORITHM,
 { MACAlgorithms } }

 MACAlgorithms MAC-ALGORITHM ::= {
 maca-hmacWithSHA3-224 |
 maca-hmacWithSHA3-256 |
 maca-hmacWithSHA3-384 |
 maca-hmacWithSHA3-512,
 ... }

 --
 -- Key Derivation Algorithms
 --

 id-alg-hkdf-with-sha3-224 OID ::= { id-alg 32 }

 id-alg-hkdf-with-sha3-256 OID ::= { id-alg 33 }

 id-alg-hkdf-with-sha3-384 OID ::= { id-alg 34 }

 id-alg-hkdf-with-sha3-512 OID ::= { id-alg 35 }

 id-kmac128 OID ::= { hashAlgs 21 }

 id-kmac256 OID ::= { hashAlgs 22 }

 id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

 id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

 kda-hkdf-with-sha3-224 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-224
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-256 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-256
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-384 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-384
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-hkdf-with-sha3-512 KEY-DERIVATION ::= {
 IDENTIFIER id-alg-hkdf-with-sha3-512
 PARAMS ARE absent
 -- No S/MIME caps defined -- }

 kda-kmac128 KEY-DERIVATION ::= {
 IDENTIFIER id-kmac128
 PARAMS TYPE Customization ARE optional
 -- PARAMS are absent when Customization is ''H --
 -- No S/MIME caps defined -- }

 kda-kmac256 KEY-DERIVATION ::= {
 IDENTIFIER id-kmac256
 PARAMS TYPE Customization ARE optional
 -- PARAMS are absent when Customization is ''H --
 -- No S/MIME caps defined -- }

 kda-kdf2 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf2
 PARAMS TYPE KDF2-HashFunction ARE required
 -- No S/MIME caps defined -- }

 kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required
 -- No S/MIME caps defined -- }

 Customization ::= OCTET STRING

 KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
 { KDF2-HashFunctions } }

 KDF2-HashFunctions DIGEST-ALGORITHM ::= {
 X9-HashFunctions,
 ... }

 KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
 { KDF3-HashFunctions } }

 KDF3-HashFunctions DIGEST-ALGORITHM ::= {
 X9-HashFunctions,
 ... }

 X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 |
 mda-sha224 |
 mda-sha256 |
 mda-sha384 |
 mda-sha512 |
 mda-sha3-224 |
 mda-sha3-256 |
 mda-sha3-384 |
 mda-sha3-512,
 ... }

 KeyDerivationFunction ::= AlgorithmIdentifier{ KEY-DERIVATION,
 { KeyDevAlgs } }

 KeyDevAlgs KEY-DERIVATION ::= {
 kda-hkdf-with-sha3-224 |
 kda-hkdf-with-sha3-256 |
 kda-hkdf-with-sha3-384 |
 kda-hkdf-with-sha3-512 |
 kda-kmac128 |
 kda-kmac256 |
 kda-kdf2 |
 kda-kdf3,
 ... }

 END

 Acknowledgements
 Thanks to and for their careful review and thoughtful
 comments.
 Thanks to , , and for getting the object
 identifiers assigned for KMAC128 and KMAC256.

 Author's Address

 Vigil Security, LLC

 Herndon
 VA
 United States of America

 housley@vigilsec.com

